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1 Introduction: Plasticity and Cosserat models

The regularity question for small strain models of elasto-plastic behavior has recently
found renewed interest [17, 18, 16, 7, 8, 4, 5], in part motivated by the need for qualitative
statements on the rate of convergence of finite element methods in elasto-plasticity. There
it is necessary to know precisely the regularity of the function to be approximated, see
[15]. This article addresses the regularity question for time-continuous formulations of
geometrically linear elasto-plasticity. As a representative model problem we consider
generalized continua of Cosserat-micropolar type. The basic difference of a Cosserat
model as compared with classical continuum models is the appearance of a nonsymmetric
stress tensor which is augmented by a generalized balance of angular momentum equation
allowing to model interaction of particles not only by surface forces (classical Cauchy
continuum) but also through surface couples (Cosserat continuum). For an introduction
to the theory of Cosserat and micropolar models we refer to [19, 15, 10, 11, 14]. The first
author has also proposed an elasto-plastic Cosserat model [11] in a finite strain framework.
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A geometrical linearization of this model has been investigated in [12, 14, 13, 3] and is
shown to be well-posed also in the rate-independent limit for both quasistatic and dynamic
processes.

Time-incremental formulations for this and other models have already been shown
to posses smooth updates, see [16] and the references therein. However, the employed
method did not allow to pass to the continuous time limit and it was not clear what kind
of regularity to expect for the time-continuous setting. An early statement can be found in
[6]. A first major breakthrough regarding global spatial regularity was obtained recently
by Alber and Nesenenko [1] where L∞(0, T ;H1/3−δ(Ω))-regularity is shown for stresses and
plastic strains for classical rate-dependent viscoplasticity and rate-independent models
with linear kinematic hardening. This is followed by Knees [9] where viscosity is replaced
by the linear hardening assumption together with the subdifferential structure of the flow
rule. She obtains the improved L∞(0, T ;H1/2−δ(Ω))-regularity.

Local regularity results for elasto-plasticity with linear hardening and variants thereof
have been derived by several authors [2, 4, 5, 21, 20]. Typically, one gets L∞(0, T ;H1

loc(Ω)).
This is also what we will obtain for the Cosserat model, however, without any harden-
ing and for both the quasistatic and dynamic case and without using a subdifferential
structure.

Our focus on Cosserat models is justified by the fact that the Cosserat type models
are today increasingly advocated as a means to regularize the pathological mesh size
dependence of localization computations where shear failure mechanisms play a dominant
role.

This contribution is now organized as follows: first, we recall the time-continuous geo-
metrically linear elasto-plastic Cosserat model as introduced in [11] and investigated math-
ematically in [12, 14, 13] together with the major statements obtained for this model. Then
we prove that for initial plastic strain ε0

p ∈ H1
loc(Ω) and body force f ∈ L2(0, T ;H1

loc(Ω))
the solution obtained in the existence theorem is more regular. In sections 4 and 5 we re-
peat the regularity procedure defined in section 3 in the dynamical setting of the problem
and for general flow rules of monotone type.

2 The infinitesimal Cosserat elasto-plastic model

We consider the infinitesimal Cosserat elasto-plastic model as introduced in [12, 14, 13].
The goal is to prove a higher regularity of the stress tensor and the strain tensors assuming
that the external force and the initial plastic strain are more regular. In the quasistatic
setting of the problem the system of equations is in the form

Div σ = −f ,
σ = 2µ (ε− εp) + 2µc (skew(∇u)− A) + λ tr [ε] · 11 ,

−lc ∆ axl(A) = µc axl(skew(∇u)− A) , (2.1)

