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Abstract

We show that the Reissner-Mindlin membrane-bending plate model can be exactly
obtained as the rigorous Γ-limit for zero thickness of a linear isotropic Cosserat bulk model
with symmetric curvature. For this result we use the natural nonlinear scaling for the
displacements u and the linear scaling for the infinitesimal microrotations A ∈ so(3). We
also provide formal calculations for other combinations of scalings whereby be retrieve
other plate models previously proposed in the literature by formal asymptotic methods as
corresponding Γ-limits. No boundary conditions on the microrotations are prescribed.
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1 Introduction

The relation between three-dimensional elasticity and theories for lower-dimensional objects
such as rods, beams, membranes, plates and shells has been an outstanding question since the
very beginning of the research in elasticity. Recently there has been substantial progress in the
rigorous understanding of this relation through the use of variational methods, in particular
Γ-convergence. This notion of convergence assures, roughly speaking, that absolute minimizers
of the three-dimensional theory (subject to suitable boundary conditions and applied loads)
converge to absolute minimizers of the limiting two-dimensional theory.

Variational convergence is not the only way to proceed to obtain lower dimensional mod-
els. Since the dimensional reduction of a given continuum-mechanical model is already an old
subject it has seen many other ”solutions”. Another way to proceed is the so called derivation
approach, i.e., reducing a given three-dimensional model via physically reasonable constitutive
assumptions on the kinematics to a two-dimensional model. This is opposed to either the in-
trinsic approach which views the plate/shell from the onset as a two-dimensional surface and
invokes concepts from differential geometry or the asymptotic methods which try to establish
two-dimensional equations by formal expansion of the three-dimensional solution in power se-
ries in terms of a small non-dimensional thickness parameter, the aspect ratio h > 0. The
intrinsic approach is closely related to the direct approach which takes the shell to be a two-
dimensional medium with additional extrinsic directors in the sense of a restricted Cosserat
surface [10]. For further information together with more references let us refer to the introduc-
tion in [24, 26, 25, 27, 29].

It is well known, that Γ-convergence also needs assumptions which concern the scaling
of fields and energies. A first major breakthrough in finite elasticity was the justification
of a nonlinear membrane model in [12]. Later, a hierarchy of limiting theories based on Γ-
convergence, distinguished by different scaling-exponents of the energy as a function of the
aspect ratio h is developed in [18, 17, 16, 19]. There the different scaling exponents can be
put into effect by corresponding scaling assumptions on the applied forces. A typical feature of
Γ-limit models based on classical elasticity is their decoupling into either membrane or bending
problems, depending on the regime for the energy. For example, the Kirchhoff-Love plate
bending problem appears as Γ-limit but is restricted to inextensible deformations. Similarly,
one may obtain a membrane energy with no bending term, having no resistance in compression
[12]. But in a given three-dimensional problem the different regimes are hardly separated and
one wishes to have a model comprising of membrane and bending contributions simultaneously.

Let us restrict ourselves to linear elasticity in the following. In that case, using Γ-convergence
in the weak topology in H1(Ω1), together with a certain linear scaling, Ciarlet [5] arrives at
justifying the membrane plate. This result can be, without problems, extended to the strong
L2 − Γ-limit, see the appendix. Remarkable is that the limit problem is not completely two-
dimensional since the admissible set is the space VKL, see Definition 7.2.

In [4] basically the nonlinear scaling of the displacement is considered. Compactness can
only be assured by assuming that 1

h2 I
]
h(u]) is bounded independent of the thickness h. In that

case, it is easy to see that the limit is purely two-dimensional and the energy coincides with
the one previously given. Using the linear scaling in a finite strain setting is known to lead to
inconsistencies [15]. A formal deduction of plate models by scaling can be found in [23].

A very prominent model for combined membrane and bending behavior of plates is the
Reissner-Mindlin model, see (7.1). But in [3, p.17] we read: ”For plate bending, the asymptotic
approach leads to the Kirchhoff-Love or biharmonic plate equation, rather than to the Reissner-
Mindlin model. .... To the best of our knowledge there is no way to obtain Reissner-Mindlin
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type models of plate bending from the asymptotic approach.” Similarly, Ciarlet writes [8, p.27]:
”Open problems: finding a rigorous justification of the Reissner-Mindlin equations.” With this
contribution we want to fill this gap.1 Our main idea in this respect is to use extended continuum
models, more specifically the linear Cosserat model as a starting point for the application of
Γ-convergence methods. The use of Cosserat elasticity as a ”parent” model is quite recent, it
initiated presumably with [28] immediately for the finite strain case using the nonlinear scaling
for deformations and exact rotations (ϕ,R) ∈ R3 × SO(3). The result is a kind of Reissner-
Mindlin model, but not exactly. In [2, 1] a linear Cosserat model is taken as a starting point
and the asymptotic development (not the Γ-limit) is given based on the nonlinear scaling for
displacement and infinitesimal microrotation (u,A) ∈ R3 × so(3). The result is comparable to
the previous one in [28]. A precursor to that is [13] where the author used also the asymptotic
expansion method but with linear scaling for both (u,A) ∈ R3×so(3). His result is comparable
to a formal deduction given much earlier in [14]. Neither of these methods, however, reproduced
the Reissner-Mindlin model exactly.

While our method is methodologically rather standard, we want to exhibit the different limit
functionals depending on the assumed choice of scaling for the displacement and the infinites-
imal microrotation. The major difference is in the coupling term after dimensional reduction.
On specific choice of scaling recovers exactly the Reissner-Mindlin membrane bending model,
another choice recovers the Tambaca/Neff model and still another choice decouples the prob-
lems. It is interesting to note that for the scaling we have in mind, only the symmetric curvature
case leads to a local formula for the Γ-limit: the Reissner-Mindlin model. Central to our devel-
opment is therefore the notion of Γ-convergence, a powerful theory originally initiated by De
Giorgi [20] and especially suited for a variational framework on which in turn the numerical
treatment with finite elements is based.

Outline of this contribution: We introduce first the underlying ”parent” three-dimensional linear
isotropic Cosserat model with rotational substructure embodied by the infinitesimal Cosserat
rotations A ∈ so(3). Next we specialize the model to a thin domain in Section 3. The two
basically different scalings: linear and nonlinear, are introduced in Section 4. Then we perform
the transformation of the bulk model in physical space to a non-dimensional thin domain and
introduce the further scaling to a fixed reference domain Ω1 with constant thickness on which
the Γ-convergence procedure is finally based. In Section 5 the Γ-limit model is presented and
Section 6 furnishes the proofs. The notation is found at the end of the paper. In the appendix
we recall the Reissner-Mindlin model, the Koiter-model and two other proposals based on
different scalings. Korn’s inequality for different scalings together with a recall on the Γ-limit
for classical linear elasticity finishes this work.

2 The linear elastic Cosserat model in variational form

This section does not contain any new results, rather it serves to accommodate the widespread
notations used in Cosserat elasticity and to introduce the problem. It is assumed that the mi-
crorotation field is kinematically independent from the material rotation (continuum rotation).
In the micropolar continuum theory not only forces but also moments can be transmitted across
the surface of a material element. The very concept of a micropolar theory involves, in a certain
way, the substructure response into the continuum media.

For the displacement u : Ω ⊂ R3 7→ R3 and the skew-symmetric infinitesimal micro-
rotation A : Ω ⊂ R3 7→ so(3) we consider the two-field minimization problem

I(u,A) =
∫

Ω

Wmp(ε) +Wcurv(∇ axlA)− 〈f, u〉dx 7→ min . w.r.t. (u,A), (2.1)

1When finishing this paper we have learned that a related justification of the Reissner-Mindlin model based
on Γ-convergence has been already given in [30, 31]. Since the authors considered a second-gradient ”parent”
linear elasticity model instead of our first order Cosserat ”parent” model we still believe in the interest of our
approach.
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under the following constitutive requirements and boundary conditions

ε = ∇u−A, first Cosserat stretch tensor

u|Γ = ud , essential displacement boundary conditions

Wmp(ε) = µ ‖ sym ε‖2 + µc ‖ skew ε‖2 +
λ

2
tr [sym ε]2 strain energy

= µ ‖dev sym∇u‖2 + µc ‖ skew(∇u−A)‖2 +
K

2
tr [sym∇u]2

θ := axlA ∈ R3, K = ∇θ , ‖ curl θ‖2R3 = 4‖ axl skew∇θ‖2R3 = 2‖ skew∇θ‖2M3×3 ,

Wcurv(∇θ) =
γ + β

2
‖ sym∇θ‖2 +

γ − β
2
‖ skew∇θ‖2 +

α

2
tr [∇θ]2 curvature energy

=
γ + β

2
‖ dev sym∇θ‖2 +

γ − β
2
‖ skew∇θ‖2 +

kc
2

tr [∇θ]2 .

Here, f are given volume forces while ud are Dirichlet boundary conditions for the displacement
at Γ ⊂ ∂Ω. Surface tractions, volume couples and surface couples can be included in the
standard way. The strain energy Wmp and the curvature energy Wcurv are the most general
isotropic quadratic forms in the infinitesimal non-symmetric first Cosserat strain tensor
ε = ∇u−A and the micropolar curvature tensor K = ∇ axlA = ∇θ (curvature-twist tensor).
The parameters µ, λ[MPa] are the classical Lamé moduli and α, β, γ are additional micropolar
moduli with dimension [Pa ·m2] = [N] of a force. Here, the bulk modulus and curvature bulk
modulus are defined by

K =
2µ+ 3λ

3
, kc :=

(β + γ) + 3α
3

. (2.2)

The additional parameter µc ≥ 0[MPa] in the strain energy is the Cosserat couple modulus.
For µc = 0 the two fields of displacement and microrotations decouple and one is left formally
with classical linear elasticity for the displacement u. The reader should note that even for very
weak curvature requirements (γ + β > 0, γ − β ≥ 0, kc ≥ 0) the model is well-posed. This is a
new result, proved in [21] making use of a new coercive inequality for formally positive quadratic
forms. For our dimension reduction procedure we focuss on the symmetric-curvature case
with β = γ and kc ≥ 0.

