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Abstract

We describe a principle of bounded stiffness and show that bounded stiffness in torsion
and bending implies a reduction of the curvature energy in linear isotropic Cosserat models

leading to the so called conformal curvature case µ
L2
c
2
‖ dev sym∇ axlA‖2 where A ∈ so(3)

is the Cosserat microrotation. Imposing bounded stiffness greatly facilitates the Cosserat
parameter identification and allows a well-posed, stable determination of the one remaining
length scale parameter Lc and the Cosserat couple modulus µc.
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1 Introduction

Non-classical size-effects are becoming increasingly important for materials at the micro- and
nanoscale regime. There are many possibilities in order to include size-effects on the continuum
scale. One such prominent model is the Cosserat model. In its simplest isotropic linear version
the Cosserat model introduces six material parameters. However, the parameter identifica-
tion for Cosserat solids is a difficult and challenging issue, let us only mention the exhaustive
discussion in [4] and references therein.

We show how to a priori reduce the number of curvature parameters in the linear, isotropic,
centro-symmetric Cosserat model by requiring what we identify with bounded stiffness. First,
we recall the Cosserat model and we motivate bounded stiffness in general. Then we apply our
result to the torsion and bending of thin circular Cosserat wires. Imposing bounded stiffness
reduces the curvature energy to the conformally invariant case which is the weakest possible
requirement for well-posedness of the linear isotropic Cosserat model [19].

Our approach here is based on an a priori investigation of given analytical solutions for
simple but three-dimensional Cosserat boundary value problems: namely torsion and bending
of a circular wire by resultant moments with the understanding that these are the most relevant
cases from an experimental point of view.

It is well-known that a Cosserat solid displays size-effects. These size effects refer to a non-
classical dependence of rigidity of an object upon one or more of its dimensions. In classical
linear elasticity for a circular cylinder with radius a the rigidity in tension is proportional to a2

and the rigidity in torsion and bending is proportional to a4. For the Cosserat solid the ratio of
rigidity to its classical value is increased: thinner samples of the same material respond stiffer.
For certain parameter ranges of the Cosserat solid this effect may be dramatic. For example the
rigidity in torsion could become proportional to a2 such that the normalised torsional rigidity
(normalised against the classical value) has a singularity proportional to 1

a2 . However, as notes
already Lakes [23]: ”..., infinite stiffening effects are unphysical.”

Our principle of bounded stiffness requires simply that the stiffness increase for thinner and
thinner samples (normalised against the classical stiffness) should be bounded independent of
the wire radius a, i.e. a singularity free response. In bending and torsion we can directly read off
the corresponding requirement. It leads in a straight forward way to what we term the conformal
curvature case µ L2

c

2 ‖dev sym∇ axlA‖2. In separate contributions [30, 20, 28, 29, 19] we have
investigated, in more detail, this novel conformal curvature case from alternative perspectives.

Of the many analytical solutions available in micropolar elasticity [8] we do not consider two-
dimensional plane stress or plane strain solutions since the relevance of these boundary value
problems hinges on very special isotropy, homogeneity and symmetry assumptions. These
solutions, being so special, do only involve one overall curvature parameter. If any singular
stiffening behaviour is predicted [14] this would therefore exclude curvature effects altogether.

In this sense this note also corrects some statements towards the same goal of reducing
the number of parameters in a linear Cosserat solid made in [27] where, however, plane strain
boundary value problems have been included. The conclusions in [27] regarding the conse-
quences of bounded stiffness are therefore corrected and highlighted.

We begin by establishing the linear isotropic Cosserat model [6, 5, 9, 34, 33, 37, 11] along with
some of our notation. This section does not contain new results. The remaining notation is
found in the appendix.

