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Abstract

We are interested in simulation and optimization of gas transport in networks. Different regions of the
network may be modelled by different equations. There are three models based on the Euler equations
that describe the gas flow in pipelines qualitatively different: a nonlinear model, a semilinear model and
a stationary also called algebraic model. For the whole network, adequate initial and boundary values
as well as coupling conditions at the junctions are needed. Using adjoint techniques one can specify
model error estimators for the simplified models. A strategy to adaptively apply the different models in
different regions of the network while maintaining the accuracy of the solution is presented.

1 Introduction

During the last years, there has been intense research in the field of simulation and optimization of gas
transport in networks [2–4,8,9]. The equations describing the transport of gas in pipelines are based on
the Euler equations, a hyperbolic system of nonlinear partial differential equations, mainly consisting of
the conservation of mass, momentum and energy. The transient flow of gas may be described appropri-
ately by equations in one space dimension. For the whole network, adequate initial and boundary values
as well as coupling conditions at the junctions are needed.

Although solving one-dimensional equations does not pose a challenge, the complexity increases with
the size of the network. Thus, we present a hierarchy of models that describes the flow of gas in pipelines
qualitatively different: The most detailed model we use consists of the isothermal Euler equations (con-
tinuity equation and momentum equation). A common simplification of the momentum equation leads
to a semilinear model, which is only valid if the velocity of the gas is much less than the speed of sound,
that is, |v| � c. Further simplifications lead to the steady state model. The different models are intro-
duced in section 2. The modelling of the network as well as the boundary and coupling conditions are
presented in section 3.

In order to estimate the model error of the simplified models, that is, of the semilinear and the steady
state model with respect to some quantity of interest, one has to solve adjoint systems on the network.
For the adjoint equations appropriate coupling conditions are required which are introduced in section 4.
There, we also present a strategy, how to decide in which regions of the network which model has to be
used to reduce the complexity of the whole problem, whereas the accuracy of the solution is maintained.
We give numerical examples of this algorithm that switches adaptively between the models on one pipe
in section 5.
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2 Model hierarchy

In this section, we introduce a hierarchy of models consisting of three different models. Each model
results from the previous one by making further simplifying assumptions [1].

2.1 Nonlinear model

The isothermal Euler equations, which describe the flow of gas, consist of the continuity and the mo-
mentum equation:

∂ ρ

∂ t
+
∂ (ρv)
∂ x

= 0. (1a)

∂ (ρv)
∂ t

+
∂ (ρv2)
∂ x

+
∂ p

∂ x
=−gρh′−

λ

2d
ρ|v|v. (1b)

Additionally the equation of state for real gases holds:

ρ =
p

z(p, T )RT
. (2)

Here, ρ denotes the density, v the velocity of the gas, p the pressure, g the gravity constant, h′ the slope
of the pipe, λ the friction coefficient, d the diameter of the pipe, R the (special) gas constant, T the
temperature of the gas (assumed to be constant) and z = z(p, T ) the compressibility factor.

For the sake of simplicity, we assume the pipe to be horizontal and the compressibility factor to be
constant. This results in a simplified equation of state with constant speed of sound c:

ρ =
p

c2 , c =
p

RT .

Since the mass flow M can be traced back to the flux under standard conditions (M = ρvA = ρ0q) the
system can be rewritten in the following way:

pt +
ρ0c2

A
qx = 0 (3a)

qt +
A

ρ0
px +

ρ0c2

A

�

q2

p

�

x

=−
λρ0c2|q|q

2dAp
(3b)

or in a more compact form

ut + f (u)x =ψ(u) (4)

with

u=

�

p
q

�

, f (u) =





ρ0c2

A
q

A
ρ0

p+ ρ0c2

A
q2

p



 , ψ(u) =

 

0

−λρ0c2|q|q
2dAp

!

.

