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Abstract

In the recent work of H.-D. Alber and K. Chelminski [3] the ex-
istence of the solutions to a model of inelastic (viscoplastic) behavior
of materials at small strain is derived. In this work we show that the
conditions of the existence theorem in [3] can be relaxed and the same
result can be proved under less restrictive assumptions. The relaxation
of the conditions of the existence theorem in [3] allows to give the an-
swer on the question raised by Alber and Chelminski in [3] concerning
the solvability of the model of nonlinear kinematic hardening without
assuming a higher exponent in the constitutive law for one of the in-
ternal variables than the exponent in the constitutive law for the other
one.
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1 Setting of the problem

The authors of [3] studied the existence of the solutions to the initial bound-
ary value problem modeled the behaviour of viscoplastic materials at small
strains. The problem is formulated as follows:
Let Ω ⊂ R3 denote the set of material points of the body. S3 denotes
the space of symmetric 3 × 3-matrices. One searches the displacement
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u(x, t) ∈ R3, the Cauchy stress tensor T (x, t) ∈ S3 and the vector of in-
ternal variables z(x, t) = (εp(x, t), z̃(x, t)) ∈ S3 × RN−6 of the following
model equations

−divxT (x, t) = b(x, t), (1)
T (x, t) = D(

ε(∇xu(x, t))− εp(x, t)
)
, (2)

∂tεp(x, t) = g1

(
T (x, t),−z̃(x, t)

)
, (3)

∂tz̃(x, t) = g2

(
T (x, t),−z̃(x, t)

)
, (4)

with the initial condition

εp(x, 0) = 0, z̃(x, 0) = z̃(0)(x) (5)

and with the Dirichlet boundary condition

u(x, t) = γ(x, t), (x, t) ∈ ∂Ω× [0,∞). (6)

The term ε(∇xu(x, t)) in these equations denotes the symmetric 3×3–matrix

ε(∇xu(x, t)) =
1
2

(
∇xu(x, t) + (∇xu(x, t))T

)
∈ S3,

the strain tensor. We denote by D : S3 → S3 a linear, symmetric, positive
definite mapping, the elasticity tensor. The functions b : Ω × [0,∞) → R3

is the volume force and γ : ∂Ω× [0,∞) → IR3 is the boundary data.
The functions g1 : S3 × RN−6 → S3 and g1 : S3 × RN−6 → RN−6 are given
such that

(T, y) → (g1(T, y), g2(T, y)) : RN → RN

is a monotone mapping.

Functional spaces. Let Ω be an open bounded set with C1-boundary ∂Ω.
Te denotes a positive number (time of existence) and for 0 < t ≤ Te

Ωt = Ω× (0, t), Q = Ω× (0, Te).

We denote the Banach space of Lebesgue integrable with the power p to-
gether with their weak derivatives up to the order m functions by Wm,p(Ω,RN ).
The norm in Wm,p(Ω,RN ) is ‖·‖m,p,Ω. We choose the numbers p, q satisfying

1 < p, q < ∞ and 1/p + 1/q = 1.

For such p and q one can define the bilinear form on the product space
Lp(Ω,RN )×Lq(Ω,RN ) by

(ξ, ζ)Ω =
∫

Ω
ξ(x) · ζ(x)dx.
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We define another bilinear form on Lp(Ω,RN )×Lq(Ω,RN ) by

[ξ, ζ]Ω = (Dξ, ζ)Ω.

Spaces of Bochner-measurable functions. If (X, H,X∗) is an evolution triple
(known as “Gelfand triple”) and 1 < p, q < ∞, 1/p + 1/q = 1, then

Wp,q(0, Te; X) :=
{
u ∈ Lp(0, Te; X) | u̇ ∈ Lq(0, Te; X∗)

}

are separable reflexive Banach spaces when furnished with the norm

‖u‖2
Wp,q

= ‖u‖2
Lp(0,Te;X) + ‖u̇‖2

Lq(0,Te;X∗),

where the time derivative of u(·) is understood in the sense of vector-valued
distributions. The space Lp(0, Te; X) in the definition of Wp,q(0, Te; X) de-
notes the Banach space of all Bochner-measurable functions u : [0, Te) → X
such that t 7→ ‖u(t)‖p

X is integrable on [0, Te). We recall that the embedding
Wp,q(0, Te; X) ⊂ C([0, Te],H) is continuous ([10, p. 4], for instance).