1.1 The linear elastic Cosserat model in variational form

For the displacement u : Ω ⊂ R3 7→ R3 and the skew-symmetric infinitesimal microro-
tation A : Ω ⊂ R3 7→ so(3) we consider the two-field minimisation problem

I(u,A) =
∫

Ω

Wmp(ε) +Wcurv(∇ axlA)− 〈f, u〉dV

−
∫
∂Ω

〈fs, u〉 − 〈Ms, u〉dS 7→ min . w.r.t. (u,A) , (1.1)
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under the following constitutive requirements and boundary conditions

ε = ∇u−A, first Cosserat stretch tensor

u|Γ = ud , essential displacement boundary conditions

Wmp(ε) = µ ‖ sym ε‖2 + µc ‖ skew ε‖2 +
λ

2
tr [sym ε]2 strain energy (1.2)

φ := axlA ∈ R3, k = ∇φ , ‖ curlφ‖2R3 = 4‖ axl skew∇φ‖2R3 = 2‖ skew∇φ‖2M3×3

Wcurv(∇φ) =
γ + β

2
‖ dev sym∇φ‖2 +

γ − β
2
‖ skew∇φ‖2 +

3α+ (β + γ)
6

tr [∇φ]2 .

Here, f are given volume forces while ud are Dirichlet boundary conditions for the displacement
at Γ ⊂ ∂Ω where Ω ⊂ R3 denotes a bounded Lipschitz domain. Surface tractions, volume
couples and surface couples can be included in the standard way. The strain energy Wmp and
the curvature energy Wcurv are the most general isotropic quadratic forms in the infinitesimal
non-symmetric first Cosserat strain tensor ε = ∇u−A and the micropolar curvature
tensor k = ∇ axlA = ∇φ (curvature-twist tensor). The parameters µ, λ[MPa] are the classical
Lamé moduli and α, β, γ are further micropolar curvature moduli with dimension [Pa ·m2] = [N]
of a force. The additional parameter µc ≥ 0[MPa] in the strain energy is the Cosserat couple
modulus. For µc = 0 the two fields of displacement u and microrotations A ∈ so(3) decouple
and one is left formally with classical linear elasticity for the displacement u.

1.2 The strong form of the linear elastic Cosserat balance equations

The strong form of the Cosserat balance equations are given by

Div σ = f , balance of linear momentum

−Divm = 4µc · axl skew ε , balance of angular momentum (1.3)

σ = 2µ · sym ε+ 2µc · skew ε+ λ · tr [ε] · 11 = (µ+ µc) · ε+ (µ− µc) · εT + λ · tr [ε] · 11
= 2µ · dev sym ε+ 2µc · skew ε+K · tr [ε] · 11 ,

m = (γ + β) dev sym∇φ+ (γ − β) skew∇φ+
3α+ (γ + β)

2
tr [∇φ] 11 ,

φ = axlA , u|Γ = ud , m.~n|∂Ω = 0 .

For simplicity we assume here that the microrotations A ∈ so(3) remain free at the boundary,
thus m.~n|∂Ω = 0. This Cosserat model can be considered with basically three different sets of
moduli for the curvature energy which in each step relaxes the curvature energy. The situations
are characterised by possible estimates for the curvature energy:

1: Wcurv(k) ≥ c+ ‖k‖2.

2: Wcurv(k) ≥ c+ ‖ sym k‖2.

3: Wcurv(k) ≥ c+ ‖dev sym k‖2.

The different estimates give rise to to the introduction of representative cases:

1: pointwise positive case: µL2
c

2 ‖∇φ‖
2. This corresponds to α = 0, β = 0, γ = µL2

c .

2: symmetric case: µL2
c

2 ‖ sym∇φ‖2. This corresponds to α = 0, β = γ and γ = µL2
c

2 .

3: conformal case: µL2
c

2 ‖ dev sym∇φ‖2 = µL2
c

2 (‖ sym∇φ‖2 − 1
3 tr [∇φ]2). This corresponds

to β = γ and γ = µL2
c

2 and α = − 1
3µL

2
c . In terms of the polar ratio Ψ = β+γ

α+β+γ it
corresponds to the limit value Ψ = 3

2 .