Here, ρ0 denotes the density under standard conditions (1 atm air pressure, temperature of 0 °C), A the
cross-sectional area of the pipe and q the flux under standard conditions.
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For a scalar conservation law, information always travels with speed f ′(u) (also called characteristic
speed). For a system of conservation laws, one has to compute the eigenvalues of the Jacobian matrix of
f . Thus we get

A(u) = f ′(u) =





0 ρ0c2

A
A
ρ0
− ρ0c2

A
q2

p2
2ρ0c2

A
q
p





with eigenvalues

λ1/2(u) =
ρ0c2

A

q

p
∓ c = v∓ c.

Therefore, for subsonic flow, the characteristics travel in opposite directions with the characteristic
speeds λ1/2 depending on the velocity of the gas.

2.2 Semilinear model

We can rewrite the term of the spatial derivative in the momentum equation (1b) as follows:

∂ (ρv)
∂ t

+
∂

∂ x

�

p

�

1+
v2

c2

��

=−
λρ0c2|q|q

2dAp
.

If the velocity v of the gas is much less than the speed of sound, we can neglect v2

c2 . Together with the
equation of state as above, this yields a semilinear model

ut +Aux =ψ(u) (5)

with

u=

�

p
q

�

, A=

 

0 c2ρ0

A
A
ρ0

0

!

and ψ(u) =

 

0

−λρ0c2|q|q
2dAp

!

.

For the semilinear model we can also specify characteristic speeds. The eigenvalues of the matrix A are
λ1/2 =∓c. Thus, information always travels in both directions with sonic speed.

2.3 Algebraic model

A further simplification leads to the stationary model: Setting the time derivatives in (5) to zero results
in

qx = 0

A

ρ0
px =−

λρ0c2|q|q
2dAp

.

Thus, q is constant in space and the exact solution for p is

p(x) =

r

p(x0)2+
λρ2

0c2|q|q
dA2 (x0− x) .
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Here, p(x0) denotes the pressure at an arbitrary point x0 ∈ [0, L]. Setting x0 = 0, that is, p(x0) = p(0) =
pin at the inbound of the pipe, and x = L, that is, p(x) = p(L) = pout at the end of the pipe, yields the
algebraic model [10]

pout =

r

p2
in−

λρ2
0c2|q|q
dA2 L. (6)

For the other two models, we computed characteristic speeds at which information propagates in differ-
ent directions. Since this model is stationary, information given at any place instantaneously influences
all other points.

3 Modelling of the network

We now want to describe the gas flow on networked pipelines. For this purpose, we model the network
as a directed graph G = (J ,V) with edges J (pipes) and vertices V (nodes, branching points). Each edge
j ∈ J is defined as an interval (xa

j , x b
j ) with a direction from xa

j to x b
j . Of course, all intervals are disjoint.

Then, for any inner node v, we can define two sets of edges. Let the set of ingoing pipes be denoted
by δ−v , that is, the set of any edge j ∈ J with endpoint x b

j being adjacent to v. Then, analogously, δ+v
denotes the set of outgoing pipes (see figure 1).

v1

v2

v3

v4
1

2

3

4

5

6

7

δ−v2
= {2}

δ+v2
= {4,5}

Figure 1: A small network; the ingoing pipes of node v2 are δ−v2
= {2} and the set of outgoing pipes is

δ+v2
= {4, 5}

Inside each pipe one of the models described above holds. In order to obtain a unique solution, we have
to pose coupling conditions at the inner nodes of the network as well as boundary conditions at the
sources and sinks.

3.1 Coupling conditions

A first coupling condition is the conservation of mass at each inner node. Let v ∈ V be a node with
ingoing pipes j ∈ δ−v and outgoing pipes i ∈ δ+v . Then, Kirchhoff’s law (conservation of mass) yields

∑

j∈δ−v

q(x b
j , t) =

∑

i∈δ+v

q(xa
i , t) ∀t ≥ 0. (7)

This law is also called Rankine-Hugoniot condition at the node.
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Next, we need further coupling conditions and there are several possibilities. The most common condi-
tion used is the equality of pressure at the node v as pointed out in [3]:

p(x b
i , t) = p(xa

j , t), ∀i ∈ δ+v , j ∈ δ−v . (8)