Finally, we frequently use the spaces W k,p(0, Te; X), which consist of Bochner
measurable functions having a p-integrable weak derivatives up to order k.

Main result. Following [3] we define the operatorH : F (Q,S3) → F (Q,S3),
where F (Q,S3) denotes the set of all function from Q to S3, by the following
rule:
Let (h, z̃) be a sulution of the problem

h(x, t) = g1

(
T (x, t),−z̃(x, t)

)
, (7)

∂tz̃(x, t) = g2

(
T (x, t),−z̃(x, t)

)
, (8)

z̃(x, 0) = z̃(0)(x), (9)

for given z̃(0) and T and (x, t) ∈ Q. Then the operator H on F (Q,S3) is
given by

H(T ) = h.

In terms of the operator H the problem (1) - (6) can be written as follows:

−divxT (x, t) = b(x, t), (10)
T (x, t) = D(

ε(∇xu(x, t))− εp(x, t)
)
, (11)

∂tεp(x, t) = H(T ), (12)
εp(x, 0) = 0, (13)
u(x, t) = γ(x, t), (x, t) ∈ ∂Ω× [0,∞). (14)

Now we state the existence result for the problem (10) - (14).

Theorem 1.1. Let 2 ≤ p < ∞ and 1 < q ≤ 2 be numbers with 1/p+1/q = 1.
Assume that H : Lp(Q,S3) → Lq(Q,S3) satisfies
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(a) H is demicontinuous and monotone;

(b) H enjoys the growth condition

‖H−1(v)‖p,Q ≤ C(1 + ‖v‖q/p
p,Q);

(c) the inverse H−1 is strongly coercive, i.e.

〈v∗, v〉
‖v‖ → +∞ as ‖v‖ → ∞, v∗ ∈ H−1(v).

Suppose that b ∈ Lp(0, Te; W−1,p(Ω,R3)) and γ ∈ Lp(0, Te;W 1,p(Ω,R3)).
Then there exists a solution

u ∈ Lq(0, Te;W 1,q(Ω,R3)), T ∈ Lp(0, Te; Lp(Ω,S3)),

εp ∈ W 1,q(0, Te, L
q(Ω,S3))

of the problem (10) - (14).

We note that monotonicity of H is implied by monotonicity of the map-
ping (T, y) → (g1(T, y), g2(T, y)) (see Lemma 4.1, [3]).
In [3] Theorem 1.1 is proved under the additional assumption that the op-
erator H is coercive. This assumption caused difficulties in the derivation of
the existence of the solutions to the model of nonlinear kinematic harden-
ing. Since to show that the operator H defined by the constitutive relations
(specific choice of the functions g1 and g2) used for modeling of nonlinear
kinematic hardening is coercive the authors of [3] had to impose the restric-
tion on the exponents in the constitutive relations for the different internal
variables (see Section 5). Our approach is actually based on the construc-
tions from [3] and repeats main steps of that work in the reverse direction
with only one difference that we use the general duality principle for the
sum of two operators from [4] to derive the existence of the solutions to the
problem (10) - (14). The application of this duality principle gives us the
possibility to avoid the coercivity assumption on H.

2 The Helmholtz projection on tensor fields

The material for this section we borrow from [3]. Therefore we state only
main results presented there without going into details and for the further
reading we refer the reader to that work.
In this work we need projection operators to spaces of tensor fields, which are
symmetric gradients and to spaces of tensor fields with vanishing divergence.
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We recall ([15]) that a Dirichlet boundary value problem from the linear
elasticity theory formed by equations

−divxT (x) = b̂(x), x ∈ Ω, (15)
T (x) = D(ε(∇xu(x))− ε̂p(x)), x ∈ Ω, (16)
u(x) = γ̂(x), x ∈ ∂Ω, (17)

to given b̂ ∈ W−1,p(Ω,R3), ε̂p ∈ Lp(Ω,S3) and γ̂ ∈ W 1,p(Ω,R3) has a
unique weak solution (u, T ) ∈ W 1,p(Ω,R3) × Lp(Ω,S3) with 1 < p < ∞
and 1/p + 1/q = 1. For b̂ = γ̂ = 0 the solution of (15) - (17) satisfies the
inequality

‖ε(∇xu)‖p,Ω ≤ C‖ε̂p‖p,Ω

with some positive constant C.

