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Abstract

We present a micromechanically motivated form of the curvature energy in infinitesimal
isotropic gradient elasticity. The basis is a homogenization/averaging scheme using a micro-
randomness assumption imposed on a directional higher gradient interaction term. These
directional interaction terms are matrix-valued allowing to apply the standard orthogonal
Cartan Lie-algebra decomposition. Averaging over all (subgrid) directions leads to three
quadratic curvature terms, which are conformally invariant when neglecting volumetric
effects. Restricted to rotational inhomogeneities we motivate therewith a symmetric couple
stress tensor in the infinitesimal indeterminate couple stress model of Koiter-Mindlin-
Toupin-type. Relations are established to a novel conformally invariant linear Cosserat
model.
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1 Introduction

Novel effects like size-dependence and scaling of mechanical laws have attracted considerable
attention [8, 61, 10]. In turn, gradient elasticity models [39, 58, 16] have become popular by
their inherent possibility to offer a phenomenological description of these size-effects which may
become important for very small scale materials, notably in the plastic range. The relevance of
size-effects for nano-sized materials is discussed in [36].

Gradient elasticity introduces, through the presence of higher derivatives, a certain non-
locality in the model which has to do with an additional long-range force structure present in the
material. At larger length scales, the classical (size-independent) elasticity part dominates. A
serious drawback of this class of models is that they introduce many additional parameters which
are neither easily interpreted, nor easily identified through experiments. We limit ourselves here
to the most simplest setting of linear, isotropic, centro-symmetric materials with only second
gradients of displacements D2u. For such a model gradient elasticity means to include, in
the variational statement, a quadratic curvature energy of the form Wcurv(D2u). Even within
the supposed maximal symmetry assumptions on the macroscale the number of independent
terms in a representation of Wcurv is not entirely obvious: Mindlin [38] gives a five parameter
representation while Lam et al [32] and Fleck et al [13, 5] motivate a reduced three parameter
setting. We will give special attention to the so called indeterminate couple stress model
[20, 50, 1, 27, 40, 57, 53, 21] which is a gradient elasticity model where higher order effects
appear only through gradients of macroscopic rotation ∇ curlu. The indeterminate couple
stress theory and gradient elasticity is also the basis of strain-gradient extensions of classical
plasticity theories [12, 52, 13, 5, 14, 17].

We put particular emphasis on a micromechanical motivation of the conformally invariant
curvature measure ‖ sym∇ curlu‖2 in the infinitesimal indeterminate couple stress model by
proposing a specific homogenisation scheme. The method is based on introducing representative
volume elements inside a cluster of such volumes which interact on the scale of a superposed
subgrid through rotational inhomogeneity along a given direction h ∈ R3 only. Since we fix the
discrete direction first, it is easy to motivate and interpret various interaction terms on this
level. There, we introduce the novel concept of micro-random material behaviour on
the microscale which leads, after homogenisation (averaging over all subgrid directions), to
the symmetry of the moment stresses. This is equivalent to the use of the above mentioned
conformally invariant curvature energy [44, 43, 23]. The symmetry of the moment stress in the
indeterminate couple stress model has already been proposed in [59, 32] by a different derivation
based on point mechanics arguments. Extension of this model to Bernoulli beams and further
case studies are documented in [47, 49]. In [46] the size effect for solid polymers is described
also with a symmetric moment stress based on the result of [59]. Similarly, in [54, 55, 51] ad
hoc additional invariance principles are applied which yield a symmetric moment stress, see
also [60]. On the other hand, the usual assumptions of Mindlin and Koiter [40, 27] on the
pointwise uniform positive definiteness of the curvature energy exclude the symmetry of the
moment stress. Recently, a formal homogenisation scheme towards (essentially) the Koiter-
Mindlin model has been given in [6] but excluding the moment stress symmetry. Garikipati
motivates a couple stress model for crystalline solids based on three-body interatomic potentials
[18]. He arrives as well at a uniform positive curvature expression. Our contribution is thus
intended to clarify and delineate under what conditions and for what type of material we may
expect a symmetric moment stress in the indeterminate couple stress model. We also touch
upon the consequences of our results for gradient elasticity and strain gradient plasticity.

The paper is organised as follows. We start with a general second gradient elasticity model
for which we investigate the curvature energy with respect to its induced interaction response.
Then we specialise to the well known indeterminate couple stress model. Hereafter we introduce
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our proper homogenisation scheme and motivate our novel micro-randomness principle. Finally,
we draw a connection to the Cosserat model via a least energy extension principle. Thus we
motivate the conformally invariant curvature expression ‖ sym∇ curlu‖2. In the appendix we
collect our notation, some relations for infinitesimal conformal mappings as well as some results
for spherical averaging. In addition we draw connections to previously given representations
of the curvature energy in terms of the third order tensor ηijk = ∂ijuk of second displacement
derivatives.

2 Second gradient elasticity

2.1 An isotropic second gradient elasticity model

We are interested in an isotropic, centro-symmetric gradient elasticity model [37, 38, 39] (see
[61] for a list of different such models and [32] for a new reduced functional basis for higher
order terms) with variable material moduli µ̂(x), K̂(x) and we consider a representative subset
RV E] ⊂ Ω where Ω ⊂ R3 is the reference configuration of the body. We refer to RV E] as the
subgrid cluster. The goal is to find the displacement u : RV E] ⊂ R3 7→ R3 minimising the
energy

I(u) =
∫
RV E]̂

µ(x) ‖ dev sym∇u‖2 +
K̂(x)

2
tr [∇u]2︸ ︷︷ ︸

size-independent response

+ µL2
c Wcurv(D2u)︸ ︷︷ ︸

subgrid interaction energy

dV 7→ min . w.r.t. u ,

(2.1)

under the homogeneous Dirichlet boundary condition u|
∂RV E]

= B̂.x for constant, non-symmetric
B̂ ∈ gl(3) = M3×3. If Wcurv(D2u) = Wcurv(D sym∇u)1 the model is called a strain gradient
model, for its use in regularising strain singularities see [33, 34]. Mindlin [37, 38, 39] is giving
a seven parameter (five curvature parameters) energy for the most general quadratic isotropic
gradient elasticity model in the third order tensor ηijk = ∂ijuk. The second order curvature
part can be written as [37, eq.(9.11)]

Wcurv(D2u) = a0 ηkii ηkjj + a1 ηijk ηijk + a2 ηijk ηjki + a3 ηjji ηkki + a4 ηiik ηkjj , (2.2)

where ai, i = 0, 1, 2, 3, 4 are dimensionless weighting parameters. This expression is not easily
amenable to mechanical interpretation.2 In a simpler setting, as an example for a centro-
symmetric, isotropic model, in [32, eq.(42)] it is proposed to use a curvature energy depending
on the dilational gradient ∇Div u, the ”deviatoric” stretch gradient η(1)

ijk = Lrstijk ηrst (for the
definition of η(1) see (6.28)), note already that η(1) is not the gradient of deviatoric stretch)3

and the symmetric part of the rotational gradient sym∇ curlu

Wcurv(D2u) = a0 ‖∇Div u‖2 + a′1 η
(1)
ijk η

(1)
ijk + a′2 ‖ sym∇ curlu‖2 . (2.4)

A simplified strain gradient version of (2.2) with

Wcurv(D2u) = a0 ‖∇Div u‖2 + a′1 ‖D sym∇u‖2 (2.5)

is considered in [2, 48] and [33, eq.(21)]. In [61, eq.(8)] or [26, eq.(17.82)] for the same purpose

Wcurv(D2u) = a0 ‖∇Div u‖2 + a′2 ‖∇ curlu‖2 (2.6)

is proposed. In [56, 11] the case a′1 = a′2 = 0 is considered and compared to the former setting
(2.6) in two space dimensions [56]. Fleck et al [12] take a0 = 0 in (2.6) for simplicity.

1All second displacement derivatives D2u can be expressed as linear combinations of strain gradients
D sym∇u [40, eq.11.1]. It holds uk,ij = εik,j + εjk,i − εij,k. The first appeal to strain gradients is made,
apparently, already by Cauchy [7].

2The same formal representation applies to strain gradient models [37, eq.(11.3)] in the sense that

Wcurv(D sym∇u) = a0 κkii κkjj + a1 κijk κijk + a2 κijk κjki + a3 κjji κkki + a4 κiik κkjj (2.3)

is the most general isotropic, quadratic energy in strain gradients κijk := ∂i[εjk].
3The tensor η(1) is that combination of second partial derivatives ∂ijuk which controls the incompressible,

irrotational part of the displacement.
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2.2 The indeterminate couple stress model

The infinitesimal, isotropic, centro-symmetric indeterminate couple stress model [20, 50, 1, 27,
40, 57, 28, 53, 21] is a special gradient elasticity formulation in which the higher derivatives
only appear through derivatives on the continuum rotation curlu. For the displacement u :
RV E] ⊂ R3 7→ R3 we consider the minimization problem

I(u) =
∫
RV E]

Wmp(∇u) + µL2
cWcurv(∇ curlu) dV 7→ min . w.r.t. u, (2.7)

under the constitutive requirements and boundary conditions4

Wmp(∇u) = µ ‖ sym∇u‖2 +
λ

2
tr [sym∇u]2 , u|Γ = ud ,

Wcurv(∇ curlu) = a′2 ‖ sym∇ curlu‖2 + a′3 ‖ skew∇ curlu‖2 . (2.8)

Grioli [20] initially arrived at a′2 = a′3, meaning that only ‖∇ curlu‖2 appears in the curvature
[12]. In the general model an energy term related to the spherical part of the (higher order)
couple stress tensor m = D∇ curluWcurv(∇ curlu) remains indeterminate, since tr [∇ curlu] =
Div curlu = 0. Following [40, 27], it is usually assumed that a′3 > 0 in order to guarantee
pointwise uniform positive definiteness (which is, in fact, not needed for well-posedness). For
the conformal case ‖ sym∇ curlu‖2, we have, on the contrary a′3 = 0, which makes the couple
stress tensor m symmetric and trace free, a choice which has also been used in [59, 32, 46]. This
conformal curvature case is indeed well-posed [22].

