
Justification of homogenization in viscoplasticity:
From convergence on two scales to an asymptotic

solution in L2(Ω)

Hans-Dieter Alber†, Sergiy Nesenenko†

Department of Mathematics
Darmstadt University of Technology

Schlossgartenstr. 7
64289 Darmstadt

Abstract. A homogenized material model can be used effectively for simulation,
if the difference of the solutions of this model and the microscopic model converges
to zero in a strong norm when the microstructure is scaled. The second author
recently showed for the quasistatic initial-boundary value problem with internal
variables modelling an inelastic solid body Ω at small strain that this convergence
holds in an averaged sense over phase shifts of the microstructure. Based on this
result we construct an asymptotic solution, which converges to the solution of the
microscopic problem in the L2(Ω)–norm, thus avoiding the averaging.
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1 Introduction and setting of the problem

The numerical simulation of inelastic material behavior is expensive, since
the dependence of the material properties on the defomation history must
be taken into account. This is all the more true when the material properties
vary on a small spatial scale, since in this case a fine space discretization
is required. Therefore material models based on homogenization are widely
used to reduce the numerical expense. To determine the reliability of such
a model it is necessary to compare its solutions with solutions of a faithful
material model, in which the small scale variation of the material properties,
the microstructure, is resolved. We call this the microscopic model. A
homogenized model can be used effectively for simulation, if the difference
of a solution of the microscopic model and of a corresponding solution of
the homogenized model converges to zero rapidely in a strong norm when
the length scale of the microstructure tends to zero.

In [24] this convergence was studied for the quasistatic initial-boundary
value problem modelling the inelastic behavior of a solid body with a peri-
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odic microstructure at small strain. The main result was later also published
in [25]. The constitutive equations in this model govern the evolution of in-
ternal variables. They can be rate dependent or rate independent. Under the
assumption that the material behavior shows linear kinematic hardening, it
is shown that when the scaling parameter η of the periodic microstructure
tends to zero, then the difference of the solutions of the microscopic model
and the homogenized model converges to zero in a special sense, which we
call phase shift convergence, and which involves the L2(Ω×Y )–norm, where
Ω ⊆ R3 is the solid body and Y is the periodicity cell. Though this type
of convergence is different from strong two scale convergence as defined in
[13, 14], it is related. The exact result is recorded below in Theorem 2.1.

However, the convergence with respect to the L2(Ω×Y )–norm is not sat-
isfactory, since, as in the classical theory of homogenization, one wants to
construct by homogenization an approximate solution, which asymptotically
converges to the solution of the microscopic problem in the L2(Ω)–norm for
η → 0. Approximation in the L2(Ω)–norm is also needed in the investigation
of the convergence of numerical solutions. The obstacle, which prevents the
construction of such an approximation in the classical way is the low regu-
larity of the solutions of the highly nonlinear homogenized problem. Here
we show that, starting from the result of [25], such an approximate solution,
which is asymptotic to the exact solution in L2(Ω), can be constructed by
averaging.

In the remainder of the introduction we first formulate the model equa-
tions and, for completeness, state an existence theorem for this system
proved in [3]. Subsequently we formulate the homogenized system, explain
the construction of the asymptotic solution and state our main convergence
result in Theorem 1.2. We end the introduction by a short discussion of the
literature. The proof of Theorem 1.2 is given in Section 3. This proof is
based on the convergence result from [24, 25], which we review in Section 2
for completeness.

The initial value problem. Suppose that Ω is an open bounded set, the
set of material points of the body, with Lipschitz boundary ∂Ω. By Te we
denote a positive number (time of existence), which can be chosen to be
arbitrarily large. The unknowns, which we want to determine, are the dis-
placement u(x, t) ∈ R3 of the material point x ∈ Ω at time t, the Cauchy
stress tensor T (x, t) ∈ S3, where S3 is the set of symmetric 3× 3-matrices,
and the vector z(x, t) ∈ RN of internal variables. With a small positive
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parameter η these unknowns must satisfy the equations

−divxT (x, t) = b(x, t), (1)

T (x, t) = D
[x
η

](
ε
(
∇xu(x, t)

)
−Bz(x, t)

)
, (2)

∂

∂t
z(x, t) ∈ g

(x
η
,−∇zψ

(x
η
, ε

(
∇xu(x, t)

)
, z(x, t)

))
= g

(x
η
,BTT (x, t)− L

[x
η

]
z(x, t)

)
, (3)

for x ∈ Ω and t ∈ [0, Te]. The initial and boundary conditions are

z(x, 0) = z(0)
η (x) := z(0)

(
x,
x

η

)
, x ∈ Ω , (4)

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, Te] , (5)

with a given function z(0). To reduce the technical difficulties we only con-
sider the homogeneous Dirichlet boundary condition. The notations are as
follows:

ε(∇xu(x, t)) =
1
2
(
∇xu(x, t) + (∇xu(x, t))T

)
∈ S3

is the linear strain tensor and B : RN → S3 is a linear mapping, which
assigns to the vector z(x, t) the plastic strain tensor εp(x, t) = Bz(x, t). For
every y ∈ R3 the elasticity tensor D[y] : S3 → S3 is a linear, symmetric
mapping, which is positive definte, uniformly with respect to y. This means
that there are constants 0 < α ≤ β satisfying

α|ξ|2 ≤ ξ · D[y]ξ ≤ β|ξ|2, for all ξ ∈ S3.

We assume that the mapping y → D[y] is measurable and periodic with
a rectangular periodicity cell Y ⊂ R3. Without restriction of generality
we suppose that the measure |Y | of Y is equal to 1. The given function
b : Ω× [0, Te] → R3 is the volume force, and ψ : R3 ×S3 ×RN → R denotes
the free energy. Since we consider small deformations, we assume that ψ is
a quadratic form

ψ(y, ε, z) =
1
2
(
D[y](ε−Bz)

)
· (ε−Bz) +

1
2
(L[y]z) · z, (6)

where L[y] is for every y ∈ R3 a symmetric, positive semi-definite N ×N–
matrix, and where for matrices A,B ∈ S3 we write A · B =

∑3
i,j=1AijBij .

We also assume that the function y 7→ L[y], the given initial data

(x, y) 7→ z(0)(x, y) : Ω× R3 → RN

and the constitutive function

(y, z) 7→ g(y, z) : R3 × RN → 2RN

3



are periodic with respect to y and have periodicity cell Y . The second law
of thermodynamics implies that the function g must in addition satisfy

ξ · z ≥ 0, for all (y, z) ∈ D(g) ⊆ R3 × RN and all ξ ∈ g(y, z). (7)

This completes the formulation of the initial boundary value problem. (2),
(3) are the constitutive equations, which determine the material behavior. In
the appendix of [5] it is explained how these equations are obtained from the
second law of thermodynamics. For many engineering models from plasticity
and viscoplasticity it is shown in [1] that they can be written in this abstract
form, which reflects their essential mathematical properties. We surmise, in
fact, that virtually all such models can be written in this form. A similar
formulation of the constitutive equations is also used in [16, 21].