3 The Cosserat bulk problem on a thin flat domain

The basic task of any shell theory is a consistent reduction of some presumably ”exact” 3D-
theory to 2D. The three-dimensional problem (2.1) defined on the physical space E3 including
units of measurement will now be adapted to a plate-like theory. Let us therefore assume that
the problem is already transformed in non-dimensional form. This means we are given a
three-dimensional (non-dimensional) thin domain Ωh ⊂ R3

Ωh := ω × [−h
2
,
h

2
], ω ⊂ R2 , (3.1)

with transverse boundary ∂Ωtrans
h = ω × {−h2 ,

h
2 } and lateral boundary ∂Ωlat

h = ∂ω ×
[−h2 ,

h
2 ], where ω is a bounded open domain2 in R2 with smooth boundary ∂ω and h > 0 is

the non-dimensional relative characteristic thickness (aspect ratio), h� 1. Moreover,
assume we are given a deformation u and microrotation A,

u : Ωh ⊂ R3 7→ R3 , A : Ωh ⊂ R3 7→ so(3) , (3.2)

2For definiteness, one can think of ω = [0, 1]]× [0, 1]] ⊂ R2 without units of length.
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solving the minimization problem on the thin domain Ωh:

I(u,A) =
∫

Ωh

Wmp(ε) +Wcurv(∇ axlA)− 〈f, u〉dV −
∫

∂Ωtrans
h ∪{γs×[−h2 ,

h
2 ]}

〈N, u〉dS 7→ min . w.r.t. (u,A) ,

ε = ∇u−A , u|Γh0
= ud(x, y, z), Γh0 = γ0 × [−h

2
,
h

2
], γ0 ⊂ ∂ω, γs ∩ γ0 = ∅ ,

A : free on ∂ω × [−h
2
,
h

2
], Neumann-type boundary condition , (3.3)

Wmp(ε) = µ ‖ sym ε‖2 + µc ‖ skew ε‖2 +
λ

2
tr [ε]2 ,

Wcurv(K) = µ
L̂2
c

2

(
α1 ‖ sym∇ axlA‖2 + α2 ‖ skew∇ axlA‖2 +

α3

2
tr
[
∇ axlA

]2)
,

Here, α1, α2, α3 ≥ 0 are non-dimensional parameters. Moreover, the parameter L̂c has the form
L̂c = LRVEc

L , where LRV Ec is a characteristic size of the microstructure and L is a characteristic
value of the in-plane elongation of the original, relatively thin domain Ωrel.thin. = [0, L[m]] ×
[0,L[m]]× [−h

2 L[m], h
2 L[m]] ⊂ E3.3 The ”real” thickness of the plate is accordingly d = hL[m].

Since for some constant C1 > 0

C1 · LRV Ec = d = hL , (3.4)

which says that the ”real” thickness of the plate is C1× ”real” dimensions of the microstructure
LRV Ec , we obtain the important relation

C1 · L̂c = C1 ·
LRV Ec

L
= h . (3.5)

We want to find a reasonable approximation (uh, Ah) of (u,A) involving only two-dimensional
quantities. Considering in the following h→ 0 we see that this weakens the curvature contribu-
tion and corresponds formally to L̂c → 0. However, L̂c → 0 and natural boundary conditions
for the infinitesimal microrotations approach in the limit classical linear elasticity. So we might
already expect a limit model which is closely related to classical plate models.

4 Scaling of fields

Scaling of independent and/or dependent variables is the usual first step when performing a
dimensional reduction asymptotic analysis for a relatively thin domain. The employed scaling
is decisive for the application of the Γ-convergence framework. The major justification of the
employed scalings comes with the final convergence result.

There are basically two scalings at hand, one which we call the nonlinear or natural
scaling and one which we refer to as the linear elasticity scaling. See [15] for an in-depth
discussion of the differences generated by these scalings in classical linear/nonlinear elasticity.
The nonlinear or natural scaling for a vectorfield z : Ωh ⊂ R3 7→ R3 is just that one, which
defines z] : η ∈ Ω1 7→ R3 as the ”same” field on the domain Ω1 = ω × [−1/2, 1/2] (see (4.4)),
only the independent variables are scaled as

ξ1 = η1 , ξ2 = η2 , ξ3 = h η3 ,

z](ξ1, ξ2,
1
h
ξ3) := z(ξ1, ξ2, ξ3) , nonlinear scaling

∇ξz(ξ1, ξ2, ξ3) =
(
∂η1z

](η1, η2, η3)|∂η2z
](η1, η2, η3)| 1

h
∂η3z

](η1, η2, η3)
)

=

∂η1z
]
1(η) ∂η2z

]
1(η) 1

h∂η3z
]
1(η)

∂η1z
]
2(η) ∂η2z

]
2(η) 1

h∂η3z
]
2(η)

∂η1z
]
3(η) ∂η2z

]
3(η) 1

h∂η3z
]
3(η)

 =: ∇hηu](η) . (4.1)

In linear elasticity, in contrast, it is customary [8, 13] to use a simultaneous scaling of indepen-
dent and dependent variables for the vectorfield z : Ωh ⊂ R3 7→ R3 by defining z[ : η ∈ Ω1 7→ R3

3This is an immediate consequence of the non-dimensionalization procedure.
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in the form

ξ1 = η1 , ξ2 = η2 , ξ3 = h η3 ,z[1(ξ1, ξ2, 1
h ξ3)

z[2(ξ1, ξ2, 1
hξ3)

z[3(ξ1, ξ2, 1
hξ3)

 :=

 z1(ξ1, ξ2, ξ3)
z2(ξ1, ξ2, ξ3)
h z3(ξ1, ξ2, ξ3)

 , linear scaling . (4.2)

Here, the in-plane components z1, z2 of the vectorfield are treated differently from the out of
plane (transverse) component z3.4 The corresponding relation between the gradient is expressed
as

∇ξz(ξ1, ξ2, ξ3) =

 ∂η1z
[
1(η) ∂η2z

[
1(η) 1

h∂η3z
[
1(η)

∂η1z
[
2(η) ∂η2z

[
2(η) 1

h∂η3z
[
2(η)

1
h∂η1z

[
3(η) 1

h∂η2z
[
3(η) 1

h2 ∂η3z
[
3(η)

 =: ∇̂hηz[(η) . (4.3)

The scaling of the dependent variable corresponds to an additional ad-hoc assumption on the
assumed response. In our case, we deal with the displacement field u : Ωh 7→ R3 and the micro-
rotation field A : Ωh 7→ so(3). For the displacement field we propose not to take any scaling of
the dependent variables into account. Thus we do not restrict the modeling to vertical deflec-
tions in the order of the plate thickness.5 Rather we expect large bending terms. In the axial
representation θ = axlA ∈ R3 of the infinitesimal microrotation the component θi, i = 1, 2, 3
corresponds to the infinitesimal rotation with axis ei. Thus the in-plane rotation contribution
is mapped by θ3. Since the plate is getting very thin, we expect θ3 to be much smaller than
θ1, θ2, which themselves correspond to the bending rotations (out of plane rotations) with axis
e1, e2. In order to reflect this behavior, the linear scaling suggests itself for the microrotations,
i.e., h θ3(ξ1, ξ2, ξ3) = θ[3(ξ1, ξ2, 1

hξ3).

4.1 Transformation on a fixed domain with unit thickness

In order to apply standard techniques of Γ-convergence, we transform the problem onto a fixed
domain Ω1, independent of the aspect ratio h > 0. Define therefore

Ω1 = ω × [−1
2
,

1
2

] ⊂ R3 , ω ⊂ R2 . (4.4)

The scaling transformation

ζ : η ∈ Ω1 ⊂ R3 7→ R3, ζ(η1, η2, η3) := (η1, η2, h · η3) , (4.5)

ζ−1 : ξ ∈ Ωh ⊂ R3 7→ R3, ζ−1(ξ1, ξ2, ξ3) := (ξ1, ξ2, ξ3/h) ,

maps Ω1 into Ωh and ζ(Ω1) = Ωh. We consider the correspondingly scaled function (subse-
quently, nonlinearly scaled functions defined on Ω1 will be indicated with a superscript ] while
linearly scaled fields will get a superscript [) u] : Ω1 → R3, defined by

u(ξ1, ξ2, ξ3) = u](ζ−1(ξ1, ξ2, ξ3)) ∀ ξ ∈ Ωh ; u](η) = u(ζ(η)) ∀ η ∈ Ω1 , (4.6)

∇ξu(ξ1, ξ2, ξ3) =
(
∂η1u

](η1, η2, η3)|∂η2u
](η1, η2, η3)| 1

h
∂η3u

](η1, η2, η3)
)

=

∂η1u
]
1(η) ∂η2u

]
1(η) 1

h∂η3u
]
1(η)

∂η1u
]
2(η) ∂η2u

]
2(η) 1

h∂η3u
]
2(η)

∂η1u
]
3(η) ∂η2u

]
3(η) 1

h∂η3u
]
3(η)

 =: ∇hηu](η) . (4.7)

We define a (linearly) scaled infinitesimal microrotation rotation A
[

: Ω1 ⊂ R3 7→ so(3) by
considering the corresponding axial vector θ(ξ) := axlA(ξ) ∈ R3 and its linearly scaled corre-

4Since we assume that the un-scaled component z3 is bounded, the linear scaling implies that the scaled
vertical component z[3 should be of the order of h, i.e., the vertical deflection should be in the order of the
thickness of the plate (instead of large vertical deflections...)

5In Ciarlet [8, p.73]: ”Thus, counter to appearance, the linear Kirchhoff-Love theory is strictly a ’small
displacement’ theory: In order that it be valid, the transverse displacement should remain of the order of the
thickness of the plate.” And in Fonseca et al. [15, p.552]: ” ....the limit kinematics that are imposed by the
scaling are too stringent: they force the transverse limit displacement to be 0.”
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spondence θ[(η) through

θ(ξ1, ξ2, ξ3) = θ[(ζ−1(ξ1, ξ2, ξ3)) ∀ ξ ∈ Ωh ; θ[(η) = θ(ζ(η)) ∀ η ∈ Ω1 ,

∇ξθ(ξ1, ξ2, ξ3) =

 ∂η1θ
[
1(η) ∂η2θ

[
1(η) 1

h∂η3θ
[
1(η)

∂η1θ
[
2(η) ∂η2θ

[
2(η) 1

h∂η3θ
[
2(η)

1
h∂η1θ

[
3(η) 1

h∂η2θ
[
3(η) 1

h2 ∂η3θ
[
3(η)

 =: ∇̂hηθ[(η) . (4.8)

This allows us to define scaled nonsymmetric stretches ε]h ∈ gl(3) and the scaled second order
curvature tensor K[h : Ω1 7→ gl(3)

ε]h := ∇hηu] −A
[
, ∇̂hηθ[(η) =: K[h(η) , (4.9)

where

∇hjη u] −A
[

=

∂η1u
]
1(η) ∂η2u

]
1(η) 1

h∂η3u
]
1(η)

∂η1u
]
2(η) ∂η2u

]
2(η) 1

h∂η3u
]
2(η)

∂η1u
]
3(η) ∂η2u

]
3(η) 1

h∂η3u
]
3(η)

−
 0 − 1

hθ
[
3 θ[2

1
hθ

[
3 0 −θ[1

−θ[2 θ[1 0

 (4.10)

for θ[ := axlA
[
. Moreover, we define nonlinearly scaled functions by setting

f ](η) := f(ζ(η)), u]d(η) = ud(ζ(η)) , N ](η) := N(ζ(η)) . (4.11)

In terms of the introduced nonlinearly scaled displacement and the linearly scaled infinitesimal
microrotations u] : Ω1 ⊂ R3 7→ R3 , A

[
: Ω1 ⊂ R3 7→ so(3), the scaled problem solves the

following two-field minimization problem on the fixed domain Ω1:

I],[(u],∇hηu], A
[
, ∇̂hη axlA

[
) =

∫
η∈Ω1

[
Wmp(ε]h) +Wcurv(K[h)− 〈f ], u]〉

]
det[∇ζ(η)] dVη

−
∫

∂Ωtrans
1 ∪{γs×[− 1

2 ,
1
2 ]}

〈N ], u]〉 ‖Cof∇ζ(η).e3‖ dSη

= h

∫
η∈Ω1

Wmp(ε]h) +Wcurv(K[h)− 〈f ], u]〉dVη

−
∫
∂Ωtrans

1

〈N ], u]〉 1 dSη −
∫

γs×[− 1
2 ,

1
2 ]

〈N ], u]〉hdSη 7→ min . w.r.t. (u], A
[
) . (4.12)

4.2 The rescaled variational Cosserat bulk problem

Since the energy 1
hI

],[ would not be finite for h→ 0 if tractions N ] on the transverse boundary
were present, the investigations are in principle restricted to the case of N ] = 0 on ∂Ωtrans

1 .6

For conciseness we investigate the following simplified and rescaled (N ], f ] = 0, ud(ξ1, ξ2, ξ3) :=
ud(ξ1, ξ2)) two-field minimization problem on Ω1 with respect to Γ-convergence (without the
factor h > 0 now), i.e. we are interested in the limiting behavior of the scaled energy per unit
aspect ratio h:

I],[h (u],∇hηu], A
[
, ∇̂hη axlA

[
) =

∫
η∈Ω1

Wmp(ε]h) +Wcurv(K[h) dVη 7→ min . w.r.t. (u], A
[
) ,

ε]h = ∇hηu] −A
[
, u]|Γ1

0

(η) = u]d(η) = ud(ζ(η)) = ud(η1, η2, h · η3) = ud(η1, η2, 0) , (4.13)

Γ1
0 = γ0 × [−1

2
,

1
2

], γ0 ⊂ ∂ω, K[h = ∇̂hη axlA
[
(η) ,

A
[

: free on ∂ω × [−1
2
,

1
2

], Neumann-type boundary condition .