2.3 Null spaces of the curvature energy

Clearly, the presence of the curvature energy Wcurv introduces additional long range interaction
in the material to which we also refer to as subgrid interaction, see Figure 3. In the next diagram
follow different subgrid interaction energies together with the possible form of fluctuations
”inside” the RV E] cluster not giving rise to an (additional) interaction energy. That means we
look at those subgrid deformations which do not contribute to the subgrid interaction energy5

Wcurv(D2u(x)) = 0 , u|
∂RV E]

= B̂.x , (2.9)

for given homogeneous Dirichlet loading B̂ ∈ gl(3) at the boundary of the RV E]-cluster.6

In the left column the curvature energy7 is specified, in the right column the corresponding
4It is always possible to include higher order boundary conditions but not strictly necessary in the sense that

free Neumann conditions may always apply, thus avoiding arbitrary boundary layer effects.
5This question is similar to letting hypothetically Lc →∞, in which case the subgrid interaction does set a

geometrical constraint on the possible response.
6A drawback of linear gradient elasticity models with positive definite curvature energy is that they always

predict higher levels of energy for inhomogeneous microstructure response than for homogeneous response. The
microstructure is always penalised. This is not necessarily the case in e.g., finite strain Cosserat models.

7Much more curvature energy terms are, of course, possible. We have chosen representative examples. Note
that classical isotropy of the model does not restrict further the curvature energy, since only invariance under
a superposition of homogeneous infinitesimal rotations is required, which is trivially satisfied for the curvature.
The same remark applies to objectivity requirements.
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interaction free displacement is given:

‖D2u‖2

‖∆u‖2

‖D sym∇u‖2

‖D dev sym∇u‖2

‖∇Div u‖2 + ‖∇ curlu‖2

‖∇Div u‖2 + ‖ curl curlu‖2

‖ skew∇ curlu‖2

‖ curl curlu‖2

‖∇Div u‖2

‖∇ curlu‖2

‖ dev∇ curlu‖2

‖ sym∇ curlu‖2

‖ dev sym∇ curlu‖2

=⇒︸︷︷︸
Wcurv≡0



u(x) = B̂.x = sym(B̂).x+ skew(B̂).x
u(x) = B̂.x = sym(B̂).x+ skew(B̂).x
u(x) = B̂.x = sym(B̂).x+ skew(B̂).x
u(x) = B̂.x = sym(B̂).x+ skew(B̂).x
u(x) = B̂.x = sym(B̂).x+ skew(B̂).x
u(x) = B̂.x = sym(B̂).x+ skew(B̂).x
u(x) = ∇ζ(x) + curl v(x) + sym(B̂).x+ skew(B̂).x
u(x) = ∇ζ(x) + curl v(x) + sym(B̂).x+ skew(B̂).x
u(x) = ∇ζ(x) + curl v(x) + sym(B̂).x+ skew(B̂).x
u(x) = ∇ζ(x) + sym(B̂).x+ skew(B̂).x
u(x) = ∇ζ(x) + sym(B̂).x+ skew(B̂).x
u(x) = ∇ζ(x) + φC(x) + sym(B̂).x+ skew(B̂).x
u(x) = ∇ζ(x) + φC(x) + sym(B̂).x+ skew(B̂).x .

(2.10)

Here, ζ : R3 7→ R is a displacement potential and φC : R3 7→ R3 is an infinitesimal conformal
mapping having the form (for more information on conformal maps compare to (6.16) and [43])

φC(x) =
1
2

(
2〈axl(Ŵ ), x〉R3 x− axl(Ŵ ) ‖x‖2

)
+ [p̂ 11 + Â].x+ b̂ , (2.11)

where Ŵ , Â ∈ so(3), b̂ ∈ R3, p̂ ∈ R are arbitrary constants.

Definition 2.1 (Conformal invariance of curvature)
By conformal invariance we mean that the curvature energy vanishes on infinitesimal conformal
mappings, i.e.,

Wcurv(D2φC) = 0 (2.12)

for the family of mappings φC given in (2.11) which infinitesimally preserve angles and shapes of
figures. In this sense it can be shown that ‖D dev sym∇u‖2, ‖ sym∇ curlu‖2 and ‖dev sym∇ curlu‖2
are conformally invariant, as well as ‖η(1)‖2.

Remark 2.2 (Conformal invariance and J2-plasticity)
In connection with gradient plasticity we observe that a conformally displaced material body
has zero J2-deviatoric von Mises invariant regardless how big the conformal displacement is
since dev σ(∇φC) = 2µ dev sym∇φC = 0. In this sense, conformal displacements are truly
structure preserving, defect free, elastic displacements.

The diagram (2.10) should now be interpreted as (for example the first case): every de-
formation u inside the subgrid RV E] cluster which does not have the affine form u(x) = B̂.x
is contributing to the subgrid interaction energy. Similarly, for the last case, every subgrid
deformation u not having the form u(x) = ∇ζ(x) + φC(x) + B̂.x contributes to the subgrid
interaction energy.

Proof. To see these statements we consider u|
∂RV E]

= B̂.x and

1. D2u(x) = 0 implies that u(x) = B̂.x.

2. ∆u(x) = 0 subject to homogeneous Dirichlet conditions has a unique solution, and u(x) =
B̂.x is a solution. The term is not conformally invariant.

3. D sym∇u = 0 implies that ∇u(x) = sym(Ĝ) + A(x) for some arbitrary constant matrix
Ĝ ∈ gl(3) and A : R3 7→ so(3). Taking the curl on both sides gives 0 = CurlA(x) which
yields A(x) = Â, see [45]. Thus u(x) = sym(Ĝ).x + Â.x + b̂ and the unique solution is
u(x) = sym B̂.x+ skew(B̂).x = B̂.x.
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Figure 1: Infinitesimal conformal mappings. Mappings that preserve shapes and angles
locally are of course constant rotations and dilations (left). But also some specific second order
polynomials of the format (2.11). Infinitesimal preservation of angles and shapes does not
induce curvature energy for conformally invariant curvature expressions. A conformal map φC
represents a certain long range order.

4. D dev sym∇u = 0 implies that ∇u(x) = dev sym Ĝ + p(x) 11 + A(x) for some arbitrary
constant matrix Ĝ ∈ gl(3) and A : R3 7→ so(3) and p : R3 7→ R. Taking the curl on
both sides gives 0 = Curl[p(x)11] + CurlA(x). This equation has been dealt with in [43,
eq.(3.9)]. The general solution is u(x) = Ĥ.x+φC(x), for some arbitrary constant matrix
Ĥ ∈ gl(3). Incorporating the boundary condition implies that Ĥ = B̂ and φC(x) must
vanish at the boundary. Thus, it follows φC ≡ 0, [43, Lem.3.4]. The unique solution
is again u(x) = B̂.x. Observe that the energy ‖D dev sym∇u‖2 is trivially conformally
invariant (6.16), but does not allow fluctuations inside.

5. We must have Div u = const and curlu = const. The affine boundary conditions already
determine Div u = tr

[
B̂
]

and curlu = 2 axl(skew B̂). Thus we may still add functions
which vanish at the boundary and satisfy Div v = 0 and curl v = 0. The Div / curl-
inequality [19] on the space H1

0 (Ω,R3) implies v = 0.

6. In this case, ∇Div u = 0 and curl curlu = 0 from which follows ∆u = 0. Thus u = B̂.x.

7. skew∇ curlu = 0. Note that

‖ skew∇ curlu‖2 = 2‖ axl(skew∇ curlu)‖2 =
1
2
‖2 axl(skew∇ curlu)‖2 =

1
2
‖ curl curlu‖2 .

Thus the energy coincides with the next case.

8. Since ∆u = ∇Div u − curl curlu and curl curlu = 0 implies ∆u = ∇Div u. Assuming
u(x) = B̂.x+∇ζ(x)+curl v(x) and inserting into the former gives as restriction ∆ curl v =
0. The boundary condition leads to ∇ζ+curl v = 0 at x ∈ ∂RV E]. Thus, once ζ is chosen
freely, curl v is uniquely determined. The term is not conformally invariant.

9. ∇Div u = 0 implies Div u = const. The displacement can be represented by u(x) =
∇ζ + curl v with ∆ζ = const. Incorporating the boundary condition leads to the result
that the general solution is u(x) = ∇ζ + curl v + B̂.x where ∆ζ = 0 and ∇ζ + curl v = 0
at the boundary.

10. The last four cases have been investigated in [43, sect.3].

Note that the symmetric part sym(B̂).x can always be realised as sym(B̂).x = ∇ζ1(x) for
ζ1(x) = 1

2 〈B̂.x, x〉. In the ninth and tenth case we must have ∇ζ(x) = 0 for x ∈ ∂RV E], while
in the last two cases the infinitesimal conformal mapping φC and the potential ζ are such that
φC(x) +∇ζ(x) = 0 for x ∈ ∂RV E]. �

We observe that the first six curvature expressions stipulate homogeneous response for
homogeneous data, which is consistent with the initial minimization problem (2.1) only if
constant elastic moduli are assumed. Thus the first six curvature terms are appropriate only
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Figure 2: Left: Homogeneous deformation of the RV E] cluster which is assumed homogeneous
inside due to homogeneous boundary conditions y 7→ B̂.y, where y ∈ R3 is the local coor-
dinate variable. Right: Inhomogeneous response (micro-fluctuations) for same homogeneous
boundary conditions due to random, heterogeneously distributed material inside the RV E].

for homogeneous Cauchy material inside the RV E]: µ(x),K(x) = const., i.e. no mi-
crostructural fluctuation is possible.