Definition 2.1. For every ε̂p ∈ Lp(Ω,S3) we define a linear operator Pp :
Lp(Ω,S3) → Lp(Ω,S3) by

Ppε̂p = ε(∇xu),

where u ∈ W 1,p
0 (Ω, IR3) is a unique weak solution of (15) - (17) to the given

function ε̂p and b̂ = γ̂ = 0.

A subset Gp of Lp(Ω,S3) is defined by

Gp = {ε(∇xu) | u ∈ W 1,p
0 (Ω, IR3)}.

The following lemma gives the main properties of Pp.

Lemma 2.1. For every 1 < p < ∞ the operator Pp is a bounded projector
onto the subset Gp of Lp(Ω,S3). The projector (Pp)∗ adjoint with respect to
the bilinear form [ξ, ζ]Ω on Lp(Ω,S3)× Lq(Ω,S3) satisfy

(Pp)∗ = Pq, where
1
p

+
1
q

= 1.

This implies ker(Pp) = Hp
sol with

Hp
sol = {ξ ∈ Lp(Ω,S3) | [ξ, ζ]Ω = 0 for all ζ ∈ Gq}.

Since D is symmetric, the relation [ξ, ζ]Ω = 0 holds for all ζ ∈ Gq if and
only if

(Dξ,∇xv)Ω = (Dξ, ε(∇xv))Ω = [ξ, ε(∇xv)]Ω = 0

for all v ∈ W 1,q
0 (Ω, IR3). Consequently

Hp
sol = {ξ ∈ Lp(Ω,S3) | div(Dξ) = 0}.

Therefore the projection operator

Qp = (I − Pp) : Lp(Ω,S3) → Lp(Ω,S3)

with Qp(Lp(Ω,S3)) = Hp
sol is a generalization of the classical Helmholtz

projection.
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Corollary 2.0.1. Let (DPp)T be the operator adjoint to DPp : Lp(Ω, IRN) →
Lp(Ω, IRN) with respect to the bilinear form (ξ, ζ)Ω on the product space
Lp(Ω, IRN)×Lq(Ω, IRN). Then

(DPp)T = DPq : Lq(Ω, IRN) → Lq(Ω, IRN).

Moreover, the operator DQ2 is non-negative and self-adjoint.

The last result in this corollary is proved in [2].

3 Maximal monotone operators

In this section we present our necessary tools for the construction of the
existence theory for the problem (10) - (14), which will be used in the next
section.
Let V be a reflexive Banach space with the norm ‖ · ‖, V ∗ be its dual space
with the norm ‖ · ‖∗. The brackets 〈·, ·〉 denotes the dual pairing between V
and V ∗. Under V we shall always mean a reflexive Banach space throughout
this section.
For a multivalued mapping A : V → 2V ∗ the sets

D(A) = {v ∈ V | Av 6= ∅}

and
GrA = {[v, v∗] ∈ V × V ∗ | v ∈ D(A), v∗ ∈ Av}

are called the effective domain and the graph of A, respectively.

Definition 3.1. The mapping A : V → 2V ∗ is called monotone if the in-
equality

〈v∗ − u∗, v − u〉 ≥ 0

holds for all [u, u∗], [v, v∗] ∈ GrA.
The mapping A : V → 2V ∗ is called maximal monotone iff the inequality

〈v∗ − u∗, v − u〉 ≥ 0 (∀) [u, u∗] ∈ GrA

implies [v, v∗] ∈ GrA.
The mapping A : V → 2V ∗ is called strongly coercive iff either D(A) is
bounded or D(A) is unbounded and the condition

〈v∗, v − w〉
‖v‖ → +∞ as ‖v‖ → ∞, [v, v∗] ∈ GrA,

is satisfied for each w ∈ D(A).
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It is well known ([11, p. 105]) that if A is a maximal monotone operator,
then, for any v ∈ D(A), the image Av is closed convex subset of V ∗ and the
graph GrA is demiclosed1.

Remark 3.1. We recall that the subdifferential of a lower semi-continuous
and convex function is maximal monotone ( Theorem 2.25 [12, p. 27]).

The next theorem gives a criteria for a linear monotone operator to be
maximal.