Here we assume for simplicity that the bulk boundary condition ud is already independent
of the transverse variable and we restrict attention to the weakest response, the Neumann
boundary conditions on the Cosserat rotations A

[
.

6The thin plate limit h→ 0 obviously cannot support non-vanishing transverse surface loads.
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4.3 Recall on Γ-convergence

Let us briefly recapitulate the notions involved by using Γ-convergence. For a detailed treatment
we refer to [22, 6]. The notion of Γ-convergence depends strongly on the topology of the space X,
which in our discussion is assumed to be metrizable. In the following, therefore, X will always
denote a metric space such that sequential compactness and compactness coincide. Moreover,
we set R := R ∪ {±∞}. We consider a sequence of energy functionals Ihj : X 7→ R , hj → 0.

Definition 4.1 (Γ-convergence)
Let X be a metric space. We say that a sequence of functionals Ihj : X 7→ R Γ-converges in

X to the limit functional I0 : X 7→ R, if for all x ∈ X we have

∀x ∈ X : ∀xhj → x : I0(x) ≤ lim inf
hj→0

Ihj (xhj ) , (lim inf - inequality)

∀x ∈ X : ∃xhi → x : I0(x) ≥ lim sup
hi→0

Ihi(xhi) , (recovery sequence) . �

Γ-convergence corresponds to convergence of the energy along minimizing sequences for a family
of functionals and all continuous perturbations.

5 The ”two-field” Cosserat Γ-limit

5.1 The spaces and admissible sets

We proceed to the investigation of the Γ-limit for the rescaled problem (4.13). We do not use
I],[h directly in our investigation of Γ-convergence, since this would imply working with the weak
topology of H1,2(Ω1,R3)×H1,2(Ω1, so(3)), which does not give rise to a metric space. Instead,
we define suitable ”bulk” spaces X,X ′ and suitable ”two-dimensional” spaces Xω, X

′
ω. Now

define the spaces

X := {(u,A) ∈ L2(Ω1,R3)× L2(Ω1, so(3))} ,
X ′ := {(u,A) ∈ H1,2(Ω1,R3)×H1,2(Ω1, so(3))} , (5.1)

Xω := {(u,A) ∈ L2(ω,R3)× L2(ω, so(3))} ,
X ′ω := {(u,A) ∈ H1,2(ω,R3)×H1,2(ω, so(3))} ,

and the admissible sets

A′ := {(u,A) ∈ H1,2(Ω1,R3)×H1,2(Ω1, so(3)) , u|Γ1
0
(η) = u]d(η) } , (5.2)

A′ω := {(u,A) ∈ H1,2(ω,R3)×H1,2(ω, so(3)) , u|γ0
(η1, η2) = u]d(η1, η2, 0) } , .

We note the compact embedding X ′ ⊂ X and the natural inclusions Xω ⊂ X and X ′ω ⊂ X ′.
Now we extend the rescaled energies to the space X through redefining

I],[h (u],∇hηu], A
[
, ∇̂hη axlA

[
) =

{
I],[h (u],∇hηu], A

[
, ∇̂hη axlA

[
) if (u], A

[
) ∈ A′

+∞ else in X ,
(5.3)

by abuse of notation. This is a classical trick used in applications of Γ-convergence. It has
the virtue of incorporating the boundary conditions already in the energy functional. In the
following, Γ-convergence results will be shown with respect to the encompassing metric space
X.

5.2 The Γ-limit variational problem

Our main result is the Γ-limit for symmetric curvature α2 = 0 and strictly positive curvature
bulk modulus kc > 0.

Theorem 5.1 (Γ-limit for kc > 0 and α2 = 0)
For strictly positive curvature bulk modulus kc > 0 and symmetric curvature α2 = 0 the Γ-limit

for problem (4.13) in the setting of (5.3) is given by the limit energy functional I],[0 : X 7→ R,

I],[0 (v,A) :=

{∫
ω
W hom

mp (∇v, axlA) +W hom
curv (∇ axlA)− 〈f, v〉dω (v,A) ∈ A′ω

+∞ else in X ,
(5.4)
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with W hom
mp and W hom

curv defined below.

The proof of this statement will be given in Section 6. The limit functions are independent of the
transverse variable η3. This Γ-limit determines in fact a purely two-dimensional minimization
problem for the deflection of the midsurface v : ω ⊂ R2 7→ R3 and the infinitesimal microrotation
of the plate (shell) A : ω ⊂ R2 7→ so(3) on ω under the boundary conditions of place for the
midsurface deflection v on the Dirichlet part of the lateral boundary γ0 ⊂ ∂ω,

v|γ0
= ud(x, y, 0) , simply supported (fixed, welded) . (5.5)

The boundary conditions for the microrotations A are automatically determined in the varia-
tional process. The dimensionally homogenized local density is

W hom
mp (∇v, θ) :=µ ‖ sym∇η1,η2(v1, v2)‖2︸ ︷︷ ︸

homogenized shear-stretch energy

+ 2µ
µc

µ+ µc
‖∇η1,η2v3 −

(
−θ2

θ1

)
‖2︸ ︷︷ ︸

homogenized transverse shear energy

+
µλ

2µ+ λ
tr [∇η1,η2(v1, v2)]2︸ ︷︷ ︸

homogenized elongational stretch energy

.

The homogenized curvature density is given by

W hom
curv (∇θ) := µ

L̂2
c

2

(
α1 ‖ sym∇η1,η2(θ1, θ2)‖2 +

α1α3

2α1 + α3
tr [∇η1,η2(θ1, θ2)]2

)
.

It is clear that the limit functional I],[0 is weakly lower semicontinuous in the topology of
X ′ = H1,2(Ω,R3)×H1,2(Ω, so(3)) by simple convexity arguments. Note the appearance of the
harmonic mean H,

1
2
H(µ,

λ

2
) =

µλ

2µ+ λ
, H(µ, µc) = 2µ

µc
µ+ µc

,
1
2
H(α1,

α3

2
) =

α1 α3

2α1 + α3
. (5.6)

5.3 Descaled Γ-limit - Reissner-Mindlin membrane-bending model

After descaling the Γ-limit minimization problem turns into∫
ω

h

(
µ ‖ sym∇(v1, v2)‖2 +

2µµc
µ+ µc

‖∇v3 −
(
−θ2

θ1

)
‖2 +

µλ

2µ+ λ
tr [∇(v1, v2)]2

)
(5.7)

+ µ
L̂2
c

2
h

(
α1 ‖ sym∇(θ1, θ2)‖2 +

α1α3

2α1 + α3
tr [∇(θ1, θ2)]2

)
− 〈f, v〉dω 7→ min . w.r.t. (v, θ),

v|γ0
= ud(x, y, 0) .

Taking into account that C1 L̂c = h (3.5) and abbreviating κ = 4µc
µ+µc

yields the classical
Reissner-Mindlin model (7.1) with appropriate re-definitions of constants.

6 Proof for positive curvature bulk modulus kc > 0

We continue by proving Theorem 5.1, i.e., the claim on the form of the Γ-limit for strictly
positive curvature bulk modulus by considering micropolar curvature energies having the form

Wcurv(∇ axlA) = µ
L̂2
c

2

(
‖ dev sym∇ axlA‖2 +

kc
2

tr
[
∇ axlA

]2)
(6.1)

for kc > 0. Note, however, that the Cosserat bulk problem is well-posed for kc = 0, see [21].
The proof of Γ-convergence is subsequently split into several steps.
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6.1 Compactness

Theorem 6.1 (Compactness of I],[hj )
Consider a sequence (u]hj , A

[

hj ) ∈ A
′ ⊂ X such that ‖A[hj‖L2(Ω1,so(3)) ≤ K1 and I],[hj (u]hj , A

[

hj ) ≤
K2, with constants K1,K2 independent of hj > 0. Then, for positive curvature bulk modulus
kc > 0 it holds

‖u]hj‖H1,2(Ω1,R3) ≤ K3 , ‖A[hj‖H1,2(Ω1,so(3)) ≤ K4 , (6.2)

with constants K3,K4 independent of hj > 0. The sequence (u]hj , A
[

hj ) ∈ A
′ admits weakly

convergent subsequences (not relabeled) (u]hj , A
[

hj ) ⇀ (u]0, A
[

0) ∈ X. In addition, the weak limit

(u]0, A
[

0) ∈ A′ω (6.3)

is independent of the transverse variable η3 and (axlA
[

0)3 = 0 (no in-plane drill rotation).

Proof. Along the sequence (u]hj , A
[

hj ) ∈ A
′ ⊂ X we have

∞ > K2 > I],[hj (u]hj , A
[

hj ) =
∫

Ω1

Wmp(ε]hj ) +Wcurv(K[hj ) dVη ≥
∫

Ω1

Wmp(ε]hj ) dVη

≥
∫

Ω1

min(µc, µ,
K

2
) ‖∇hjη u

]
hj
−A[hj‖

2 dVη . (6.4)

But with (4.10) we obtain

∇hjη u
]
hj
−A[hj =

∂η1u
]
1(η) ∂η2u

]
1(η) 1

h∂η3u
]
1(η)

∂η1u
]
2(η) ∂η2u

]
2(η) 1

h∂η3u
]
2(η)

∂η1u
]
3(η) ∂η2u

]
3(η) 1

h∂η3u
]
3(η)

−
 0 − 1

hj
θ[hj ,3 θ[hj ,2

1
hj
θ[hj ,3 0 −θ[hj ,1
−θ[hj ,2 θ[hj ,1 0

 ,

(6.5)

‖∇hjη u
]
hj
−A[hj‖

2 =‖ sym
(
∂η1u

]
1(η) ∂η2u

]
1(η)

∂η1u
]
2(η) ∂η2u

]
2(η)

)
‖2 +

1
hj

2 ‖∂η3u
]
3(η)‖2

+ ‖ skew
(
∂η1u

]
1(η) ∂η2u

]
1(η)

∂η1u
]
2(η) ∂η2u

]
2(η)

)
−

(
0 − 1

hj
θ[hj ,3

1
hj
θ[hj ,3 0

)
‖2

+ ‖
(
∂η1u

]
3(η)

∂η2u
]
3(η)

)
−

(
−θ[hj ,2
θ[hj ,1

)
‖2 + ‖

(
1
h∂η3u

]
1(η)

1
h∂η3u

]
2(η)