ε̇p ∈ f(TE) , TE = 2µ (ε− εp) ,
u|∂Ω

= ud , A|∂Ω
= Ad , εp(0) = ε0

p .
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Here u is the displacement vector, σ is the Cauchy stress tensor, which for µc > 0 is not
necessary symmetric, ε = sym∇u is the infinitesimal strain tensor, εp is the symmetric
plastic strain tensor, A ∈ so(3) is the infinitesimal skew-symmetric microrotation matrix,
axl : so(3) 7→ R3 is the canonical identification of the Lie-algebra of skew-symmetric real
3 × 3-matrices so(3) and vectors in R3, TE is the reduced Eshelby tensor, f is the den-

sity of the external force acting on the material, f : D(f) ⊂ Sym(3) → sl(3) ∩ Sym(3)
is supposed to be a maximal monotone mapping with trace free, symmetric image and
{0} ∈ f(0), ε0

p is the initial plastic strain and ud, Ad are given boundary data. In this
article, in extension of [12], we assume that the coefficients µ, λ, µc, lc depend also on
x ∈ Ω. We require that these functions are positive and continuous on Ω and locally
Lipschitz. The parameter lc abbreviates lc = µL2

c with an internal length scale Lc. In all
of the following we assume Ω ⊂ R3 is a bounded, open domain with smooth boundary ∂Ω.

In [12] the following existence and uniqueness theorem for system (2.1) with constant
coefficients µ, λ, µc, lc ≥ c > 0 is proved:1

Theorem 2.1 (Existence for the infinitesimal elasto-plastic Cosserat model)
Suppose that the given data f, ud, Ad satisfy: for all times T > 0

f ∈ C1([0, T ], L2(Ω,R3)) , f̈ ∈ L2((0, T )× Ω,R3) ,

ud ∈ C2([0, T ], H
1
2 (∂Ω,R3)) , v̈d ∈ L2((0, T )× ∂Ω,R3) ,

Ad ∈ C2([0, T ], H
3
2 (∂Ω, so(3))) , B̈d ∈ L2((0, T )× ∂Ω, so(3)) ,

where vd = u̇d and Bd = Ȧd. Moreover, assume that the initial data ε0
p ∈ L2(Ω, Sym(3))

is chosen such that the initial value of the reduced Eshelby tensor TE(0) = 2µ (ε(0)− ε0
p)

defined by the initial data ε0
p belongs to the domain of the maximal monotone operator

f. Then system (2.1) possesses a global in time, unique solution (u, ε, εp, A) with the
regularity: for all times T > 0

u ∈ H1,∞((0, T ), H1(Ω,R3)) , ε, εp ∈ H1,∞((0, T ), L2(Ω, Sym(3))) ,

A ∈ H1,∞((0, T ), H2(Ω, so(3))) .

In Theorem 2.1 Sym(3) denotes the set 3× 3 real-valued symmetric matrices. If the coef-
ficients of the model are locally Lipschitz and positive Theorem 2.1 can be proved using
the same technics as in [12]. �

3 H1
loc-regularity in the quasistatic case

The goal of this section is to prove that for ε0
p ∈ H1

loc(Ω) and f ∈ L2(0, T ;H1
loc(Ω))

with f(0) ∈ H1
loc(Ω) the solution of system (2.1) is more regular. We are using the

difference quotient method. Let V, U ⊂ Ω be open sets such that V b U b Ω. Let
η ∈ C∞0 (Ω) be a cutoff function such that η(x) ∈ [0, 1] for each x ∈ Ω, η ≡ 1 on V and
supp η ⊂ U . Let us observe that using the standard regularity theory of linear elliptic

1Note that in contrast to linear elasticity, λ > 0 is mandatory, but is verified for metals.
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systems if ε0
p ∈ H1

loc(Ω) and f(0) ∈ H1
loc(Ω) then the initial stress, the initial strain tensors

and the initial microrotation are more regular as obtained in [12]. Namely, these initial
functions are solutions to the system

Div σ(0) = −f ,
σ(0) = 2µ (ε(0)− εp(0)) + 2µc (skew(∇u(0))− A(0)) + λ tr [ε(0)] · 11 ,
−lc∆ axl(A(0)) = −µc axl(A(0)) + µc axl(skew(∇u(0))) ,

u(0)|∂Ω
= ud , A(0)|∂Ω

= Ad ,

(3.1)

where ε(0) = sym∇u(0). Hence, we have that σ(0), ε(0) ∈ H1
loc(Ω; Sym(3)). Moreover,

if additionally ∇lc and ∇µc are locally Lipschitz then the initial microrotation A(0) ∈
H3
loc(Ω; so(3)). Let us recall the energy function associated with system (2.1)

E(u, ε, εp, A)(t) =

∫
Ω

(
µ‖ε− εp‖2 +

λ

2
tr [ε]2 + µc‖ skew(∇u)− A‖2 + 2lc ‖∇ axl(A)‖2

)
dx .

