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Abstract

We are interested in simulation and optimization of gas networks. Usually, a gas network consists of various com-
ponents like compressors and valves connected by pipes. The aim is to run the network cost efficiently whereas the
demands of consumers have to be satisfied. This results in a complex nonlinear mixed integer problem. We address
this task with methods provided by discrete optimization. Therefore, the gas dynamics in all pipes and at compressors
must be described by piecewise linear constraints. We introduce an adaptive approach for the linearization process to
handle the complexity on the one hand and the aimed accuracy on the other. Further, we present numerical simulation
and optimization results based on our model.

1 Introduction

There has been intense research in the field of simulation and optimization of gas transport in networks during the
last years. Especially for the optimization task many approaches neglect different aspects - e.g. the stationary case
is considered as in [11] or binary decisions like switching processes for compressor stations must be determined
before the optimization process. We are interested in the transient case of gas network optimization and aim to
treat continuous as well as integer variables in our problems. Therefore, we apply methods provided by discrete
optimization as described in [12].

Discrete optimization deals with mixed integer linear problems (MILPs) and has many applications in the field of
operations research. Among these are optimization tasks for scheduling and transport processes like time tables
for airports and train stations. In applications of practical relevance this results in large systems with thousands
of variables. The basic tool of discrete optimization is the simplex algorithm. Integer variables are treated using
relaxation as well as branch and cut techniques. Besides the integration of integer variables, the guaranty of global
optimality is another main advantage of the algorithms used in discrete optimization.

But applying discrete optimization techniques to the transient case of gas network optimization yields two major
problems: While only linear constraints can be posed in a linear mixed integer approach, components like compressor
stations are described by nonlinear equations and moreover, one has to cope with the underlying PDEs of gas dynamics
(see section 3). In general, nonlinearities in discrete optimization can be addressed with piecewise linearization,
introducing approximation errors, new variables for every grid point in the linearized function and lots of equations
describing the so-called SOS constraint. Thus, especially multidimensional nonlinear functions demand a trade-off
between approximation accuracy and complexity of the MILP.

At first, we need a discretization of the underlying hyperbolic PDEs which allows for a linearization with reasonable
effort (see section 4). We have examined a fully implicit box scheme and it proved to be a reliable basis for our
optimization framework. Stability and convergence results of our scheme are presented in section 5. The next crucial
step is the linearization process for the discretized PDE and other nonlinear constraints. We introduce an adaptive
approach with independent error estimators for both the discretization and linearization errors (see section 6 and
7). For testing purposes, we have implemented our model in the form of a black-box simulator within an approved
optimization framework [13]. Numerical results are presented in section 8.

2 Task definition

The aim of gas network optimization is to run a network cost efficiently whereas demands of consumers have to be
satisfied. Here, the costs consist of the entire fuel gas consumption of all compressor stations c ∈ EC :

fuel gas=
∑

c∈EC

tend
∫

tbegin

Fc(t)d t

where Fc(t) denotes the fuel gas consumption of compressor c at time t.
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The consumer demands are described by time-dependent flux and target pressure values at all sinks s ∈ VS . For a
given compressor control the violation of the target pressure values is measured as follows:1

gap to target=
∑

s∈VS

tend
∫

tbegin

�

ps,target(t)− ps(t)
�

+
d t

where ps(t) and ps,target(t) denote the (target) pressure at sink s at time t.

3 Model

We model a gas network as a directed, finite graph G = (V, E). The edges E correspond to the different components
of the network and the vertices V are inner/coupling or boundary nodes. For each node v ∈ V , δ+v denotes the set of
outgoing edges and δ−v the set of ingoing edges. For the edges e ∈ E, we define disjoint intervals [xa

e , x b
e ], where xa

e
belongs to the beginning of the edge e and x b

e to the end.

The gas dynamics inside the pipes Ep ⊆ E are described by the isothermal Euler equations with a friction term:

∂t
�

ρA
�

+ ∂x
�

ρ0q
�

= 0 (1)

∂t
�

ρ0q
�

+ ∂x

�

Ap+
(ρ0q)2

ρA

�

= −λ(q)
ρ0q|ρ0q|

2dρA
(2)

where p denotes the pressure, ρ the density, ρ0 the standard density of the gas, q the flux, λ the friction coefficient,
A the cross-sectional area and d the diameter of the pipe. The friction factor is given by the implicit formula of
Colebrook:

1
p
λ
= −2 log10

�

2.51

Re
p
λ
+

k

3.71d

�

(3)

Re =
4ρ0

πηd
· |q| (4)

where η is a gas dependent constant (dynamic viscosity) and k describes the roughness of the pipe. As equation of
state we use

p = c2ρ (5)

with a constant c, whereas our implementation also allows a nonlinear equation of state as in [12]. At coupling nodes
of the network, we have to pose coupling conditions for all incoming and outgoing edges. According to [2] and [12],
we claim equality of pressure as well as conservation of mass for all inner nodes v ∈ Vinner and time t ∈ [tbegin, tend]:

∑

i∈δ−v

q(x b
i , t) =

∑

j∈δ+v

q(xa
j , t) (6)

∀i ∈ δ−v and ∀ j ∈ δ+v : p(x b
i , t) = p(xa

j , t) . (7)

For each compressor station c ∈ EC , we apply the following two constraints for the compressor power and the fuel gas
consumption (compare [6]):2

P(pin, pout , qin) = dP · qin ·

 

�

pout

pin

�
γ−1
γ

− 1

!

!
= N (8)

qout = qin − F(pin, pout , qin) (9)

F(pin, pout , qin) = dF · qin ·

 

�

pout

pin

�
γ−1
γ

− 1

!

(10)

1 (x)+ = max(x , 0) .
2 dP and dF may depend on the pressure if a nonlinear equation of state is used instead of (5).
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where pin(t) = p(xa
c , t), pout(t) = p(x b

c , t), qin(t) = q(xa
c , t) and qout(t) = q(x b

c , t). dP , dF and γ are compressor and gas
dependent constants and N = N(t) denotes the current compressor power, a time dependent control variable.