)
−

(
θ[hj ,2
−θ[hj ,1

)
‖2 . (6.6)

Combining (6.4) with (6.6) and using the assumption that θ[hj = axlA
[

hj is bounded in L2(Ω1,R3)
independent of hj we obtain easily an hj-independent bound for

∞ > K5 >

∫
Ω1

‖ sym
(
∂η1u

]
1(η) ∂η2u

]
1(η)

∂η1u
]
2(η) ∂η2u

]
2(η)

)
‖2 +

1
hj

2 ‖∂η3u
]
3(η)‖2

+ ‖
(
∂η1u

]
3(η)

∂η2u
]
3(η)

)
‖2 + ‖

(
1
h∂η3u

]
1(η)

1
h∂η3u

]
2(η)

)
‖2 dVη

=
∫

Ω1

‖ sym
(
∂η1u

]
1(η) ∂η2u

]
1(η)

∂η1u
]
2(η) ∂η2u

]
2(η)

)
‖2 +

1
hj

2 ‖∂η3u
]
3(η)‖2

+ ‖
(
∂η1u

]
3(η)

∂η2u
]
3(η)

)
‖2 +

1
hj

2 ‖
(
∂η3u

]
1(η)

∂η3u
]
2(η)

)
‖2 dVη

≥
∫

Ω1

‖ sym
(
∂η1u

]
1(η) ∂η2u

]
1(η)

∂η1u
]
2(η) ∂η2u

]
2(η)

)
‖2 + ‖∂η3u

]
3(η)‖2

+ ‖
(
∂η1u

]
3(η)

∂η2u
]
3(η)

)
‖2 + ‖

(
∂η3u

]
1(η)

∂η3u
]
2(η)

)
‖2 dVη (6.7)

≥ 1
∫

Ω1

‖ sym

∂η1u
]
1(η) ∂η2u

]
1(η) ∂η3u

]
1(η)

∂η1u
]
2(η) ∂η2u

]
2(η) ∂η3u

]
2(η)

∂η1u
]
3(η) ∂η2u

]
3(η) ∂η3u

]
3(η)

 ‖2 dVη ,
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(for hj > 0 small enough). Korn’s first inequality and the Dirichlet-boundary condition on
u]hj show the hj-independent H1-bound on u]hj . Thus we may extract a weakly convergent

subsequence (not relabeled) u]hj ⇀ u]0 and the weak limit must be independent of η3 on account
of (6.7)2.

Next, combine (6.4) and (6.6) and the boundedness of the in-plane skew-symmetric deflection
to see that the boundedness of∫

Ω1

‖ skew
(
∂η1u

]
1(η) ∂η2u

]
1(η)

∂η1u
]
2(η) ∂η2u

]
2(η)

)
−

(
0 − 1

hj
θ[hj ,3

1
hj
θ[hj ,3 0

)
‖2 dVη (6.8)

implies the boundedness of ∫
Ω1

‖

(
0 − 1

hj
θ[hj ,3

1
hj
θ[hj ,3 0

)
‖2 dVη (6.9)

showing that ‖θ[hj ,3‖L2(Ω1,R) → 0 for hj → 0. For the (similar) treatment of the curvature
energy we note that

∞ > K2 > I],[hj (u]hj , A
[

hj ) =
∫

Ω1

Wmp(ε]hj ) +Wcurv(K[hj ) dVη ≥
∫

Ω1

Wcurv(K[hj ) dVη

≥
∫

Ω1

µ
L2
c

2
min(1,

3kc
2

) ‖ sym ∇̂hηθ[hj (η)‖2 dVη . (6.10)

Now use Theorem 7.1 to get the hj-independent H1-bound on θ[hj together with the existence
of a weakly convergent subsequence θ[hj ⇀ θ[0 and the claim that the weak limit is independent
of the transverse variable η3 and θ[0,3 = 0. �

Remark 6.2
In linear Cosserat models Korn’s first inequality is usually not needed in showing coercivity.

6.2 Lower bound - the lim inf-condition

If I],[0 is the Γ-limit of the sequence of energy functionals I],[hj then we must have (lim inf-
inequality) that

I],[0 (u]0, A
[

0) ≤ lim inf
hj

I],[hj (u]hj , A
[

hj ) , (6.11)

whenever

u]hj → u]0 in L2(Ω1,R3) , A
[

hj → A
[

0 in L2(Ω1, so(3)) , (6.12)

for arbitrary (u]0, A
[

0) ∈ X. Observe that we can restrict attention to sequences (u]hj , A
[

hj ) ∈ X

such that I],[hj (u]hj , A
[

hj ) < ∞ since otherwise the statement is true anyway. Sequences with

I],[hj (u]hj , A
[

hj ) < ∞ are uniformly bounded in the space X ′, as seen previously. This implies
weak convergence of a subsequence in X ′. But we know already that the original sequences
converge strongly in X to the limit (u]0, A

[

0) ∈ X. Hence we must have as well weak convergence

to u]0 ∈ H1,2(ω,R3) and A
[

0 ∈ H1,2(ω, so(3)), independent of the transverse variable η3.

In a first step we consider now the local energy contribution: along sequences (u]hj , A
[

hj ) ∈
X with finite energy I],[hj , the third column of ∇hjη u]hj remains bounded but otherwise indeter-
mined. Therefore, a really trivial lower bound is obtained by minimizing the effect of the
derivative in this direction in the local energy Wmp. To continue our development, we need
some calculations: for smooth v : ω ⊂ R2 7→ R3, A : ω ⊂ R2 7→ so(3) define the vector
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(b∗, p̃∗1) ∈ R4 formally through

W hom
mp (∇v, θ) = Wmp

(∇v|b∗)−

 0 −p̃∗1 θ2

p̃∗1 0 −θ1

−θ2 θ1 0


:= inf

b∈R3,p̃1∈R
Wmp

(∇v|b)−

 0 −p̃1 θ2

p̃1 0 −θ1

−θ2 θ1 0

 . (6.13)

The vector (b∗, p̃∗1), which realizes this infimum, can be explicitly determined. The calculation
is lengthy but otherwise straight forward. We obtain

b∗1
b∗2
b∗3
p̃∗1

 =


µc−µ
µ+µc

∂η1v3 + 2µc
µ+µc

θ2
µc−µ
µ+µc

∂η2 v3 − 2µc
µ+µc

θ1

− λ
2µ+λ (∂η1v1 + ∂η2v2)

∂η1v2−∂η2v1

2

 . (6.14)

Reinserting the result in the energy yields finally for W hom
mp (∇v, axlA)

W hom
mp (∇v, θ) :=µ ‖ sym

(
∇η1,η2(v1, v2)−

(
0 −θ3

θ3 0

))
‖2 + 2µ

µc
µ+ µc

‖∇η1,η2v3 −
(
−θ2

θ1

)
‖2

+
µλ

2µ+ λ
tr
[
sym

(
∇η1,η2(v1, v2)−

(
0 −θ3

θ3 0

))]2

.

Note that θ3 cancels (left for clarity to show the coupling). Consider next

∇hjη u
]
hj
−A[hj =

∂η1u
]
1(η) ∂η2u

]
1(η) 1

h∂η3u
]
1(η)

∂η1u
]
2(η) ∂η2u

]
2(η) 1

h∂η3u
]
2(η)

∂η1u
]
3(η) ∂η2u

]
3(η) 1

h∂η3u
]
3(η)

−
 0 − 1

hj
θ[hj ,3 θ[hj ,2

1
hj
θ[hj ,3 0 −θ[hj ,1
−θ[hj ,2 θ[hj ,1 0

 ,

where θ[hj := axlA
[

hj . Along the sequence (u]hj , A
[

hj ) we have by construction,

Wmp(∇hjη u
]
hj
−A[hj ) ≥W

hom
mp (∇u]hj , axlA

]

hj ) . (6.15)

Hence, integrating and taking the lim inf also

lim inf
hj

∫
Ω1

Wmp(∇hjη u
]
hj
−A[hj ) dVη ≥ lim inf

hj

∫
Ω1

W hom
mp (∇u]hj , axlA

[

hj ) dVη . (6.16)

Now we use weak convergence of (u]hj , A
[

hj ) ⇀ (u]0, A
[

0), together with the convexity w.r.t.
(∇v, axlA) of

∫
Ω1
W hom

mp (∇v, axlA) dVη to get lower semi-continuity of the right hand side in
(6.16) and to obtain altogether

lim inf
hj

∫
Ω1

Wmp(∇hjη u
]
hj
−A[hj ) dVη ≥

∫
Ω1

W hom
mp (∇u]0, axlA

[

0) dVη . (6.17)

Consider next the curvature energy along the sequence θ[hj (η) = axlA
[

hj (η) with

Wcurv(∇̂hηθ[(η)) = Wcurv

 ∂η1θ
[
1(η) ∂η2θ

[
1(η) 1

h∂η3θ
[
1(η)

∂η1θ
[
2(η) ∂η2θ

[
2(η) 1

h∂η3θ
[
2(η)

1
h∂η1θ

[
3(η) 1

h∂η2θ
[
3(η) 1

h2 ∂η3θ
[
3(η)

 . (6.18)

This motivates to get a trivial lower bound by defining

W hom
curv (∇θ) := inf

p̃2,p̃3,p̃4,p̃5,p̃6∈R
Wcurv

∂η1θ1 ∂η2θ1 p̃2

∂η1θ2 ∂η2θ2 p̃3

p̃6 p̃5 p̃4

 . (6.19)

The infimizing values are obtained as

p̃∗2 = 0 , p̃∗3 = 0 , p̃∗4 = − α3

2α1 + α3
(∂η1θ1 + ∂η2θ2) , p̃∗5 = 0 , p̃∗6 = 0 , (6.20)
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such that the homogenized reduced curvature density is given by

W hom
curv (∇θ) := µ

L̂2
c

2

(
α1 ‖ sym∇η1,η2(θ1, θ2)‖2 +

α1α3

2α1 + α3
tr [∇η1,η2(θ1, θ2)]2

)
.

By construction we have along the sequence θ[hj

Wcurv(∇̂hηθ[hj ) ≥W
hom
curv (∇θ[hj )) . (6.21)

Integrating the last inequality, taking the lim inf on both sides and using that W hom
curv is convex

(quadratic) in its argument, together with weak convergence of the two in-plane components of
the curvature tensor, i.e.

∇η1,η2(θ[hj ,1, θ
[
hj ,2) ⇀ ∇η1,η2(θ[0,1, θ

[
0,2) = ∇η1,η2 axlA

[

0 ∈ L2(Ω1, gl(3)) , (6.22)

(see the appendix Theorem 7.1) we obtain

lim inf
hj

∫
Ω1

Wcurv(∇̂hη axlA
[

hj ) dVη = lim inf
hj

∫
Ω1

Wcurv(∇̂hηθ[hj ) dVη (6.23)

≥ lim inf
hj

∫
Ω1

W hom
curv (∇θ[hj )) dVη ≥

∫
Ω1

W hom
curv (∇ axlA

[

0) dVη .