(7) is a very general condition, and the known existence theorems for
the initial-boundary value problem (1) – (5) hold under more restrictive
assumptions for g. Here we assume that g is monotone and that L[y] in
(6) is positive definite. The latter assumption means that the material
shows linear kinematic hardening. Under these conditions a strong existence
and uniqueness theorem was proved in [3]. Though existence theorems are
available under more general conditions, see [5, 9, 10, 11, 17, 28] for example,
we need perturbation estimates, which at present seem to be available only
under these strong conditions. For reference we state the existence theorem
below. To formulate this theorem we need some notations and definitions,
which we introduce now, and which we use throughout.

Let E = Ω or E = Ω× Y and let X be a Banach space. For a function
w : E × [0, Te] → X we write w(t) to denote the function defined by ξ 7→
w(ξ, t) : E → X. For an open set Γ ⊆ Rk let Wm,p(Γ,Rn) be the Sobolev
space of functions with weak derivatives in Lp(Γ,Rn) up to order m. The
norm of this space is denoted by ‖ ·‖m,p,Γ. The scalar product in the Hilbert
space Hm(Γ,Rn) = Wm,2(Γ,Rn) is (·, ··)m,Γ, the corresponding norm is
‖ · ‖m,Γ. We also write (·, ··)Γ = (·, ··)0,Γ and ‖ · ‖Γ = ‖ · ‖0,Γ. The space
H

1
2 (∂Ω,Rn) of traces of functions in H1(Ω,Rn) is equiped with the factor

norm

‖w‖
H

1
2 (∂Ω,Rn)

= inf {‖v‖1,Ω | v ∈ H1(Ω,Rn), trace∂Ω(v) = w}.

If we fix t in the equations (1), (2), (5) we obtain a linear boundary value
problem, which slightly extends the classical boundary value problem of
linear elasticity theory. If z(t) is known, then (u(t), T (t)) can be uniquely
determined from this problem by the standard solution theory in L2(Ω),
since b(t) is given. To define an operator Gη : L2(Ω,RN ) → 2L2(Ω,RN ), let
v ∈ L2(Ω,RN ) be given, let T [v] be the stress in the solution of this boundary
value problem to the data b(0) ∈ L2(Ω,R3), z(0) = v, and set

Gηv = {ζ ∈ L2(Ω,RN ) | ζ(x) ∈ g
(x
η
,BTT [v](x)− L

[x
η

]
v(x)

)
, a.e. in Ω}.
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The domain of definitionD(Gη) consists of all v ∈ L2(Ω,RN ) with Gη(v) 6= ∅.
Now we can formulate the existence and uniqueness theorem proved in [3].

Theorem 1.1. Let Te > 0. Assume that L ∈ L∞(Y,RN×N ) and that the
matrix L[y] is positive definite, uniformly with respect to y ∈ R3. Assume
further that the mapping g : R3 × RN → 2RN

satisfies the conditions

1. 0 ∈ g(y, 0) for almost all y ∈ R3,

2. z 7→ g(y, z) is maximal monotone for almost all y ∈ R3,

3. the mapping y 7→ jλ(y, z) : R3 → RN is measurable for all λ > 0,
where jλ(y, z) is the inverse of z 7→ z + λg(y, z).

Suppose that b ∈ W 2,1(0, Te;L2(Ω,R3)) and z
(0)
η ∈ D(Gη). Then there is a

unique solution (u, T, z) of the initial-boundary value problem (1) – (5) with

(u, T ) ∈ W 1,1(0, Te;H1(Ω,R3)× L2(Ω,S3)), (8)
z ∈ W 1,∞(0, Te;L2(Ω,RN )). (9)

Moreover, there is a constant K, independent of η, b and z(0)
η , such that

‖z‖W 1,∞(0,Te;L2(Ω)) ≤ K
(
Gηz

(0)
η Ω + ‖b‖W 2,1(0,Te;L2(Ω))

)
, (10)

where Gηz
(0)
η Ω = inf{‖ζ‖Ω | ζ ∈ Gηz

(0)
η }.

We remark that the mapping z 7→ jλ(y, z) is single valued and well-
defined, since z 7→ g(y, z) is assumed to be maximal monotone.

Homogenization. We want to construct an approximate solution of (1) –
(5), which is close to the exact solution (uη, Tη, zη) for small values of η > 0.
Since for small η the initial data x 7→ z(0)(x, x

η ) are close to a periodic
function with periodicity cell ηY , and since x 7→ D[x

η ] and x 7→ g(x
η , z) are

periodic with this periodicity cell, one expects that also (uη, Tη, zη) will be
close to a quasiperiodic function (uη, T η, zη) of the form

uη(x, t) = u0(x, t) + ηu1

(
x,
x

η
, t

)
, (11)

T η(x, t) = T0

(
x,
x

η
, t

)
, (12)

zη(x, t) = z0

(
x,
x

η
, t

)
, (13)

where the function (x, y, t) 7→ (u1, T0, z0)(x, y, t) : Ω × R3 × [0, Te] → R3 ×
S3×RN is required to be periodic with respect to y and to have periodicity
cell Y . In [2] it has been shown that if (uη, T η, zη) is asymptotically equal
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to the solution (uη, Tη, zη) for η → 0, then (u0, u1, T0, z0) must satisfy the
homogenized initial-boundary value problem formed by the equations

−divxT∞(x, t) = b(x, t), (14)

T∞(x, t) =
1
|Y |

∫
Y
T0(x, y, t)dy, (15)

−divyT0(x, y, t) = 0, (16)

T0(x, y, t) = D[y]
(
ε(∇yu1(x, y, t))−Bz0(x, y, t)

+ ε(∇xu0(x, t))
)
, (17)

∂

∂t
z0(x, y, t) ∈ g

(
y,BTT0(x, y, t)− L[y]z0(x, y, t)

)
, (18)

z0(x, y, 0) = z(0)(x, y), (19)

which hold for (x, y, t) ∈ Ω× R3 × [0, Te], and by the boundary condition

u0(x, t) = 0, (x, t) ∈ ∂Ω× [0, Te]. (20)

For fixed x the equations (16) – (19) together with the periodicity condition
for y 7→ (u1, T0)(x, y, t), which can be considered to be a boundary condi-
tion, define an initial-boundary problem in Y × [0, Te), the cell problem.
The functions u0 and u1 can be interpreted as macro- and microdisplace-
ment, respectively, T0 as the microstress; the macrostress T∞ is obtained by
averaging of T0 over the representative volume element.