Theorem 3.1. The following assertions are equivalent:

(a) A : V → V ∗ is maximal monotone;

(b) A is a densely defined closed operator such that its adjoint A∗ is mono-
tone;

(c) A is a densely defined closed operator such that A∗ is maximal mono-
tone.

Proof. See Theorem 1 in [6].

We also need the following result on the maximality of the sum of two
maximal monotone operators.

Theorem 3.2. Let V be a reflexive Banach space, and let A and B be
maximal monotone. Suppose that the condition

intD(A) ∩D(B) 6= ∅

is fulfilled. The the sum A + B is a maximal monotone operator.

Proof of Theorem 3.2. See Theorem III.3.6 in [11] or Theorem II.1.7
in [5].

For deeper results on the maximality of the sum of two maximal monotone
operators we refer the reader to [14], see also [7].
The next surjectivity result on maximal monotone operators is the key tool
in the proof of our main existence result.

Theorem 3.3. If V is a (strictly convex) reflexive Banach space and A :
V → 2V ∗ is maximal monotone and coercive, then A is surjective.

Proof of Theorem 3.3. See Theorem III.2.10 in [11].

For further reading on maximal monotone operators we refer the reader to
[5, 8, 9, 11, 12] or [16].

1A set A ∈ V × V ∗ is demiclosed if vn converges strongly to v0 in V and v∗n converges
weakly to v∗0 in V ∗ (or vn converges weakly to v0 in V and v∗n converges strongly to v∗0 in
V ∗) and [vn, v∗n] ∈ GrA, then [v, v∗] ∈ GrA
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4 Proof of the existence result

This section is devoted to the study of the existence of the solutions for the
initial boundary value problem (10) - (14).

Proof of Theorem 1.1. Before we start the proof of Theorem 1.1, let us
introduce the following notations

X = Lp(Ω,S3), X = Lp(0, Te; W ), Mp = DQp : X → X.

We note that the operator M2 is non-negative by Corollary 2.0.1. Next, we
define a linear maximal monotone operator L : X → X ∗ by

Lz = ∂tz with D(L) = {z ∈ Wp,q(0, Te;X ) | z(0) = 0}.

The idea of the proof of Theorem 1.1 is to show the solvability of the abstract
equation (18) in a reflexive Banach space X ∗ applying Theorem 3.3 and then,
based on this result, to construct solutions for the initial boundary value
problem (1) - (5). We note that the idea of the proof is strongly connected
to the general duality principle for the sum of two operators obtained in [4].

Let us consider now the following inclusion in X ∗

L−1Mqw +H−1w 3 σ, w ∈ X ∗, (18)

where (v(t), σ(t)) is a solution of the Dirichlet boundary value problem (15)
- (17) to the data b̂ = b(t), γ̂ = γ(t), ε̂p = 0. The next lemma proves that
the operator L−1Mq in (18) is maximal monotone.

Lemma 4.1. The operator L−1Mq : D(L−1Mq) ⊂ X ∗ → X is linear maxi-
mal monotone.

Proof of Lemma 4.1. According to Theorem 3.1, the operator L−1Mq

with D(L−1Mq) = {v ∈ X ∗ | Mqv ∈ D(L−1)} is maximal monotone, if it is
a densely defined closed monotone operator such that its adjoint (L−1Mq)∗

is monotone.

We note that the operator L−1Mq is the closure in X ∗ × X of the operator
L0 given by

L0v := L−1Mqv, v ∈ D(L0) = {v ∈ X ∗ | L−1v ∈ X}.

The last operator is monotone, what can be shown using the generalized
integration by parts formula and the following identity

L−1Mqv = MpL−1v, v ∈ D(L0). (19)

The identity (19) is proved in the end of this work. Therefore, the operator
L−1Mq is monotone as the closure in X ∗ × X of the monotone operator
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L0. Since the operator (L−1Mq) is the closure of L0, thier adjoint operators
coincide. The adjoint of L0 is easy to compute and is equal to (L−1)∗Mq,
by a well-known result from the functional analysis. Therefore, by arguing
in the same way as above, we obtain that the adjoint (L−1Mq)∗ (we recall
that (L−1Mq)∗ = (L−1)∗Mq) is monotone. Thus, since L−1Mq verifies all
assumptions of Theorem 3.1, it is a maximal monotone operator. The proof
of Lemma 4.1 is complete.