Then, because Wcurv,Wmp ≥ 0,

lim inf
hj

∫
Ω1

Wmp(∇hηu
]
hj
−A[hj ) +Wcurv(∇̂hη axlA

[

hj ) dVη

≥ lim inf
hj

∫
Ω1

Wmp(∇hjη u
]
hj
−A[hj ) dVη + lim inf

hj

∫
Ω1

Wcurv(∇̂hη axlA
[

hj ) dVη (6.24)

≥
∫

Ω1

W hom
mp (∇u]0, axlA

[

0) dVη +
∫

Ω1

W hom
curv (∇ axlA

[

0) dVη ,

where we used (6.17) and (6.23). Now we use that u]0, A
[

0 are both independent of the transverse
variable η3 to obtain altogether the desired lim inf-inequality

I],[0 (u]0, A
[

0) ≤ lim inf
hj

I],[hj (u]hj , A
[

hj ) (6.25)

for

I],[0 (u0, A
[

0) :=
∫ 1

2

− 1
2

∫
ω

W hom
mp (∇u0, axlA

[

0) +W hom
curv (∇ axlA

[

0) dVη

=
∫
ω

W hom
mp (∇u0, A

[

0) +W hom
curv (∇ axlA

[

0) dω . �

6.3 Global/local minimization

Because of the coupling of the fields together with the scaling of the third component of the
microrotation we have to compute a more complicated minimization problem. Looking simul-
taneously at scaled stretch and scaled curvature we are led to

inf
b∈R3,p∈R4

Wmp

(∇v|b)−

 0 −p1 θ2

p1 0 −θ1

−θ2 θ1 0

+Wcurv

∂η1θ1 ∂η2θ1 p2

∂η1θ2 ∂η2θ2 p3

∂η1p1 ∂η2p1 p4


= W hom

mp (∇v, θ) +W hom
curv (∇θ) . (6.26)

The minimization problem is in principle a global PDE-problem, since ∇η1,η2p1 appears in the
curvature energy. However, (6.26) is the correct result in precisely the case where the curvature
energy depends only on the symmetric part.
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Let us use the precise form of the energy to see what is going on. We writeWmp

(∇v|b)−

 0 −p1 θ2

p1 0 −θ1

−θ2 θ1 0

+Wcurv

∂η1θ1 ∂η2θ1 p2

∂η1θ2 ∂η2θ2 p3

∂η1p1 ∂η2p1 p4


= µ ‖ sym(∇v|b)‖2 + µc ‖ skew(∇v|b)−

 0 −p1 θ2

p1 0 −θ1

−θ2 θ1 0

 ‖2 +
λ

2
tr [(∇v|b)]2

+ α1 ‖ sym

∂η1θ1 ∂η2θ1 p2

∂η1θ2 ∂η2θ2 p3

∂η1p1 ∂η2p1 p4

 ‖2 + α2 ‖ skew

∂η1θ1 ∂η2θ1 p2

∂η1θ2 ∂η2θ2 p3

∂η1p1 ∂η2p1 p4

 ‖2 +
α3

2
(∂η1θ1 + ∂η2θ2 + p4)2

= µ ‖ sym

∂η1v1 ∂η2v1 b1
∂η1v2 ∂η2v2 b2
∂η1v3 ∂η2v3 b3

 ‖2 + µc ‖ skew(∇v|b)−

 0 −p1 θ2

p1 0 −θ1

−θ2 θ1 0

 ‖2
+
λ

2
(∂η1v1 + ∂η2v2 + b3)2

+ α1 ‖ sym

∂η1θ1 ∂η2θ1 0
∂η1θ2 ∂η2θ2 0

0 0 p4

 ‖2 +
α1

2
[
(p2 + ∂η1p1)2 + (p3 + ∂η2p1)2

]

+ α2 ‖ skew

∂η1θ1 ∂η2θ1 p2

∂η1θ2 ∂η2θ2 p3

∂η1p1 ∂η2p1 p4

 ‖2 +
α3

2
(∂η1θ1 + ∂η2θ2 + p4)2

= µ ‖ sym

∂η1v1 ∂η2v1 0
∂η1v2 ∂η2v2 0

0 0 b3

 ‖2 +
µ

2
[
(b1 + ∂η1v3)2 + (b2 + ∂η2v3)2

]

+ µc ‖ skew
(
∂η1v1 ∂η2v1

∂η1v2 ∂η2v2

)
−
(

0 −p1

p1 0

)
‖2 + µc ‖ skew

 0 0 b1
0 0 b2

∂η1v3 ∂η2v3 0

−
 0 0 θ2

0 0 −θ1

−θ2 θ1 0

 ‖2
+
λ

2
(∂η1v1 + ∂η2v2 + b3)2

+ α1 ‖ sym

∂η1θ1 ∂η2θ1 0
∂η1θ2 ∂η2θ2 0

0 0 p4

 ‖2 +
α1

2
[
(p2 + ∂η1p1)2 + (p3 + ∂η2p1)2

]
+ α2 ‖ skew

(
∂η1θ1 ∂η2θ1

∂η1θ2 ∂η2θ2

)
‖2 +

α2

2
[
(p2 − ∂η1p1)2 + (p3 − ∂η2p1)2

]
+
α3

2
(∂η1θ1 + ∂η2θ2 + p4)2 . (6.27)

Grouping the different expressions together we see that for the symmetric case α2 = 0 the
vector (b∗, p∗) ∈ R7, which realizes the infimum, can be explicitly determined. The calculation
is lengthy but otherwise straight forward. We obtain

b∗1
b∗2
b∗3
p∗1
p∗2
p∗3
p∗4


=



µc−µ
µ+µc

∂η1v3 + 2µc
µ+µc

θ2
µc−µ
µ+µc

∂η2 v3 − 2µc
µ+µc

θ1

− λ
2µ+λ (∂η1v1 + ∂η2v2)

∂η1v2−∂η2v1

2
−∂η1p

∗
1

−∂η2p
∗
1

− α3
2α1+α3

(∂η1θ1 + ∂η2θ2)


. (6.28)

Reinserting the result in the energy yields the claim in (6.26). The importance of this calculation
(while not changing the lower bound trivial limit energy), rests with the determination of the
minimizing values (6.28) which are needed in the following reconstruction procedure.7

7If the curvature energy depends also on the non-symmetric part of the curvature tensor, i.e., if α2 > 0,
then the minimization step is truly global and no simple solution can be provided. Moreover, the resulting limit
energy would depend on imposed boundary conditions for θ. But any useful effective two-dimensional model
should be boundary condition independent! Thus we get a strong motivation to use only curvature energies
depending only on the symmetric part of the curvature tensor in the Cosserat bulk model.
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6.4 Upper bound - the recovery sequence

Now we show that the lower bound will actually be reached. A sufficient requirement for the
recovery sequence is that

∀ (u0, A
[

0) ∈ X = L2(Ω1,R3)× L2(Ω1, so(3))

∃u]hj → u0 in L2(Ω1,R3) , A
[

hj → A
[

0 in L2(Ω1, so(3)) :

lim sup I],[hj (u]hj , A
[

hj ) ≤ I
],[
0 (u0, A

[

0) . (6.29)

Observe that this is now only a condition if I],[0 (u0, A
[

0) <∞. In this case the uniform coercivity

of I],[hj (u]hj , A
[

hj ) over X ′ = H1,2(Ω1,R3)×H1,2(Ω1, so(3)) implies that we can restrict attention

to sequences (u]hj , A
[

hj ) converging weakly to some (u0, A
[

0) ∈ H1,2(ω,R3) × H1,2(ω, so(3)) =
X ′ω, defined over the two-dimensional domain ω only. Note, however, that finally it is strong
convergence in X which matters.

Since

u]hj (η1, η2, η3) = u]hj (η1, η2, 0) + ∂η3u
]
hj

(η1, η2, 0) η3 + . . . (6.30)

and b∗(η1, η2) replaces the term 1
hj
∂η3u

]
hj

(η1, η2, η3) the natural candidate for the recovery
sequence for the bulk displacement is given by the ”reconstruction”

u]hj (η1, η2, η3) := u0(η1, η2) + hj η3 b
∗(η1, η2) = u0(η1, η2) + hj η3 b

∗(η1, η2) (6.31)

= u0(η1, η2) + hj η3


(µc−µ) ∂η1u0,3+2µc θ

[
0,2

µ+µc
(µc−µ) ∂η2u0,3−2µc θ

[
0,1

µ+µc
−λ (∂η1u0,1+∂η2u0,2)

2µ+λ

 ,

where we have used the definition of b∗ given in (6.28). Observe that b∗ ∈ L2(ω,R3). Conver-
gence of u]hj in L2(Ω1,R3) to the limit u0 as hj → 0 is obvious.

The reconstruction for the infinitesimal rotation A
[

0 is only slightly more complicated. In terms
of the axial representation we write

θ[hj (η1, η2, η3) =

θ[0,1(η1, η2)
θ[0,2(η1, η2)
h p∗1(η1, η2)

+

 h η3 p
∗
2(η1, η2)

h η3 p
∗
3(η1, η2)

h2 η3 p
∗
4(η1, η2)

 =

θ[0,1(η1, η2)
θ[0,2(η1, η2)
h p∗1(η1, η2)

+

−h η3 ∂η1p
∗
1(η1, η2)

−h η3 ∂η2p
∗
1(η1, η2)

h2 η3 p
∗
4(η1, η2)



=

 θ[0,1(η1, η2)
θ[0,2(η1, η2)

h
∂η1u0,2−∂η2u0,1

2

+

 −h η3 ∂η1

∂η1u0,2−∂η2u0,1

2

−h η3 ∂η2

∂η1u0,2−∂η2u0,1

2

−h2 η3
α3 (∂η1θ

[
0,1+∂η2θ

[
0,2)

2α1+α3

 , (6.32)

where we have used (6.28). Again it is clear that θ[hj → θ[0 ∈ L2(Ω1,R3) as hj → 0. Both
reconstructions are completely given in terms of the two-dimensional functions (u0, θ

[
0). Since

neither b∗ nor p∗ need be differentiable, we have to consider slightly modified recovery sequences,
however. With fixed ε > 0 choose bε ∈ H1,2(ω,R3) such that ‖bε−b∗‖L2(ω,R3) < ε and similarly
for p∗ choose p∗ε ∈ H2,2(ω,R4) such that ‖p∗ε−p∗‖L2(ω,R4) < ε. This allows us to present finally
our recovery sequence

u]hj ,ε(η1, η2, η3) := u0(η1, η2) + hj η3 bε(η1, η2) , (6.33)

θ[hj ,ε(η1, η2, η3) :=

 θ[0,1(η1, η2)
θ[0,2(η1, η2)
hj p

∗
1,ε(η1, η2)

+

−h η3 ∂η1p
∗
1,ε(η1, η2)

−h η3 ∂η2p
∗
1,ε(η1, η2)

h2 η3 p
∗
4,ε(η1, η2)

 .
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and thus

A
[

hj ,ε :=

 0 −hj p∗1,ε(η1, η2) θ[0,2(η1, η2)
hj p

∗
1,ε(η1, η2) 0 −θ[0,1(η1, η2)

−θ[0,2(η1, η2) θ[0,1(η1, η2) 0


+

 0 −h2
j η3 p

∗
4,ε(η1, η2) −hj η3∂η2 p

∗
1,ε(η1, η2)

h2
j η3 p

∗
4,ε(η1, η2) 0 hj η3∂η1 p

∗
1,ε(η1, η2)

hj η3∂η2 p
∗
1,ε(η1, η2) −hj η3∂η1 p

∗
1,ε(η1, η2) 0

 ,

A
[,[

hj ,ε :=

 0 − p∗1,ε(η1, η2) θ[0,2(η1, η2)
p∗1,ε(η1, η2) 0 −θ[0,1(η1, η2)
−θ[0,2(η1, η2) θ[0,1(η1, η2) 0