All three cases are mathematically well-posed [19, 27]. The pointwise positive case 1 is usually
considered in the literature. Case 2 leads to a symmetric couple-stress tensor m and a new
motivation for case 3 is the goal of this investigation. In a plane strain problem all three
cases coincide and only one curvature parameter matters, thus not permitting to discern any
relation between the three curvature parameters. This is the reason why we exclude plane
strain problems.
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Case 3 is called the conformal curvature case since the curvature energy is invariant un-
der superposed infinitesimal conformal mappings, i.e. mappings φC : R3 7→ R3 that satisfy
dev sym∇φC = 0. Such mappings infinitesimally preserve shapes and angles [28]. In that case,
the couple stress tensor m is symmetric and trace free. In case 2 and case 3 the constitutive
couple stress/curvature tensor relation cannot be inverted.

2 Restrictions imposed by bounded stiffness

We turn now our attention to the practical aspects of the problem of determining material
parameters. We investigate the question for which parameter values (µc, α, β, γ) the linear
elastic Cosserat model can be considered to be a consistent description for a continuous solid
showing size-effects. We assume the continuous solid to be available in any small size we can
think of (this possibility is certainly included in the very definition of a continuous solid). Note
that this assumption excludes e.g. man made grid-structures but includes e.g. polycrystalline
material. We are investigating the situation when one or several dimensions of the specimen
get small. Denoting by a such a dimension, the limit a → 0 is purely formal in the sense that
we are only interested in the leading order behaviour for small, but not arbitrarily small a.
Understanding this limiting process a → 0 opens us, indirectly, the possibility to bound the
stiffness of the material at smallest reasonable specimen size away from unrealistic orders of
magnitude. For our investigation we study simple three-dimensional boundary value problems
for which analytical solutions are available.

2.1 The torsion problem

In a thought experiment we subject the hypothetical continuous solid first to torsion for every
slenderness we choose. In [13, 12] the analytical solution for pure torsion of a circular cylinder
with radius a > 0 and length L > 0 is developed under the assumption of translational sym-
metry in axial direction (the classical solution is equally axisymmetric). For our purpose it is
sufficient to look at the non-dimensional quantity Ωt, which compares the classical response
with the corresponding micropolar result.

The classical relation between torque Q [N ·m] and twist per unit length θ
L [1/m] is given

by

Q = µ J Ωt ·
θ

L
, Ωt ≡ 1 , (2.1)

where µ > 0 is the classical shear modulus coinciding with the corresponding Lamé constant
while J = π a4

2 is the polar moment of inertia of the circular cross section.
Performing the appropriate non-dimensionalization, it can be seen that in any theory with-

out size-effects one has [10]

Q

a3
[MPa] = h

(
θ

L
a

)
, ξ :=

θ

L
a , (2.2)

where h : R → R is a function h(ξ) that has no other explicit dependence on the wire radius
a > 0. Q

a3 is a stress-like normalised torque and ξ := θ
L a is the non-dimensional shear at the

outer radius. In the linear case one has h(ξ) = µ π
2 ξ.

In any experiment with size-effects, the response function h will display this size effect by
explicitly depending also on the radius a > 0 and we expect that for smaller radius a the larger
h(a, ξ) as a function of ξ with h(a, 0) = 0, a ≥ 0. This increase of stiffness for the response
function is a commonplace observation for many materials at small length-scales. Here, the
stiffness of the material is defined as the slope of h at given a ≥ 0 for ξ = 0 i.e.

stiffness = [∂ξh(a, ξ)]|ξ=0
. (2.3)

Hence, in general, the stiffness is also a function of the radius a. In the classical linear elastic
case ∂ξh(a, ξ)|ξ=0 = µ π

2 is independent of the wire radius a. We expect also that stiffness
increases for smaller a > 0, i.e. [∂ξh(a2, ξ)]|ξ=0