However, if we think of the cluster RV E] as consisting of random isotropic Cauchy
material µ(x),K(x) the response to applied homogeneous data is, in general, not ho-
mogeneous, see Figure 2. The next seven curvature energies allow for such an inhomogeneous
response to a different degree: the pointwise positive Mindlin curvature energy ‖∇ curlu‖2 adds
the possibility of an arbitrary irrotational displacement field ∇ζ as microstructural fluctuation
(in terms of displacement gradients it adds a strain like micro-fluctuation D2ζ), and the con-
formal curvature term ‖ sym∇ curlu‖2 allows in addition for non-irrotational fluctuation with
second order polynomials φC . Of course, the solution for arbitrary random substructure can-
not always be written in this form (indeed, it seems that it can never be obtained with only
conservative fluctuations if inhomogeneities are present) but we realise, based on Helmholtz
decomposition of the displacement u into scalar and vector potential

u(x) = ∇ζ(x) + curlw(x) , (2.13)

that the additional conformal curvature allows at least for the vector potential w : R3 7→ R3

to be a second order polynomial since curlφC(x) = Â.x + b̂ for some constant Â ∈ so(3) and
b̂ ∈ R3. In this interpretation, the emergence of the conformal curvature expression for the treat-
ment of random microstructures in a scale-dependent homogenisation framework becomes clear.

3 Homogenisation

3.1 General multiscale setting

What is missing is a micromechanical motivation of the curvature energy in gradient elasticity
and the indeterminate couple stress model and of conformal invariance on the continuum level
by micro-mechanical considerations. We assume to deal with statistically random Cauchy
material in general. Nevertheless, there is a certain scale below which we are not interested in
the displacement details. In such a general multiscale situation it seems clear that a unique
homogenised medium does not exists. In our approach we cover the body of interest Ω with
RV E]-clusters containing a representative microstructure with no preferred directions. The
form of the RV E] could be cube like or sphere like but for the following we use spheres (of
diameter LRVE]

c ).
Further, we consider a rudimentary homogenisation method in which we use the word ”ho-

mogenisation” in a loose sense: the underlying assumption is that there exist two distinct levels
in the body of interest: a discontinuous, heterogeneous microscopic one, consisting of matrix
material, voids and other inhomogeneities, and a continuous macroscopic one. The represen-
tative volume element RV E] [15] defines the order of the scale of resolution of the envisaged
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Figure 3: Left: The basic situation of our multiscale approach. The black points symbolise the
mesoscale constituting the RV E] cluster. Right: In addition to an arbitrary fine grid which
is always present and which corresponds to size-independent linear Cauchy elastic response (no
length scale associated to this fine grid) we have introduced a large scale structure, the subgrid,
from which to extract information on the curvature energy. Size effects are really related to the
additional subgrid interaction which we represent through neighbouring RV E(0). The subgrid
is not necessarily regular. The question we have to answer is: what kind of elastic properties
should the subgrid have? The answer will determine the curvature energy. The absence of the
subgrid interaction means size-independent response. If the subgrid was simply a re-inforcing
beam structure we would expect a uniformly positive curvature energy.

continuum model, effects below this scale do not appear explicitly in the final model, cf. Figure
3. Summarising, we assume that

• The RV E]-cluster is big enough to be representative of the microstructure in a statistical
sense.

• The RV E]-cluster is small enough compared to the actual sample size for it to be con-
sidered to be infinitesimal.

• The RV E]-cluster is yet big enough compared to the sample size in order to still influence
the macroscopic response. No scale separation applies.

Finally, we introduce one additional preliminary assumption: we focus mainly on rotational
inhomogeneity.

RVE#

RVE(0)
cL

RVE(0)

subgrid

RVE(0)

Figure 4: Left: The RV E] cluster fill the body Ω. Each RV E] represents a cluster of smaller
RV E(0) which themselves define the cutoff length (averaging scale) and which interact (inside
the RV E] cluster). Right: We assume that each RV E]-cluster consists of micro-heterogeneous,
micro-random Cauchy elastic material.
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Sphere Ellipsoid

Figure 5: Left: The center of mass x, x+h of neighbouring RV E(0) inside the subgrid cluster
RV E] is transformed by the corresponding displacement u(x). The RV E(0) itself is mapped by
the displacement gradient ∇u(x). Right: The difference ∇u(x+ h)−∇u(x) = D2u(x).h+ . . .
between the mappings of two neighbouring RV E(0) inside the subgrid cluster RV E] is due to
curvature and can be visualised as well by the deformation of a sphere into an ellipsoid. The
interaction of RV E(0) determines the energy storage due to curvature and vice versa.

u u

Figure 6: Left: Homogeneous deformation of the subgrid generates no subgrid inhomogeneity
and therefore no subgrid interaction/curvature. Right: Inhomogeneous mapping of the subgrid
will generate interaction energy.

3.2 Subgrid interaction modelled by clusters of RVE(0)-interfaces

Whenever Lc > 0 is present in the curvature energy we have to deal with the additional
subgrid structure inducing an additional energy transfer from the subgrid level onto the re-
solved/continuum level. This energy transfer onto the resolved scale can be interpreted as
describing how neighbouring RV E(0) interact across their interface inside a RV E]-cluster.

Let therefore h ∈ R3 be a subgrid direction, orthogonal to the interface. Our idea is to define
the h-directional interior subgrid interaction to be a function between neighbouring RV E(0),
taking higher order differences into account, see Figures 5 and 6. For these deformation gradient
difference we write

W subgrid(11 +∇u(x+ h), 11 +∇u(x)) . (3.1)

3.3 Micro-randomness and conformal invariance

We assume that the material is micro-random. By this we presuppose that there is no preferred
direction at no scale, especially not on the micro-scale. It implies that we are allowed to cut out
neighbouring RV E(0) inside the RV E]-cluster, rotate them individually with arbitrary rotation
angle, re-insert them back again, without changing the induced subgrid interaction energy, see
Figure 7. This is an additional constitutive assumption at the micro and meso-level which
is not implied by assuming homogeneous elastic isotropic response at the phenomenological
continuum level nor is it related to frame-indifference requirements.

Note that micro-randomness is certainly not satisfied for a regular beam structure. Indeed,
it does not make sense to rotate neighbouring beam structural elements against each other with-
out changing the response. Thus the concept of micro-randomness is ”orthogonal” to regular
lattice type structures, see Figure 8. Moreover, micro-randomness is a notion that is applied

9
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Figure 7: Left: Illustration of micro-randomness: a re-arrangement of neighbouring RV E(0)
inside the subgrid cluster RV E] in a ”discrete” meaning should not change the subgrid response
after homogenisation. Right: Superposition of local rotation and deformation on the discrete
level motivating micro-randomness. Principle of ”first re-arrange then transform”. The in-
teraction law between neighbouring RV E(0) should be invariant w.r.t. this re-arrangement: the
subgrid does not see the ”arrows”. Note that this is a picture/invariance before homogenisation.
After homogenisation (averaging over all unit subgrid directions h) this invariance is ”nearly”
lost. But it will imply the symmetry of the higher order moment stresses after homogenisation.

”before” homogenisation: it is not meant that at the continuum level ”after” homogenisation
one could cut out and rotate arbitrary without changing the response. The consequences of
micro-randomness on the subgrid interaction will nevertheless be fundamental. What are these
consequences? To understand this let us formalise the arbitrary rotational re-arrangement idea.
On the ”discrete” directional h-level, we may consider the rotational re-arrangement (see Fig-

ure 7) to be the effect of first the superposition of an arbitrary purely local infinitesimal rotation
of the form8 anti([p(x+h) 11 +A(x+h)].h) ∈ so(3) onto the RV E(0) with center of mass x+h
and second the application of the subgrid deformation, since (with local coordinates y ∈ R3)

y

first rotate/re-arrange︷︸︸︷7→ [11 + anti([p(x+ h) 11 +A(x+ h)].h)].y
then deform︷︸︸︷7→

[11 +∇u(x+ h)].[11 + anti([p(x+ h) 11 +A(x+ h)].h)].y ⇒
y 7→ [11 +∇u(x+ h) + anti([p(x+ h) 11 +A(x+ h))]h)].y + . . . (3.3)

This will lead us to our definition of discrete micro-randomness:

Definition 3.1 (Discrete micro-randomness before homogenisation)
We call a material to be micro-random whenever the subgrid directional response is invariant
under a superposed infinitesimal rotation of the form (3.3), i.e. it satisfies

∀h ∈ R3 : W subgrid(11 +∇u(x+ h) + anti([p(x+ h) 11 +A(x+ h))]h), 11 +∇u(x))

= W subgrid(11 +∇u(x+ h) + anti(p(x+ h) 11.h), 11 +∇u(x)) . (3.4)

Remark 3.2
The influence of the remaining term anti([p(x + h) 11].h) ∈ so(3) will disappear only after
averaging over all directions h.

With a view towards the indeterminate couple stress model we restrict ourselves to consider-
ations of rotational inhomogeneity (rotational interaction between RV E(0) inside the RV E]-
cluster). Thus our quadratic discrete subgrid energy should be expressible as

W subgrid
rot (11 +∇u(x+ h), 11 +∇u(x)) = Bilinear(skew[∇u(x+ h)−∇u(x)]) , (3.5)

8For n = 3 it is possible to show that choosing p ∈ R and A ∈ so(3) appropriately, we may generate every
infinitesimal rotation W ∈ so(3) through anti((p 11 + A).h) = W for any fixed given direction h. This can be
based on the observation that the matrix `

h | anti(h)
´
3×4

(3.2)

has full rank three for every direction h ∈ R3, h 6= 0. Thus {anti([R 11 + so(3)].h)} = so(3).
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Figure 8: Left: A regular diamond lattice structure of an ideal single crystal cannot be consid-
ered to be micro-random. Right: A syntactic foam structure is to a fair degree micro-random.
Is it by chance that Lakes [29, 3, 30, 31] identified foams to have conformal Cosserat curvature
[22, 43, 23, 41] consistent with micro-randomness?