4 Discretization

For the discretization of the isothermal Euler equations (1) and (2), we use a fully implicit box scheme which is
symmetric in space. The general case is treated in the next section. Applied to the isothermal Euler equations, our
scheme reads as follows:

ρ(x , t +∆t) +ρ(x +∆x , t +∆t)
2

=
ρ(x , t) +ρ(x +∆x , t)

2
(11)

−
∆t

∆x
�

f1(x +∆x , t +∆t)− f1(x , t +∆t)
�

q(x , t +∆t) + q(x +∆x , t +∆t)
2

=
q(x , t) + q(x +∆x , t)

2
(12)

−
∆t

∆x
�

f2(x +∆x , t +∆t)− f2(x , t +∆t)
�

−∆t
�

fric(x , t +∆t) + fric(x +∆x , t +∆t)
2

�

where

f1(x , t) =
ρ0

A
q(x , t)

f2(x , t) =
1

ρ0

�

Ap(x , t) +
(ρ0q(x , t))2

ρ(x , t)A

�

fric(x , t) = λ
ρ0q(x , t)|q(x , t)|

2dρ(x , t)A
.

The resulting set of implicit equations is solved together with other constraints like coupling and boundary conditions
at the nodes and the compressor equations (8) and (9). This is done using an adapted version of Newton’s method
and applying sparse matrix techniques [5].

5 Stability analysis and convergence results

For a general balance law of the form ut + f (u)x = g(u) (with f ∈ C1), our discretization scheme reads as follows:

un+1
j−1 + un+1

j

2
=

un
j−1 + un

j

2
−
∆t

∆x

�

f (un+1
j )− f (un+1

j−1 )
�

+∆t
g(un+1

j−1 ) + g(un+1
j )

2
. (13)

When implementing this method for a scalar balance law on a finite grid [x l , x r], we get r − l equations for r − l + 1
variables. So, we have to impose boundary conditions at exactly one boundary depending on the characteristic
direction, respectively the sign of f ′. Accordingly, the sign of f ′ must not change in the interval and we will require
such a constraint in the proofs later. In our case, the isothermal Euler equations, we are dealing with a system of
balance laws. For systems of balance laws, the signature of the characteristic directions must not change. This applies
to the practical relevant cases (|v| � c) since the eigenvalues of the Jacobian fu are λ1/2 = v± c.

The analysed properties of our fully implicit box scheme are motivated by the result of Kružkov given below for scalar
balance laws on unbounded domains (see [9]). Therefore, we consider scalar balance laws of the form

ut + f (u)x = g(u), (x , t) ∈ R×R+ (14)

with given initial data

u(x , 0) = u0(x), x ∈ R . (15)
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We are interested in weak solutions of the Cauchy problem (14)-(15) that is a function u ∈ L∞(R×R+) satisfying:

∞
∫

−∞

∞
∫

0

[uφt + f (u)φx]dt dx+

∞
∫

−∞

u0(x)φ(x , 0)dx =−

∞
∫

−∞

∞
∫

0

g(u)φ dt dx ∀φ ∈ C1
0

�

R×R+
�

. (16)

For given∆t and∆x , we identify our discrete approximate solutions given by the scheme (13) with piecewise constant
functions ũ in the following way:

ũ(x , t) = un
j for (x , t) ∈ I j × Jn (17)

where I j = [( j− 0.5)∆x , ( j+ 0.5)∆x) and Jn = [n∆t, (n+ 1)∆t). For the initial conditions, we set

u0
j =

∫

I j

u0(x)dx . (18)

In general, the solution of (16) is not unique and the physical one is characterized by the following entropy condition:

∞
∫

−∞

∞
∫

0

[η(u)φt + F(u)φx]dt dx+

∞
∫

−∞

η(u0(x))φ(x , 0)dx ≥−

∞
∫

−∞

∞
∫

0

η′(u)g(u)φdt dx ∀φ ∈ C1
0

�

R×R+
�

,φ ≥ 0 (19)

where η ∈ C2(R) is a strictly convex function and the entropy flux function F satisfies F ′(u) = η′(u) f ′(u) for all u ∈ R.

Theorem (Kružkov): If u0 ∈ L∞(R)∩ L1(R), f , g ∈ C1(R), g(0) = 0 and g ′ ≤ 0 holds, then the problem (16) possesses
a unique entropy solution u(x , t) = S(t)u0 satisfying

• ‖S(t)u0‖L∞(R) ≤ ‖u0‖L∞(R)

• ‖S(t)u0 − S(t)v0‖L1(R) ≤ ‖u0 − v0‖L1(R) ∀v0 ∈ L∞(R)

• T V (S(t)u0)≤ T V (u0)

Existence of a unique solution

First of all, we show that our discretization scheme admits a unique solution in L1(Z) in every time step. As mentioned
at the beginning, we will require that the sign of f ′ does not change and therefore, we assume f ′ ≥ λmin > 0. The
case f ′ ≤ −λmin < 0 can be treated analogously: While in the following proofs our scheme is always solved for un+1

j ,
one simply has to solve it for un+1

j−1 .

Proposition 1 (existence and uniqueness): For un ∈ L1(Z), g(0) = 0, g ′ ≤ 0, f ′ ≥ λmin > 0 and ∆t
∆x
≥ 1

2·λmin
the

scheme (13) admits a unique solution un+1 ∈ L1(Z).

Proof: Algebraic transformations of our scheme (13) lead to:

un+1
j−1 + un+1

j

2
=

un
j−1 + un

j

2
−
∆t

∆x

�

f (un+1
j )− f (un+1

j−1 )
�

+∆t
g(un+1

j−1 ) + g(un+1
j )

2

⇔ un+1
j =

1

2

�

un
j−1 + un

j

�

−
∆t

∆x

�

h(un+1
j )− h(un+1

j−1 )
�

+∆t
g(un+1

j−1 ) + g(un+1
j )

2

with h(u) = f (u)− ∆x
2∆t

u. Due to the requirements on f ′ and ∆t
∆x

, we have h′ ≥ 0.