If the above reasoning can be reversed, then (uη, T η, zη) defined by (11)
– (13) is an approximate solution of the microscopic initial-boundary value
problem (1) – (5) for small values of η > 0, provided that (u0, u1, T0, z0)
solves the homogenized problem (14) – (20). The goal is therefore to show
that for solutions (u0, u1, T0, z0) of (14) – (20) the difference of (uη, T η, zη)
and of the solution (uη, Tη, zη) of (1) – (5) converges to zero for η → 0,
preferably in the norm of the space L∞(0, Te;L2(Ω)).

Yet, the approximate solution can not be defined by (11) – (13) because
of the low regularity of the solution of the homogenized problem. To explain
this, note that in [4, Theorem 2] it is proved that under conditions stated
below in Theorem 1.2 the homogenized initial-boundary value problem (14)
– (20) has a unique solution (u0, u1, T∞, T0, z0) with

(u0, T∞) ∈ W 1,1
(
0, Te;H1(Ω,R3)× L2(Ω,S3)

)
, (21)

(u1, T0) ∈ W 1,1
(
0, Te;L2(Ω,H1(Y,R3))× L2(Ω× Y,S3)

)
, (22)

z0 ∈ W 1,∞(
0, Te;L2(Ω× Y,RN )

)
. (23)

These functions thus have one weak time derivative; from the investigations
of the regularity of the solution in [6, 24] one can expect that (T0(t), z0(t)) ∈
H1,loc(Ω× Y ), but that these functions do in general not have higher space
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derivatives, and that these functions are even less regular at the boundary
∂Ω. The reason for the low regularity is that the function g can be highly
nonlinear. For example, it can be the subdifferential of an indicator function.
Yet, with this low regularity the right hand sides of (12) and (13) are not
well defined, since the argument (x, x

η ) varies on a three-dimensional subset
of the six-dimensional set Ω×Y , and therefore T0 and z0 do not have traces
on the low dimensional subset.

Therefore the construction of the asymptotic solution must be modified.
The main result of this paper, which we state in the following theorem,
shows that an asymptotic solution can be obtained by applying a suitable
averaging operator to the functions T η and zη. To state this result we need
some more definitions.

Consider the linear boundary value problem

−divxT̃ (x, y) = b̃(x), (24)
T̃ (x, y) = D

[
x
η + y

](
ε(∇xũ(x, y))−Bṽ(x, y)

)
, (25)

ũ(x, y) = 0, (x, y) ∈ ∂Ω× Y, (26)

where the first two equations must be satisfied for (x, y) ∈ Ω×Y . Note that
for every fixed y this is an elliptic boundary value problem of the same type
as the boundary value problem (1), (2), (5). The only difference is that the
phase of the coefficient D is shifted by y. We can therefore consider y to
be a parameter of phase shift. For the right hand side in (24) we choose
b̃ = b(0) ∈ L2(Ω,R3) with b from (1). For given ṽ ∈ L2(Ω × Y,S3) let
(ũ[ṽ], T̃ [ṽ]) be the solution of the resulting boundary value problem. Set

G̃ηṽ = {ζ ∈ L2(Ω× Y,RN ) |
ζ(x, y) ∈ g

(
x
η + y,BT T̃ [ṽ](x, y)− L

[
x
η + y

]
ṽ(x, y)

)
, a.e. in Ω× Y }.

This defines an operator G̃η : L2(Ω × Y,RN ) → 2L2(Ω×Y,RN ). To define
another operator Ĝ : L2(Ω × Y,RN ) → 2L2(Ω×Y,RN ) note that if we fix
t = 0, then the equations (14) – (17), (20) define a linear boundary value
problem, which differs from the homogenized problem of elasticity theory
only by the additional term Bz0. For b from (1) and for z0(0) = v with
v ∈ L2(Ω × Y,RN ) this problem has a unique solution (u0, u1, T0)[v] ∈
H1(Ω)× L2(Ω,H1(Y ))× L2(Ω× Y ), see [4]. Now set

Ĝv = {ζ ∈ L2(Ω× Y,RN ) |
ζ(x, y) ∈ g

(
y,BTT0[v](x, y)− L[y] v(x, y)

)
, a.e. in Ω× Y }.

Our main result is

Theorem 1.2. Suppose that L, g and b satisfy the assumptions of Theo-
rem 1.1. Assume that the function z(0) ∈ L2(Ω, C(Y,RN )) belongs to the
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domain of definition D(Ĝ) and that the functions z(0)
η , z̃(0)

η defined by

z(0)
η (x) = z(0)

(
x,
x

η

)
, z̃(0)

η (x, y) = z(0)
(
x,
x

η
+ y

)
satisfy z(0)

η ∈ D(Gη), z̃
(0)
η ∈ D(G̃η) for η > 0, and

sup
η>0

Gηz
(0)
η Ω <∞, sup

η>0
G̃η z̃

(0)
η Ω×Y <∞. (27)

Then for all η > 0 there is a unique solution (uη, Tη, zη) of (1) – (5), which
satisfies (8), (9), and there is a unique solution (u0, u1, T0, z0) of (14) – (20),
which satisfies (21) – (23). For these solutions we have

lim
η→0

(
‖uη(t)− u0(t)‖Ω + ‖Tη(t)− T ∗η (t)‖Ω + ‖zη(t)− z∗η(t)‖Ω

)
= 0, (28)

for all t ∈ [0, Te], where

T ∗η (x, t) =
∫

Yη,x

T0

(
x− ηy,

x

η
, t

)
dy,

z∗η(x, t) =
∫

Yη,x

z0

(
x− ηy,

x

η
, t

)
dy,

and where
Yη,x = {y ∈ Y | x− ηy ∈ Ω} = Y ∩ 1

η
(x− Ω).

This theorem is proved in Section 3.
The engineering literature devoted to homogenization in plasticity and

viscoplasticity is large, and we are not able to give an overview. A few of
the more recent publications are [8, 19, 20, 23, 27], which, as we hope, can
be used by the interested reader as a starting point.

The investigations devoted to the rigorous justification of the homoge-
nization of the microscopic model (1) – (5) began with [2, 4, 15]. In [4] the
energy method is used to show for local smooth solutions of the homoge-
nized problem (14) – (20) that the functions (uη, T η, zη) defined with these
smooth solutions in (11) – (13) approximate the solutions of the microscopic
model in L2(Ω) for small η.

For the special case of rate independent problems a similar result as in
[24, 25] was obtained in [22] shortly afterwards by the method of energetic
solutions. It is shown there that the approximate solution converges to the
exact solution in the sense of strong two-scale convergence as defined in
[13, 14]. Strong two-scale convergence differs from the type of convergence
used in Theorem 2.1, but as we show in Remark 3.4 below, there are clear
similarities. In particular, both types of convergence are based on the double
integration over Ω × Y . In fact, we surmise that starting from the conver-
gence result in [22] we can construct an asymptotic solution converging in
L2(Ω) by a modification of the proof of Proposition 3.2 given below.