Figure 9: Left: A non-textured polycrystalline diamond film might also be considered to be
micro-random. The window-size would actually correspond to our RV E]-cluster. Right: An
open cell foam structure is also micro-random.
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where it is understood that ∇u appears quadratically. Further, we base our investigation of
rotational inhomogeneity on the subgrid level with spacing h on the specific discrete difference

W subgrid
rot (11 +∇u(x+ h), 11 +∇u(x)) = 〈∇u(x+ h)−∇u(x), anti(h)〉2M3×3 (3.6)

= 〈skew[∇u(x+ h)−∇u(x)], anti(h)〉2so(3) = 〈curlu(x+ h)− curlu(x)], h〉2 .

Since anti(h) ∈ so(3), only rotational inhomogeneities of the form skew(∇u(x+h)−∇u(x)) are
seen at all while strain-type inhomogeneities like sym(∇u(x+h)−∇u(x)) = ε(x+h)−ε(x) are
ignored. Let us show that this W subgrid

rot is indeed micro-random according to Definition 3.1.

Lemma 3.3 (W subgrid
rot is micro-random)

Proof. Consider (without loss of generality we can drop the dependence of (p,A) ∈ R× so(3)
on their space position x ∈ R3)

〈[∇u(x+ h) + anti([p 11 +A].h)]− [∇u(x) + anti([p 11 +A].0)], anti(h)〉2

= 〈∇u(x+ h) + anti([p 11].h)−∇u(x), anti(h)〉2 . (3.7)

Here, A ∈ C1(R3, so(3)), p ∈ C1(R3,R) and h ∈ R3 are otherwise arbitrary. The equivalence
holds since

〈anti(A.h), anti(h)〉 = 2 〈axl anti(A.h), axl anti(h)〉R3 = 〈A.h, h〉R3 = 0 (3.8)

for A ∈ so(3) and all h ∈ R3. Thus we have shown that (3.6) is in fact invariant under
superposed local rotations (3.3). Therefore, (3.6) is micro-random. �
In order to come up with maniable expressions we simplify our directional subgrid response by
switching to second derivatives in the Taylor-expansion ∇u(x+ h) = ∇u(x) +D2u(x).h+ . . ..
Because in our multiscale model, h is not infinitesimally small anyway, there is no reason to
neglect the second term. Since

W subgrid
rot (11 +∇u(x+ h), 11 +∇u(x)) = 〈skew[∇u(x+ h)−∇u(x)], anti(h)〉2

= 〈skew[D2u(x).h+ . . . , anti(h)〉2 = 〈skew[D2u(x).h], anti(h)〉2 + . . .

= 〈∇ curlu(x).h, h〉2 + . . . , (3.9)

we replace therefore the difference measure W subgrid
rot by

Ŵ subgrid
rot (D2u.h) := 〈skew[D2u(x).h], anti(h)〉2 . (3.10)

Lemma 3.4 (Ŵ subgrid
rot is micro-random)

Proof. The proof is the same as for Lemma 3.3. We only have to replace the discrete gradient
differences by the corresponding linearization

[[∇u(x+ h) + anti([p 11 +A].h)]− [∇u(x) + anti([p 11 +A].0)]]

= [D2u(x).h+ anti([p 11 +A].h)] + . . . �

Remark 3.5 (Micro-randomness and discrete curvature energy)
Taking instead ‖ skew[D2u(x).h]‖2 as a discrete quadratic measure for rotational inhomo-
geneity is possible, but it is not micro-random since ‖ skew[D2u(x).h + anti([p 11].h)]‖2 6=
‖ skew[D2u(x).h + anti([p 11 + A].h])‖2. After averaging over all directions, this term is, up
to a multiplicative constant, the pointwise positive definite expression ‖∇ curlu‖2. Similarly,
‖ dev sym[D2u(x).h]‖2 is (trivially) micro-random since the rotational re-arrangement is com-
pletely ”swallowed” by the symmetrisation operator sym

‖ dev sym[D2u(x).h]‖2 = ‖ dev sym[D2u(x).h+ anti([p 11 +A].h])]‖2 (3.11)

(already in the integrand before averaging), but the expression would also couple with strain-
like inhomogeneities. See (6.13) for the analytical expression after averaging over all directions.

The same remark applies to the micro-random expression 〈D2u(x).h, 11〉2 = 〈∇Div u.h, h〉2
which does couple with volumetric inhomogeneities.
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3.4 Averaging over all subgrid directions

Since we assume that the subgrid has no preferred direction either, we are consequently
led to average the expression Ŵ subgrid

rot over all directions h ∈ Lc · S2 in a second step, i.e.,
we define

Wcurv(D2u(x)) :=
1

4π L2
c

∫
h∈Lc·S2

1
L2
c

Ŵ subgrid
rot (D2u(x).h) dS2

Lc

=
1

4π L2
c

∫
h∈Lc·S2

1
L2
c

〈D2u(x).h︸ ︷︷ ︸
no units

, anti(h)〉2 dS2
Lc

(3.12)

=
1

4π L2
c

∫
h̃∈S2

1
L2
c

〈D2u(x).(Lc h̃), anti(Lc h̃)〉
2
L2
c dS2

1

=
L4
c

4π L2
c

∫
h̃∈S2

〈D2u(x).h̃, anti(h̃)〉
2

dS2
1 .

Here, 4π L2
c is the surface measure of the sphere S2

Lc
= Lc · S2 with radius Lc.9 The result is

trivially independent of the direction h and a quadratic expression in the second partial deriva-
tives D2u. Moreover, it is conformally invariant, see Appendix 6.2. The spherical integration
can be made explicit, see also (6.2). It holds

Wcurv(D2u(x)) =
4L2

c

15
‖ sym∇ curlu(x)‖2 , (3.13)

i.e., up to a constant factor the conformally invariant curvature energy in (2.7).
It remains to show that superposing the local re-arrangement anti([p 11+A].h̃) ∈ so(3) leaves

the homogenised response invariant up to a (unimportant) global constant. To see this, consider∫
h̃∈S2

〈D2u(x).h̃+ anti((p 11 +A).h̃), anti(h̃)〉
2

dS2

=
∫
h̃∈S2

〈D2u(x).h̃, anti(h̃) + p ‖ anti(h̃)‖2 + 〈anti(A.h̃), anti(h̃)〉〉
2

dS2

=
∫
h̃∈S2

(
〈D2u(x).h̃, anti(h̃)〉+ 2 p

)2

dS2

=
∫
h̃∈S2

〈D2u(x).h̃, anti(h̃)〉
2

+ 4 p 〈D2u(x).h̃, anti(h̃)〉+ 4 p2 dS2

=
∫
h̃∈S2

〈D2u(x).h̃, anti(h̃)〉
2

+ 4 pC1 〈∇ curlu(x).h̃, h̃〉+ 4 p2 dS2

=
∫
h̃∈S2

〈D2u(x).h̃, anti(h̃)〉
2

dS2 + pC2 tr [∇ curlu(x)] + 4 p2 C3

=
∫
h̃∈S2

〈D2u(x).h̃, anti(h̃)〉
2

dS2 + 4 p2 C3 . (3.14)

Since we use this result as a curvature energy term, the appearing additive constant (which
could even depend on x ∈ Ω) does not influence the variational formulation. �

Collecting results we see that, within our micro-randomness assumption, the indeterminate
couple stress energy reduces to

I(u) =
∫
RV E]

µ ‖ sym∇u‖2 +
λ

2
tr [sym∇u]2 + µL2

c ‖ sym∇ curlu‖2︸ ︷︷ ︸
conformal curvature

dV . (3.15)

3.5 Gradient elasticity with micro-random subgrid interaction

We do not pursue here in detail the similar question for the general second gradient elasticity
model. This would lead to the question: what are the most general isotropic, centro-symmetric
curvature terms in D2u which can be derived starting with discrete directional micro-random

9We adhere to the convention that dS2
1 is unit free while dS2

L2
c

has units [m2]. The additional factor in the

integrand is needed for dimensional consistency.
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terms. However, for some simple directional subgrid energies (below, left column), which have
a clear mechanical interpretation, we can already see that

‖D2u(x).h‖2︸ ︷︷ ︸
not micro-random

averaging︷︸︸︷
=⇒ ‖D2u(x)‖2︸ ︷︷ ︸

not conformally invariant

,

‖ skew[D2u(x).h]‖2︸ ︷︷ ︸
not micro-random

averaging︷︸︸︷
=⇒ 1

2
‖∇ curlu(x)‖2︸ ︷︷ ︸

not conformally invariant

,

‖ sym[D2u(x).h]‖2︸ ︷︷ ︸
micro-random

averaging︷︸︸︷
=⇒ ‖D2u(x)‖2 − 1

2
‖∇ curlu(x)‖2︸ ︷︷ ︸

not conformally invariant

, (3.16)

‖D[sym∇u(x)].h‖2︸ ︷︷ ︸
micro-random

averaging︷︸︸︷
=⇒ ‖D[sym∇u(x)]‖2︸ ︷︷ ︸

not conformally invariant

, coincides with the former

〈D2u(x).h, 11〉2︸ ︷︷ ︸
micro-random

averaging︷︸︸︷
=⇒ ‖∇Div u(x)‖2︸ ︷︷ ︸

not conformally invariant

,

〈skew[D2u(x).h], anti(h)〉2︸ ︷︷ ︸
micro-random

averaging︷︸︸︷
=⇒ ‖ sym∇ curlu(x)‖2︸ ︷︷ ︸

conformally invariant

,

‖ dev sym[D2u(x).h]‖2︸ ︷︷ ︸
micro-random

averaging︷︸︸︷
=⇒ ‖D2u(x)‖2R27 −

1
2
‖∇ curlu(x)‖2M3×3 −

1
3
‖∇Div u(x)‖2︸ ︷︷ ︸

conformally invariant: (6.16)9

,

‖D[dev sym∇u(x)].h‖2︸ ︷︷ ︸
micro-random

averaging︷︸︸︷
=⇒ ‖D[dev sym∇u(x)]‖2R27︸ ︷︷ ︸

conformally invariant

, coincides with the former

are individually positive and (some of them in our sense) micro-random, see (6.13) for the
detailed proof. We have also checked that η(1)

ijk η
(1)
ijk from (6.28) is conformally invariant as

well!10 Based on the orthogonal Cartan Lie-algebra decomposition (for fixed direction h ∈ S2)
i.e., gl(3) = [sl(3) ∩ Sym(3)]⊕ so(3)⊕ R · 11, we can uniquely decompose