≥ [∂ξh(a1, ξ)]|ξ=0
for a2 ≤ a1. However, for

any small wire radius a > 0 which we investigate, we expect bounded stiffness since the
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Figure 1: Idealised response curves with size-effects in torsion. Normalised torque Q
a3 versus

non-dimensional shear ξ = θ
L a at the outer radius. In general, as a > 0 gets smaller, the

response gets stiffer. Left: response curves with unbounded stiffness (tangent) as a → 0.
Bounded stiffness implies that the left picture is unphysical. Right: stiffness increase with
bounded stiffness as a→ 0. For linear models, only tangents in 0 are relevant.

constitutive substructure is never completely rigid. This means that there exists a constant
K+ such that

sup
a≥0

[∂ξh(a, ξ)]|ξ=0
≤ K+ . (2.4)

2.1.1 The micropolar torsion solution

Now we turn to the linear micropolar model with size-effects (1.3) and consider the generated
stiffness depending on the radius a. Since the model is linear, we need only to look at the
corresponding factor Ωt in (2.1). For the analytical torsion solution in the linear micropolar
case it is the assumed that the macroscopic resultant net torque is the sum of the torque due
to classical torques (the classical part) Qclass and the contribution of the micropolar couples
Qcp at the end surface of the wire [15, 18]. On this basis according to [13, 12, 2] it holds in the
linear micropolar case1

Q = Qclass +Qcp =
∫
∂Ω+

(xσ32 − y σ31) +m33 dx dy = µ J Ωt ·
θ

L
,

Ωt = 1 + 6
(
`t
a

)2

·
(

1− 4
3Ψ ·χ(p a)

1−Ψ ·χ(p a)

)
, (2.5)

where ∂Ω+ is the top surface of the cylindrical wire and

Ψ :=
β + γ

α+ β + γ
, non-dimensional polar ratio , 0 ≤ Ψ ≤ 3

2
,

`2t :=
β + γ

2
1
µ
, ”characteristic length for torsion” , (2.6)

χ(ξ) :=
I1(ξ)
ξ I0(ξ)

, p2 :=
4µc

α+ β + γ
=

2µc Ψ
µ `2t

,

I1(ξ), I0(ξ) , modified Bessel functions of the first kind .

Whether or not the model shows bounded stiffness depends solely on the factor Ωt in (2.5). In
[27] it is shown that χ(ξ) ∼ 1

2 (1 − ξ2

8 ) for small ξ. Therefore, for small radius a the leading

1In order to avoid misinterpretations: the analytical torsion solution is based on the assumption of axi-
symmetry around the e3-axis (variables r, θ, z), pure torsion without warping and that the stress tensor σ and
couple-stress tensor m are independent of height z. This excludes that m33 = 0 at the top and bottom of the
circular wire. Therefore, microrotations A are not free at the extremities and as a result m33 is non-zero constant
over the height. It seems to be the reason why µc → 0 does not imply that Ωt → 1. A generalisation of the
solution to arbitrary cross-section has been given in [35] and in [18] the case of anisotropic and inhomogeneous
Cosserat coefficients has been treated.
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order behaviour of Ωt is

Ωt = 1 + 6
(
`t
a

)2
(

1− 2
3Ψ + 4

3Ψ p2a2

8

1− Ψ
2 + Ψ

16p
2a2

)
= 1 + 6

(
`t
a

)2

1− 2
3Ψ + Ψ2

6
µc
µ

(
a
`t

)2

1− Ψ
2 + Ψ2

8
µc
µ

(
a
`t

)2

 . (2.7)

This expression captures the leading order response if p2 a2 � 1 or 2µc Ψ
µ

(
a
`t

)2

� 1.2 Note that

Ωt(a, `t) is a continuous function at (0, 0) for Ψ = 3
2 but discontinuous at a = 0 for 0 ≤ Ψ < 3

2 .