For the nonlinear model one could also use equality of the sum of pressure and momentum at the node
v:

Ai

ρ0
p(x b

i , t) +
ρ0c2

Ai

�

q(x b
i , t)

�2

p(x b
i , t)

=
A j

ρ0
p(xa

j , t) +
ρ0c2

A j

�

q(xa
j , t)
�2

p(xa
j , t)

∀i ∈ δ+v , j ∈ δ−v . (9)

Here, Ai and A j denote the cross-sectional area of pipe i and j respectively.

In case of a bend of two pipes i and j, a so-called “minor loss” of pressure can be observed:

Ai

ρ0
p(x b

i , t) +
ρ0c2

Ai

�

q(x b
i , t)

�2

p(x b
i , t)

− k · q(x b
i , t) =

A j

ρ0
p(xa

j , t) +
ρ0c2

A j

�

q(xa
j , t)
�2

p(xa
j , t)

. (10)

The factor k is empirical and may depend on the flow as well as the angle of the bend.

Since in practice the velocity of the gas is rather small, the momentum is negligible compared to the
pressure. Thus, we will use conditions (7) and (8) as coupling conditions.

3.2 Boundary conditions

Let Jin denote the set of ingoing pipes of the network, i.e. the pipes connecting the sources with the
network and let Jout denote the set of outgoing pipelines connected with sinks.

Since for subsonic flow the characteristics of the nonlinear model propagate in different directions and
for the semilinear model the characteristics always propagate in reverse directions, one can prescribe
the characteristic variables only on opposing sides of a pipe. Thus, there are some limitations on the
boundary conditions of the edges.

One possibility is to specify the pressure p at one end of the pipe and the flux q at the other. So, we
usually prescribe the pressure at xa

j , j ∈ Jin and the flux at x b
j , j ∈ Jout , i. e. the pressure at the sources

and the flux at the sinks.

3.3 Gas flow on the network

We can now describe the flow of gas on the network. With the notations Ω =
⋃

j∈J
[xa

j , x b
j ] and Q :=

Ω× (0, T ), the equations for the nonlinear model read as follows:

ut + f (u)x =ψ(u) in Q
p(x , 0) = p0(x) in Ω
q(x , 0) = q0(x) in Ω
p(xa

i , t) = wi(t) i ∈ Jin, t ∈ (0, T )
q(x b

i , t) = vi(t) i ∈ Jout , t ∈ (0, T )
p(x b

i , t) = p(xa
j , t) ∀v ∈ V, i ∈ δ−v , j ∈ δ+v , t ∈ (0, T )

∑

i∈δ−v

q(x b
i , t) =

∑

i∈δ+v

q(xa
i , t) ∀v ∈ V, t ∈ (0, T )

wi(t)> 0 i ∈ Jin, t ∈ (0, T ).

(11)
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For the semilinear model, the equations are analogous to (11) with the corresponding PDE in the first
line. The boundary conditions p(xa

i , t), i ∈ Jin, t ∈ (0, T ) and q(x b
i , t), i ∈ Jout , t ∈ (0, T ) are determined

by control variables/functions wi(t) and vi(t). Since the flux at the sinks is given by the consumers, the
variable that can be controlled by us will only be the pressure at the sources.

For the algebraic model, one has a similar structure. At each time step the algebraic equation (6) holds
at every pipe as well as the coupling and boundary conditions at the nodes. For arbitrary t ∈ (0, T ), the
system to be solved is

p(x , t) =
q

�

p(xa
i , t)

�2
− λρ2

0 c2|q|q
diA

2
i
(x − xa

i ) i ∈ J , x ∈ (xa
i , x b

i ]

p(xa
i , t) = wi(t) i ∈ Jin

q(x b
i , t) = vi(t) i ∈ Jout

p(x b
i , t) = p(xa

j , t) ∀v ∈ V, i ∈ δ−v , j ∈ δ+v
∑

i∈δ−v

q(x b
i , t) =

∑

i∈δ+v

q(xa
i , t) ∀v ∈ V

wi(t)> 0 i ∈ Jin.