8



For the model of viscoplasticity with special rate dependent constitu-
tive equations weak two-scale convergence to the homogenized solution was
shown to hold in [29, 30]. Here weak two-scale convergence is meant in the
original sense as defined in [18, 26]. In [29, 30] it is also shown that the
cell problem, which in the homogenized problem serves to determine the
macroscopic stress from the macroscopic displacement, can be replaced by
a variational problem, in which the fast variables do not appear explicitly.

Homogenization of a time independent boundary value problem in plas-
ticity with the Hencky law as the constitutive relation is studied in [12].

2 Phase shift convergence

In this section we review the result from [24, 25], which is used to prove
Theorem 1.2. Assume that (u0, u1, T0, z0) is a solution of the homogenized
problem (14) – (20), which satisfies (21) – (23), and consider the function
(x, y, t) 7→ (ûη, T̂η, ẑη) defined by

ûη(x, y, t) = u0(x, t) + ηu1

(
x,
x

η
+ y, t

)
, (29)

T̂η(x, y, t) = T0

(
x,
x

η
+ y, t

)
, (30)

ẑη(x, y, t) = z0

(
x,
x

η
+ y, t

)
, (31)

for (x, y, t) ∈ Ω×R3×[0, Te]. By (21) – (23) this function is square integrable
over Ω × Y for almost every t ∈ [0, Te]. For y = 0 it formally coincides
with the function (uη, T η, zη). If we assume for the moment that the latter
function approximates the solution (uη, Tη, zη) of the initial-boundary value
problem (1) – (5) for small values of η, then the function (ûη, T̂η, ẑη) will
approximate the solution (ũη, T̃η, z̃η) of the initial-boundary value problem

−divxT̃η(x, y, t) = b(x, t), (32)

T̃η(x, y, t) = D
[

x
η + y

](
ε(∇xũη(x, y, t))−Bz̃η(x, y, t)

)
, (33)

∂

∂t
z̃η(x, y, t) ∈ g

(
x
η + y,BT T̃η(x, y, t)− L

[
x
η + y

]
z̃η(x, y, t)

)
, (34)

z̃η(x, y, 0) = z̃(0)
η (x, y) := z(0)

(
x, x

η + y
)
, (35)

ũη(x, y, t) = 0, (x, y, t) ∈ ∂Ω× Y × [0, Te], (36)

where the equations (32) – (34) must hold for (x, y, t) ∈ Ω×Y × [0, Te]. For
fixed y these equations define an initial-boundary value problem of the same
type as the problem (1) – (5). y is therefore a parameter, which shifts the
phase of the periodic microstructure and of the quasi-periodic inital data. In
[24, 25] the following theorem is proved, which shows that (ûη(t), T̂η(t), ẑη(t))
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in fact approximates the function (ũη(t), T̃η(t), z̃η(t)) in L2(Ω×Y ) for almost
all t:

Theorem 2.1. Let Te > 0, let L, g and b satisfy the same assumptions as
in Theorem 1.1, let z(0) ∈ D(Ĝ) and suppose that z̃(0)

η ∈ D(G̃η) satisfies the
second inequality of (27).

Then there is a unique solution (u0, u1, T∞, T0, z0) of the homogenized
initial-boundary value problem (14) – (20), which satisfies (21) – (23). More-
over, for every η > 0 there is a unique solution (ũη, T̃η, z̃η) of the initial-
boundary value problem (32) – (36) with

(ũη, T̃η) ∈ W 1,1
(
0, Te;L2(Y,H1(Ω,R3))× L2(Ω× Y,S3)

)
, (37)

z0 ∈ W 1,∞(
0, Te;L2(Ω× Y,RN )

)
. (38)

Also, the estimate

sup
η>0

‖z̃η‖W 1,∞(0,Te;L2(Ω×Y )) <∞ (39)

holds. Furthermore, for all 0 ≤ t ≤ Te these solutions satisfy the limit
relations

lim
η→0

(
‖u0(t)− ũη(t)‖Ω×Y + ‖T̂η(t)− T̃η(t)‖Ω×Y + ‖ẑη(t)− z̃η(t)‖Ω×Y

)
= 0

(40)
and, with û1η(x, y, t) = u1(x, x

η + y, t),

lim
η→0

‖(∇xu0(t) +∇yû1η(t))−∇xũη(t)‖Ω×Y = 0. (41)

Remark 2.2. Condition (27) in the last theorem is more general than the one
imposed in [25]. It is immediately seen from the proof that the convergence
result from [25] holds also under this more general assumption.

3 Asymptotics of the solution

3.1 Proof of Theorem 1.2

Here we show that Theorem 1.2 is an immediate consequence of Theorem 2.1
and of Proposition 3.2 stated below. The proof of Proposition 3.2 is post-
poned to Section 3.2. We start with a definition:

Definition 3.1. Let η > 0 and let v be a function defined on Ω×Y × [0, Te].
We define another function Tη(v) on Ω× Y × [0, Te] by

Tη(v)(x, y, t) =

{
v(x− ηy, y, t), x ∈ Ωηy := {x ∈ Ω | x− ηy ∈ Ω},
0, x ∈ Ω \ Ωηy .
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Tη is a linear mapping acting on functions. Since Ωηy = Ω ∩ (Ω + ηy),
we clearly have for v(t) ∈ L2(Ω× Y,X) with X = Rn or X = S3 that

‖Tη(v)(t)‖2
Ω×Y =

∫
Y

∫
Ω∩(Ω+ηy)

|vη(x− ηy, y, t)|2 dxdy

=
∫

Y

∫
(Ω−ηy)∩Ω

|vη(ξ, y, t)|2 dξdy ≤ ‖vη(t)‖2
Ω×Y . (42)

Proposition 3.2. Let all requirements of Theorem 1.2 be fulfilled. Then
the solutions (uη, Tη, zη) of (1) – (5) and (ũη, T̃η, z̃η) of (32) – (36) satisfy

lim
η→0

(
‖uη(t)− Tη(ũη)(t)‖Ω×Y + ‖Tη(t)− Tη(T̃η)(t)‖Ω×Y

+ ‖zη(t)− Tη(z̃η)(t)‖Ω×Y

)
= 0 (43)

for all 0 ≤ t ≤ Te.

Here we consider uη, Tη and zη, which are defined on Ω × [0, Te], to be
functions on the domain Ω × Y × [0, Te], which are constant with respect
to y ∈ Y . We shall often use this convention in the following without
mentioning.

Corollary 3.3. Let all requirements of Theorem 1.2 be fulfilled. With the
solution (u0, u1, T0, z0) of the homogenized initial-boundary value problem
(14) – (20) let (T̂η, ẑη) be defined by (30), (31), and let (uη, Tη, zη) be the
solution of (1) – (5). Then the limit relation

lim
η→0

(
‖uη(t)− Tη(u0)(t)‖Ω×Y + ‖Tη(t)− Tη(T̂η)(t)‖Ω×Y

+ ‖zη(t)− Tη(ẑη)(t)‖Ω×Y

)
= 0 (44)

holds for all 0 ≤ t ≤ Te.