D2u.h = dev sym[D2u.h] + skew[D2u.h] +
1
3

tr
[
D2u.h

]
11 , (3.17)

and the three terms dev sym[D2u.h], skew[D2u.h], tr
[
D2u.h

]
11 can be chosen as an orthogonal

basis for the directional subgrid interaction and are therefore naturally privileged candidates
on which to base the curvature energy contribution.11

Grouping together those terms that arise from micro-randomness and the orthogonality
before averaging, we are led to consider curvature energies in the form

a0 ‖∇Div u‖2 + a1 ‖D[dev sym∇u‖2︸ ︷︷ ︸
strain gradient terms

+ a′2 ‖ sym∇ curlu‖2︸ ︷︷ ︸
symmetric rotational gradient

. (3.18)

Here, the relevant part for the situation when volumetric gradients are not important

a1 ‖D[dev sym∇u‖2 + a′2 ‖ sym∇ curlu‖2 (3.19)

is conformally invariant. Note that taking ‖D[dev sym∇u‖2 as only strain gradient term
determines already a unique solution u ∈ H2(Ω,R3) despite loss of pointwise uniform positive
definiteness w.r.t. derivatives D2u, see (6.33). This suggests that (3.19) is a good candidate
for further investigations.

10Suggesting that η(1) might just be an isomorphic mapping of D[dev sym∇u]. But this is not the case:
the null-space of η(1) as a function of η is 11-dimensional and the 7-dimensional image consists of all second
derivative components which appear from irrotational, divergence free displacements, see section 6.7.

11The equivalence ‖D[dev sym∇u(x)]‖2R27 = ‖D2u(x)‖2R27 − 1
2
‖∇ curlu(x)‖2M3×3 − 1

3
‖∇Div u(x)‖2R3 is not

immediate, see (6.15).
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3.6 Example: torsion solution with conformal strain gradient

In order to show the effect of the term µL2
c ‖D[dev sym∇u‖2 on the size-dependent behaviour

let us look at the classical torsion problem of a thin cylindrical bar ΩT with radius a > 0 and
length L. We let e1 be the axis of the bar. Then the classical torsion solution

uκ(x1, x2, x3) =

 0
−κx1 x3

κx1 x2

 , dev sym∇uκ =

 0 −x3
2 κ

x2
2 κ

−x3
2 κ 0 0

x2
2 κ 0 0

 , tr [∇uκ] = 0 ,

(3.20)

where κ is the twist per unit length of the cylindrical bar still satisfies the weak form of
equilibrium∫

ΩT

2µ 〈dev sym∇uκ,∇δu〉+ λ tr [∇uκ] tr [∇δu]

+ 2µL2
c

3∑
i=1

〈∂xi
dev sym∇uκ, ∂xi

dev sym∇δu〉dV = 0 ∀δu ∈ C∞0 (ΩT ,R3) , (3.21)

and the boundary conditions: traction free boundary conditions at the outer cylindrical surface
and applied twist at the horizontal end points. The resultant torque per unit length at the ends
of the cylindrical bar can be determined through

Qconf =
d

dκ

1
L

∫
ΩT

W (∇uκ) dV

=
d

dκ

1
L

L∫
0

2π∫
0

a∫
0

(
µ ‖ dev sym∇uκ‖2 + µL2

c

3∑
i=1

‖∂xi dev sym∇uκ‖2
)
r dr dφ dx1

=
πκµa4

2

(
1 +

1
2

(
2Lc
a

)2
)
. (3.22)

As usual, thinner bars are stiffer. This shows that qualitatively the result is similar to the
indeterminate couple stress model which results in [32]

Qcouple =
πκµa4

2

(
1 + 6

(
2Lc
a

)2
)
, (3.23)

where the size-independent classical torque per unit length is Q0 = πκµa4

2 . Thus,
µL2

c ‖D[dev sym∇u‖2 supports much larger internal length scale parameters Lc for the same
set of experimental torsional data, compared to the indeterminate couple stress model with
µL2

c‖ sym∇ curlu‖2.

4 Relation to the Cosserat/micropolar model

4.1 Least energy lifting

Switching back to rotational inhomogeneity, the infinitesimal Cosserat model [9] can now be
seen as a relaxed formulation of the indeterminate couple stress model, in which the higher
derivatives act on an independent infinitesimal rotation field A ∈ so(3), which itself is coupled
energetically to the continuum rotation curlu. Because curlu = 2 axl(skew∇u), we replace
curlu by 2 axl(A) and the generated coupling term is

µc ‖ curlu− 2 axl(A)‖2 (4.1)

with a new penalty parameter µc > 0, called the Cosserat couple modulus. As far as the
curvature energy replacement is concerned the Mindlin curvature consisted of the term

WK
curv(∇ curlu) = a′2 ‖ sym∇ curlu‖2 + a′3 ‖ skew∇ curlu‖2 , (4.2)
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which, under micro-randomness assumption reduces to only the symmetric (and trace free)
part. We apply a ”least replacement principle”, i.e. formally lifting the curvature energy from
trace free matrices sl(3) to gl(3) by

WK
curv : sl(3) 7→ R+  Wcurv : gl(3) 7→ R+ ,

Wcurv(X) := WK
curv(projsl(3)(X)) = WK

curv(devX) , (4.3)

where projsl(3)(X) = devX is the unique orthogonal projection onto trace-free matrices. To-
gether with the ”micro-random” curvature assumption, i.e.,

WK
curv : sl(3) 7→ R+ , WK

curv(X) = a′2 ‖ symX‖2, X = ∇ curlu , (4.4)

we obtain altogether the Cosserat curvature energy

Wcurv(X) = a′2 ‖ sym devX‖2 = a′2 ‖dev symX‖2, X = 2∇ axl(A) , (4.5)

leading to the conformally invariant Cosserat curvature term

Wcurv(∇ axl(A)) = 4 a′2 ‖ dev sym∇ axl(A)‖2 , (4.6)

and we arrive at the conformally invariant Cosserat problem [44, 43, 23]:

4.2 The Cosserat model with conformally invariant curvature

For the displacement u : RV E] ⊂ R3 7→ R3 and the skew-symmetric infinitesimal mi-
crorotation A : RV E] ⊂ R3 7→ so(3) we consider the two-field minimization problem

I(u,A) =
∫
RV E]

Wmp(ε) + µL2
c ‖ dev sym∇ axlA‖2 dx 7→ min . w.r.t. (u,A) (4.7)

with

Wmp(ε) = µ ‖ sym ε‖2 + µc ‖ skew ε‖2 +
λ

2
tr [sym ε]2, ε = ∇u−A, u|Γ = ud . (4.8)

The parameter identification of Lakes [29] for a syntactic foam consisting of hollow glass mi-
crobubbles embedded in an epoxy matrix has precisely led to this reduced (four parameter)
Cosserat formulation. Well-posedness is shown in [22]. The least energy lifting can also be
extended to the gradient elasticity model, in which case we obtain a micromorphic model [42]
with a specific conformal curvature energy.

5 Conclusion

A major problem of gradient elasticity models is the introduction of many new length scale
parameters which are not easily interpreted. In order to compare the predictive power of the
new models to some experiments it is therefore necessary to reduce the number of parameters
to an absolute minimum. This can be achieved on an ad hoc basis or by formal tensor rep-
resentations. For the same purpose, we have proposed a homogenisation scheme which takes
into account micromechanical structural information. The major new concept is what we call
micro-randomness. It represents an additional rotational invariance on the micro-level with con-
sequences on the continuum level which go beyond traditional macroscopic material symmetry
requirements like isotropy and centro-symmetry.

Let us first consider models which are based on rotationally interacting RV E(0). If the
interaction is micro-random then we always obtain a conformally invariant curvature energy.
Thus we have given a physical motivation on the microscale, which leads, upon homogenisation,
to a conformal indeterminate couple stress model or Cosserat model.

Micro-randomness is a constitutive assumption which is satisfied by many materials on many
scales, but definitely not for regular lattice structures. Comparing with the experimental result
of Lakes [29] for a syntactic foam we see that in that case, micro-randomness might actually
hold, consistent with the found material parameters. We think that the conformal curvature
expression offers thus a fresh departure for the experimental determination of the remaining
one length scale in the indeterminate couple stress model and two Cosserat constants µc, Lc in
the conformal Cosserat model.
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A first conclusion is: if a linear elastic micropolar model (or the indeterminate couple stress
model) is applicable at all to a material with random microstructure, then one has to use
the micro-randomness principle and the homogenised model will have conformal curvature and
symmetric moment stresses.