2.1.2 The response under pure torsion for small radius a→ 0

We are interested in what happens to the factor Ωt in (2.5), if we let formally a → 0. As we
have seen, from a physical point of view the stiffness for smaller radius should be larger than
the classical one but the stiffness should certainly remain bounded since the heterogeneity of
the microstructure of the physical body can never be perfectly rigid.

For Ωt to remain bounded for `t > 0 as a → 0 it is necessary and sufficient that for
small a > 0 there exists a constant K+, independent of a such that(

1− 4
3Ψχ(p a)

1−Ψχ(p a)

)
∼ K+ a2 ⇔

lim
a→0

(
1− 4

3Ψχ(p a)
1−Ψχ(p a)

)
=

1− 4
3Ψ 1

2

1−Ψ 1
2

= 0 ⇔ Ψ =
3
2
. (2.8)

Bounded stiffness in torsion and the possibility to describe size-effects within the linear Cosserat
model is, therefore, only possible by taking the value Ψ = 3

2 .3 We visualise the normalised (with
respect to the classical size independent rigidity) torsional rigidity Ωt versus radius a > 0 in
the Figure 2 and Figure 3.

In the case Ψ = 3
2 we have as leading term for a

`t
� 1

Ωt|a=0 = 1 + 9
µc
µ
, µc = µ

Ωt|a=0 − 1
9

, (2.9)

which allows us to read off immediately the value for µc given the maximally observed stiff-
ness increase in experiment. This formula also shows that µc in this interpretation will be
independent of the torsional length scale `t.

In order to understand better the singular behaviour of Ωt let us abbreviate (the slope)
s = `t

a . Then

Ωt(s) = 1 + 6 s2 ·

1− 4
3Ψ ·χ(

√
2µc Ψ
µ

1
s )

1−Ψ ·χ(
√

2µc Ψ
µ

1
s )

 . (2.10)

For s→∞ (a→ 0) we obtain to leading order

Ωt(s)|Ψ< 3
2
∼ 1 + 6 s2

1− 2
3Ψ + Ψ2

6
µc
µ

1
s2

1− Ψ
2 + Ψ2

8
µc
µ

1
s2

, Ωt(s)|Ψ= 3
2
∼ 1 +

9 µc
µ

1 + 9
8
µc
µ

1
s2

, (2.11)

while for s→ 0 (`t → 0) we get

Ωt(s) ∼ 1 + 6 s2 , (2.12)

where we have used that χ(ξ)→ 0 as ξ →∞.
In Figure 6 the sensitivity of a determination of Ψ from a torsion experiment is shown.

2Taking the limit µc →∞ in this formula is therefore not possible.
3Also foams and bones are not a continuous solid and the argument regarding thinner and thinner samples

does therefore not strictly apply, in [22, 24] the value Ψ = 3
2

has been chosen in order to accommodate bounded
stiffness with experimental findings. For a syntactic foam [22, 23] β = γ has been taken for a best fit. In this
case, the curvature energy looks like Wcurv(∇φ) = γ ‖dev sym∇φ‖2 with γ > 0. This is also the best fit for
human bone [23, Table 1] and [40]. However, for a polyurethane foam [22] β 6= γ has been identified and the

curvature energy looks like Wcurv(∇φ) = β+γ
2
‖ dev sym∇φ‖2 + γ−β

4
‖ curlφ‖2. These examples show on the

one hand the relevance of the conformal case and on the other hand that Lakes himself did not formulate a
”principle” of bounded stiffness.
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    











Figure 2: Bounded normalised stiffness in torsion. Plot of Ωt versus wire radius a for µc/µ = 1
and polar ratio Ψ = 3

2 . Maximal increase of Ωt (vertical axis) for small radius a, i.e. Ωt|a=0

determines uniquely µc owing to equation (2.9). We observe a singularity free response and the
size of `t is determined by the range where size effects appear.