Proof of Corollary 3.3. From (42) and the limit relations (40), (43) we
obtain

‖zη(t)− Tη(ẑη)(t)‖Ω×Y

≤ ‖zη(t)− Tη(z̃η)(t)‖Ω×Y + ‖Tη(ẑη − z̃η)(t)‖Ω×Y

≤ ‖zη(t)− Tη(z̃η)(t)‖Ω×Y + ‖ẑη(t)− z̃η(t)‖Ω×Y → 0,

for η → 0. In the same way we conclude that ‖uη(t) − Tη(u0)(t)‖Ω×Y +
‖Tη(t)− Tη(T̂η)(t)‖Ω×Y converges to zero.

Remark 3.4. To compare the type of convergence given in (44) with strong
two-scale convergence note that after making the transformation x 7→ x+ηy
in (44) this equation becomes

lim
η→0

∫
Ω×Y

|uη(x+ ηy, t)− u0(x, t)|2 + |Tη(x+ ηy, t)− T0(x, x
η + y, t)|2

+ |zη(x+ ηy, t)− z0(x, x
η + y, t)|2d(x, y) = 0, (45)

11



where we extended the functions uη, Tη and zη by 0 outside of Ω. Assume
now for the moment that Y = [0, 1]3. For every ξ ∈ R3 we denote by
bξc ∈ R3 the point obtained from ξ by replacing all components by their
integer parts. Strong two-scale convergence as defined in [14] would then be

lim
η→0

∫
Ω×Y

|uη(ηbx
η c+ ηy, t)− u0(x, t)|2 + |Tη(ηbx

η c+ ηy, t)− T0(x, y, t)|2

+|zη(ηbx
η c+ ηy, t)− z0(x, y, t)|2d(x, y) = 0. (46)

Formally this equation is obtained from (45) by inserting ηbx
η c + ηy every-

where for x+ ηy, noting that the periodicity implies

T0(x, bx
η c+ y, t) = T0(x, y, t), z0(x, bx

η c+ y, t) = z0(x, y, t).

The difference of (45) and (46) seems to be mainly of technical nature.
Proof of Theorem 1.2. Note first that by Definition 3.1 and by definition

of T̂η, ẑη in (30), (31) we have that

T ∗η (t) =
∫

Y
Tη(T̂η)(t)dy , z∗η(t) =

∫
Y
Tη(ẑη)(t)dy .

Noting that |Y | = 1, by assumption, we conclude from the second of these
equations, from Hölder’s inequality and from (44) that

‖zη(t)− z∗η(t)‖2
Ω =

∫
Ω

∣∣∣zη(x, t)− ∫
Y
Tη(ẑη)(x, y, t)dy

∣∣∣2dx
≤

∫
Ω

∣∣∣ ∫
Y
zη(x, y, t)− Tη(ẑη)(x, y, t)dy

∣∣∣2dx
≤

∫
Ω

∫
Y
|zη(x, y, t)− Tη(ẑη)(x, y, t)|2dydx

= ‖zη(t)− Tη(ẑη)(t)‖2
Ω×Y → 0, for η → 0. (47)

We see in the same way that

‖uη(t)− u∗η(t)‖Ω + ‖Tη(t)− T ∗η (t)‖Ω → 0, for η → 0, (48)

where u∗η(x, t) =
∫
Yη,x

u0(x− ηy, t)dy =
∫
Y Tη(u0)(x, y, t)dy. With this defi-

nition we obtain by a similar computation as in (47) that

‖u0(t)− u∗η(t)‖2
Ω ≤

∫
Ω×Y

|u0(x, t)− Tη(u0)(x, y, t)|2d(x, y)

=
∫

Y

∫
Ωηy

|u0(x, t)− u0(x− ηy, t)|2dxdy (49)

+
∫

Y

∫
Ω\(Ω+ηy)

|u0(x, t)|2dxdy → 0, for η → 0.

To get the convergence to zero we use standard arguments from integration
theory. Relation (28) results by combination of (47) – (49). The proof of
Theorem 1.2 is complete.

12



3.2 Proof of Proposition 3.2

In this section we prove Proposition 3.2. To simplify the notation we set

(u[η], T[η], z[η]) = (Tη(ũη), Tη(T̃η), Tη(z̃η)), (50)

where (ũη, T̃η, z̃η) is the solution of the problem (32) – (36). From (37), (38)
and from (42) we infer that (T[η], z[η]) ∈ L∞(0, Te;L2(Ω×Y )). We also have

u[η] ∈ L∞(0, Te;L2(Y,H1(Ω))). (51)

To see this note that the function x 7→ ũη(x− ηy, y, t) is defined on Ω + ηy
and vanishes on the boundary of this set, by the boundary condition (36).
We extend this function from Ω + ηy to R3 by zero. The extended function
is defined on R3 × Y × [0, Te], belongs to L∞(0, Te;L2(Y,H1(R3))), by (37),
and coincides with u[η] on the set Ω× Y × [0, Te], from which we get (51).

Step one: initial-boundary value problem for (u[η], T[η], z[η]). Using
the equations (32) – (36), (51), the definition of Tη and the property 0 ∈
g(y, 0), we get that (u[η], T[η], z[η]) satisfies the equations

−divxT[η](x, y, t) = b[η](x, y, t), (52)

T[η](x, y, t) = D
[

x
η

](
ε(∇xu[η](x, y, t))−Bz[η](x, y, t)

)
, (53)

∂

∂t
z[η](x, y, t) ∈ g

(
x
η , B

TT[η](x, y, t)− L[x
η ]z[η](x, y, t)

)
, (54)

for (x, y, t) ∈ Ω× Y × [0, Te), and the initial and boundary conditions

z[η](x, y, 0) = z
(0)
[η] (x, y), x ∈ Ω× Y, (55)

u[η](x, y, t) = γ[η](x, y, t), (x, y, t) ∈ ∂Ω× Y × [0, Te], (56)

where b[η] ∈ L2(Y × [0, Te],H−1(Ω,R3)) is defined by

[b[η](y, t), φ]Ω = (T[η](y, t),∇φ)Ω, φ ∈ H1
0 (Ω,R3), (57)

and where for (y, t) ∈ Y × [0, Te]

γ[η](x, y, t) = u[η](x, y, t), x ∈ ∂Ω, (58)

z
(0)
[η] (x, y) =

{
z
(0)
0 (x− ηy, x

η ), x ∈ Ωηy ,

0, x ∈ Ω \ Ωηy .
(59)

We consider the function u[η] on the right hand side of (58) to be known,
since it is obtained from ũη by shifting of the x–variable by ηy.
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Step two: reduction to evolution equations. We next reduce the
problems (52) – (56) and (1) – (5) to evolution equations in a Hilbert space.
To this end we follow the procedure proposed in [3, 25]. Here we only sketch
this procedure and refer to these papers for details.