(12)

Again, the boundary conditions p(xa
i ), i ∈ Jin and q(x b

i ), i ∈ Jout are determined by control variables/
functions wi(tn) and vi(tn) of which we only control the pressure at the sources.

4 Adjoint equations on the network

A possibility to achieve a compromise between the accuracy of the model and the computational costs
is to use the more complex model only when necessary. Using the solution of adjoint equations as done
in [5, 6] we deduce a model error estimator to measure the influence of the model on a user-defined
output functional.

Let the functional M be of the form

M(u) =

∫

Q

N(u)dtdx+
∑

i∈Jin

∫ T

0

Nxa
i
(q)dt+

∑

i∈Jout

∫ T

0

Nx b
i
(p)dt+

∫

Ω

NT (u)dx. (13)

As pointed out in [6], we only need to solve the dual problem of the simplified models in order to obtain
a first order error estimator. Let ξ =

�

ξ1
ξ2

�

be the solution of the dual problem of the semilinear model
(5) or the algebraic model (6) with respect to the functional M .

For a given solution of the semilinear equations u∗ =
�

p∗

q∗

�

, the adjoint system on the network reads as
follows:

ξt +ATξx =−∂uψ(u∗)Tξ− ∂uN(u∗)T in Q

ξ(·, T ) = ∂uNT (u∗(·, T ))T in Ω

ξ1(xa
i , t) =− Ai

ρ0c2 ∂qNxa
i
(q∗(xa

i , t)) i ∈ Jin, t ∈ (0, T )

ξ2(x b
i , t) = ρ0

Ai
∂pNx b

i
(p∗(x b

i , t)) i ∈ Jout , t ∈ (0, T ).

(14)
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The adjoint system for the algebraic equations is again similar to that of the semilinear model. For
arbitrary t ∈ (0, t) the system to be solved is

ATξx =−∂uψ(u∗)Tξ− ∂uN(u∗)T in Ω

ξ1(xa
i , t) =− Ai

ρ0c2 ∂qNxa
i
(q∗(xa

i , t)) i ∈ Jin

ξ2(x b
i , t) = ρ0

Ai
∂pNx b

i
(p∗(x b

i , t)) i ∈ Jout .

(15)

With these equations, the functional M can only be of the form

M(u) =

∫

Q

N(u)dtdx+
∑

i∈Jin

∫ T

0

Nxa
i
(q)dt+

∑

i∈Jout

∫ T

0

Nx b
i
(p)dt,

that is, one cannot measure the influence of the algebraic model at the final time T .

For the adjoint systems, one also has to specify coupling conditions. Conservation of mass and equality
of pressure at the node v yield for the adjoint variables:

1

Ai
ξ1(x

b
i , t) =

1

A j
ξ1(x

a
j , t) i ∈ δ−v , j ∈ δ+v , t ∈ (0, T )

∑

i∈δ−v

Aiξ2(x
b
i , t) =

∑

j∈δ+v

A jξ2(x
a
j , t) t ∈ (0, T )

4.1 Error estimators

We now use the adjoint equations to assess the simplified models with respect to the quantity of interest.
Let u =

� p
q
�

be the solution of the nonlinear model (4) and uh =
�

ph

qh

�

the discretized solution of the

semilinear model (5). Then the difference between the output functional of u, M(u), and M(uh) is

M(u)−M(uh) =

∫

Q

N(u)− N(uh)dtdx+
∑

i∈Jin

∫ T

0

Nxa
i
(q)− Nxa

i
(qh)dt

+
∑

i∈Jout

∫ T

0

Nx b
i
(p)− Nx b

i
(ph)dt+

∫

Ω

NT (u)− NT (u
h)dx.