We introduce the following two operators W, T : L1(Z)→ L1(Z):

W (u) j =
1

2

�

u j−1 + u j

�
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T (u) j = u j +
∆t

∆x

�

h(u j)− h(u j−1)
�

−∆t
g(un+1

j−1 ) + g(un+1
j )

2
.

With these operators, our scheme (13) can be written as follows:

T (un+1) =W (un) .

To prove the existence of a unique solution, it suffices to show that ‖T ′(u)‖L1(Z) ≥ C > 0 and that the linear operator
T ′(u) is surjective. For an arbitrary w ∈ L1(Z), we have

�

T ′(u)w
�

j = [1+
∆t

∆x
h′(u j)

︸ ︷︷ ︸

≥0

−
∆t

2
g ′(u j)

︸ ︷︷ ︸

≥0
︸ ︷︷ ︸

=α j

]w j − [
∆t

∆x
h′(u j−1)

︸ ︷︷ ︸

≥0

+
∆t

2
g ′(u j−1)

︸ ︷︷ ︸

≤0
︸ ︷︷ ︸

=β j−1

]w j−1

Since |β j−1| ≤ α j−1, applying the triangle inequality and summing up over j ∈ Z yields:

|
�

T ′(u)w
�

j | ≥ (1+α j)|w j | −α j−1|w j−1|

⇒ ‖T ′(u)w‖L1(Z) ≥ ‖w‖L1(Z)

⇒ ‖T ′(u)‖L1(Z) ≥ 1=: C .

Remark: (α j) ∈ L∞(Z) since u ∈ L1(Z)⊂ L∞(Z) and h′, g ′ ∈ C(R).

For the proof of the surjectivity of T ′(u), we consider an arbitrary y ∈ L1(Z) and the sequence (wk)k∈N ⊂ L1(Z) defined
as follows:

wk
j =







0 if j ≤−k− 1

1

1+α j
(y j + β j−1w j−1) if j ≥−k

.

First, we show that wk ∈ L1(Z). For j ≥−k, we have:

(1+α j)w
k
j = y j + β j−1w j−1

⇒ (1+α j)|wk
j | ≤ |y j |+ |β j−1||w j−1| ≤ |y j |+α j−1|w j−1| .

Since wk
j = 0 for j ≤−k− 1, summation yields:

N
∑

j=−∞
(1+α j)|wk

j | ≤
N
∑

j=−∞
|y j |+

N
∑

j=−∞
α j−1|w j−1|

⇒
N
∑

j=−∞
|wk

j | ≤
N
∑

j=−∞
|y j | −αN |wk

N | ≤
N
∑

j=−∞
|y j | (20)

⇒ ‖wk‖L1(Z) ≤ ‖y‖L1(Z) .

Next, we show that (wk)k∈N is a Cauchy sequence in L1(Z). Let m, n ∈ N, m> n. For j ≥−n, we have:

(1+α j)(w
m
j −wn

j ) = β j−1(w
m
j−1 −wn

j−1)

⇒ (1+α j)|wm
j −wn

j |= |β j−1||wm
j−1 −wn

j−1| ≤ α j−1|wm
j−1 −wn

j−1| .

With α∞ := ‖α‖L∞(Z), summation yields:
N
∑

j=−n

(1+α j)|wm
j −wn

j | ≤
N
∑

j=−n

α j−1|wm
j−1 −wn

j−1|

⇒
N
∑

j=−n

|wm
j −wn

j | ≤ α−n−1|wm
−n−1 −wn

−n−1
︸ ︷︷ ︸

=0

| −αN |wm
N −wn

N | ≤ α∞|w
m
−n−1|

⇒
∞
∑

j=−∞
|wm

j −wn
j |=

∞
∑

j=−n

|wm
j −wn

j |+
−n−1
∑

j=−∞
|wm

j − wn
j

︸︷︷︸

=0

| ≤ α∞|wm
−n−1|+

−n−1
∑

j=−∞
|wm

j |

⇒ ‖wm −wn‖L1(Z) =
∞
∑

j=−∞
|wm

j −wn
j | ≤ (1+α∞)

−n−1
∑

j=−∞
|wm

j |
(20)
≤ (1+α∞)

−n−1
∑

j=−∞
|y j |
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Since y ∈ L1(Z), we know that for all ε > 0 there exists an N(ε) ∈ N such that for all i ≥ N(ε):

−i−1
∑

j=−∞
|y j | ≤

1

1+α∞
ε .

Therefore, (wk)k∈N is a Cauchy sequence in L1(Z), because for all m, n > N(ε): ‖wm − wn‖L1(Z) ≤ ε. Since L1(Z) is a
Banach space, there exists w∗ = lim

k→∞
wk (in L1(Z)). Due to the continuity of T ′(u), we get:3

‖T ′(u)w∗ − y‖L1(Z) = ‖T ′(u)( lim
k→∞

wk)− y‖L1(Z) = lim
k→∞
‖T ′(u)wk − y‖L1(Z) = lim

k→∞

−k−1
∑

j=−∞
|y j |= 0 .

Now, that we have shown that there exists a (unique) solution un+1 ∈ L1(Z) for un ∈ L1(Z), it is reasonable to mention
that our scheme is conservative for g ≡ 0:

∞
∑

j=−∞
un+1

j =
∞
∑

j=−∞

un+1
j−1 + un+1

j

2
=
∞
∑

j=−∞

un
j−1 + un

j

2
−
∆t

∆x

∞
∑

j=−∞

�

f (un+1
j )− f (un+1

j−1 )
�

︸ ︷︷ ︸

=0

=
∞
∑

j=−∞
un

j

Stability properties

For the following proofs, we introduce the operator
�

T h
µ(u)

�

j
= u j −µ

∆t

∆x

�

h(u j)− h(u j−1)
�

with µ > 0 and h ∈ C1.

Lemma 1: For u ∈ L∞(Z), h ∈ C1 with h′ ≥ 0 and µ sufficiently small, we get the following stability properties for the
operator T h

µ :

• ‖T h
µ(u)‖L∞(Z) ≤ ‖u‖L∞(Z)

and if u, v ∈ L1(Z):

• ‖T h
µ(u)− T h

µ(v)‖L1(Z) ≤ ‖u− v‖L1(Z)

• T V (T h
µ(u))≤ T V (u) .