In order to apply Theorem 3.3 we note the operator H−1 is maximal mono-
tone as the inverse of a maximal monotone operator. By the assumption (b)
of Theorem 1.1 the operators L−1Mq and H−1 satisfy the condition

D(L−1Mq) ∩ intD(H−1) 6= ∅.
Therefore, by Theorem 3.2, the sum L−1Mq + H−1 is maximal monotone.
Moreover, the coecivity of H−1 implies that〈L−1Mqv + v∗, v

〉

‖v‖ ≥ 〈v∗, v〉
‖v‖ → +∞ as ‖v‖ → ∞,

for v∗ ∈ H−1(v). Thus, in virtue of Theorem 3.3, the maximal monotone
and coercive operator L−1Mq + H−1 is surjective. Therefore, the equition
(18) has a solution. Denoting by τ = L−1Mqw we obtain from (18) that τ
solves the problem

Lτ = MqG(−τ + σ), τ ∈ Lp(ΩTe ,RN ). (20)

Using the last result, the construction of the solution of the problem (10) -
(14) can be now performed as in [3]:

Let τ ∈ X be the unique solution of (20). With the function τ let εp ∈
W 1,q(0, Te, L

q(Ω,S3)) be the solution of

∂tεp(t) = H(− τ(t) + σ(t)
)
, for a.e. t ∈ (0, Te) (21)

εp(0) = 0. (22)

Moreover, by the linear elliptic theory, there is a unique solution (ũ(t), T̃ (t))
of problem (15) - (17) to the data b̂ = γ̂ = 0, ε̂p = εp(t). The solution of
(10) - (14) is now given as follows

(u, T, εp) = (ũ + v, T̃ + σ, εp) ∈
Lq(0, Te; W 1,q(Ω,R3))× Lp(ΩTeS3)×W 1,q(0, Te, L

q(Ω,S3)).

To see that (u, T, εp) satisfies (12), we apply the operator Qq to (21) - (22)
from the left and obtain that

∂t(Qqεp) = QqH
(− τ(t) + σ(t)

)
= ∂tτ, Qqεp(0) = τ(0) = 0.

The last line implies that Qqεp = τ . Thus

T = T̃ + σ = −Qqεp + σ = −τ + σ ∈ Lp(ΩTeS3).

The last observation completes the proof of Theorem 1.1.
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5 Nonlinear kinematic hardening

Now we apply Theorem 1.1 to the model of of nonlinear hardening. The
model of nonlinear kinematic hardening consists of the equations ([1, 3])

−divxT = b, (23)
T = D(

ε(∇xu)− εp

)
, (24)

∂tεp = c1|T − k(εp − εn)|r T − k(εp − εn)
|T − k(εp − εn)| , (25)

∂tεn = c2|k(εp − εn)|m k(εp − εn)
|k(εp − εn)| , (26)

εn(0) = ε0
n, εp(0) = 0, (27)

u = γ, x ∈ ∂Ω. (28)

The equations (23) - (27) can be written in the general form (1) - (6) with
g = (g1, g2) : S3 × S3 → S3 × S3 defined by

g1(T, z̃) = c1|T + k1/2z̃|r T + k1/2z̃

|T + k1/2z̃| , (29)

g2(T, z̃) = c1k
1/2|T + k1/2z̃|r T + k1/2z̃

|T + k1/2z̃| + c2k
1/2|k1/2z̃|m z̃

|z̃| , (30)

where z̃ = k1/2(εp − εn).
Monotonicity of the mapping (T, z̃) → (g1(T, z̃), g2(T, z̃)) follows from the
fact that g = (g1, g2) is the gradient of the convex function

φ(T, z̃) =
c1

r + 1
|T + k1/2z̃|r+1 +

c2

m + 1
|k1/2z̃|m+1.

Now we can prove the main result of this section.