+

 0 −hj η3 p
∗
4,ε(η1, η2) −hj η3∂η2 p

∗
1,ε(η1, η2)

hj η3 p
∗
4,ε(η1, η2) 0 hj η3∂η1 p

∗
1,ε(η1, η2)

hj η3∂η2 p
∗
1,ε(η1, η2) −hj η3∂η1 p

∗
1,ε(η1, η2) 0

 ,

A
[,[

0,ε :=

 0 −p∗1,ε(η1, η2) θ[0,2(η1, η2)
p∗1,ε(η1, η2) 0 −θ[0,1(η1, η2)
−θ[0,2(η1, η2) θ[0,1(η1, η2) 0

 ,

A
[,[

0 :=

 0 −p∗1(η1, η2) θ[0,2(η1, η2)
p∗1(η1, η2) 0 −θ[0,1(η1, η2)
−θ[0,2(η1, η2) θ[0,1(η1, η2) 0

 ,

A
[

0 :=

 0 0 θ[0,2(η1, η2)
0 0 −θ[0,1(η1, η2)

−θ[0,2(η1, η2) θ[0,1(η1, η2) 0

 = anti(θ[0) . (6.34)

The definition (6.33) implies

∇u]hj ,ε(η1, η2, η3) = (∇u0(η1, η2)|hj bε(η1, η2)) + hj η3 (∇bε(η1, η2)|0) , (6.35)

∇θ[hj ,ε(η1, η2, η3) =

 ∂η1θ
[
0,1(η1, η2) ∂η2θ

[
0,1(η1, η2) 0

∂η1θ
[
0,2(η1, η2) ∂η2θ

[
0,2(η1, η2) 0

hj∂η1p
∗
1,ε(η1, η2) hj∂η2p

∗
1,ε(η1, η2) 0


+

−h η3∂η1∂η1p
∗
1,ε(η1, η2) −h η3∂η2∂η1p

∗
1,ε(η1, η2) −h ∂η1p

∗
1,ε(η1, η2)

−h η3∂η1∂η2p
∗
1,ε(η1, η2) −h η3∂η2∂η2p

∗
1,ε(η1, η2) −h ∂η2p

∗
1,ε(η1, η2)

h2
j η3 ∂η1p

∗
4,ε(η1, η2) h2

j η3 ∂η2p
∗
4,ε(η1, η2) h2

j p
∗
4,ε(η1, η2)

 .

Note that by appropriately choosing hj , ε > 0 we can arrange that strong convergence of (6.35)
to the correct limit still obtains. Now abbreviate further

Ẽ
ε

hj := [(∇u0(η1, η2)|bε(η1, η2)) + hj η3 (∇bε(η1, η2)|0)]−A[,[hj ,ε ∈ gl(3) , (6.36)

Ẽ
ε

0 := (∇u0(η1, η2)|bε(η1, η2))−A[,[0,ε ∈ gl(3) ,

Ẽ := (∇u0(η1, η2)|b∗(η1, η2))−A[,[0 ∈ gl(3) ,

K̃[hj ,ε :=

∂η1θ
[
0,1(η1, η2) ∂η2θ

[
0,1(η1, η2) 0

∂η1θ
[
0,2(η1, η2) ∂η2θ

[
0,2(η1, η2) 0

∂η1p
∗
1,ε(η1, η2) ∂η2p

∗
1,ε(η1, η2) 0


+

−h η3∂η1∂η1p
∗
1,ε(η1, η2) −h η3∂η2∂η1p

∗
1,ε(η1, η2) −∂η1p

∗
1,ε(η1, η2)

−h η3∂η1∂η2p
∗
1,ε(η1, η2) −h η3∂η2∂η2p

∗
1,ε(η1, η2) −∂η2p

∗
1,ε(η1, η2)

hj η3 ∂η1p
∗
4,ε(η1, η2) hj η3 ∂η2p

∗
4,ε(η1, η2) p∗4,ε(η1, η2)

 ,

K̃[0,ε :=

∂η1θ
[
0,1(η1, η2) ∂η2θ

[
0,1(η1, η2) −∂η1p

∗
1,ε(η1, η2)

∂η1θ
[
0,2(η1, η2) ∂η2θ

[
0,2(η1, η2) −∂η2p

∗
1,ε(η1, η2)

∂η1p
∗
1,ε(η1, η2) ∂η2p

∗
1,ε(η1, η2) p∗4,ε(η1, η2)

 ,

K̃[0 :=

∂η1θ
[
0,1(η1, η2) ∂η2θ

[
0,1(η1, η2) −∂η1p

∗
1(η1, η2)

∂η1θ
[
0,2(η1, η2) ∂η2θ

[
0,2(η1, η2) −∂η2p

∗
1(η1, η2)

∂η1p
∗
1(η1, η2) ∂η2p

∗
1(η1, η2) p∗4(η1, η2)

 ,

K[0 :=

∂η1θ
[
0,1(η1, η2) ∂η2θ

[
0,1(η1, η2) 0

∂η1θ
[
0,2(η1, η2) ∂η2θ

[
0,2(η1, η2) 0

0 0 0

 = ∇θ[0 ∈ gl(3) .
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We note that

‖K̃[hj ,ε − K̃[0,ε‖L2(Ω1,M3×3) → 0 if hj → 0 ,

‖K̃[0,ε − K̃[0‖L2(Ω1,M3×3) → 0 if ε→ 0 , (6.37)

‖Ẽ
ε

hj − Ẽ
ε

0‖L2(Ω1,M3×3) → 0 if hj → 0 ,

‖Ẽ
ε

0 − Ẽ‖L2(Ω1,M3×3) → 0 if ε→ 0 .

The abbreviations in (6.36) imply

I],[hj (u]hj ,ε, A
[

hj ,ε) =
∫

Ω1

Wmp(Ẽ
ε

hj ) +Wcurv(K̃[hj ,ε) dVη , (6.38)

where we used that hj · bε in the definition of the recovery deformation gradient (6.35)1 is
cancelled by the factor 1

hj
in the definition of I],[hj , similarly for the other components. Whence,

adding and subtracting Wmp(Ẽ)

I],[hj (u]hj ,ε, A
[

hj ,ε) =
∫

Ω1

Wmp(Ẽ) +Wmp(Ẽ
ε

hj )−Wmp(Ẽ) +Wcurv(K̃[hj ,ε) dVη

=
∫

Ω1

Wmp(Ẽ) +Wmp(Ẽ + Ẽ
ε

hj − Ẽ)−Wmp(Ẽ) +Wcurv(Khj ) dVη

since Wmp and Wcurv are both positive, we get from the triangle inequality

≤
∫

Ω1

Wmp(Ẽ) + |Wmp(Ẽ + Ẽ
ε

hj − Ẽ)−Wmp(Ẽ)|+Wcurv(K̃[hj ,ε) dVη

expanding the quadratic energy Wmp we obtain

=
∫

Ω1

Wmp(Ẽ) + |Wmp(Ẽ) + 〈DWmp(Ẽ), Ẽ
ε

hj − Ẽ〉

+D2Wmp(Ẽ).(Ẽ
ε

hj − Ẽ, Ẽ
ε

hj − Ẽ)−Wmp(Ẽ)|+Wcurv(K̃[hj ,ε) dVη (6.39)

≤
∫

Ω1

Wmp(Ẽ) + ‖DWmp(Ẽ)‖ ‖Ẽ
ε

hj − Ẽ‖+ C ‖Ẽ
ε

hj − Ẽ‖
2 +Wcurv(K̃[hj ,ε) dVη

for ‖Ẽ
ε

hj − Ẽ‖ ≤ 1 we have

≤
∫

Ω1

Wmp(Ẽ) +
(
C + ‖DWmp(Ẽ)‖

)
‖Ẽ

ε

hj − Ẽ‖+Wcurv(K̃[hj ,ε) dVη

since ‖DWmp(Ẽ)‖ ≤ C2 ‖Ẽ‖ we obtain

≤
∫

Ω1

Wmp(Ẽ) +
(
C + C2 ‖Ẽ‖

)
‖Ẽ

ε

hj − Ẽ‖+Wcurv(K̃[hj ,ε) dVη

and by Hölder’s inequality we get

≤
∫

Ω1

Wmp(Ẽ) +Wcurv(K̃[hj ,ε) dVη +
(
C + C2 ‖Ẽ‖L2(Ω1)

)
‖Ẽ

ε

hj − Ẽ‖L2(Ω1) .

Continuing the estimate with regard to Wcurv(K̃[hj ,ε) and adding and subtracting Ẽ
ε

0 we may
obtain

I],[hj (u]hj ,ε, A
[

hj ,ε) ≤
∫

Ω1

Wmp(Ẽ) +Wcurv(K̃[0) +Wcurv(K̃[hj ,ε)

−Wcurv(K̃[0) dVη

+
(
C + C2 ‖Ẽ‖L2(Ω1)

)
‖Ẽ

ε

hj − Ẽ
ε

0 + Ẽ
ε

0 − Ẽ‖L2(Ω1)

≤
∫

Ω1

Wmp(Ẽ) +Wcurv(K̃[0) dVη

+ ‖Wcurv(K̃[hj ,ε)−Wcurv(K̃[0,ε)‖L1(Ω1) (6.40)

+ ‖Wcurv(K̃[0,ε)−Wcurv(K̃[0)‖L1(Ω1)

+
(
C + C2 ‖Ẽ‖L2(Ω1)

) (
‖Ẽ

ε

hj − Ẽ
ε

0‖L2(Ω1) + ‖Ẽ
ε

0 − Ẽ‖L2(Ω1)

)
.
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Now take hj → 0 to obtain by the continuity of Wcurv (the argument is similar to (6.42)) and
(6.37)3

lim sup
hj→0

I],[hj (u]hj ,ε, A
[

hj ,ε) ≤
∫

Ω1

Wmp(Ẽ) +Wcurv(K̃[0) dVη

+ ‖Wcurv(K̃[0,ε)−Wcurv(K̃[0)‖L1(Ω1) (6.41)

+
(
C + C2 ‖Ẽ‖L2(Ω1)

)
‖Ẽ

ε

0 − Ẽ‖L2(Ω1) .

Because the curvature energy depends only on the symmetric part, we observe also

Wcurv(K̃[0,ε)−Wcurv(K̃[0) = ‖p∗4,ε − p∗4‖2 . (6.42)

Since

‖Ẽ
ε

0 − Ẽ‖2 = ‖(∇u0(η1, η2)|bε)− (∇u0(η1, η2)|b∗) + (A
[,[

0,ε −A
[,[

0 )‖2

≤ 2
(
‖bε − b∗‖2 + ‖A[,[0,ε −A

[,[

0 ‖2
)

= 2
(
‖bε − b∗‖2 + 2‖p∗1,ε − p∗1‖2

)
, (6.43)

we get, by letting ε→ 0 and using (6.42), the bound

lim sup
hj→0

I],[hj (u]hj ,ε, A
[

hj ,ε) ≤
∫

Ω1

Wmp(Ẽ) +Wcurv(K̃[0) dVη

=
∫

Ω1

W hom
mp (∇u0, A

[

0) +W hom
curv (K[0) dVη . (6.44)

Since u0, A
[

0 are two-dimensional (independent of the transverse variable), we may write as well

lim sup
hj→0

I],[hj (u]hj ,ε, A
[

hj ,ε) ≤
∫

Ω1

W hom
mp (∇u0, A

[

0) +W hom
curv (K[0) dVη

=
∫
ω

W hom
mp (∇u0, A

[

0) +W hom
curv (K[0) dω = I],[0 (u0, A

[

0) , (6.45)

which shows the desired upper bound. This finishes the proof of Theorem 5.1. �
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Notation
Let Ω ⊂ R3 be a bounded domain with Lipschitz boundary ∂Ω and let Γ be a smooth subset of ∂Ω with non-
vanishing 2-dimensional Hausdorff measure. For a, b ∈ R3 we let 〈a, b〉R3 denote the scalar product on R3 with
associated vector norm ‖a‖2R3 = 〈a, a〉R3 . We denote by M3×3 the set of real 3× 3 second order tensors, written
with capital letters and Sym denotes symmetric second orders tensors. The standard Euclidean scalar product
on M3×3 is given by 〈X,Y 〉M3×3 = tr

ˆ
XY T

˜
, and thus the Frobenius tensor norm is ‖X‖2 = 〈X,X〉M3×3 .