Micro-randomness has also implications for the gradient elastic case which is more general
then only rotational interaction. For example the description of grain-size effects become im-
portant for polycrystalline materials which are certainly subject to micro-randomness. In this
case the more general elastic curvature energy for gradient elasticity in (3.19) might be a well
founded choice. The same applies to cellular materials and foam structures. Here, the number
of curvature parameters is also reduced from five to three. Restricting then further to confor-
mally invariant strain gradient terms gives a maximal reduction to one additional length scale
parameter in front of ‖D[dev sym∇u]‖2 =

∑3
i=1 ‖∂i[dev sym∇u]‖2 (the norm of the gradient

of deviatoric strain) giving a model which still controls completely all second derivatives of the
displacement u despite first appearance (6.33). We believe that such a model merits further
attention.
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Notation
Let Ω ⊂ R3 be a bounded domain with Lipschitz boundary ∂Ω and let Γ be a smooth subset of ∂Ω with
non-vanishing 2-dimensional Hausdorff measure. For a, b ∈ R3 we let 〈a, b〉R3 denote the scalar product on
R3 with associated vector norm ‖a‖2R3 = 〈a, a〉R3 . We denote by M3×3 the set of real 3 × 3 second order

tensors, written with capital letters and the set Sym(n) denotes all symmetric n × n-matrices. The standard
Euclidean scalar product on M3×3 is given by 〈X,Y 〉M3×3 = tr

ˆ
XY T

˜
, and thus the Frobenius tensor norm

is ‖X‖2 = 〈X,X〉M3×3 . In the following we omit the index R3,M3×3. The identity tensor on M3×3 will be

denoted by 11, so that tr [X] = 〈X, 11〉. We set sym(X) = 1
2

(XT + X) and skew(X) = 1
2

(X − XT ) such that

X = sym(X) + skew(X). For X ∈ M3×3 we set for the deviatoric part devX = X − 1
3

tr [X] 11 ∈ sl(3) where

sl(3) is the Lie-algebra of traceless matrices and gl(3) = M3×3 is the Lie-algebra of GL(3). The Lie-algebra of
SO(3) := {X ∈ GL(3) |XTX = 11, det[X] = 1} is given by the set so(3) := {X ∈ M3×3 |XT = −X} of all skew
symmetric tensors. The canonical identification of so(3) and R3 is denoted by axlA ∈ R3 for A ∈ so(3). The
Curl operator on the three by three matrices acts row-wise, i.e.

Curl

0@X11 X12 X13

X21 X22 X23

X31 X32 X33

1A =

0@curl(X11, X12, X13)T

curl(X21, X22, X23)T

curl(X31, X32, X33)T

1A . (5.1)

Moreover, we have

∀ A ∈ C1(R3, so(3)) : DivA(x) = − curl axl(A(x)) . (5.2)

Note that (axlA)× ξ = A.ξ for all ξ ∈ R3, such that

axl

0@ 0 α β
−α 0 γ
−β −γ 0

1A :=

0@−γβ
−α

1A , Aij =

3X
k=1

−εijk · axlAk ,

‖A‖2M3×3 = 2 ‖ axlA‖2R3 , 〈A,B〉M3×3 = 2〈axlA, axlB〉R3 , (5.3)

where εijk is the totally antisymmetric permutation tensor. Here, A.ξ denotes the application of the matrix A
to the vector ξ and a× b is the usual cross-product. Moreover, the inverse of axl is denoted by anti and defined
by 0@ 0 α β

−α 0 γ
−β −γ 0

1A := anti

0@−γβ
−α

1A , axl(skew(a⊗ b)) = −
1

2
a× b , (5.4)

and

2 skew(b⊗ a) = anti(a× b) = anti(anti(a).b) . (5.5)

Moreover,

curlu = 2 axl(skew∇u) . (5.6)

By abuse of notation we denote the differential Dϕ of the deformation ϕ : R3 7→ R3 by ∇ϕ. This implies a
transposition in certain comparisons with other literature since here (∇ϕ)kj = ∂jϕk is understood. Differentials
of second order matrices are denoted by D, such that strain gradients become Dε. For repeated indices in index
notation Einstein summation convention is applied.
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6 Appendix

6.1 Second order expansions
Let us gather some expansions and developments which we need in the homogenisation part.

[11 +∇u(x+ h)].y − [11 +∇u(x)].y = [D2u(x).h].y + . . . ,

tr [[11 +∇u(x+ h)]− [11 +∇u(x)]] = tr
ˆ
D2u(x).h

˜
+ . . . ,

tr [[11 +∇u(x+ h)]− [11 +∇u(x)]] = Div u(x+ h)−Div u(x) = 〈∇Div u(x), h〉+ . . .

= tr
ˆ
D2u(x).h

˜
+ . . . , (6.1)

sym[[11 +∇u(x+ h)]− [11 +∇u(x)]] = sym[D2u(x).h] + . . . ,

dev sym[[11 +∇u(x+ h)]− [11 +∇u(x)]] = dev sym[D2u(x).h] + . . . ,

skew([11 +∇u(x+ h)]− [11 +∇u(x)]) = skew(D2u(x).h) + . . . ,

2 axl[skew([11 +∇u(x+ h)]− [11 +∇u(x)])] = 2 axl[skew(D2u(x).h)] + . . . ,

curlu(x+ h)− curlu(x) = ∇ curlu(x).h+ . . . = 2 axl[skew(D2u(x).h)] + . . . ,

∇ curlu(x).h = 2 axl[skew(D2u(x).h)] .

Since

dev sym∇[u(x+ h)−∇u(x)] = dev sym∇u(x+ h)− dev sym∇u(x) = D[dev sym∇u(x)].h+ . . .

(6.1)5z}|{
= dev sym[D2u(x).h] + . . . (6.2)

we can identify

D[dev sym∇u(x)].h = dev sym[D2u(x).h] , (6.3)

giving the gradient of deviatoric stretch another representation.

6.2 Spherical integration inside the subgrid cluster RV E]

We make constantly use of the following simple closed form expressions for integrals over the unit sphere [25, 4, 35]
where X ∈ gl(3) and v ∈ R3 are given,Z

h∈S2
〈X.h, h〉2dS2 =

4π

15

“
2 ‖ symX‖2 + tr [X]2

”
,Z

h∈S2
〈X.h, h〉dS2 =

4π

3
tr [X] ,

Z
h∈S2

〈h, h〉2dS2 =

Z
h∈S2

1 dS2 = 4π ,Z
h∈S2

〈v, h〉2dS2 =

Z
h∈S2

〈(v ⊗ v).h, h〉dS2 =
4π

3
tr [v ⊗ v] =

4π

3
‖v‖2 . (6.4)

The question is: what energy should we attribute to a rotational inhomogeneity since we are mainly interested in
rotationally interacting RV E(0). One basis for the measurement is certainly ∇ curlu ∈ M3×3. Since no subgrid
direction h̃ ∈ S2 is preferred and previous rearrangements should have no influence, we average the induced
strain ellipsoid energy over the unit sphere, which givesZ

h∈S2
〈∇ curlu.h, h〉2 dS2 =

4π

15

“
2 ‖ sym∇ curlu‖2 + tr [sym∇ curlu]2

”
=

4π

15

`
2 ‖ sym∇ curlu‖2 + (Div curlu)2

´
=

8π

15
‖ sym∇ curlu‖2 . (6.5)

On the other hand,Z
h∈S2

〈∇ curlu.h, h〉2 dS2 =

Z
h∈S2

〈2 axl[skew(D2u(x).h)], h〉2 dS2 = 2

Z
h∈S2

1

4
〈skew(D2u(x).h), anti(h)〉2 dS2

=
1

2

Z
h∈S2

〈D2u(x).h, anti(h)〉2 dS2 . (6.6)

From a different perspective we see that the last expression is conformally invariant, since

〈D2φC(x).h, anti(h)〉 = 〈anti(cW.h) + 〈axlcW,h〉11, anti(h)〉 = 〈anti(cW.h), anti(h)〉 =
1

2
〈cW.h, h〉 = 0 . (6.7)

The same calculation shows that this expression is re-arrangement invariant (micro-random).

With (6.4) we get as wellZ
h∈S2

tr
ˆ
D2u(x).h

˜2
dS2 =

Z
h∈S2

〈∇Div u(x), h〉2 dS2 =
4π

3
‖∇Div u(x)‖2 , (6.8)

(an expression which is micro-random but not conformally invariant) andZ
h∈S2

‖ skew[D2u(x).h]‖2M3×3 dS2 =

Z
h∈S2

2‖ axl[skew[D2u(x).h]]‖2R3 dS2 =

Z
h∈S2

1

2
‖2 axl[skew[D2u(x).h]]‖2R3 dS2

=

Z
h∈S2

1

2
‖∇ curlu(x).h‖2R3 dS2 =

Z
h∈S2

1

2
〈[∇ curlu(x)]T [∇ curlu(x)].h, h〉 dS2

=
4π

6
‖∇ curlu(x)‖2 , (6.9)
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being neither micro-random nor conformally invariant. Moreover,Z
h∈S2

‖D2u(x).h]‖2M3×3 dS2 =

Z
h∈S2

〈[D2u(x)]T [D2u(x)].h, h〉 dS2 =
4π

3
‖D2u(x)‖2R27 . (6.10)

Thus, applying the orthogonal Cartan Lie-algebra decomposition

D2u.h = dev sym[D2u.h] + skew[D2u.h] +
1

3
tr
ˆ
D2u.h

˜
11 , (6.11)

we observe that (due to orthogonality)

‖D2u(x).h‖2M3×3 = ‖ dev sym[D2u(x).h]‖2M3×3 + ‖ skew[D2u(x).h]‖2M3×3 +
1

3
tr
ˆ
D2u(x).h

˜2
, (6.12)

and we obtainZ
h∈S2

‖dev sym[D2u(x).h]‖2M3×3 dS2 =

Z
h∈S2

‖[D2u(x).h]‖2 − ‖ skew[D2u(x).h]‖2 −
1

3
tr
ˆ
D2u(x).h

˜2
dS2

=
4π

3
‖D2u(x)‖2R27 −

4π

6
‖∇ curlu(x)‖2M3×3 −

4π

9
‖∇Div u(x)‖2 ≥ 0 . (6.13)

Since dev sym[D2(u + φC).h] = dev sym[D2u.h] (see (6.16)8) we observe as well that (6.13) is conformally
invariant (independent of this argument, we may also refer to (6.16)9 combined with (6.16)10). On the other
hand, considerZ

h∈S2
‖D[dev sym∇u(x)].h‖2M3×3 dS2 =

Z
h∈S2

〈(D[dev sym∇u(x)])TD[dev sym∇u(x)].h, h〉 dS2

=
4π

3
‖D[dev sym∇u(x)]‖2R27 . (6.14)