Proof: First, we show that the function Φ(u j−1, u j , u j+1) :=
�

T h
µ(u)

�

j
is non-decreasing in every argument for µ = 1

h∞

with h∞ =max(1, ∆t
∆x

sup
j∈Z

h′(u j)):4

∂

∂1
Φ(u j−1, u j , u j+1) = µ

∆t

∆x
h′(u j−1)
︸ ︷︷ ︸

≥0

≥ 0

∂

∂2
Φ(u j−1, u j , u j+1) = 1−µ

∆t

∆x
h′(u j)

︸ ︷︷ ︸

≤1

≥ 0

∂

∂3
Φ(u j−1, u j , u j+1) = 0 .

3 Obviously, ‖T ′(u)‖L1(Z) ≤ 1+ 2α∞.
4 sup

j∈Z
h′(u j)<∞ since u ∈ L∞(Z) and h′ ∈ C .
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Thus, for µ given as above, the operator T h
µ can be interpreted as a so-called monotone scheme in conservation form

(with numerical flux function h̃(ul , ur) = h(ul)) and applying the results from [4] yields the inequalities above.

Proposition 2 (stability): For un, vn ∈ L∞(Z)∩ L1(Z) = L1(Z), the scheme (13) has the following stability properties:

a) If ∆x
∆t
≤ 2 f ′(·) +∆x g ′(·):

• ‖un+1‖L∞(Z) ≤ ‖un‖L∞(Z) .

b) If ∆x
∆t
≤ 2 f ′(·):

• ‖un+1 − vn+1‖L1(Z) ≤ ‖un − vn‖L1(Z)

• T V (un+1)≤ T V (un) .

Proof: a) Similar to the proof of proposition 1, algebraic transformations of our scheme (13) lead to:

un+1
j−1 + un+1

j

2
=

un
j−1 + un

j

2
−
∆t

∆x

�

f (un+1
j )− f (un+1

j−1 )
�

+∆t
g(un+1

j−1 ) + g(un+1
j )

2

⇔ un+1
j =

1

2

�

un
j−1 + un

j

�

−
∆t

∆x

�

ĥ(un+1
j )− ĥ(un+1

j−1 )
�

+∆t g(un+1
j )

with ĥ(u) = f (u)− ∆x
2∆t

u+ ∆x
2

g(u). Due to the assumption ∆x
∆t
≤ 2 f ′(·)+∆x g ′(·), we have ĥ′(·)≥ 0. Using the operator

T ĥ
µ , the scheme (13) can be written as follows:

un+1
j =

µ

1+µ
W (un) +

1

1+µ
T ĥ
µ(u

n+1) +∆t
µ

1+µ
g(un+1

j ) .

The Intermediate Value Theorem yields g(un+1
j ) = g ′(ξn+1

j )un+1
j and therefore:

(1−∆t
µ

1+µ
g ′(ξn+1

j )
︸ ︷︷ ︸

≤0

)un+1
j =

µ

1+µ
W (un) +

1

1+µ
T ĥ
µ(u

n+1)

⇒ |un+1
j | ≤ |

µ

1+µ
W (un) +

1

1+µ
T ĥ
µ(u

n+1)|

Applying the triangle inequality and taking the supremum over j ∈ Z yields:

‖un+1‖L∞(Z) ≤
µ

1+µ
‖W (un)‖L∞(Z) +

1

1+µ
‖T ĥ
µ(u

n+1)‖L∞(Z) .

Since we may choose a sufficiently small µ, we obtain from lemma 1:

‖un+1‖L∞(Z) ≤
µ

1+µ
‖W (un)‖L∞(Z) +

1

1+µ
‖un+1‖L∞(Z)

⇒
µ

1+µ
‖un+1‖L∞(Z) ≤

µ

1+µ
‖W (un)‖L∞(Z)

⇒ ‖un+1‖L∞(Z) ≤ ‖W (un)‖L∞(Z) ≤ ‖un‖L∞(Z) .

b) For the proof of L1- and T V -stability, we use the same form of our scheme (13) as in proposition 1:

un+1
j =

1

2

�

un
j−1 + un

j

�

−
∆t

∆x

�

h(un+1
j )− h(un+1

j−1 )
�

+∆t
g(un+1

j−1 ) + g(un+1
j )

2
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with h(u) = f (u)− ∆x
2∆t

u. Due to the requirements on f ′ and ∆t
∆x

, we have h′(·)≥ 0. Using the operator T h
µ , we have:

un+1
j − vn+1

j =

=
µ

1+µ

�

W (un) j −W (vn) j

�

+
1

1+µ

�

T h
µ(u

n+1) j − T h
µ(v

n+1) j

�

+
∆t

2

µ

1+µ
(g(un+1

j−1 ) + g(un+1
j )− g(vn+1

j−1 )− g(vn+1
j )) .

Again, the Intermediate Value Theorem yields g(un+1
j )−g(vn+1

j ) = g ′(ξ̃n+1
j )(un+1

j −vn+1
j ) and with γ j =−

∆t
2

µ

1+µ
g ′(ξ̃n+1

j )≥ 0,
we get:

(1+ γ j)(u
n+1
j − vn+1

j ) =
µ

1+µ

�

W (un) j −W (vn) j

�

+
1

1+µ

�

T h
µ(u

n+1) j − T h
µ(v

n+1) j

�

− γ j−1(u
n+1
j−1 − vn+1

j−1 )

⇒ (1+ γ j)|un+1
j − vn+1

j | ≤
µ

1+µ
|W (un) j −W (vn) j |+

1

1+µ
|T h
µ(u

n+1) j − T h
µ(v

n+1) j |+ γ j−1|un+1
j−1 − vn+1

j−1 | .

For a sufficiently small µ, summing up over j ∈ Z and subtracting
∞
∑

j=−∞
γ j |un+1

j − vn+1
j | from both sides yields:

‖un+1 − vn+1‖L1(Z) ≤
µ

1+µ
‖W (un)−W (vn)‖L1(Z) +

1

1+µ
‖(T h

µ(u
n+1)− Tµ(v

n+1)‖L1(Z)

≤
µ

1+µ
‖W (un)−W (vn)‖L1(Z) +

1

1+µ
‖un+1 − vn+1‖L1(Z)

⇒ ‖un+1 − vn+1‖L1(Z) ≤ ‖W (un)−W (vn)‖L1(Z) ≤ ‖un − vn‖L1(Z) .