      











Figure 3: Singular normalised stiffness in torsion. Plot of Ωt versus wire radius a for µc/µ = 1
and polar ratio Ψ = 2

3 (α = β = γ). Unbounded increase of Ωt (vertical axis) for small radius a,
i.e. lima→0 Ωt|a =∞. For a smallest experimentally investigated specimen with radius a0 the
region (0, a0] of the stiffness response is usually ignored: this corresponds to the folklore that in
a Cosserat model the specimen size may not be arbitrary small. Highly sensitive dependency
of µc and `t with respect to the cut-off length (smallest investigated wire radius a0).
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Figure 4: Bounded normalised stiffness in torsion. Plot of Ωt versus wire radius a and length
scale `t for µc/µ = 5 and polar ratio Ψ = 3

2 . Here, Ωt is a continuous function, increasing
for increasing `t if a > 0 and assuming the constant value Ωt = 1 + 9 µc

µ for a = 0 which is
independent of `t, allowing to obtain a size-independent, stable identification of µc.

Figure 5: Singular normalised stiffness in torsion. Plot of Ωt versus wire radius a and length
scale `t for µc/µ = 5 and polar ratio Ψ = 2

3 (α = β = γ). Ωt is discontinuous at a = 0 and
there is no possibility to influence the behaviour near a = 0 by varying µc/µ, see (2.11).
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    









Figure 6: Variation of Ωt versus a at `t = 0.1 and µc/µ = 1 for different polar ratio Ψ ∈ [ 2
3 ,

3
2 ].

This is, in fact, a variation of α alone. The limit Ψ→ 3
2 is singular.

2.2 The pure bending problem of a cylinder with circular cross-section

2.2.1 The analytical solution

An analytical solution formula for the bending of a micropolar circular cylinder under opposite
compressive axial loads with radius a > 0 and length L > 0 has been obtained in [36]. Similarly
as in the torsion case, we focus on the relative stiffness factor Ωb compared to classical elasticity.
According to [36, 17] it holds that

Ωb = 1 +
8N2

ν + 1

1−
(
β
γ

)2

(δ a)2 +

((
β
γ

)
+ ν
)2

ζ(δ a) + 8N2 (1− ν)

 ,

ζ(ξ) = ξ2 ξ I0(ξ)− I1(ξ)
ξ I0(ξ)− 2 I1(ξ)

, δ2 =
4µc µ

γ (µ+ µc)
=

4N2 µ

γ
=
N2

`2b
,

`2b =
γ

4µ
, ”characteristic length for bending” , (2.13)

N2 :=
µc

µ+ µc
, Cosserat coupling number, 0 ≤ N ≤ 1 ,

and ν = λ
2 (µ+λ) the classical Poisson ratio. Note that in this setting, the bending moments

are applied such that microrotations do not remain free at the surface where these moments
are applied. Note that the bending solution does not involve the polar ratio Ψ and therefore
includes no information on the curvature parameter α.

2.2.2 The response under pure bending for small wire radius a→ 0

For positive Cosserat couple modulus µc > 0 and non-vanishing bending length scale `b > 0 we
are interested in the behaviour of Ωb as a→ 0. For small a > 0 the first term in the bracket of
Ωb dominates and for Ωb to remain bounded as a→ 0 (and γ > 0) one must have

(γ + β) (γ − β) ≤ 0 . (2.14)
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Since both factors must be positive anyway (1.2) it follows that either (γ+β) = 0 or (γ−β) = 0.
In this last case, the Cosserat model still shows size effects in bending (provided γ > 0) and
bounded stiffness.

3 Bounded stiffness implies conformal curvature

Gathering the results implied by the stipulation of bounded stiffness for 0 < µc < ∞ and
arbitrary slender samples we have

1. torsion of a cylinder: β + γ = 0 or Ψ = β+γ
α+β+γ = 3

2 .