The following coerciveness property of the energy function is proved in [12]

Theorem 3.1 (Coerciveness of the energy)
The energy function is elastically coercive with respect to ∇u. This means that

∃ CE > 0 , ∀ u ∈ H1
0 (Ω) , ∀ A ∈ H1

0 (Ω) , ∀ εp ∈ L2(Ω)

E(u, ε, εp, A) ≥ CE(‖u‖2
H1(Ω) + ‖A‖2

H1(Ω)) .

Moreover,
∃ CE > 0, ∀ ud, Ad ∈ H

1
2 (∂Ω), ∃ Cd > 0, ∀ εp ∈ L2(Ω), ∀ u ∈ H1(Ω), ∀ A ∈ H1(Ω) with

u|∂Ω
= ud and A|∂Ω

= Ad it holds that

E(u, ε, εp, A) + Cd ≥ CE(‖u‖2
H1(Ω) + ‖A‖2

H1(Ω)) .

This theorem was proved for constant coefficients only. Nevertheless, a simple modification
of the proof from [12] allows to conclude the same result for locally Lipschitz and positive
coefficients. �
Let us denote by EV (u, ε, εp, A) the energy calculated on the set V only. Let us also choose
a basis ek, k = 1, . . . , n of Rn. For h ∈ R and a fixed k ∈ {1, . . . , n} we denote by Dh

k the
difference quotient in the direction ek with the step h. This means that for a function w
defined on Ω

Dh
kw(x) :=

w(x+ hek)− w(x)

h
defined for x+ hek ∈ Ω .

Theorem 3.2 (Main estimate)
Let us assume that ε0

p ∈ H1
loc(Ω;P(Sym(3))), f ∈ L2(0, T ;H1

loc(Ω; R3)) with f(0) ∈
H1
loc(Ω; R3) and µ, λ, µc, lc are positive and continuous on Ω and locally Lipschitz. Then
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for all k ∈ {1, . . . , n}, t ∈ [0, T ] and sufficiently small h ∈ R the solution of system (2.1)
satisfies

EV (ηDh
ku, ηD

h
kε, ηD

h
kεp, ηD

h
kA)(t) ≤ C

(
EU∗(uxk

, εxk
, εp,xk

, Axk
)(0)

+‖f‖2
L2(H1(Ω) +

∫ t

0

(EU∗(u, ε, εp, A) + EU∗(u̇, ε̇, ε̇p, Ȧ)) dτ

+‖u̇‖2
L2(H1(Ω) + ‖Ȧ‖2

L2(H1(Ω) + 1
)
, (3.2)

where U∗ = U+B(0, r) with r = 1/2 dist (U, ∂Ω) and the constant C > 0 does not depend
on h.

Proof. Let us fix k and assume that h 6= 0 and |h| ≤ 1/2 dist (U, ∂Ω). For x ∈ U the
difference operator Dh

k is well defined. We are going to estimate the time derivative of
E(ηDh

k , ηD
h
kε, ηD

h
kεp, ηD

h
kA)(t). Note that for x 6∈ U the products ηDh

k(·) are equal to
zero.

Ė(ηDh
ku, ηD

h
kε, ηD

h
kεp, ηD

h
kA)(t) =

∫
Ω

η2
(

2µ〈Dh
kε−Dh

kεp, D
h
k ε̇−Dh

k ε̇〉+ λtr
[
Dh
kε
]
tr
[
Dh
k ε̇
]

+2µc〈skew(∇Dh
ku)−Dh

kA, skew(∇Dh
k u̇)−Dh

kȦ〉+ 4lc〈∇ axl(Dh
kA),∇ axl(Dh

kȦ)〉
)

dx =∫
Ω

η2
(

2µ〈Dh
kε−Dh

kεp + λtr
[
Dh
kε
]