Substituting vn
j = un

j−1 (⇒ vn+1
j = un+1

j−1 ) immediately yields:

T V (un+1)≤ T V (un) .

Remark: The assumptions for the proof of L1- and T V -stability follow directly from the assumptions made in Propo-
sition 1 about the existence and uniqueness of a solution in L1(Z). Therefore, the requirements for the proof of
L∞-stability might be unexpected. Indeed, ∆t

∆x
≥ 1

2·λmin
is also sufficient for L∞-stability if further assumptions are

made, e.g. un+1 ≥ 0 or un+1 ≤ 0 (componentwise).

Convergence results

In the following propositions, we will consider a sequence of approximate solutions (u(k))k∈N with mesh parameters
∆t(k) and ∆x (k), where ∆t(k),∆x (k) −→ 0 for k −→ ∞. Due to the definition (17), each u(k) can be interpreted as a
function of (x , t) ∈ R×R+. For the sake of simplicity, we will leave out the parameter k in the proofs.

In analogy to the Lax-Wendroff-Theorem, we state the following proposition:

Proposition 3: Let (u(k))k∈N be a sequence constructed by the scheme (13) and converging in L1
loc(R × R+) with

∆t(k),∆x (k)
k→∞−→ 0. Then, the limit û= lim

k−→∞
u(k) is a weak solution of the Cauchy problem (14)-(15).

Proof: With φ ∈ C1
0

�

R×R+
�

and φn
j = φ( j∆x , n∆t), we obtain from (13):

un+1
j−1 + un+1

j

2
︸ ︷︷ ︸

=: un+1
j−0.5

=
un

j−1 + un
j

2
︸ ︷︷ ︸

=: un
j−0.5

−
∆t

∆x
( f (un+1

j )
︸ ︷︷ ︸

=: f n+1
j

− f (un+1
j−1 )

︸ ︷︷ ︸

=: f n+1
j−1

) +∆t
g(un+1

j−1 ) + g(un+1
j )

2
︸ ︷︷ ︸

=: gn+1
j−0.5

⇒ Φn+1
j−0.5un+1

j−0.5 = Φ
n+1
j−0.5un

j−0.5 −
∆t

∆x
Φn+1

j−0.5

�

f n+1
j − f n+1

j−1

�

+∆tΦn+1
j−0.5 gn+1

j−0.5 .

Summation and (discrete) integration by parts yield:
∞
∑

n=0

∞
∑

j=−∞
Φn+1

j−0.5(u
n+1
j−0.5 − un

j−0.5) +
∆t

∆x

∞
∑

n=0

∞
∑

j=−∞
Φn+1

j−0.5

�

f n+1
j − f n+1

j−1

�

=∆t
∞
∑

n=0

∞
∑

j=−∞
Φn+1

j−0.5 gn+1
j−0.5

⇒
j=∞
∑

j=−∞
Φ1

j−0.5u0
j−0.5 +

∞
∑

n=1

∞
∑

j=−∞
(Φn+1

j−0.5 −Φ
n
j−0.5)u

n
j−0.5 +

∆t

∆x

∞
∑

n=0

∞
∑

j=−∞
(Φn+1

j+0.5 −Φ
n+1
j−0.5) f

n+1
j =−∆t

∞
∑

n=0

∞
∑

j=−∞
Φn+1

j−0.5 gn+1
j−0.5 .
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Multiplying with ∆x and taking the limit k −→∞, we finally get:

∆x
j=∞
∑

j=−∞
Φ1

j−0.5u0
j−0.5 +∆x∆t





∞
∑

n=1

∞
∑

j=−∞

Φn+1
j−0.5 −Φ

n
j−0.5

∆t
un

j−0.5 +
∞
∑

n=0

∞
∑

j=−∞

Φn+1
j+0.5 −Φ

n+1
j−0.5

∆x
f n+1

j



=−∆x∆t
∞
∑

n=0

∞
∑

j=−∞
Φn+1

j−0.5 gn+1
j−0.5

k→∞−→

∞
∫

−∞

Φ(x , 0) û(x , 0)
︸ ︷︷ ︸

=u0(x)

dx+

∞
∫

0

∞
∫

−∞

�

Φt(x , t)û(x , t) +Φx(x , t) f (û(x , t))
�

dx dt=−

∞
∫

0

∞
∫

−∞

φ(x , t)g(û(x , t))dx dt .

Next, we show convergence of our scheme to the entropy solution. For simplicity, we assume that

∆t

∆x
= r = const.

As one can easily see from the proof, it is sufficient to claim ∆t
∆x

, ∆x
∆t
≤ c <∞. Moreover, we claim the following for

each u ∈ (u(k))k∈N:

‖un+1‖L∞(Z) ≤ ‖un‖L∞(Z)

‖un+1‖L1(Z) ≤ ‖un‖L1(Z)

T V (un+1)≤ T V (un)







(21)

This can be achieved by the assumptions made in proposition 2, but as mentioned in the remark, weaker conditions
might be sufficient. Therefore, we rather claim these stability properties in proposition 4. Due to (18) and with the
interpretation as piecewise constant functions (17), it follows immediately ∀n ∈ N:5

‖un‖L∞(R) ≤ ‖u0‖L∞(R)

‖un‖L1(R) ≤ ‖u0‖L1(R)

T V (un) ≤ T V (u0) .

Proposition 4: Let u0 ∈ L∞(R) ∩ L1(R), f , g ∈ C1(R), g(0) = 0, g ′ ≤ 0, f ′ ≥ λmin > 0 and let (u(k))k∈N be a sequence
constructed by the scheme (13) with initial conditions given by (18), fulfilling the stability properties (21) and

∆t(k),∆x (k)
k→∞−→ 0, r = ∆t(k)

∆x (k)
≥ 1

2·λmin
. Then, the limit û= lim

k−→∞
u(k) exists (in L1

loc(R×R+)) and û is the entropy solution

of the Cauchy problem (14)-(15).