In the following we omit the index R3,M3×3. The identity tensor on M3×3 will be denoted by 11, so that
tr [X] = 〈X, 11〉. We set sym(X) = 1

2
(XT +X) and skew(X) = 1

2
(X −XT ) such that X = sym(X) + skew(X).

For X ∈ M3×3 we set for the deviatoric part devX = X − 1
3

tr [X] 11 ∈ sl(3) where sl(3) is the Lie-algebra of
traceless matrices. The set Sym(n) denotes all symmetric n × n-matrices. The Lie-algebra of so(3) := {X ∈
GL(3) |XTX = 11, det[X] = 1} is given by the set so(3) := {X ∈ M3×3 |XT = −X} of all skew symmetric
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tensors. The canonical identification of so(3) and R3 is denoted by axlA ∈ R3 for A ∈ so(3). Note that
(axlA)× ξ = A.ξ for all ξ ∈ R3, such that

axl

0@ 0 α β
−α 0 γ
−β −γ 0

1A :=

0@−γβ
−α

1A , Aij =
3X
k=1

−εijk · axlAk ,

‖A‖2M3×3 = 2 ‖ axlA‖2R3 , 〈A,B〉M3×3 = 2〈axlA, axlB〉R3 ,

where εijk is the totally antisymmetric permutation tensor. Here, A.ξ denotes the application of the matrix A
to the vector ξ and a× b is the usual cross-product. Moreover, the inverse of axl is denoted by anti and defined
by 0@ 0 α β

−α 0 γ
−β −γ 0

1A := anti

0@−γβ
−α

1A , axl(skew(a⊗ b)) = −
1

2
a× b ,

and

2 skew(b⊗ a) = anti(a× b) = anti(anti(a).b) .

Moreover,

curlu = 2 axl(skew∇u) .

Notation for plates and shells
Let ω ⊂ R2 always be a bounded open domain with Lipschitz boundary ∂ω and let γ0 be a smooth subset of
∂ω with non-vanishing 1-dimensional Hausdorff measure. The aspect ratio of the plate is h > 0. We denote
by Mm×n the set of matrices mapping Rn 7→ Rm. For H ∈ M3×2 and ξ ∈ R3 we write (H|ξ) ∈ M3×3 for
the matrix composed of H and the column ξ. Likewise (v|ξ|η) is the matrix composed of the columns v, ξ, η.
This allows us to write for u ∈ C1(R3,R3) : ∇u = (ux|uy |uz) = (∂xu|∂yu|∂zu). The identity tensor on
M2×2 is 112. The mapping m : ω ⊂ R2 7→ R3 is the deformation of the midsurface, ∇m is the corresponding
deformation gradient and ~nm is the outer unit normal on m. A matrix X ∈ M3×3 can now be written as
X = (X.e2|X.e2|X.e3) = (X1|X2|X3). We write v : R2 7→ R3 for the deflection of the midsurface, such that
m(x, y) = (x, y, 0)T + v(x, y). The standard volume element is dx dy dz = dV = dω dz.

7 Appendix

7.1 The infinitesimal Reissner-Mindlin membrane/bending model

Abbreviating now θ = (θ1, θ2, 0)T = −A3, we are left with the following set of equations for the deflection of
the midsurface of the plate v : ω ⊂ R2 7→ R3 and the infinitesimal increment of the ’director’, θ : ω 7→ R3

Z
ω
h

0BBB@µ ‖ sym∇(v1, v2)‖2 +
κµ

2
‖∇v3 − θ‖2| {z }

transverse shear energy

+
µλ

2µ+ λ
tr [sym∇(v1, v2)]2

1CCCA
+
h3

12

„
µ ‖ sym∇θ‖2 +

µλ

2µ+ λ
tr [sym∇θ]2

«
− 〈f, v〉 dω 7→ min . w.r.t. (v, θ),

v|γ0
= ud(x, y, 0) , simply supported (7.1)

−θ|γ0
= (ud

1,z , u
d
2,z , 0)T , rigid director prescription .

Here 0 < κ ≤ 1 is the so called shear correction factor. The model is very popular and can be found, e.g.,
in [7, p.90].8

7.2 The classical infinitesimal-displacement Kirchhoff-Love plate (Koi-
ter model)

For the convenience of the reader we also supply the similar system of equations for the classical infinitesimal-
displacement Kirchhoff-Love plate (also the Koiter model). In terms of the midsurface deflection v : ω ⊂ R2 7→ R3

we have to find a solution of the minimization problemZ
ω
h

„
µ ‖ sym∇(v1, v2)‖2 +

µλ

2µ+ λ
tr [sym∇(v1, v2)]2

«
+
h3

12

„
µ ‖D2v3‖2 +

µλ

2µ+ λ
tr
ˆ
D2v3

˜2«− 〈f, v〉dω 7→ min . w.r.t. v,

v|γ0
= ud(x, y, 0) , simply supported (7.2)

−∇v3|γ0
= (ud

1,z , u
d
2,z , 0)T , typical rigid prescription of the infinitesimal normal .

This energy can also be obtained formally from (7.1) by constraining the linearized director to the linearized
normal of the plate, i.e., setting θ = ∇v3.

8Hence the shear correction factor κ is directly determined by the Cosserat couple modulus µc. For rather
thick plates, it is known that the shear energy in RMlin is overestimated, therefore, one is led to reduce the
shear energy contribution a posteriori by taking κ < 1.
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7.3 Aganovic’s and Neff’s model based on simultaneous nonlinear

scaling u], A
]
.

In [2] a shell model is proposed based on asymptotic analysis of the linear isotropic micropolar model, the

assumption of nonlinear scaling for displacements u] and infinitesimal microrotations A
]

and uniform
positivity assumption for the curvature together with homogeneous Dirichlet conditions on the microrotations.
We specialize this model from shell to plate, rewrite its weak form into a minimization problem and adapt it
to our notation. Then the problem reads: find the deflection of the midsurface v : ω ⊂ R2 7→ R3 and the
microrotation vector θ : ω ⊂ R2 7→ R3 such that

Iasmp
0 (v, θ) =

Z
ω
W asymp

mp (∇v, θ) +W asmp
curv (∇θ)− 〈f, v〉 dω 7→ min . w.r.t. (v, θ) , (7.3)

and the boundary conditions of place for the midsurface deflection v on the Dirichlet part of the lateral boundary
γ0 ⊂ ∂ω,

v|γ0
= ud(x, y, 0) simply supported

and the homogeneous boundary condition for the microrotation

θ|∂ω = 0 , completely clamped .

The asymptotically reduced local density is

W asmp
mp (∇v,θ) := µ ‖ sym

„
∇η1,η2 (v1, v2)−

„
0 −θ3
θ3 0

««
‖2| {z }

shear-stretch energy

+µc ‖ skew

„
∇η1,η2 (v1, v2)−

„
0 −θ3
θ3 0

««
‖2| {z }

in-plane drill energy

(7.4)

+ 2µ
µc

µ+ µc
‖∇η1,η2v3 −

„
−θ2
θ1

«
‖2| {z }

asymptotic transverse shear energy

+
µλ

2µ+ λ
tr

»
sym

„
∇η1,η2 (v1, v2)−

„
0 −θ3
θ3 0

««–2

| {z }
asymptotic elongational stretch energy

.

The asymptotically correct curvature density is given by

W asmp
curv (∇θ) := µ

bL2
c

2

0BB@α1 ‖ sym∇η1,η2 (θ1, θ2)‖2| {z }
I-energy

+α2 ‖ skew∇η1,η2 (θ1, θ2)‖2| {z }
II-energy

(7.5)

+ 2α1
α2

α1 + α2
‖∇η1,η2θ3‖

2| {z }
III-energy

+
α1α3

2α1 + α3
tr [∇η1,η2 (θ1, θ2)]2| {z }

IV-energy

1CCCA .

While α2 = 0 would give formally the Reissner-Mindlin model, the proof of asymptotic convergence in [2]
needs decisively the uniform positive curvature assumption kc > 0, α2 > 0. The limit model is well-posed for
kc > 0, α2 = 0.

The conformal curvature case is retrieved for α1 = 1, α2 = 0, α3
2

= − 1
3

in which case the reduced curvature
turns into

W asmp,conf
curv (∇θ) := µ

bL2
c

2
‖ dev2 sym∇η1,η2 (θ1, θ2)‖2 . (7.6)

This case is not 2D-well-posed! It is straightforward to show that this asymptotic limit model coincides with the

Γ-limit for simultaneous nonlinear scaling u], A
]

in the strong topology of L2 for both fields under the conditions
kc > 0, α2 > 0. This asymptotic limit model coincides with the linearization of the Γ-limit for nonlinear Cosserat
plates in [28, 29] which was also based on the simultaneous nonlinear scaling of deformations and rotations (note
that in the nonlinear regime, dealing with exact rotations, it is difficult to scale the rotations with a linear
scaling). Also here, α2 > 0 is implicitly assumed. Thus, the presence of the in-plane drill component θ3 cannot
be avoided and therefore, this is not the Reissner-Mindlin model, for no choice of (derivation-) admissible
Cosserat parameters.

7.4 A model based on linear scaling of u and nonlinear scaling of A,

i.e., u[, A
]
.

The Γ-limit can be established along the presented lines provided that α2 >= Note that the local minimization
step for linear and nonlinear scaling with respect to the displacement u yields the same homogenized energy9

since

inf
b∈R3

W ((∇v|b)) = inf
p∈R3

W

0@0@∂η1v1 ∂η2v1 p1

∂η1v2 ∂η2v2 p2

p1 p2 p3

1A1A for W (X) = µ‖ symX‖2 +
λ

2
tr [X]2 . (7.7)

The model is: find the deflection of the midsurface v : ω ⊂ R2 7→ R3 and the microrotation vector θ : ω ⊂ R2 7→
R3 such that

I[,]0 (v, θ) =

Z
ω
W asymp

mp (∇v, θ) +W asmp
curv (∇θ)− 〈f, v〉 dω 7→ min . w.r.t. (v, θ) , (7.8)

9Not true for the curvature energy depending also on anti-symmetric terms for α2 > 0.
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and the boundary conditions of place for the midsurface deflection v on the Dirichlet part of the lateral boundary
γ0 ⊂ ∂ω,

v|γ0
= ud(x, y, 0) = ud(x, y, 0) , simply supported (fixed, welded) .

and the homogeneous boundary condition for the microrotation

θ|γ0
= 0 , partially clamped .