+ 2µc(skew(∇Dh
ku)−Dh

kA),∇Dh
k u̇〉
)

dx

−
∫

Ω

η2〈2µ(Dh
kε−Dh

kεp), D
h
k ε̇p〉dx− 2

∫
Ω

µcη
2〈skew(∇Dh

ku)−Dh
kA,D

h
kȦ〉 dx

+4

∫
Ω

η2lc〈∇ axl(Dh
kA),∇ axl(Dh

kȦ)〉 dx . (3.3)

In the first integral on the right hand side of (3.3) we are using the balance of forces.
Unfortunately, the term 2µDh

kε − Dh
kεp + λtr

[
Dh
kε
]

+ 2µc(skew(∇Dh
ku) − Dh

kA) is not
equal to the difference quotient Dh

kσ because the coefficients are not constant. By the
property of the operator Dh

k similar to the product rule we have

Dh
kσ = 2µDh

kε−Dh
kεp + λtr

[
Dh
kε
]

+ 2µc(skew(∇Dh
ku)−Dh

kA)

+2Dh
kµ(εh − εhp) +Dh

kλtr
[
εh
]

+ 2Dh
kµc(skew(∇uh)− Ah) , (3.4)

where the superscript (·)h denotes the shifted function (·)(x + hek). In a similar
manner we transform the integrand from the second integral on the right hand side of
(3.3)

Dh
kTE = Dh

k(2µ(ε− εp)) = 2µDh
k(ε− εp) + 2Dh

kµ(εh − εhp) . (3.5)

In the fourth integral on the right hand side of (3.3) we integrate by parts to obtain∫
Ω

η2lc〈∇ axl(Dh
kA),∇ axl(Dh

kȦ)〉 dx = −
∫

Ω

η2lc〈∆ axl(Dh
kA), axl(Dh

kȦ〉 dx

−
∫

Ω

η〈∇ axl(Dh
kA), axl(Dh

kȦ⊗ (2lc∇η + η∇lc))〉 dx . (3.6)
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Inserting (3.4)-(3.6) into (3.3) and using the balance of forces we obtain

Ė(ηDh
ku, ηD

h
kε, ηD

h
kεp, ηD

h
kA)(t) = −

∫
Ω

η2〈Dh
kf,D

h
k u̇〉 dx−

∫
Ω

2η〈Dh
kσ,D

h
k u̇⊗∇η〉 dx

−
∫

Ω

η2〈2Dh
kµ(εh − εhp) +Dh

kλtr
[
εh
]

+ 2Dh
kµc(skew(∇uh)− Ah),∇Dh

k u̇〉 dx

−
∫

Ω

η2 〈Dh
kTE, D

h
k ε̇p〉︸ ︷︷ ︸

flow-rule≥0

dx−
∫

Ω

η2〈2Dh
kµ(εh − εhp), Dh

k ε̇p〉 dx

−4

∫
Ω

µcη
2〈axl(skew(∇Dh

ku)−Dh
kA), axl(Dh

kȦ)〉 dx

−4

∫
Ω

η2lc〈∆ axl(Dh
kA), axl(Dh

kȦ〉 dx

+4

∫
Ω

η〈∇ axl(Dh
kA), axl(Dh

kȦ⊗ (2lc∇η + η∇lc))〉 dx . (3.7)

Next, using the balance of angular momentum equation for the microrotation and the
monotonicity of the flow rule after integration over the time interval (0, t) we arrive at
the inequality

E(ηDh
ku, ηD

h
kε, ηD

h
kεp, ηD

h
kA)(t) ≤ E(ηDh

ku, ηD
h
kε, ηD

h
kεp, ηD

h
kA)(0)

−
∫ t

0

∫
Ω

η2〈Dh
kf,D

h
k u̇〉 dx dτ −

∫ t

0

∫
Ω

2η〈Dh
kσ,D

h
k u̇⊗∇η〉 dx dτ

−
∫ t

0

∫
Ω

η2〈2Dh
kµ(εh − εhp) +Dh

kλtr
[
εh
]