With (6.3) we conclude therefore the representation

‖D[dev sym∇u(x)]‖2R27 = ‖D2u(x)‖2R27 −
1

2
‖∇ curlu(x)‖2M3×3 −

1

3
‖∇Div u(x)‖2R3 . (6.15)

6.3 Infinitesimal conformal mappings (ICT) at a glance

Here we gather some useful formulas for infinitesimal conformal mappings. In the following, cW, bA ∈ so(3),bb ∈
R3, bp ∈ R are arbitrary constant. Infinitesimal conformal mappings preserve (to first order) angles and shapes of
infinitesimal figures. More precisely, φC : R3 7→ R3 is infinitesimal conformal if and only if its Jacobian satisfies
∇φC(x) ∈ R 11 + so(3). This implies

φC(x) =
1

2

“
2〈axl(cW ), x〉x− axl(cW ) ‖x‖2

”
+ [bp 11 + bA].x+bb ,

∇φC(x) = [〈axl(cW ), x〉+ bp] 11 + anti(cW.x) + bA ,
tr [∇φC(x)] = 3

h
〈axl(cW ), x〉+ bpi ,

skew∇φC(x) = anti(cW.x) + bA , (6.16)

sym∇φC(x) = [〈axl(cW ), x〉+ bp] 11 ,

dev sym∇φC(x) = 0 ,

∇ curlφC(x) = 2cW ∈ so(3) ,

D2φC(x).h = 〈axlcW,h〉11 + anti(cW.h) ∈ R 11⊕ so(3) ,

‖D2φC‖2R27 =

3X
i=1

‖D2φ.ei‖2M3×3 =

3X
i=1

‖ anti(cW.ei)‖2 + 3 〈axl(cW ), ei〉
2

= 7 ‖ axlcW‖2 ,
‖∇Div φC‖ = 9 ‖ axlcW‖2 , ‖∇ curlφC‖ = 8 ‖ axlcW‖2 .

Using (6.16)8, we observe that ‖dev sym[D2u.h]‖2 is not only micro-random but also conformally invariant after
homogenisation (6.13). In terms of the third order tensor η = D2u we have for the conformal map φC

ηijk(φC) = ∂ijφ
k
C = [2 sym(axl(cW )⊗ ek)− 〈axl(cW ), ek〉 11]ij

= [axl(cW )i δjk + axl(cW )j δik]− axl(cW )k δij . (6.17)

This defines a three-dimensional linear space in the set of all second partial derivative ηijk ∈ R27 (due to
symmetry in the first two indices only R18). Moreover,

1

2

“
2〈axl(cW ), x〉x− axl(cW ) ‖x‖2

”
=

0B@(−cW23 x1 +cW13 x2 −cW12 x3)x1

(−cW23 x1 +cW13 x2 −cW12 x3)x2

(−cW23 x1 +cW13 x2 −cW12 x3)x3

1CA− 1

2

0B@−cW23cW13

−cW12

1CA (x2
1 + x2

2 + x2
3) .

6.4 Formal invariants of the curvature in indicial notation
Following [32, eq.(17)] we let ηijk = ∂ijuk = ∂i[∂juk] be the third order tensor of second derivatives, i.e., the
entries of D2u, which is already symmetric in the first two indices. The formal symmetrisation of this tensor is
therefore defined by

ηSijk :=
1

6

`
ηijk + ηjik + ηjki + ηkji + ηkij + ηikj

´
=

1

3

`
ηijk + ηjki + ηkij

´
=

1

3

`
uk,ij + ui,jk + uj,ki

´
,

(6.18)
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i.e. ηS is now symmetric with respect to any permutation of the indices.12

An incompressible third order tensor η is characterised by ηikk = 0, i = 1, 2, 3. Since from symmetry
in the first two slots η has eighteen independent components, instead of twenty-seven, the three relations in
ηikk = 0, 1 = 1, 2, 3 reduce the number of independent components of an incompressible tensor to fifteen. Note
that ηS might not satisfy ηSikk = 0, i = 1, 2, 3 even if ηikk = 0, i = 1, 2, 3.

An arbitrary gradient elasticity tensor η can be decomposed into its symmetric and completely ”antisym-
metric” parts η = ηS + ηA where

ηAijk :=
1

3

`
2ηijk − ηkji − ηikj

´
=

1

3

`
uk,i − ui,k

´
,j

+
1

3

`
uk,j − uj,k

´
,i

=
2

3
εikpχpj +

2

3
εjkqχqi , (6.19)

with

χ
ij = θi,j =

1

2
εiqrur,jq =

1

2
εiqrηjqr (6.20)

the curvature tensor χ = ∇ curlu which has eight independent components since tr [∇ curlu] = 0. It holds
that ηS is orthogonal to ηA. Further, ηS can be splitted into a (hydrostatic) trace part η(0) and a (deviatoric)

traceless part η(1) according to ηSijk = η
(0)
ijk + η

(1)
ijk, where

η
(0)
ijk =

1

5

“
δij η

S
mmk + δjk η

S
mmi + δki η

S
mmj

”
, η

(1)
ijk = ηSijk − η

(0)
ijk , ηSmmk =

1

3
(ηmmk + 2 ηkmm) . (6.21)

This decomposition can be traced back at least to [24, eq.(16)]. It is rather easy to see that η 7→ η(1) is a
projection onto the linear space of trace-free symmetric third order tensors. This space is 7-dimensional. For a
projection, the only eigenvalues are 0 and 1, hence the kernel is 11-dimensional and the image is 7-dimensional.
The image consists of all tensors ηijk = ∂ijuk which derive from u = ∇ζ and ∆ζ = 0, see section 6.7.

Further decomposition of ηA is done by splitting the curvature tensorχ into symmetric and anti-symmetric
parts

χ
ij =χS

ij +χA
ij = symχ+ skewχ . (6.22)

As a result the tensor ηA splits into two parts

ηASijk :=
2

3
εikpχS

pj +
2

3
εjkqχS

qi , ηAAijk :=
2

3
εikpχA

pj +
2

3
εjkqχA

qi , (6.23)

and we set η
(3)
ijk := ηAAijk + η

(0)
ijk. It is clear that

ηASijk η
AS
ijk ∼ ‖ sym∇ curlu‖2 , ηAAijk η

AA
ijk ∼ ‖ skew∇ curlu‖2 . (6.24)

The tensor ηASijk has five independent entries (sym∇ curlu is symmetric and trace free) and ηAAijk has three

independent entries (skew∇ curlu), while η
(0)
ijk has three independent entries. In [52] then the orthogonal

decomposition

ηijk = η
(1)
ijk + ηASijk + η

(3)
ijk (6.25)

is proposed which leads to a strain energy of the type

a′0 ‖η
(3)
ijk‖

2 + a′1 ‖η
(1)
ijk‖

2 + a′2 ‖ sym∇ curlu‖2 . (6.26)

In [32] the tensors η
(1)
ijk and ηASijk are retained but η(3) is replaced by ∇Div u. Their curvature energy reads

therefore

a0 ‖∇Div u‖2 + a′1 ‖η
(1)
ijk‖

2 + a′2 ‖ sym∇ curlu‖2 . (6.27)

Pointwise positive definiteness in the components ηijk requires a0, a′1, a
′
2 > 0. The symmetric triad ηS has

ten independent entries which reduce to seven for incompressibility due to the former three linear relations.

Accordingly, the traceless symmetric tensor η
(1)
ijk has seven independent components and is called deviatoric

stretch gradient tensor [32]. We have checked that

3X
i,j,k=1

η
(1)
ijk η

(1)
ijk = ‖η(1)

ijk‖
2 (6.28)

(see (6.27)) vanishes for η
(1)
ijk(φC) = 0, meaning that (6.28) is a conformally invariant curvature expression as

well.

6.5 A natural orthogonal representation
For u : R3 7→ R3 consider ∂iu = (∂iu1, ∂iu2, ∂iu3)T ∈ R3. Thus ∇∂iu = ∂i∇u ∈ M3×3 and we may write

∇∂iu = dev sym∇∂iu+ skew∇∂iu+
1

3
tr [∇∂iu] 11 ,

∇∂iu = ∂i∇u = dev sym∇∂iu+
1

2
anti(curl ∂iu) +

1

3
(∂i Div u) 11 . (6.29)

12The third order strain gradient tensor κijk := ∂iεjk is, in this sense, not symmetric.
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Let us define accordingly three third order tensors

N
(1)
ijk := dev sym[∇∂iu] = dev sym[∂i∇u] = ∂i[dev sym∇u] := bLijkrst ηrst ∼ D[dev sym∇u] ,

N
(2)
ijk := skew[∇∂iu] = skew[∂i∇u] = ∂i[skew∇u] = ∂i

1

2
anti(curlu) ∼ ∇ curlu , (6.30)

N
(3)
ijk :=

1

3
tr [∇∂iu] 11 =

1

3
(∂i Div u) 11 ∼ ∇Div u .

They are mutually orthogonal and from the foregoing it is clear that

ηijk = N
(1)
ijk +N

(2)
ijk +N

(3)
ijk . (6.31)

The representation is therefore complete. Counting the number of independent entries in each tensor we have
that N(2) has eight (corresponds toχ) and N(3) has three independent entries such that N(1) must have seven
in order to sum up to the eighteen independent components in ηijk. The tensor N(1) is really the gradient of

deviatoric stretch. In index notation N(1) has the representation

N
(1)
ijk ei ⊗ ej ⊗ ek =

„
1

2
(uk,ji + uj,ki)−

1

3
ul,li δjk

«
ei ⊗ ej ⊗ ek =

„
1

2
(ηijk + ηikj)−

1

3
ηill δjk

«
ei ⊗ ej ⊗ ek .