Proof: The proof is subdivided into the following parts: First, we show that there exists a convergent subsequence
of our sequence in L1

loc(R×R+). Next, we proof that the limit û of every convergent subsequence fulfills the entropy
condition (19). Then, together with the previous proposition, we have shown that our scheme converges to the
entropy solution.

In the first part of the proof, we want to apply a compactness argument (compare [10]). Therefore, we consider the
following function space:

L1,T =
¦

v : R×R+→ R | ‖v‖1,T <∞
©

with ‖v‖1,T =
T
∫

0

∞
∫

−∞
|v(x , t)|dx dt .

It can be shown that the set

K =
¦

v ∈ L1,T : T VT (v)≤ R and Supp(v(·, t))⊆ [−M , M] ∀t ∈ [0, T]
©

with T VT (v) = limsup
ε→0

1
ε

T
∫

0

∞
∫

−∞
|v(x + ε, t)− v(x , t)|dx dt+ lim sup

ε→0

1
ε

T
∫

0

∞
∫

−∞
|v(x , t + ε)− v(x , t)|dx dt

5 Remark: For the total variation T V the discrete definition given by T V (v) =
∞
∑

j=−∞
|v j | is equal to the usual continuous definition.
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is compact in L1,T . For each of our piecewise constant approximations u ∈ (u(k))k∈N, the following inequality holds:

T VT (u) ≤
bT/∆tc
∑

n=0

∞
∑

j=−∞

h

∆t|un
j+1 − un

j |+∆x |un+1
j − un

j |
i

≤ ∆t
bT/∆tc
∑

n=0

T V (un) +∆x
bT/∆tc
∑

n=0

∞
∑

j=−∞
|un+1

j − un
j |

≤ (T +∆t) T V (u0)
︸ ︷︷ ︸

≤T V (u0)

+∆x
bT/∆tc
∑

n=0

∞
∑

j=−∞
|un+1

j − un
j | . (22)

With

g ′∞ = sup
|w|≤‖u0‖L∞(R)

|g(w)| and f ′∞ = sup
|w|≤‖u0‖L∞(R)

| f ′(w)| ,

our scheme (13) yields:

un+1
j − un

j =
1

2
(un+1

j − un+1
j−1 ) +

1

2
(un

j−1 − un
j )−

∆t

∆x
( f (un+1

j )− f (un+1
j−1 )) +

∆t

2
(g(un+1

j ) + g(un+1
j−1 ))

⇒ |un+1
j − un

j | ≤
1

2
|un+1

j − un+1
j−1 |+

1

2
|un

j−1 − un
j |+

∆t

∆x
| f (un+1

j )− f (un+1
j−1 )|

︸ ︷︷ ︸

≤ f ′∞|u
n+1
j −un+1

j−1 |

+
∆t

2
(|g(un+1

j )|
︸ ︷︷ ︸

≤g ′∞|u
n+1
j |

+ |g(un+1
j−1 )|

︸ ︷︷ ︸

≤g ′∞|u
n+1
j−1 |

)

⇒
∞
∑

j=−∞
|un+1

j − un
j | ≤

1

2
T V (un+1) +

1

2
T V (un) +

∆t

∆x
f ′∞T V (un+1) +∆t g ′∞‖u

n+1‖L1(Z)

⇒
∞
∑

j=−∞
|un+1

j − un
j | ≤ (1+ r f ′∞) T V (u0)

︸ ︷︷ ︸

≤T V (u0)

+r g ′∞∆x‖u0‖L1(Z)
︸ ︷︷ ︸

≤‖u0‖L1(R)

=: C

Together with (22), we get:

T VT (u) ≤ (T +∆t) T V (u0) +∆x
bT/∆tc
∑

n=0

C ≤ (T +∆t)
�

T V (u0) +
1

r
C
�

=: R

Thus, if we restrict the functions u(k) to the domain [−M , M]× [0, T], they are contained in the compact set K. In
other words, we can find a convergent subsequence in L1

loc(R×R+).

From now on, we consider a convergent subsequence of our original sequence with limit û. With h(u) = f (u)− ∆x
∆t

u,
our scheme (13) reads:

un+1
j − un

j +
∆t

∆x
(h(un+1

j )− h(un+1
j−1 )) +

1

2
(un

j − un
j−1) = ∆t

g(un+1
j ) + g(un+1

j−1 )

2

⇒ η′(un+1
j )(un+1

j − un
j ) +

∆t

∆x
η′(un+1

j )(h(un+1
j )− h(un+1

j−1 )) +
1

2
η′(un+1

j )(un
j − un

j−1) = ∆tη′(un+1
j )

g(un+1
j ) + g(un+1

j−1 )

2
.

From the convexity of η and the assumptions on ∆x
∆t

, we have:

η(un+1
j )−η(un

j )≤ η
′(un+1

j )(un+1
j − un

j ) and

un+1
j
∫

un+1
j−1

η′(w)h′(w)dw≤ η′(un+1
j )(h(un+1

j )− h(un+1
j−1 )) (23)

and therefore:

η(un+1
j )−η(un

j ) +
∆t

∆x

un+1
j
∫

un+1
j−1

η′(w)h′(w)dw+
1

2
η′(un+1

j )(un
j − un

j−1)≤∆tη′(un+1
j )

g(un+1
j ) + g(un+1

j−1 )

2
.



11

By definition

h′(w) = f ′(w)−
∆x

2∆t
and F ′(w) = η′(w) f ′(w)

and by applying the first inequality of (23) a second time, this yields

η(un+1
j )

︸ ︷︷ ︸

=:ηn+1
j

−η(un
j )

︸ ︷︷ ︸

=:ηn
j

+
∆t

∆x
(F(un+1

j )
︸ ︷︷ ︸

=: F n+1
j

− F(un+1
j−1 )

︸ ︷︷ ︸

=: F n+1
j−1

) + R(un
j−1, un

j , un+1
j−1 , un+1

j )
︸ ︷︷ ︸

=: Rn+1
j

≤∆tη′(un+1
j )

g(un+1
j ) + g(un+1

j−1 )

2
︸ ︷︷ ︸

=: gn+1
j−0.5

where

R(un
j−1, un

j , un+1
j−1 , un+1

j ) :=
1

2
η′(un+1

j )(un
j − un

j−1 − (u
n+1
j − un+1

j−1 )) .