Taylor expansion of first order yields

=

∫

Q

∂uN(uh)(u− uh)dtdx+
∑

i∈Jin

∫ T

0

∂qNxa
i
(qh)(q− qh)dt

+
∑

i∈Jout

∫ T

0

∂pNx b
i
(ph)(p− ph)dt+

∫

Ω

∂uNT (u
h)(u− uh)dx+H.O.T.

with H.O.T. being higher order terms. Inserting the solution ξ of the adjoint system (14) we get a first
order error estimator for the model and the discretization error respectively as in [6]:

M(u)−M(uh)≈ ηm+ηh (16)
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with the estimators ηm and ηh as follows:

ηnl−sl
m =

∫

Q

−ξT

 

0
ρ0c2(qh)2

Aph

!

x

dxdt (17)

ηnl−sl
h =

∫

Q

ξT
�

−uh
t −Auh

x +ψ(u
h)
�

dxdt. (18)

Since the algebraic model can be solved exactly, the discretization error disappears and one only gets an
estimator for the model error

ηsl−al g
m =

∫

Q

−ξT

�

p
q

�

t

dxdt (19)

with ξ being the solution of the adjoint equations either of the semilinear model (14) or of the algebraic
model (15). Here, u=

� p
q
�

denotes the solution of the stationary model (6).

Assuming that the discretization error estimator is much smaller than the model error estimator, that is,
ηh � ηm, one can use ηm to compute the time intervals in which the model error is above or below a
given tolerance. If it is above, one has to use a more complex model in the hierarchy.

Here, for the stationary model, a problem arises. The model error estimator of the algebraic model van-
ishes from that time on, when the boundary values become stationary, although dynamics may remain
in the pipe. Thus, the point of “shifting down” cannot be computed this way. Therefore, a strategy has
been developed to get around this problem.

4.2 Adaptive switching strategy

The hierarchy consists of three models. The most complex model is the nonlinear model followed by the
linear model. The most simple model used is the algebraic/stationary model (see figure 2).

nonlinear model

semilinear model

algebraic model

v� c

ut = 0

Figure 2: model hierarchy

In order to avoid the mentioned problem of the error estimator for the algebraic model, we divide the
time interval (0, T ) into equal subintervals (Tk−1, Tk), k = 1, . . . , NB, with T0 = 0 and TNB

= T . Thus, we
can split up the computational domain Q = Ω× (0, T ) into NB blocks Qk = Ω× (Tk−1, Tk), k = 1, . . . , NB, of
equal size (see figure 3).

We start with simulating the first block Q1. Each pipe is assigned to one of the three models. Then,
we solve the corresponding adjoint system in order to estimate the model error using (17) and (19)
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Ω
Q1

Q2

Q3

...

QNB−1

QNB

0
T1

T2

T

Figure 3: Partition of the computational domain

respectively. The model error estimator on Q1 can now be computed for each pipe separately. For the
semilinear case (17) this reads as follows.

ηm =
NB
∑

k=1

∫

Qk

−ξT

 

0
ρ0c2(qh)2

Aph

!

x

dxdt=
NB
∑

k=1

∑

j∈J

∫ Tk

Tk−1

∫ x b
j

xa
j

−ξT

 

0
ρ0c2(qh)2

Aph

!

x

dxdt=:
NB
∑

k=1

∑

j∈J
ηm(k, j)

with the “local” estimators ηm(k, j).

Given a tolerance TOL one can decide in which pipe the model used is appropriate and in which it is not.
We want to accept the model if the relative deviation of the simpler model uh from the exact solution of
the more complex model u is below TOL:

�

�M(u)−M(uh)
�

�

�

�M(uh)
�

�

≤ TOL.

Provided that the discretization error is nonsignificant compared to the model error we can approximate
�

�M(u)−M(uh)
�

� by
�

�ηm

�

� which yields
�

�ηm

�

�≤ TOL
�

�M(uh)
�

� . (20)

Just like the error estimator ηm we can evaluate the target functional M at every pipe j ∈ J and every
time interval (Tk−1, Tk), k = 1, . . . , NB individually, giving Mk, j:

M(uh) =
NB
∑

k=1

∑

j∈J
Mk, j(u

h).