Consider the linear boundary value problem

−divxT (x, y) = b̂(x, y), (60)
T (x, y) = D

[
x
η

]
(ε(∇xu(x, y))− ε̂p(x, y)), (61)

u(x, y) = γ̂(x, y), (x, y) ∈ ∂Ω× Y, (62)

where the first two equations must hold for (x, y) ∈ Ω × Y . We can also
consider (60) – (62) to be a family of linear boundary value problems with
respect to x depending on the parameter y. Noting that the boundary
value problem with respect to x is elliptic and corresponds to the bound-
ary value problem of linear elasticity theory, we obtain from the classi-
cal theory that for every ε̂p ∈ L2(Ω × Y,S3), b̂ ∈ L2(Y,H−1(Ω,R3)) and
γ̂ ∈ L2(Y,H1(Ω,R3)) there is a unique solution (u, T ) ∈ L2(Ω× Y,R3 ×S3)
with ε(∇xu) ∈ L2(Ω× Y,S3).

Definition 3.5. Let the linear operator Pη : L2(Ω×Y,S3) 7→ L2(Ω×Y,S3)
be defined by

Pη ε̂p = ε(∇xu),

where (u, T ) is the solution of (60) – (62) to b̂ = γ̂ = 0 and to ε̂p ∈ L2(Ω×
Y,S3). Furthermore, we define the operator Qη = I − Pη. Here I is the
identity operator.

The classical theory to (60) – (62) also implies that the operators Pη and
Qη are uniformly bounded with respect to η.

By assumption the elasticity tensor D[xη ] : S3 → S3 is positive definite
and bounded, uniformly with respect to x ∈ Ω. Therefore we can associate to
the elasticity tensor a linear, bounded, selfadjoint, positive definite mapping
Dη : L2(Ω× Y,S3) → L2(Ω× Y,S3) given by

(Dηξ)(x, y) = D[x
η ]ξ(x, y), ξ ∈ L2(Ω× Y,S3), (x, y) ∈ Ω× Y.

With this mapping we can define a new scalar product on L2(Ω× Y,S3) by

(ξ, ζ)Dη ,Ω×Y = (Dηξ, ζ)Ω×Y .

The norm associated to the new scalar product is equivalent to the standard
norm ‖ · ‖Ω×Y . By [4, Lemma 6] we have

Lemma 3.6. (i) The operators Pη and Qη are projectors on L2(Ω×Y,S3),
which are orthogonal with respect to the scalar product (ξ, ζ)Dη ,Ω×Y .
(ii) The operator BTDηQηB : L2(Ω× Y,RN ) → L2(Ω× Y,RN ) is selfajoint
and non-negative with respect to the scalar product (ξ, ζ)Ω×Y .
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Since by assumption L[y] is positive definite, uniformly with respect to
y, we can define a linear, bounded, selfadjoint, positive definite mapping
Lη : L2(Ω× Y,RN ) → L2(Ω× Y,RN by

(Lηξ)(x, y) = L[x
η ]ξ(x, y), ξ ∈ L2(Ω× Y,S3), (x, y) ∈ Ω× Y.

The second statement of Lemma 3.6 implies that

Mη = Lη +BTDηQηB : L2(Ω× Y,RN ) → L2(Ω× Y,RN )

is a selfadjoint, positive definite mapping. Therefore another scalar product
on L2(Ω× Y,RN ) is given by

〈ξ, ζ〉Ω×Y,η = (Mηξ, ζ)Ω×Y .

The associated norm ‖ξ‖Ω×Y,η = 〈ξ, ξ〉1/2
Ω×Y,η satisfies

c1‖ξ‖Ω×Y ≤ ‖ξ‖Ω×Y,η ≤ c2‖ξ‖Ω×Y , (63)

where c1, c2 are positive constants, which can be chosen independent of η.

Now we are able to reduce the initial-boundary value problem (52) –
(56) to an evolution equation in a Hilbert space. If z[η](t) is known, then
the component (u[η](t), T[η](t)) of the solution of this initial-boundary value
problem is obtained as unique solution of the boundary value problem (52),
(53), (56). Due to the linearity we have

(u[η](t), T[η](t)) = (ṽ[η](t), σ̃[η](t)) + (v[η](t), σ[η](t)),

where (v[η](t), σ[η](t)) is the solution of (60) – (62) to the data b̂ = b[η](t),
γ̂ = γ[η](t), ε̂p = 0, and (ṽ[η](t), σ̃[η](t)) solves the problem (60) – (62) to
the data b̂ = γ̂ = 0, ε̂p = Bz[η](t). By definition of Qη we have that
σ̃[η](t) = −DηQηBz[η](t). Insertion of this equation into (54) yields

∂

∂t
z[η](t) ∈ Gη

(
−Mηz[η](t) +BTσ[η](t)

)
, (64)

where the mapping Gη : L2(Ω× Y,RN ) 7→ 2L2(Ω×Y,RN ) is defined by

Gη(ξ) =
{
ζ ∈ L2(Ω× Y,RN )

∣∣ ζ(x, y) ∈ g(x
η , ξ(x, y)) a.e.

}
.

Since σ[η] is determined by the boundary value problem (60) – (62) to the
data b[η], γ[η], it can be considered to be known. Therefore (64) is a non-
autonomous evolution equation for z[η]. We combine (64) with the initial
condition (55) and obtain the initial value problem

∂

∂t
z[η](t) +A[η](t)z[η](t) 3 0, (65)

z[η](0) = z
(0)
[η] , (66)
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where for brevity we introduced the notation

A[η](t)w = −Gη

(
−Mηw +BTσ[η](t)

)
.

The operator A[η](t) : D(A[η](t)) ⊆ L2(Ω × Y,RN ) → L2(Ω × Y,RN ) is
maximal monotone with respect to the scalar product 〈ξ, ζ〉Ω×Y,η, cf. [25,
Lemma 2.3]. In exactly the same way we reduce the problem (1) – (5) to
the initial value problem

∂

∂t
zη(t) +Aη(t)zη(t) 3 0, (67)

zη(0) = z(0)
η , (68)

with the operator

Aη(t)w = −Gη

(
−Mηw +BTση(t)

)
,

where the function (vη(t), ση(t)) is the solution of (60) – (62) to the data
b̂ = b(t), γ̂ = 0, ε̂p = 0. The operator Aη(t) is also maximal monotone on
L2(Ω× Y,RN ) with respect to the scalar product 〈ξ, ζ〉Ω×Y,η . Note that Aη

is obtained from A[η] by replacing σ[η] in the argument of Gη by ση .

Step three: estimation of z[η] − zη. To estimate the difference z[η](t)−
zη(t) we use a perturbation estimate for solutions of evolution equations
given in [25]. This estimate, which is stated in the following lemma, goes
back to the theory of the operator distance introduced in [31].