With φ ∈ C1
0

�

R×R+
�

, φ ≥ 0 and φn
j = φ( j∆x , n∆t), we get:

∞
∑

n=0

∞
∑

j=−∞
Φn+1

j

�

ηn+1
j −η

n
j

�

+
∆t

∆x

∞
∑

n=0

∞
∑

j=−∞
Φn+1

j

�

F n+1
j − F n+1

j−1

�

+
∞
∑

n=0

∞
∑

j=−∞
Φn+1

j Rn+1
j ≤∆t

∞
∑

n=0

∞
∑

j=−∞
Φn+1

j η′(un+1
j )gn+1

j−0.5 .

Similar to the proof of proposition 3, multiplication with ∆x and taking the limit k −→∞ yields:

∞
∫

−∞

∞
∫

0

[η(û)φt + F(û)φx]dt dx+

∞
∫

−∞

η(u0(x))φ(x , 0)dx ≥−

∞
∫

−∞

∞
∫

0

η′(û)g(û)φdt dx .

Remark: The “residual term” ∆x
∞
∑

n=0

∞
∑

j=−∞
Φn+1

j Rn+1
j vanishes in the limit due to the bounded variation property of the

sequence u(k) in time and space.

6 Linearization

Since we address the optimization task with methods provided by discrete optimization, all nonlinear terms in the
discretized PDE as well as the other constraints must be approximated by piecewise linear functions. We will briefly
explain the procedure for the two-dimensional case. The three-dimensional case, as needed for the compressor
equations, and the one-dimensional case, which is only needed if a nonlinear equation of state is used, are similar.

The nonlinear terms f2 and fric both depend on the pressure p and flux q. So we need a triangulation of the feasible
domain in the p-q-space. Assuming upper and lower bounds for both variables, a coarse uniform triangulation as
shown in figure 1 can be used as initial grid. The nonlinear functions are evaluated at every grid point (pi , qi). Finally,
these are replaced by an affine combination of the precomputed values. For a nonlinear function g(p, q) this reads as
follows:

g(p, q) = g

 

∑

i∈Λ
λi pi ,

∑

i∈Λ
λiqi

!

≈
∑

i∈Λ
λi g(pi , qi) with

∑

i∈Λ
λi = 1 and λi ≥ 0 .

Moreover, all non-zero λi must belong to a single triangle (SOS constraint).

Remark: Since the pressure and flux variables are space- and time-dependent a separate triangulation has to be stored
for every grid point in the space-time-discretization.

7 Error estimators and refinement strategy

When we apply the piecewise linearized equations as constraints in an optimization framework, refinement is nec-
essary to obtain the aimed accuracy. In general, a global refinement strategy is too expensive for larger problems.
Therefore, we use local error estimators to find the right areas for refinement.
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Figure 1: 2D-Triangulation.

In the presented framework, we have to distinguish between two kinds of errors: Discretization errors, which also
occur in the nonlinear model, and linearization errors. For the refinement of the triangulations, it is important to have
independent estimators for both: In case the linearization error becomes much smaller than the local truncation error
due to the discretization, a further refinement of the triangulations only results in more computational effort but not
more accuracy.

For a general balance law of the form ut + f (u)x = g(u) our error estimator for the local discretization error reads as
follows:

E j,n =
1

12
·
�

un+1
j+1 − un−1

j+1 + 4 · (un+1
j − un−1

j ) + un+1
j−1 − un−1

j−1

+
∆t

∆x
·
�

f (un+1
j+1 )− f (un+1

j−1 ) + 4 ·
�

f (un
j+1)− f (un

j−1)
�

+ f (un−1
j+1 )− f (un−1

j−1 )
�

−
∆t

3
·
�

g(un−1
j−1 ) + 4 · g(un−1

j ) + g(un−1
j+1 )
�

(24)

−4 ·
∆t

3
·
�

g(un
j−1) + 4 · g(un

j ) + g(un
j+1)
�

−
∆t

3
·
�

g(un+1
j−1 ) + 4 · g(un+1

j ) + g(un+1
j+1 )
�

�

.

where un
j = u(x j , tn). This error estimator is based on a weak local truncation error estimator presented in [7] and

[8] where more details can be found for the conservative case (g ≡ 0). To estimate a local discretization error which
is independent of linearization errors, we replace all nonlinear terms in (24) by the linearized ones.

The compressor equations (8) and (9) yield the following error estimators for the linearization error at a compressor:6

Ec,n
pin
=

Pl in(p
c,n
in , pc,n

out , qc,n
in )− P(pc,n

in , pc,n
out , qc,n

in )
∂

∂ pin
P(pc,n

in , pc,n
out , qc,n

in )

Ec,n
pout
=

Pl in(p
c,n
in , pc,n

out , qc,n
in )− P(pc,n

in , pc,n
out , qc,n

in )
∂

∂ pout
P(pc,n

in , pc,n
out , qc,n

in )

Ec,n
qin
=

Pl in(p
c,n
in , pc,n

out , qc,n
in )− P(pc,n

in , pc,n
out , qc,n

in )
∂

∂ qin
P(pc,n

in , pc,n
out , qc,n

in )

Ec,n
qout
= Fl in(p

c,n
in , pc,n

out , qc,n
in )− F(pc,n

in , pc,n
out , qc,n

in )

where the subindex "lin" denotes the linearized functions and pc,n
in , pc,n

out and qc,n
in are the pressure and flux values at

time tn and compressor number c. For the refinement decision, the absolute values of Ec,n
pin

and Ec,n
qin

are compared to
the corresponding discretization errors at the end of all ingoing pipes as well as Ec,n

pout
and Ec,n

qout
are compared to the

corresponding discretization errors at the beginning of all outgoing pipes.7

To estimate the linearization error (of a single triangulation) in the discretized momentum equation (12), we use:

E j,n
q =

∆t

∆x
·
�

�

� f2,l in(u
n
j )− f2(u

n
j )
�

�

�+
1

2
·∆t ·

�

�

�fricl in(u
n
j )− fric(un

j )
�

�

� .