+ 2Dh
kµc(skew(∇uh)− Ah),∇Dh

k u̇〉 dx dτ

−
∫ t

0

∫
Ω

η2〈2Dh
kµ(εh − εhp), Dh

k ε̇p〉 dx dτ

+4

∫ t

0

∫
Ω

η〈∇ axl(Dh
kA), axl(Dh

kȦ⊗ (2lc∇η + η∇lc))〉 dx dτ . (3.8)

By the regularity of ε0
p and f(0) we conclude that E(ηDh

ku, ηD
h
kε, ηD

h
kεp, ηD

h
kA)(0) is

bounded by C EU∗(uxk
, εxk

, εp,xk
, Axk

)(0), where C > 0 does not depend on h. Next, we
are going to estimate all integrals in the right hand side on (3.8). To estimate the first
integral we use the regularity of f and L2(H1) regularity of the velocity u̇. Hence, we
obtain

−
∫ t

0

∫
Ω

η2〈Dh
kf,D

h
k u̇〉 dx dτ ≤ C‖fxk

‖L2((0,t)×Ω)‖u̇xk
‖L2((0,t)×Ω) . (3.9)

The second integral can be estimated as follows

−
∫ t

0

∫
Ω

2η〈Dh
kσ,D

h
k u̇⊗∇η〉 dx dτ ≤ C(‖ηDh

kσ‖2
L2((0,t)×U) + ‖u̇xk

‖2
L2((0,t)×Ω)) ≤

C(

∫ t

0

E(ηDh
ku, ηD

h
kε, ηD

h
kεp, ηD

h
kA) dτ +

∫ t

0

EU∗(u, ε, εp, A) dτ + ‖u̇xk
‖2
L2((0,t)×Ω)) , (3.10)
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where C > 0 does not depend on h. In the last estimate we have used (3.4) and the
regularity of µ, λ, µc and lc. To estimate the third integral we integrate by parts with
respect to τ and get

−
∫ t

0

∫
Ω

η2〈2Dh
kµ(εh − εhp) +Dh

kλtr
[
εh
]

+ 2Dh
kµc(skew(∇uh)− Ah),∇Dh

k u̇〉 dx dτ

=

∫ t

0

∫
Ω

η2〈2Dh
kµ(ε̇h − ε̇hp) +Dh

kλtr
[
ε̇h
]

+ 2Dh
kµc(skew(∇u̇h)− Ȧh),∇Dh

ku〉 dx dτ

−
∫

Ω

η2〈2Dh
kµ(εh − εhp) +Dh

kλtr
[
εh
]

+ 2Dh
kµc(skew(∇uh)− Ah),∇Dh

ku〉 dx

+

∫
Ω

η2〈2Dh
kµ(εh − εhp) +Dh

kλtr
[
εh
]

+ 2Dh
kµc(skew(∇uh)− Ah),∇Dh

ku〉|t=0 dx

≤ C(

∫ t

0

EU∗(u̇, ε̇, ε̇p, Ȧ) dτ + ‖ηDh
k∇u‖2

L2((0,t)×U) + C(α)EU∗(u̇, ε̇, ε̇p, Ȧ)(t)

+α‖ηDh
k∇u‖2

L2(U) + EU∗(u̇, ε̇, ε̇p, Ȧ)(0) + ‖ηDh
k∇u(0)‖2

L2(U)) , (3.11)

where α > 0 is an arbitrary constant and C(α) depends on α only. By the regularity
of the initial data the last two terms on the right hand side of (3.11) are bounded by a
constant which is independent of h. Using the coerciveness of the energy function we have

‖ηDh
k∇u‖2

L2(U) ≤ ‖ηDh
kε‖2

L2(U) + ‖ηDh
k skew∇u‖2

L2(U) ≤ CE(ηDh
ku, ηD

h
k , ηD

h
kεp, ηD

h
kA) .
(3.12)

Inserting (3.12) into (3.11) we arrive at the inequality

−
∫ t

0

∫
Ω

η2〈2Dh
kµ(εh − εhp) +Dh

kλtr
[
εh
]

+ 2Dh
kµc(skew(∇uh)− Ah),∇Dh

k u̇〉 dx dτ

≤ C(

∫ t

0

E(ηDh
ku, ηD

h
k , ηD

h
kεp, ηD

h
kA) dτ + αE(ηDh

ku, ηD
h
k , ηD

h
kεp, ηD

h
kA)