Theorem 5.1. Let c1, c2, k be positive constants and let r and γ satisfy
r,m > 1. Let us define p = 1 + r, q = 1 + 1/r, p̂ = max {p, 1 + m} and
q̂ = min {q, 1 + 1/m}.
Suppose that b ∈ Lp(0, Te; W−1,p(Ω,R3)), γ ∈ Lp(0, Te,W

1,p(Ω,R3)) and
ε
(0)
n ∈ L2(Ω,S3). Then there exists a solution

u ∈ Lq(0, Te;W 1,q(Ω,R3)), T ∈ Lp(0, Te; Lp(Ω,S3)),

εp ∈ W 1,q(0, Te, L
q(Ω,S3)), εn ∈ W 1,q̂(0, Te, L

q̂(Ω,S3))

of the problem (23) - (27). Moreover, εp − εn ∈ Wp̂,q̂(0, Te, L
p̂(Ω,S3)).

Remark 5.1. In [3] Theorem 5.1 is proved provided m and r satisfy the
inequality m > r. This condition the authors of [3] use to show that the
operator H defined by the equations (25) - (27) according to the rule given
above is coercive.
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Remark 5.2. Using the theory of Orlic spaces and the monotone operator
method similar results are obtained in [13] with the same restrictions on m
and r as in Theorem 5.1.

Proof of Theorem 5.1. The maximal monotonicity of H is shown
in [3]. Therefore, we refer the reader for the prove of the condition (a) of
Theorem 1.1 to that work and show here only that the operator H defined
by (25) - (27) satisfies the assumptions (b) and (c) of Theorem 1.1. First,
we prove that H−1 is coercive.
We note first that

‖H(T )‖q
q,Q =

∫

Q

(
c1|T − k(εp − εn)|r)1+1/r

d(x, t) = cq
1‖T − k(εp − εn)‖p

p,Q.

Equations (25) - (26) yield

H(T )·T = ∂t
k

2
|εp−εn|2+(T−k(εp−εn))·c1|T−k(εp−εn)|r T − k(εp − εn)

|T − k(εp − εn)|

+k(εp − εn) · c2|k(εp − εn)|m k(εp − εn)
|k(εp − εn)| = ∂t

k

2
|εp − εn|2

+c1|T − k(εp − εn)|p + c2|k(εp − εn)|m+1.

Then the integration and previous computations show that

(H(T ), T )Q =
k

2
‖(εp− εn)(Te)‖2

Ω−
k

2
‖(εp− εn)(0)‖2

Ω + c1‖T −k(εp− εn)‖p
p,Q

+c2‖k(εp − εn)‖m+1
m+1,Q ≥ c1‖T − k(εp − εn)‖p

p,Q −
k

2
‖(εp − εn)(0)‖2

Ω

= c1−q
1 ‖H(T )‖q

q,Q −
k

2
‖(εp − εn)(0)‖2

Ω.

The last inequality implies the coercivity of the inverse H−1. Therefore, it
remains to verify that H−1 has a polynomical growth.

For the function y = εp − εn we have

∂t
k

2
|y(x, t)|2 = ky · c1|T − ky|r T − ky

|T − ky| − ky · c2|ky|m ky

|ky|

≤ c1

( 1
pαp

|ky|p +
αq

q
|T − ky|qr

)
− c2|ky|m+1.

Here we used Young’s inequality with α > 0. Therefore,

k

2
‖y(Te)‖2

2,Ω+c2‖ky‖m+1
m+1,ΩTe

≤ c1

( 1
pαp

‖ky‖p
p,ΩTe

+
αq

q
‖T−ky‖p

p,ΩTe

)
+

k

2
‖y(0)‖2

2,Ω
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and consequently

c2‖ky‖m+1
m+1,ΩTe

≤ c1

( 1
pαp

‖ky‖p
p,ΩTe

+
αq

q
‖T − ky‖p

p,ΩTe

)
+

k

2
‖y(0)‖2

2,Ω. (31)

On the other hand we have

‖T‖p
p,ΩTe

≤ ‖ky‖p
p,ΩTe

+ ‖T − ky‖p
p,ΩTe

. (32)

Multiplying (32) by 1
pαp and then subtracting (31) we get the estimate

1
pαp

‖T‖p
p,ΩTe

− c2

c1
‖ky‖m+1

m+1,ΩTe
≤

( 1
pαp

− αq

q

)
‖T − ky‖p

p,ΩTe
− k

2c1
‖y(0)‖2

2,Ω

≤
( 1

pαp
− αq

q

)
‖T − ky‖p

p,ΩTe
. (33)

For sufficiently small α the constant
(

1
pαp − αq

q

)
is positive. More precisely,

α ∈ (0, α0) with α0 := (q/p)1/(p+q). Later we give more precisely the up-
per bound for α. Now we derive the estimate for ‖ky‖m+1,ΩTe

in terms of
‖T‖p,ΩTe

:

∂t
k

2
|y(x, t)|2 = −(T − ky) · c1|T − ky|r T − ky

|T − ky| − ky · c2|ky|m ky

|ky|

+T · c1|T − ky|r T − ky

|T − ky| ≤ −c1|T − ky|p − c2|ky|m+1 + c1|T ||T − ky|r

≤ −c1|T − ky|p − c2|ky|m+1 + c1

( 1
pδp

|T |p +
δq

q
|T − ky|qr

)
.