2. bending of a cylinder: (β + γ) (γ − β) = 0.

Taking β + γ = 0 is impossible because size-effects would be cancelled altogether. The only
consistent choice with these conditions showing on the one hand size-effects at all and bounded
stiffness in torsion and bending is therefore β = γ = µ

L2
c

2 and Ψ = 3
2 . This implies that the

curvature energy of the linear isotropic Cosserat solid must look like

µ
L2
c

2
‖dev sym∇ axlA‖2 , (3.1)

which is nothing else than the conformal curvature case 3. In terms of the characteristic length
for torsion and bending the conformal case is equivalent to

Ψ =
3
2
, `t = 2 `b . (3.2)

Despite the non-invertibility of the corresponding couple stress tensor/curvature tensor relation
this problem is amenable to a consistent numerical treatment [20]. In case of the indeterminate
couple stress model [16, 1, 25, 38, 21] which appears through the identification axlA = 1

2 curlu
(formally µc → ∞ or N → 1) the requirement of bounded stiffness in bending (see also [3,
eq.60], η = 1 therein) leads to a symmetric curvature term ‖ sym∇ curlu‖2, while it is impos-
sible to satisfy bounded stiffness in torsion! Note that a symmetric curvature expression has
also been motivated in [39] and applied in [32]. The symmetric curvature expression formally
violates uniform positivity of the curvature energy but the model is nevertheless well-posed.
Moreover, we can still say that the indeterminate couple stress model with symmetric curvature
is conformally invariant [28].

3.1 The classical limit µc → 0 for conformal curvature

In principle, we expect the stiffness factors Ωt,Ωb to approach their classical limit if we let
µc → 0 at positive length-scales `t, `b > 0. This is automatically true if microrotations remain
unconstrained at the boundary. However, for our torsion and bending solutions this is only true
if we choose Ψ = 3

2 and β2 = γ2 as is shown in [27]. The reason for this is that the boundary
conditions used in the derivation of the analytical formula involve implicit constraints on the
microrotations at the top and bottom surface of the circular wire where torsion is applied.

4 Insensitive conformal parameter identification

Regarding parameter identification of hierarchical materials we can offer also another interpre-
tation of bounded stiffness. Bounded stiffness amounts to the requirement that the material
is Cauchy elastic on all individual structural levels of investigation. The size-effect is therefore
entirely due to geometrical features of the material. Let us explain this statement:

Regarding Figure 3 shows that in the presence of a singularity for smaller radius a the inverse
problem of determining the length scale Lc depends sensitively on the thinnest experimentally
investigated sample: the slope increases without bounds for small a and the determination of
the polar ratio Ψ is extremely sensitive because it requires very thin specimens in general.

In the conformal case this sensitivity is circumvented: one may probe the smallest structural
element (or even assume that it is Cauchy elastic anyway) and simulate its stiffness response.
The conformal curvature allows then for an insensitive interpolation between these values and
the large scale, classical limit, see Figure 4.

10



Figure 7: Identification of length scale `t based on an artificial set of data points (circles).
Assume in the first case only data points right to a1 are considered. Both, the non-singular
fit with `t = 0.15 and the singular fit with `t = 0.066 would give reasonable agreement. If
data points to the right of a0 = a1

2 are considered, then the non-singular fit remains valid
while for the singular fit `t = 0.033 needs to be taken. Since the last `t is much smaller than
previously the identification of `t based on the singular response is very sensitive w.r.t. the
smallest investigated specimen size. In addition, this example shows that the non-singular case
allows for `t values orders of magnitude larger than in the singular case.

The determination of the four remaining constants proceeds then as follows. The values
(E, ν) ∼ (µ, λ) are determined in size-independent classical tension tests. The values (N, `t) ∼
(µc, `t) are determined from independent bending and torsion experiments: µc is given in a
size-independent way from the maximal stiffness increase in torsion observed from the smallest
sample (2.9) and `t is determined by curve-fitting from the same test. The bending test can
then be used as a cross-check.