Thus, for inequality (20) to hold, it suffices to claim
�

�ηm(k, j)
�

�≤ TOL
�

�Mk, j(u
h)
�

� , ∀k ∈ {1, . . . , NB}, j ∈ J . (21)

If any of the estimators ηm(k, j) violates the inequality (21), the computation of this time interval has to
be repeated and the models used in these pipes have to be exchanged by a more complex model.

The pipes of which the estimators fulfil the inequality (21) may keep the model until the next time
interval. If (21) is satisfied for all pipes in the current time interval, the block Q1 is accepted and we may
continue with the next block. Potentially, a more simple model may be used in some pipes.
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5 Numerical results

We give an example of the algorithm for one pipe. The models are as above the non-linear, semilinear
and algebraic model. The quantity of interest used is:

M(
� p

q
�

) =

∫

Q

p dxdt.

The simulation time totals T = 1000s with time step size T/Nt and Nt = 8000, the length of the pipe is
L = 17km with spatial step size L/Nx and Nx = 200.

In this setting, the pressure remains constant at the ingoing end of the pipe (69.5 bar). The flux at the
outflow starts with 250m3

s
and increases in the time between 200s and 250s up to 350m3

s
. Thus, if we

start with the algebraic model, presumably we have to switch at that time to the semilinear model.

We computed a reference solution with the nonlinear model and a very fine discretization (Nt = 32000,
Nx = 800) using Finite Volume Methods [7]. The reference solution is shown in figure 4.

Pressure, N
x
 = 800, N

t
 = 32000

t [
s]

x [km]
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300

320

340

360

Figure 4: Reference solution

The left picture shows the pressure in the pipe, which corresponds to the x-axis, at every time t. One
can see that the pressure remains constant at the left hand side of the pipe but varies inside the pipe as
the flux (right picture) increases at the outflow (x = L) of the pipe.

We choose TOL= 10−4 and to simplify matters, we use an approximation of the quantity of interest M

Mk,1(u
h)≈

T L

NB
p(L, 0)

which means that relative influence of the estimated model error on the quantity of interest restricted to
one computation block is at most 0.01%.

Figure 5 shows the adaptive solution with the semilinear and the algebraic model. The blocks are visu-
alized as black lines, the characters refer to the models: A for the algebraic model, L for the semilinear
model. Starting with the algebraic model the algorithm switches to the semilinear model at that time
when the boundary conditions stop being stationary. Not until the variables reach an almost steady state,
the algorithm changes down to the algebraic model.
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Figure 5: Adaptive solution

Now, we are interested in a comparison with the reference solution. For the results of the algebraic
model, the semilinear model and the adaptive algorithm, we compute the maximum relative deviation
in the pipe from the reference solution in time. This is shown in figure 6.

0 100 200 300 400 500 600 700 800 900 1000
0

0.5
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1.5
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3.5
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−3 maximum relative deviation in pressure from the reference solution

t [s]

||p
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h || L∞
(0
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−
−

−
−

−
−

−
−

−
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−
−

−
−

−
||p

re
f|| L∞

(0
,L

)

semilinear
algebraic
adaptive

Figure 6: maximum relative deviation in the pipe from the reference solution per time step

6 Summary

We introduced a model hierarchy for the simulation of gas transport in networked pipelines. This hier-
archy consists of a nonlinear and a semilinear system of hyperbolic partial differential equations and of
an algebraic steady state model. We discussed coupling and boundary conditions for the wellposedness
of the whole system. For the network, adjoint equations as well as adjoint coupling conditions were
given that allow us to valuate the different models with respect to a quantity of interest. An algorithm
was developed that switches adaptively between the three models using model error estimators deduced
from the adjoint systems. A numerical example was given for one pipe. The results presented show that
an adaptive coupling of the different models can achieve a certain accuracy while the computational
time decreases. In the future we will implement the algorithm for arbitrary networks.
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