The asymptotically reduced local density is

W asmp
mp (∇v, θ) :=µ ‖ sym∇η1,η2 (v1, v2)‖2 + µc ‖ skew

„
∇η1,η2 (v1, v2)−

„
0 −θ3
θ3 0

««
‖2| {z }

in-plane drill energy

(7.9)

+
µλ

2µ+ λ
tr [∇η1,η2 (v1, v2)]2 .

The asymptotically correct curvature density is given by

W asmp
curv (∇θ) := µ

bL2
c

2

0BB@α1 ‖ sym∇η1,η2 (θ1, θ2)‖2| {z }
I-energy

+α2 ‖ skew∇η1,η2 (θ1, θ2)‖2| {z }
II-energy

(7.10)

+ 2α1
α2

α1 + α2
‖∇η1,η2θ3‖

2| {z }
III-energy

+
α1α3

2α1 + α3
tr [∇η1,η2 (θ1, θ2)]2| {z }

IE-energy

1CCCA .

The limit model already decouples the bending rotations θ1, θ2 from the in-plane deflections v1, v2. For the
nonlinear scaling of the microrotations it is necessary to have α2 > 0 for the Γ-limit result.

7.5 A model based on linear scaling of u and linear scaling of A, i.e.,

u[, A
[
.

The problem is: find the deflection of the midsurface v : ω ⊂ R2 7→ R3 and the microrotation vector θ : ω ⊂
R2 7→ R3 such that

I[,[0 (v, θ) =

Z
ω

W asymp
mp (∇v, θ) +W asmp

curv (∇θ)− 〈f, v〉dω 7→ min . w.r.t. (v, θ) , (7.11)

and the boundary conditions of place for the midsurface deflection v on the Dirichlet part of the lateral boundary
γ0 ⊂ ∂ω,

v|γ0
= ud(x, y, 0) = ud(x, y, 0) , simply supported (fixed, welded) .

and the homogeneous boundary condition for the microrotation

θ|γ0
= 0 , partially clamped .

The asymptotically reduced local density is

W asmp
mp (∇v,θ) := µ ‖ sym∇η1,η2 (v1, v2)‖2 +

µλ

2µ+ λ
tr [sym∇η1,η2 (v1, v2)]2 .

The asymptotically correct curvature density is given by

W asmp
curv (∇θ) := µ

bL2
c

2

0BB@α1 ‖ sym∇η1,η2 (θ1, θ2)‖2| {z }
I-energy

+α2 ‖ skew∇η1,η2 (θ1, θ2)‖2| {z }
II-energy

(7.12)

+ 2α1
α2

α1 + α2
‖∇η1,η2θ3‖

2| {z }
III-energy

+
α1α3

2α1 + α3
tr [∇η1,η2 (θ1, θ2)]2| {z }

IV-energy

1CCCA .

If we identify (θ1, θ2) = ∇v3 we recover the linear Koiter model (7.2). Erbay writes [13, p.1513]: ”An examination
of these equations shows that, as in the classical plate theory, the equations governing the flexural (bending)
and the extensional (stretching) motions of the plate are independent of each other. ” The presented Γ-limit
reproduces this decoupling.

7.6 Korn’s inequality and the linear scaling for A
[

The major merit of the linear scaling (4.2) is that it respects the infinitesimal strain structure and allows one to
derive estimates independent of the scaling parameter h > 0 in the case where one controls only symmetrized
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gradients in the curvature energy. To see this, abbreviate θ[ := axlA
[

and consider

sym b∇hηθ[(η) =

0@ ∂η1θ
[
1(η) 1

2
[∂η2θ

[
1(η) + ∂η1θ

[
2(η)] 1

2h
[∂η3θ

[
1(η) + ∂η1θ

[
3(η)]

1
2

[∂η1θ
[
2(η) + ∂η2θ

[
1(η)] ∂η2θ

[
2(η) 1

2h
[∂η3θ

[
2(η) + ∂η2θ

[
3(η)]

1
2h

[∂η3θ
[
1(η) + ∂η1θ

[
3(η)] 1

2h
[∂η3θ

[
2(η) + ∂η2θ

[
3(η)] 1

h2 ∂η3θ
[
1(η)

1A ,

‖ sym b∇hηθ[(η)‖2 = ‖ sym

0@ ∂η1θ
[
1(η) ∂η2θ

[
1(η) 1

h
∂η3θ

[
1(η)

∂η1θ
[
2(η) ∂η2θ

[
2(η) 1

h
∂η3θ

[
2(η)

1
h
∂η1θ

[
3(η) 1

h
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∂η1θ
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[
3(η) 0

1A ‖2
+

1

h4
(∂η3θ

[
3(η))2 ≥

1

h4
‖ sym∇ηθ[(η)‖2 ≥ ‖ sym∇ηθ[(η)‖2 . (7.13)

With this preparation we show

Theorem 7.1 (Scaled Korn’s inequality for the micro-rotation vector)
For hj → 0 as j →∞ consider the linearly scaled sequence θ[hj

: Ω1 7→ R3 and assume that is satisfies either

1. ∀ hj > 0 : ‖θ[hj ‖L2(Ω1,R3) ≤ K1 , ‖θ[hj ,3‖L2(Ω1,R) → 0 as hj → 0

2. θ[hj |Γ1
0

= 0.

Assume in addition the boundedness of scaled strains along hjZ
Ω1

‖ sym b∇hηθ[hj (η)‖2 dVη ≤ K2 ,

where the constants K1,K2 are independent of hj . Then

‖θ[hj ‖H1,2(Ω1,R3) ≤ K3 ,

with a constant K3 independent of hj and there exists a weakly convergent subsequence in H1(Ω,R3) (without
re-labeling), such that

θ[hj ⇀ θ[0 ∈ H1(Ω,R3) , hj → 0 ,

θ[hj → θ[0 ∈ L2(Ω1,R3) , hj → 0 .

In the first case we obtain moreover that θ[0(η1, η2, η3) = θ[0(η1, η2), independent of the transverse variable and

for the limit of the third component θ[0,3 = 0.

In the second case (Dirichlet-boundary case) we obtain for the weak limit (only) θ[0(η1, η2, η3) ∈ VKL(Ω1).

Proof. In the first case, we may use the estimate (7.13) and Korn’s second inequality without boundary condi-
tions. In the second case for Dirichlet-boundary conditions, we may use Korn’s first inequality with boundary
conditions. Then the existence of a weakly convergent subsequence is clear from boundedness in H1(Ω,R3).
Rellich’s compact embedding provides us with strong convergence in L2(Ω,R3). In the second case, the weak
limit satisfies the boundary condition θ[0|Γ1

0

= 0. Boundedness of scaled strains and weak convergence of ∇ηθ[hj
implies as well (compare with Ciarlet [8, p.37])Z

Ω1

‖[sym∇ηθ[hj ].e3‖2 ≤ K h2
j → 0 ⇒ [sym∇ηθ[hj ].e3 ⇀ [sym∇ηθ[0].e3 = 0 . (7.14)

Thus the weak limit θ[0 of the scaled micro-rotation vector is found in the space V KL. In the first case we know

more, namely that 〈θ[0, e3〉 = 0 in L2(Ω1,R) which gives the result. �

Definition 7.2 (Space of scaled Kirchhoff-Love displacements VKL)
Following Ciarlet, we define the space

VKL(Ω1) := {θ ∈ H1,2(Ω1,R3) : θ|Γ0
= 0 , [sym∇ηθ(η)].e3 = 0 for η ∈ Ω1} . (7.15)

This space is equivalently characterized by ([8, p. 41] or [15, p.561] or [11, p.12])

VKL(Ω1) := {θ ∈ H1,2(Ω1,R3) : θ|Γ1
0

= 0 ,

θ1(η1, η2, η3) = w1(η1, η2)− η3 ∂η1θ3(η1, η2) ,

θ2(η1, η2, η3) = w2(η1, η2)− η3 ∂η2θ3(η1, η2) ,

θ3(η1, η2, η3) = w3(η1, η2) ,

w1, w2 ∈ H1(ω,R) , w3 ∈ H2(ω,R) , w1, w2, w3|γ0
= 0 , ∂νw3|γ0

= 0 } . (7.16)

We first remark that the in-plane components θ1, θ2 are not necessarily two-dimensional, although they are
determined by two-dimensional functions.
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7.7 The Γ-limit for linear elasticity and linear scaling u[hj
To put our result into further perspective let us relate it to classical linear elasticity. Using Theorem 7.1 for the
scaled displacement u[hj

with Dirichlet boundary conditions allows to establish the suitable bounds. The Γ-limit

of I[hj
(u[hj

) in the strong topology of L2(Ω1,R3) is given by the limit energy functional I[0 : L2(Ω1,R3) 7→ R,

I[0(v) :=

(R
Ω1
Whom(∇v)− 〈f, v〉dVη v ∈ VKL(Ω1)

+∞ else in H1,2(Ω1,R3) ,
(7.17)

with

Whom(∇v) :=µ ‖ sym∇η1,η2 (v1, v2)‖2 +
µλ

2µ+ λ
tr [∇η1,η2 (v1, v2)]2 .

This result is a slight variation of the statements in [8, p.95] and [5]. One might be tempted to think that this
defines a membrane model. However, the limit is not truly two-dimensional but in the space VKL. It is therefore
possible to insert the limit into the integral and to perform the integration over the thickness analytically. The
result is, after descaling, surprisingly, the Kirchhoff-Love membrane-bending plate (7.2) written in the deflection
v : ω ⊂ R2 7→ R3 and setting v(η1, η2) := Av .v for v ∈ VKL(Ω1). Note again that the vertical deflection should
be of the order of the thickness of the plate for this result to make sense.

7.8 An inequality for linear elasticity with nonlinear scaling u]hj
Assuming linear elastic behavior and simply considering the nonlinear scaling, the following inequality can be
established:

Theorem 7.3 (hj-dependent Korn’s first inequality and nonlinear scaling)
For hj → 0 consider a sequence u]hj

∈ A′. Then there exists a constant C independent of hj > 0 such that

C

h2
j

Z
Ω1

‖ sym∇hηu
]
hj

(η)‖2 dVη ≥ ‖u]hj (η)‖2
H1,2(Ω1,R3)

.

Proof. Can be found in [4, Th.A.1], see also [9, p.176]. �

Remark 7.4
With this (essentially sharp) inequality, it is difficult to continue the Γ-limit development in classical linear
elasticity based on the nonlinear scaling without further assumptions on the scaling of energies. This is one
of the reasons, why Ciarlet uses the linear scaling in the case of plates (the inequality can be improved to be
independent of hj in case of a shell with elliptic surface).

Assume, however, that the scaled energy satisfies (this is a strong assumption on the data in disguise)

1

h2
j

I](u]hj
) ≤ C . (7.18)

Then Theorem 7.3 allows to establish weak compactness of u]hj
in H1,2(Ω1,R3). The Γ-limit of 1

h2
j

I] in the

strong topology of L2(Ω1,R3) is given by the limit energy functional I]0 : L2(Ω1,R3) 7→ R,

I]0(v) :=

(R
ωW

hom(∇v)− 〈f, v〉dω v ∈ H1,2(ω,R3)

+∞ else in L2(Ω1,R3) .
(7.19)

For this result compare to [4, Th.4.2]. For sequences bounded in H1 it is easy to see that the weak limit is
actually independent of η3 and thus the limit problem is a membrane-plate.

Remark 7.5
In the finite strain setting the assumption 1

h2
j

I](ϕ]hj
) ≤ C leads to the classical plate-bending problem [18].
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