+

∫ t

0

EU∗(u̇, ε̇, ε̇p, Ȧ) dτ + C(α)EU∗(u̇, ε̇, ε̇p, Ȧ) + 1) . (3.13)

In the same manner we estimate the fourth integral from the right hand side of (3.8)

−
∫ t

0

∫
Ω

η2〈2Dh
kµ(εh − εhp), Dh

k ε̇p〉 dx dτ =

∫ t

0

∫
Ω

η2〈2Dh
kµ(ε̇h − ε̇hp), Dh

kεp〉 dx dτ

−
∫

Ω

η2〈2Dh
kµ(εh − εhp), Dh

kεp〉 dx +

∫
Ω

η2〈2Dh
kµ(εh − εhp), Dh

k ε̇p〉|t=0 dx

≤ Ĉ(

∫ t

0

E(ηDh
ku, ηD

h
k , ηD

h
kεp, ηD

h
kA) dτ + βE(ηDh

ku, ηD
h
k , ηD

h
kεp, ηD

h
kA)

+

∫ t

0

EU∗(u̇, ε̇, ε̇p, Ȧ) dτ + C(β)EU∗(u̇, ε̇, ε̇p, Ȧ) + 1) , (3.14)

where β > 0 is an arbitrary constant, C(β) > 0 depends on β only and Ĉ does not
depend on h. Finally, the last integral from the right hand side of (3.8) can be estimated
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as follows ∫ t

0

∫
Ω

η〈∇ axl(Dh
kA), axl(Dh

kȦ⊗ (2lc∇η + η∇lc))〉 dx dτ

C(

∫ t

0

E(ηDh
ku, ηD

h
k , ηD

h
kεp, ηD

h
kA) dτ + ‖Ȧxk

‖2
L2((0,t)×Ω)) , (3.15)

where again the constant C > 0 does not depends on h. Let us choose now α and β such
that Cα + Ĉβ < 1 where the constants C and Ĉ are from inequality (3.13) and (3.14)
respectively. On inserting (3.9)-(3.10) and (3.13)-(3.15) into (3.8) we obtain

E(ηDh
ku, ηD

h
kε, ηD

h
kεp, ηD

h
kA)(t) ≤ C

(
EU∗(uxk

, εxk
, εp,xk

, Axk
)(0)∫ t

0

E(ηDh
ku, ηD

h
kε, ηD

h
kεp, ηD

h
kA) dτ +

∫ t

0

(EU∗(u, ε, εp, A) + EU∗(u̇, ε̇, ε̇p, Ȧ)) dτ

EU∗(u̇, ε̇, ε̇p, Ȧ)) + ‖u̇xk
‖2
L2((0,t)×Ω) + ‖Ȧxk

‖2
L2((0,t)×Ω) + 1

)
. (3.16)

Finally, using the Gronwall Lemma and the inequality

EV (Dh
ku,D

h
kε,D

h
kεp, D

h
kA) ≤ E(ηDh

ku, ηD
h
kε, ηD

h
kεp, ηD

h
kA) ,

we easily complete the proof. �

Corollary 3.3
Assuming that the initial plastic strain ε0

p and the external force f satisfy all requirements
of Theorem 3.2 the solution to system (2.1) is more regular: u ∈ L∞(0, T ;H2

loc(Ω; R3)),
σ, εp ∈ L∞(0, T ;H1

loc(Ω; Sym(3)). If additionally ∇lc,∇µc are locally Lipschitz then A ∈
L∞(0, T ;H3

loc(Ω; so(3))).