Lemma 3.7. Let z[η], zη ∈W 1,∞(0, Te;L2(Ω× Y,RN )) be solutions of (65),
(66) and (67), (68), respectively. Then there is a constant C independent of
η, such that for all 0 ≤ t ≤ Te

‖z[η](t)− zη(t)‖2
Ω×Y ≤ C

( ∫ t

0
‖σ[η](s)− ση(s)‖Ω×Y ds+ ‖z(0)

[η] − z(0)
η ‖2

Ω×Y

)
.

(69)

For completeness we give the proof of Lemma 3.7. Since z[η](t) and zη(t)
satisfy (65) and (67), respectively, and since Gη is monotone, we obtain

‖z[η](t)− zη(t)‖2
Ω×Y,η − ‖z[η](0)− zη(0)‖2

Ω×Y,η

= 2
∫ t

0
〈∂sz[η](s)− ∂szη(s), z[η](s)− zη(s)〉Ω×Y,η ds

= −2
∫ t

0

(
∂sz[η](s)− ∂szη(s), (−Mηz[η](s) +BTσ[η](s))

− (−Mηzη(s) +BTση(s))
)

Ω×Y

+ 2
(
∂sz[η](s)− ∂szη(s), BTσ[η](s)−BTση(s)

)
Ω×Y

ds (70)

≤ 2‖BT ‖
∫ t

0

(
‖∂sz[η](s)‖Ω×Y + ‖∂szη(s)‖Ω×Y

)
‖σ[η](s)− ση(s)‖Ω×Y ds.
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From the assumption (27) and from the inequalities (10) and (39) we con-
clude that there are constants C1, C2 such that for all η > 0

‖zη‖W 1,∞(0,Te;L2(Ω×Y )) ≤ C1 , (71)
‖z̃η‖W 1,∞(0,Te;L2(Ω×Y )) ≤ C2 . (72)

Since z[η] = Tη z̃η, we infer from (72) and from (42) that

‖z[η]‖W 1,∞(0,Te;L2(Ω×Y )) ≤ C2 . (73)

To obtain (69) we combine (70), (71), (73) and note (63). The proof of
Lemma 3.7 is complete.

Now we are in a position to verify the limit relation (43) for the z–
component. This relation follows from Lemma 3.7 if we show that ‖σ[η](s)−
ση(s)‖Ω×Y → 0 for η → 0 and

lim
η→0

‖z(0)
[η] − z(0)

η ‖2
Ω×Y = 0. (74)

To verify the last relation note that z(0) ∈ L2(Ω, C(Y,RN )), by assumption,
which implies

‖z(0)
[η] − z(0)

η ‖2
Ω×Y

=
∫
Y

( ∫
Ωηy

|z(0)(x− ηy, x
η )− z(0)(x, x

η )|2dx+
∫

Ω′ηy

|z(0)(x, x
η )|2dx

)
dy

≤
∫
Y

∫
Ωηy

‖z(0)(x− ηy, ·)− z(0)(x, ·)‖2
C(Y )dxdy +

∫
Ω′ηy

‖z(0)(x, ·)‖2
C(Y )dx,

with Ω′ηy = Ω \ (Ω + ηy). Here we use that by Pettis’ theorem for z(0) ∈
L2(Ω, C(Y,RN )) the function x → ‖z(0)(x, ·)‖C(Y ) is measurable, see [7,
Lemma 1.3]. The right hand side of this inequality converges to zero for
η → 0, whence (74) follows.

In order to estimate ‖σ[η](t)− ση(t)‖Ω×Y we first observe that the func-
tions (vη(t), ση(t)) and (v[η](t), σ[η](t)) both are solutions of the linear bound-
ary value problem (60) – (62), yet to different data. The difference (vη(t)−
v[η](t), ση(t)− σ[η](t)) thus satisfies this boundary value problem to the dif-
ference of these data, that is to (b̂, γ̂, ε̂p) = (b(t) − b[η](t),−γ[η](t), 0). The
standard theory of this elliptic boundary value problem thus yields

‖σ[η](t)− ση(t)‖Ω×Y ≤ C
(
‖b(t)− b[η](t)‖L2(Y,H−1(Ω))

+ ‖γ[η](t)‖L2(Y,H1/2(∂Ω))

)
, (75)

with a constant C independent of η and t.
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In order to prove that

lim
η→0

‖γ[η](t)‖L2(Y,H1/2(∂Ω)) = 0, (76)

remember first that in the proof of (51) we extended the function u[η] to
a function in the space L∞(0, Te;L2(Y,H1(R3))). We denote the extended
function again by u[η]. By (58) we have γ[η](x, y, t) = u[η](x, y, t). The trace
theorem thus yields that

‖γ[η](·, y, t)‖H1/2(∂Ω) ≤ C‖u[η](·, y, t)‖H1(R3\Ω),

with a constant C, which only depends on the domain R3 \ Ω, and which
is therefore independent of η. However, u[η](x, y, t) is different from zero
outside of Ω only on the set (Ω + ηy) \ Ω. This implies that

‖γ[η](·, y, t)‖H1/2(∂Ω) ≤ C‖u[η](·, y, t)‖H1((Ω+ηy)\Ω)

= C‖ũη(·, y, t)‖H1(Ω\(Ω−ηy)) ≤ C‖ũη(·, y, t)‖H1(Γη) ,

with the set
Γη = {x ∈ Ω | dist(x, ∂Ω) < ηd},

where d = supy∈Y |y|. Thus,

‖γ[η](t)‖L2(Y,H1/2(∂Ω)) ≤ C1

(
‖ũη(t)‖Γη×Y + ‖∇xũη(t)‖Γη×Y

)
. (77)

The relation (40) yields that

lim
η→0

‖ũη(t)‖Γη×Y ≤ lim
η→0

(
‖ũη(t)− u0(t)‖Ω×Y + ‖u0(t)‖Γη×Y

)
= 0, (78)

since meas (Γη × Y ) → 0 as η → 0 and u0 is independent of η. Similarly,
(41) implies that

lim
η→0

‖∇xũη(t)‖Γη×Y ≤ lim
η→0

‖∇xũη(t)− (∇xu0(t) +∇yû1η(t))‖Ω×Y

+ lim
η→0

‖∇xu0(t)‖Γη×Y + lim
η→0

‖∇yû1η(t)‖Γη×Y

= 0, (79)

since meas (Γη×Y ) → 0, and since the periodicity of u1(x, y, t) with respect
to y yields

lim
η→0

‖∇yû1η(t)‖2
Γη×Y = lim

η→0

∫
Γη

∫
Y

∣∣∇yu1

(
x,
x

η
+ y, t

)∣∣2dydx
= lim

η→0

∫
Γη

∫
Y
|∇yu1(x, y, t)|2dydx = 0. (80)

Combination of (77) – (79) yields (76).
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In order to prove that

lim
η→0

‖b(t)− b[η](t)‖L2(Y,H−1(Ω)) = 0, (81)

we consider a family of cut-off functions θη ∈ C∞0 (Ω) such that 0 ≤ θη ≤ 1
and

θη(x) =

{
0, x ∈ Γη,

1, x ∈ Ω \ Γ2η,
max |∇xθη| ≤

C

η
.