6 For every error estimator the other variables are "freezed".
7 In the current implementation the maximal ratio between linearization and discretization error can be prescribed.
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Again, for the refinement decision, these error estimates are compared to the corresponding estimated discretization
errors.

8 Numerical results

For testing purposes, we have implemented our model in the form of a black-box simulator within an approved
optimization framework [13]. During the simulation process, the linearized model equations are solved for given
boundary conditions and control variables. Gradient information is computed by using difference quotients. After
every run of the optimization tool, the error estimators are evaluated and the linearizations are locally refined where
necessary.

8.1 Example 1 - single compressor

Our first test network consists of two pipes and one compressor as shown in figure 2. The compressor constants are
cP = 1.10 · 102, cF = 3.70 · 10−2 and γ = 1.4. Both pipes are 50 km long with a diameter of 1 m and a roughness of
0.01 mm.

Figure 2: Network with a single compressor.

For the space-time-discretization each pipe is divided into Nx parts and the simulation time of four hours into Nt parts.
As initial conditions we use a constant flux of 1.5 · 106 m3

h
and the pressure linearly decreases from 65bar to 58.2bar

in the first pipe and from 58.2bar to 50.5bar in the second. The pressure is kept constant at the beginning of the first
pipe and the flux is kept constant at the end of the second pipe.

The target pressure values at the sink (end of the second pipe) are shown in figure 3. The compressor power is set to
zero at the beginning and can be configured in every second time step. Intermediate values are computed via linear
interpolation.

Figure 3: Target pressure at the sink.
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For the twodimensional linearizations (functions f2 and fric), we start with a coarse regular triangulation as shown
in figure 1 (pmin = 49bar, pmax = 69bar, qmin = 0 m3

h
, qmax = 2.5 · 106 m3

h
). For the linearizations of the compressor

equations, we use the following prism as feasible domain which is initially divided into six tetrahedrons:

(pin, pout , qin) = (54bar, 54bar, 0
m3

h
)

+λ1 · (6bar, 6bar, 0
m3

h
)

+λ2 · (0bar, 10bar, 0
m3

h
)

+λ3 · (0bar, 0bar, 2.5 · 106 m3

h
)

with λi ∈ [0, 1]. Concerning the refinement strategy, a maximal linearization error of 25% of the discretization error
is allowed.

Figure 4: Course of a 2D-triangulation.

Nx Nt fuel gas target violation

linearized, step 1 2 4 7062 0.018
linearized, step 2 2 4 4651 0.319
linearized, step 3 2 4 4351 0.478
linearized, step 4 2 4 4362 0.401
linearized, step 5 2 4 4336 0.416
linearized, step 6 2 4 4335 0.413
linearized, step 7 2 4 4334 0.414
linearized, step 8 2 4 4334 0.414

nonlinear 2 4 4334 0.414
nonlinear 4 8 3998 0.279
nonlinear 8 16 3941 0.137
nonlinear 16 32 3918 0.070

Table 1: Optimization results for the first example.

The results of the optimization process are listed in table 1. The fuel gas consumption and the target violation
are computed using the "optimal" compressor configuration and a very fine discretization (Nx = 128, Nt = 256).
Already after a few refinement steps the solution of the linearized model is very close to the solution of the nonlinear
model with the same space-time-discretization. After seven refinement steps there is no further refinement of any
triangulation. Figure 4 shows the refinement steps for one of the 2D-triangulations.

8.2 Example 2 - two compressors

Our second test network consists of five pipes and two compressors as shown in figure 5. The compressor constants
are the same as in the first example. All pipes are 50 km long with a diameter of 1 m and a roughness of 0.005 mm.

The initial conditions are listed in table 2. For the whole simulation time of eight hours, the pressure is kept constant
at the beginning of the first pipe and the flux is kept constant at both sinks S1 and S2.
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Figure 5: Network with two compressors.

pipe 1 pipe 2 pipe 3 pipe 4 pipe 5

p(0, 0) in bar 65.0 58.7 51.7 51.7 48.2
p(L, 0) in bar 58.7 51.7 50.8 48.2 44.4

q(x , 0) in 106 m3

h
1.5 1.5 0.5 1.0 1.0

Table 2: Initial conditions for the second example.

The target pressure values at the sinks are shown in figure 6. The feasible domain for the initial triangulations has
been adapted. Table 3 shows the results of the optimization process. Similar to the first example, the solution of the
linearized model is close to the solution of the nonlinear model after a few refinement steps.

Figure 6: Target pressure at the sinks.
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Nx Nt fuel gas target violation

linearized, step 1 2 8 17569 0.000
linearized, step 2 2 8 10085 0.000
linearized, step 3 2 8 6282 0.000
linearized, step 4 2 8 5314 0.123
linearized, step 5 2 8 5222 0.163
linearized, step 6 2 8 5205 0.179

linearized, step ≥ 7 2 8 5204 0.180
nonlinear 2 8 5192 0.195
nonlinear 4 16 4912 0.194
nonlinear 8 32 4815 0.130

Table 3: Optimization results for the second example.

9 Conclusion

We have presented an adaptive approach for the linearization process in solving optimal control problems for gas net-
works using methods provided by discrete optimization. For testing purposes, we have implemented our model in the
form of a black-box simulator within an approved optimization framework and we have examined two optimization
scenarios. Already after a few refinement steps, the solution of the linearized model is very close to the solution of the
nonlinear model with the same space-time-discretization in both test examples. Furthermore, the number of refine-
ments in every step decreased as the solution of the linearized model approached the nonlinear one. Altogether, the
first results of our approach are promising and we intend to apply the same techniques for optimal control problems
in water distribution networks.

As a next step, we aim to implement our adaptive linearization algorithm in a mixed integer programming framework.
Moreover, we intend to investigate how far refinement in space and time is necessary for scenarios with practical
relevance.
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