(6.32)

It is instructive to note thatZ
Ω
‖N(1)‖2 +

3X
i=1

‖∂iu‖2 dV =

Z
Ω

3X
i=1

‖∂i[dev sym∇u]‖2M3×3 +

3X
i=1

‖∂iu‖2 dV

=

Z
Ω

3X
i=1

‖ dev sym∇[∂iu]‖2M3×3 +
3X
i=1

‖∂iu‖2 dV

≥ C+(Ω)

3X
i=1

‖∂iu‖2H1(Ω)
≥ C+(Ω) ‖D2u‖2

L2(Ω)
, (6.33)

where we have used a novel coercive inequality given in [22]. Observe that pointwise positive definiteness in the
components ηijk, i.e.

‖N(1)(η)‖2 :=
3X

i,j,k=1

|N(1)
ijk(η)| =

3X
i,j,k=1

|bLijkrst ηrst|2 ≥ C+
3X

i,j,k=1

|ηijk|2 = C+ ‖η‖2 (6.34)

does not hold (and is not needed)!

6.6 Fleck’s earlier representation for incompressibility
In [13] different curvature energies are introduced. There, a third order deviatoric part η′ of the strain
gradient tensor η is defined as

η′ijk := ηijk −
1

4

`
δik ηjpp + δjk ηipp

´
| {z }
:=ηH

ijk
, ηH

ijk
=0 if Div u=0

= uk,ij −
1

4

`
δik up,jp + δjk up,ip

´
6∼ N

(1)
ijk , (6.35)

ηHijk = ηHjik , ηHikk = ηikk , i = 1, 2, 3 ,

having the property η′ikk = 0, i = 1, 2, 3 (formally coming from ηikk = 0, i = 1, 2, 3 for Div u = const = 0).
They further show [52] that η′ admits a unique orthogonal decomposition

η′ijk = η
(I)
ijk + η

(II)
ijk + η

(III)
ijk , η

(∗)
ijk η

(∗∗)
ijk = 0 , (6.36)

such that η
(∗)
ijk = η

(∗)
jik and η

(∗)
ikk = 0. Here, η(I) := η′(1), which means to use the definition for the calculation

of η(1) in (6.21) applied to η′ instead of η. The most general isotropic, quadratic dependence of the curvature
energy depending only on η′ can be written as

a0 ‖η(I)
ijk‖

2 + a′2 ‖η
(II)
ijk ‖

2 + a′3 ‖η
(III)
ijk ‖

2 . (6.37)

Since, without going into details [13]

‖η(II)
ijk ‖

2 =
4

3

“
‖∇ curlu‖2 + 〈∇ curlu, (∇ curlu)T 〉

”
=

8

3
‖ sym∇ curlu‖2 ,

‖η(III)
ijk ‖

2 =
8

5

“
‖∇ curlu‖2 − 〈∇ curlu, (∇ curlu)T 〉

”
=

16

5
‖ skew∇ curlu‖2 , (6.38)

the curvature energy can equivalently be expressed in [5, eq.(6)]

a′0 ‖η
(I)
ijk‖

2 + a′2 ‖ sym∇ curlu‖2 + a′3 ‖ skew∇ curlu‖2 . (6.39)

While the mechanical interpretation of η(I) is not immediate due to the involved formal tensor operations, it is

stated [52] that ‖η(I)
ijk‖

2 depends on both stretch and rotation gradients.
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6.7 Additional observations
We have calculated η(1) for our conformal map φC and it turns out that η(1) is, incidentally, also conformally

invariant. It is clear that η(1) 6= N(1) since η
(1)
ijk is by definition completely symmetric in (i, j, k) while N

(1)
ijk is

not. Moreover, considering ũ(x) = 1
2

“
2〈~v, x〉x−~b ‖x‖2

”
, which is not a conformal map for ~v 6= ~b, it can be

seen that η(1)(D2ũ) = 0 such that an estimate of the type

∀ η ∈ R27 : ‖N(1)(η)‖2 ≤ C2 ‖η(1)
ijk(η)‖2 (6.40)

is impossible, since N(1) vanishes only for ηijk = ∂ijφ
k
C coming from conformal maps. As a consequence, using

‖η(1)‖2 as only curvature term is not sufficient in order to arrive at a coercive problem in H2(Ω). As regards
Fleck’s tensor η(I) we have calculated that it is not conformally invariant.

In order to understand better the third order tensor η(1) we consider arbitrary second order homogeneous
polynomials0@u1(x1, x2, x3)

u2(x1, x2, x3)
u3(x1, x2, x3)

1A =

0@ 1
2
〈S1.x, x〉

1
2
〈S2.x, x〉

1
2
〈S2.x, x〉

1A =

0@ 1
2

`
S1

11x
2
1 + S1

22x
2
2 + S1

33x
2
3 + 2S1

12x1x2 + 2S1
13x1x3 + 2S1

23x2x3

´
1
2

`
S2

11x
2
1 + S2

22x
2
2 + S2

33x
2
3 + 2S2

12x1x2 + 2S2
13x1x3 + 2S2

23x2x3

´
1
2

`
S3

11x
2
1 + S3

22x
2
2 + S3

33x
2
3 + 2S3

12x1x2 + 2S3
13x1x3 + 2S3

23x2x3

´
1A ,

(6.41)

where S1, S2, S3 ∈ Sym(3) are given. Then ηijk = ∂ijuk = Skij and each η = D2u can be realised in this way.
Let us calculate the curl and Div of this polynomial. It holds

curlu =

0@ [S3
12 − S2

13]x1 + [S3
22 − S2

23]x2 + [S3
32 − S2

33]x3

−
`
[S3

11 − S1
13]x1 + [S3

21 − S1
23]x2 + [S3

31 − S1
33]x3

´
[S2

11 − S1
12]x1 + [S2

21 − S1
22]x2 + [S2

31 − S1
32]x3

1A
=

0@ [S3
12 − S2

13]x1 + [S3
22 − S2

23]x2 + [S3
23 − S2

33]x3

−
`
[S3

11 − S1
13]x1 + [S3

12 − S1
23]x2 + [S3

13 − S1
33]x3

´
[S2

11 − S1
12]x1 + [S2

12 − S1
22]x2 + [S2

13 − S1
23]x3

1A , (6.42)

Div u = x1 [S1
11 + S2

12 + S3
13] + x2 [S1

12 + S2
22 + S3

23] + x3 [S1
13 + S2

23 + S3
33] .

Imposing curlu = 0 as a side condition gives, in fact, 8-independent conditions on the 18 parameters in S1, S2, S3

since tr [curlu] = 0 is automatically satisfied. Thus the space of curl-free homogeneous polynomials of second
degree can be represented with 10 independent parameters. The same argument shows that ηS = η for a function
u if and only if u = ∇ζ, i.e. u is irrotational.
A fully symmetric third order tensor ηS arises naturally from a displacement potential bu(x) = ∇ζ, ζ : R3 7→ R.
Then ηSijk = D2bu = ∂ijkζ. In order to generate all possible forms of ηS we consider ζ as being given by

homogeneous polynomials of order three (with ten degrees of freedom
(a111, a222, a333, a112, a113, a122, a133, a223, a233, a123)), i.e.,

ζ(x1, x2, x3) := a111 x
3
1 + a222 x

3
2 + a333 x

3
3 + a112 x

2
1 x2 + a113 x

2
1 x3 + a122 x1 x

2
2

+ a133 x
2
3 x1 + a223 x

2
2 x3 + a233 x

2
3 x2 + a123 x1 x2 x3 . (6.43)

Then

∇ζ(x1, x2, x3) =

0@3 a111 x2
1 + 2 a112 x1 x2 + 2 a113 x1 x3 + a122 x2

2 + a133 x2
3 + a123 x2 x3

3 a222 x2
2 + a112 x2

1 + 2 a122 x1 x2 + 2 a223 x2 x3 + a233 x2
3 + a123 x1 x3

3 a333 x2
3 + a113 x2

1 + 2 a133 x3 x1 + a223 x2
2 + 2 a233 x3 x2 + a123 x1 x2

1A ,

∆ζ(x1, x2, x3) = [6 a111 x1 + 2 a112 x2 + 2 a113 x3] + [6 a222 x2 + 2 a122 x1 + 2 a223 x3] (6.44)

+ [6 a333 x3 + 2 a133 x1 + 2 a233 x2]

= 2x1 [3 a111 + a122 + a133] + 2x2 [3 a222 + a112 + a233] + 2x3 [3 a333 + a113 + a223] .

Next, we want to calculate η(1) for D3ζ. Since ηS(D3ζ) = η(D3ζ) it remains to calculate η(0). Since

η
(0)
ijk =

1

5

“
δij η

S
mmk + δjk η

S
mmi + δki η

S
mmj

”
=

1

5

 
δij

3X
m=1

∂mmkζ + δjk

3X
m=1

∂mmiζ + δki

3X
m=1

∂mmjζ

!

=
1

5

`
δij ∂k∆ζ + δjk ∂i∆ζ + δki ∂j∆ζ

´
, (6.45)

we observe that η(0) = 0 if ∆ζ = const or Div bu = const. and ∆ζ = const is satisfied if and only if

0 = [3 a111 + a122 + a133] , 0 = [3 a222 + a112 + a233] , 0 = [3 a333 + a113 + a223] . (6.46)

This suggests to define finally an irrotational displacement

bu∇(x1, x2, x3) := ∇ζ(x1, x2, x3)

=

0@− [a122 + a133] x2
1 + a122 x2

2 + a133 x2
3 + 2 a112 x1 x2 + 2 a113 x1 x3 + a123 x2 x3

− [a112 + a233] x2
2 + a112 x2

1 + a233 x2
3 + 2 a122 x1 x2 + 2 a223 x2 x3 + a123 x1 x3

− [a113 + a223] x2
3 + a223 x2

2 + a113 x2
1 + 2 a133 x3 x1 + 2 a233 x3 x2 + a123 x1 x2

1A , (6.47)

with seven independent parameters (a122, a133, a112, a233, a113, a223, a123), satisfying η(1)(D2bu) = D2bu. The
same argument shows also that η(1) = η for a function u if and only if u = ∇ζ, ∆ζ = 0.
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