Proof. By Theorem 3.2 we immediately have that for all subsets V b Ω all functions ap-
pearing in the energy function have the regularity ε − εp ∈ L∞(0, T ;H1(V ; Sym(3)),
tr [ε] ∈ L∞(0, T ;H1(V ; R)) and skew(∇u − A) ∈ L∞(0, T ;H1(V ; so(3))). From the
H2-regularity we obtain that σ ∈ L∞(0, T ;H1(V ; Sym(3)). Using the coerciveness of
the energy function we conclude that ε ∈ L∞(0, T ;H1(V ; Sym(3)), which implies that
u ∈ L∞(0, T ;H2

loc(Ω; R3)). The H3
loc-regularity of A follows by H2

loc-regularity of u and
the standard regularity theory of elliptic equations. �

4 H1
loc-regularity in the dynamic case

In the dynamical setting the system of equations which we are going to study is in the
form

ü−Div σ = f ,

σ = 2µ (ε− εp) + 2µc (skew(∇u)− A) + λ tr [ε] · 11 ,
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axl(Ä)− lc ∆ axl(A) = µc axl(skew(∇u)− A) , (4.1)

ε̇p ∈ f(TE) , TE = 2µ (ε− εp) ,
u|∂Ω

= ud , A|∂Ω
= Ad ,

u(0) = u0 , u̇(0) = u1 , A(0) = A0 , Ȧ(0) = A1 , εp(0) = ε0
p ,

where f is a given volume force ud, Ad are given boundary data and u0, u1, A0, A1, ε0
p are

given initial data. This initial boundary-value problem was studied in [14] and the Main
Theorem from [14] yields an existence and uniqueness result similar to Theorem 2.1. The
energy function associated with system (4.1) is in the form

E(u, ε, εp, A)(t) :=

∫
Ω

(1

2
‖u̇‖2 + 2‖ axl(Ȧ)‖2

+µ ‖ε− εp‖2 +
λ

2
tr [ε]2 + µc‖ skew(∇u)− A‖2 + 2lc ‖∇ axl(A)‖2

)
dx .

This function is also coercive which means that E satisfies the statements of Theorem 3.1.
Using the same methods as in Section 2 we can conclude the following regularity result
for the initial boundary-value problem (4.1).

Theorem 4.1
Let us assume that u0 ∈ H2

loc(Ω; R3), u1 ∈ H1
loc(Ω; R3) ε0

p ∈ H1
loc(Ω; Sym(3)), A0 ∈

H2(Ω; so(3)), A1 ∈ H1(Ω; so(3)) and f ∈ L2(0, T ;H1
loc(Ω; R3)). If µ, λ, µc, lc are contin-

uous and positive on Ω and locally Lipschitz then the solution to (4.1) is more regular:
u ∈ L∞(0, T ;H2

loc(Ω; R3)), σ, εp ∈ L∞(0, T ;H1
loc(Ω; Sym(3)).

5 Quasistatic case with a general flow rule

In [3] the quasistatic problem was studied with the following general flow rule of monotone
type

zt ∈ f(−∇zψ(ε, z, A)) ,

where z = (εp, z̃) is the vector of internal variables, Bz = εp is the projector on the

direction of the plastic strain, f is a maximal monotone mapping satisfying {0} ∈ f(0)
and ψ is the free energy function. The free energy considered in this article is in the form

ψ(ε, z, A) = µ‖ε− εp‖2 +
λ

2
tr [ε]2 + µc‖ skew(∇u)− A‖2 + 2lc‖∇ axl(A)‖2 + 〈Lz, z〉 ,

where L is a symmetric and semi-positive matrix. Using the same procedure as in Section
3 the following regularity result can be obtained

Theorem 5.1
If the initial value z0 ∈ H1

loc(Ω; RN) and f ∈ L2(0, T ;H1
loc(Ω; R3)) then the solution to the

quasistatic problem in the Cosserat plasticity with a general flow rule of monotone type
in more regular: σ ∈ L∞(0, T ;H1

loc(Ω; Sym(3)) and Lz ∈ L∞(0, T ;H1
loc(Ω; RN). Moreover,

the coerciveness of the energy function yields additionally that u ∈ L∞(0, T ;H2
loc(Ω; R3))

and εp ∈ L∞(0, T ;H1
loc(Ω; Sym(3)). �
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[12] P. Neff and K. Che lmiński. Infinitesimal elastic-plastic Cosserat micropolar theory. Modelling
and global existence in the rate independent case. Preprint 2290, http://wwwbib.mathematik.tu-
darmstadt.de/Math-Net/Preprints/Listen/pp03.html, Proc. Roy. Soc. Edinb. A, 135:1017–1039,
2005.
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