Remembering the definition of b[η] in (57), we have for φ ∈ L2(Y,H1
0 (Ω,R3))

that

[b(t)− b[η](t), φ]Ω×Y

= (b(t), φ)Ω×Y + (T[η](t),∇xφ)Ω×Y

= (b(t), φ)Ω×Y +
(
(1− θη)T[η](t) + θηT[η](t),∇xφ

)
Ω×Y

= (b(t)− θη divxT[η](t), φ)Ω×Y +
(
(1− θη)T[η](t),∇xφ

)
Ω×Y

−
(
T[η](t), φ∇xθη

)
Ω×Y

=: I1 + I2 + I3 . (82)

In this computation we also use that for y ∈ Y and x ∈ (Ω\Γη) ⊆ (Ω∩ (Ω+
ηy)) we have T[η](x, y, t) = T̃η(x− ηy, y, t). For such x and y we thus obtain

−divxT[η](x, y, t) = −divxT̃η(x− ηy, y, t) = b(x− ηy, t).

Hence, with the notation bη(x, y, t) = b(x− ηy, t) for (x, y) ∈ (Ω \ Γη)× Y ,

|I1| ≤ |(b(t)− θηbη(t), φ)Ω×Y |
≤ ‖b(t)− θηbη(t)‖Ω×Y ‖φ‖Ω×Y ≤ Cb(η)‖φ‖Ω×Y , (83)

where

Cb(η)2 =
∫

Y

∫
Ω
|b(x, t)− θη(x)b(x− ηy, t)|2dxdy → 0, for η → 0 . (84)

I2 satisfies the inequality

|I2| ≤ ‖(1− θη)T[η](t)‖Ω×Y ‖φ‖L2(Y,H1(Ω)) ≤ CT (η) ‖φ‖L2(Y,H1(Ω)) , (85)

with

C2
T (η) =

∫
Y

∫
Γ2η

|T[η](x, y, t)|2dxdy

=
∫

Y

∫
Γ2η∩(Ω+ηy)

|T̃η(x− ηy, y, t)|2dxdy

=
∫

Y

∫
(Γ2η−ηy)∩Ω

|T̃η(x, y, t)|2dxdy

≤
∫

Y

∫
Γ3η

|T̃η(x, y, t)|2dxdy

≤
(
‖T̃η(t)− T̂η(t)‖Ω×Y + ‖T̂η(t)‖Γ3η×Y

)2 → 0, (86)
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for η → 0. The last convergence relation follows from (40) and from

lim
η→0

‖T̂η(t)‖Γ3η×Y = lim
η→0

‖T0(t)‖Γ3η×Y = 0,

which is obtained by the same computation as in (80).
It remains to estimate I3. Since ∇θη(x) differs from zero only for x ∈

Γ2η \ Γη, we have

|I3| = | (T[η](t), φ∇xθη)Γ2η×Y |

≤ (max |∇xθη|) ‖T[η](t)‖Γ2η×Y ‖φ‖Γ2η×Y

≤ C

η
CT (η)C1η‖φ‖L2(Y,H1(Ω)) = C2CT (η) ‖φ‖L2(Y,H1(Ω)) , (87)

with CT (η) from (86). In the second last step we used Poincare’s inequality;
since the width of the domain Γ2η is 2dη, this inequality yields

‖φ(·, y)‖Γ2η ≤ C1η‖∇xφ(·, y)‖Γ2η ,

whence ‖φ‖Γ2η×Y ≤ C1η‖φ‖L2(Y,H1(Ω)). If we combine now the estimates
and limit relations (82) – (87), we obtain (81).

Insertion of (76) and (81) into (75) yields that for all 0 ≤ s ≤ Te

lim
η→0

‖σ[η](s)− ση(s)‖Ω×Y = 0. (88)

To conclude that the integral in (69) tends to zero, we finally show that the
integrand is uniformly bounded with respect to s and η. By construction,
(vη(t), ση(t)) is the solution of the boundary value problem (60) – (62) to
the data b̂ = b(t), γ̂ = 0, ε̂p = 0. The elliptic regularity theory for this
boundary value problem thus yields that there is a constant, independent of
η, such that

‖ση‖L∞(0,Te;L2(Ω×Y )) ≤ C‖b‖L∞(0,Te;L2(Ω)) , (89)

where the right hand side is finite since by assumption

b ∈W 2,1(0, Te;L2(Ω)) ⊆ L∞(0, Te;L2(Ω)).

The definition of b[η] in (57) and the inequality (42) together imply

‖b[η](t)‖L2(Y,H−1(Ω)) ≤ C1‖T[η](t)‖Ω×Y ≤ C1‖T̃η(t)‖Ω×Y ,

with a constant C1 independent of t and η. Since (v[η](t), σ[η](t)) solves the
boundary value problem (60) – (62) to the data b̂ = b[η](t), γ̂ = γ[η](t),
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ε̂p = 0, we obtain from elliptic regularity theory, from the last estimate and
from (77) with constants C2, . . . , C4 independent of t and η that

‖σ[η](t)‖Ω×Y ≤ C2

(
‖b[η](t)‖L2(Y,H−1(Ω)) + ‖γ[η](t)‖L2(Y,H1/2(∂Ω))

)
≤ C3

(
‖T̃η(t)‖Ω×Y + ‖ũη(t)‖L2(Y,H1(Ω))

)
≤ C4 , (90)

where the last inequality is obtained by again using the regularity theory
to the boundary value problem (32), (33), (36) to estimate the solution
(ũη, T̃η), noting the estimate (39). From (90), (89) and (88) we see by the
Lebesque convergence theorem that the integral in (69) tends to zero for
η → 0. Together with (74) we thus infer from (69) that for 0 ≤ t ≤ Te

lim
η→0

‖z[η](t)− zη(t)‖Ω×Y = 0. (91)

Last step: estimation of uη − u[η] and Tη − T[η]. Since the functions
(uη(t), Tη(t)) and (u[η](t), T[η](t)) are solutions of the boundary value prob-
lems (1), (2), (5) and (52), (53), (56), respectively, and since the data of
these boundary value problems satisfy (76), (81) and (91), we obtain by the
standard theory of these linear elliptic boundary value problems that

lim
η→0

(‖u[η](t)− uη(t)‖Ω×Y + ‖T[η](t)− Tη(t)‖Ω×Y )

≤ C lim
η→0

(
‖γ[η](t)‖L2(Y,H1/2(∂Ω)) + ‖b(t)− b[η](t)‖L2(Y,H−1(Ω))

+ ‖z[η](t)− zη(t)‖Ω×Y

)
= 0 .

This completes the proof of Proposition 3.2.
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