In Figure 7 we see that the genuinely similar curves (same order) for Ωt may be fitted by
different sets of parameter-values in the singular and non-singular case. In order to arrive at the
same approximative value of Ωt in the singular case one must choose `t one order of magnitude
smaller as compared to the bounded stiffness case. The approximation depends also on the
smallest cut off length in a sensitive way: extending to half the smallest value (with a bounded
behaviour) implies to use a much smaller `t.

If boundary value problems are considered where microrotations remain free at the boundary
(for torsion around e3-axis m33 = 0 at the top and bottom of the cylinder), then one has yet
another mechanism to counter balance the singular response, namely by taking µc � µ. This
seems to be the deeper reason why usually µc � µ is considered [9, p.166]. Unfortunately,
for this case analytical solutions do not seem to exist and one has to resort to finite-element
computations [20, 31, 26].

5 Conclusion

Within our restriction on full three-dimensional analytical solutions we obtain from bounded
normalised stiffness in torsion and bending the conformal curvature expression. In that case,
µc is determined as a size-independent quantity. Interestingly, the result does not carry over to
the indeterminate couple stress problem. This suggests that the Cosserat model may be more
adequate in treating size-effects than the indeterminate couple stress problem in general.
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Notation
Let Ω ⊂ R3 be a bounded domain with Lipschitz boundary ∂Ω and let Γ be a smooth subset of ∂Ω with non-
vanishing 2-dimensional Hausdorff measure. For a, b ∈ R3 we let 〈a, b〉R3 denote the scalar product on R3 with
associated vector norm ‖a‖2R3 = 〈a, a〉R3 . We denote by M3×3 the set of real 3× 3 second order tensors, written
with capital letters and Sym denotes symmetric second orders tensors. The standard Euclidean scalar product
on M3×3 is given by 〈X,Y 〉M3×3 = tr

ˆ
XY T

˜
, and thus the Frobenius tensor norm is ‖X‖2 = 〈X,X〉M3×3 .

In the following we omit the index R3,M3×3. The identity tensor on M3×3 will be denoted by 11, so that
tr [X] = 〈X, 11〉. We set sym(X) = 1

2
(XT +X) and skew(X) = 1

2
(X −XT ) such that X = sym(X) + skew(X).

For X ∈ M3×3 we set for the deviatoric part devX = X − 1
3

tr [X] 11 ∈ sl(3) where sl(3) is the Lie-algebra of
traceless matrices. The set Sym(n) denotes all symmetric n × n-matrices. The Lie-algebra of SO(3) := {X ∈
GL(3) |XTX = 11, det[X] = 1} is given by the set so(3) := {X ∈ M3×3 |XT = −X} of all skew symmetric
tensors. The canonical identification of so(3) and R3 is denoted by axlA ∈ R3 for A ∈ so(3). Note that
(axlA)× ξ = A.ξ for all ξ ∈ R3, such that

axl

0@ 0 α β
−α 0 γ
−β −γ 0

1A :=

0@−γβ
−α

1A , Aij =

3X
k=1

−εijk · axlAk ,

‖A‖2M3×3 = 2 ‖ axlA‖2R3 , 〈A,B〉M3×3 = 2〈axlA, axlB〉R3 , (5.1)

where εijk is the totally antisymmetric permutation tensor. Here, A.ξ denotes the application of the matrix A
to the vector ξ and a× b is the usual cross-product. Moreover, the inverse of axl is denoted by anti and defined
by 0@ 0 α β

−α 0 γ
−β −γ 0

1A := anti

0@−γβ
−α

1A , axl(skew(a⊗ b)) = −
1

2
a× b , (5.2)

and

2 skew(b⊗ a) = anti(a× b) = anti(anti(a).b) . (5.3)

Moreover,

curlu = 2 axl(skew∇u) . (5.4)
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