Here we used Young’s inequality with δ. Choosing δ = (q/2)1/q we arrive at
the estimate

k

2
‖y(Te)‖2

2,Ω+
c1

2
‖T−ky‖p

p,ΩTe
+c2‖ky‖m+1

m+1,ΩTe
≤ k

2
‖y(0)‖2

2,Ω+c1
1

pδp
‖T‖p

p,ΩTe

and consequently

c2‖ky‖m+1
m+1,ΩTe

≤ k

2
‖y(0)‖2

2,Ω + c1
1

pδp
‖T‖p

p,ΩTe
. (34)

Thus from (33) and (34) we obtain

( 1
pαp

− 1
pδp

)
‖T‖p

p,ΩTe
− k

2c1
‖y(0)‖2

2,Ω ≤
( 1

pαp
− αq

q

)
‖T − ky‖p

p,ΩTe
. (35)

Choosing α = min {δ/2, α0/2} in (35) we obtain

C1‖T‖p
p,ΩTe

− C2 ≤ C3‖T − ky‖p
p,ΩTe

(36)
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with some positive constants C1, C2 and C3. Recalling that ‖H(T )‖q
q,ΩTe

=
cq
1‖T − ky‖p

p,ΩTe
, the inequality (36) implies

C1‖T‖p
p,ΩTe

− C2 ≤ C3c
q
1‖H(T )‖q

q,ΩTe
,

which yields the polynomial growth for the inverse of H(T ), i.e.

‖H−1(v)‖p,ΩTe
≤ C4(1 + ‖v‖q/p

q,ΩTe
) (37)

with some positive constant C4. Thus H−1 is coercive and bounded. Hence,
Theorem 1.1 yields the existence of u, T and εp.
To show the existence of εn we proceed as in [3]: The definition of H (see
Section 1) implies that the function y = k−1/2z̃ = εp−εn solves the problem

yt = c1|T − ky|r T − ky

|T − ky| − c2|ky|m y

|y| , (38)

y(0) = y(0), (39)

where y(0) = ε
(0)
p − ε

(0)
n . The solvability of (38) - (39) can be obtained,

for example, in the same manner as for the equation (18). Namely, the
direct computations together with Young’s inequality with ε imply that the
operator B : Lp̂(Q,S3) → Lq̂(Q,S3) defined by

B(T, y) = −c1|T − ky|r T − ky

|T − ky| + c2|ky|m y

|y|
enjoys the inequality

(B(T, y), y)Q ≥ C1‖y‖m+1
m+1 + C2‖T − ky‖p

p − C3‖T‖p
p

or
(B(T, y), y)Q ≥ C1‖y‖m+1

m+1 + C2k‖y‖p
p − (1 + C3)‖T‖p

p,

where C1, C2 and C3 are some constants. The last inequality yields the
coercivity of B in Lp̂(Q,S3). Repeating the arguments of the proof of the
existence for (18) we get the solvability of (38) - (39). Uniqueness of the
solution is obvious. From the existence of εp and y follows the existence
and the required regularity of εn. The last computations also show that the
operator H defined by the equations (25) - (27) is well-defined.
The proof of Theorem 5.1 is complete.
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[3] H.-D. Alber and K. CheÃlmiński. Quasistatic problems in viscoplasticity theory. II.
Models with nonlinear hardening. Math. Models Meth. Appl. Sci., 17(2):189–213,
2007.

[4] H. Attouch and M. Thera. A general duality principle for the sum of two operators.
J. Convex Anal., 3(1):1–24, 1996.

[5] V. Barbu. Nonlinear Semigroups and Differential Equations in Banach Spaces. Edi-
tura Academiei, Bucharest, 1976.
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