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Abstract. In this paper, we study the problem of technical transient gas network optimization,
which can be considered as a minimum cost flow problem with a nonlinear objective function and ad-
ditional nonlinear constraints on the network arcs. Applying an implicit box scheme to the isothermal
Euler equation, we derive a mixed integer nonlinear program. This is solved by means of a combina-
tion of (i) a novel mixed integer linear programming approach based on piecewise linearization and
(ii) a classical sequential quadratic program extended with a continuous treatment of combinatorial
constraints. Numerical experiments for example problems as well as for a real-life application show
that best optimal control solutions can be achieved by a combination of both approaches.
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1. Introduction. Nowadays, natural gas has become an increasingly important
energy resource. To reach the customers, large quantities of natural gas are trans-
ported through transmission pipelines. Gas networks operate at high pressures and
utilize a series of compressor stations to compensate the friction forces and to move
the gas over long distances. The compressor stations fuel costs are the most significant
operation costs of transmission pipelines. The optimal operating conditions that meet
all contractual obligations of flow and pressure at various points along the pipeline
and minimize fuel usage are determined by deciding which compressors need to be run
and what are the best operating conditions for these compressors. The large extent
of gas networks, their high complexity, transient nature and inherent nonlinearities
make the optimization of their management a difficult computational task.

The problem of technical transient gas network optimization deals with the chal-
lenge of how to optimize the gas flow and how to operate the compressors cost-
efficiently such that all customers’ demands are satisfied. Since a gas network basically
consists of a set of compressors and valves connected by pipes, it can be adequately
modelled through a directed finite graph. The gas dynamics in pipes are described
by the Euler equations – a set of well-known hyperbolic partial differential equa-
tions. Given a detailed nonlinear model of the pipeline hydraulics and compressor
characteristics, a discretization of the Euler equations in space and time leads to a
complex mixed integer nonlinear (and even non-convex) program (MINLP). In addi-
tion, combinatorial constraints are necessary to model discrete processes like switching
compressors and valves on and off.

There are three main approaches available to solve MINLPs. (i) A first way is
to use algorithms from nonlinear continuous optimization, e.g., sequential quadratic
programming [19, 20] and interior point methods [2]. These solution strategies are
often able to find good optimal controls in short running time, but combinatorial
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constraints cannot be handled efficiently in general and usually have to be given
externally [21]. Another drawback is that they only guarantee to find locally optimal
solutions. (ii) A second opportunity is to apply general purpose global optimization
algorithms such as the branch-and-reduce strategy, which is implemented in the well-
known software BARON [18]. However, general globally optimal solvers are currently
not able to solve transient gas network problems of reasonable size as was confirmed
by our test runs. Reasons are that they cannot exploit the special structure of the
underlying nonlinear equations and they are very limited in choosing the search space
without additional information at hand. (iii) A third, less known technique is to
use mixed integer linear programming (MILP). Once all nonlinearities have been
linearized and binary variables have been introduced to reflect discrete switching
processes, efficient algorithms are available to solve MILPs to global optimality. Such
methods have already been successfully applied to steady state optimization of gas
networks [10, 11] and more recently also to the transient case [12].

Other techniques to attack transient technical optimization include dynamic pro-
gramming [3], simulated annealing [8] and hierarchical system theory [14]. The gas
network optimization problem can also be formulated as a non-cooperative game,
where compressors and sources are the players and communication is established
through the network connectivity constraints. The solution is then given as a Nash-
equilibrium found by an iterative algorithm [16, 17].

In this paper, we combine a global optimization algorithm from mixed integer
linear programming and a classical optimization algorithm from sequential quadratic
programming (SQP) extended by a continuous treatment of binary control variables.
The main idea is to handle binary decisions by means of MILPs and to give attention
to nonlinear physical laws within the SQP framework. We will see that by this
combination very good solutions can be found, which could not has been obtained by
using each of the method solely. The paper is organized as follows. In Section 2, we
derive our mathematical model. In Section 3, we present the MILP and explain how
the nonlinearities can be approximated by piecewise linear functions to fit into a linear
program. The nonlinear continuous SQP-based optimization is described in Section
4. In Section 5, we present numerical results for two academic example problems and
one real-life application. We end with a summary and main conclusions in Section 6.

2. Mathematical Model. In the following we describe our mathematical model
used to optimize transient gas flow in networks.

Network Model. We model a gas network by means of a directed finite graph G =
(V, E). The set E of edges, here also called segments, is partitioned into the set EC

of compressors, the set EV of valves, and the set EP of pipes. The set V of nodes
consists of the set VP of intersection points of the segments, the set VS of sources,
and the set VD of sinks. Sources are considered as gas delivering points and sinks
reflect gas demands, specified by the quantities flow and pressure. We denote by δ−ν
(δ+

ν ) the set of all indices of edges ei ∈ EP , i ∈ N, outgoing (ingoing) from (to) the
node ν ∈ V. To allow description of physical state variables at the ends of edges, each
node ν ∈ V is associated with a family of intermediate vertices {νi}, i ∈ δ+

ν ∪ δ−ν , see
Fig. 2.1. We shall use ei = νiwi to model a directed pipe in the gas network.

Gas Flow in Pipes. The gas flow in a pipe is governed by the system of Euler equations
supplemented by a suitable equation of state. Since pipes in Germany are typically
at least one meter beneath the ground, we can assume a nearly constant temperature
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Fig. 2.1: Network Model. Suppose three directed pipes ei, ej , ek, and one
node ν representing an intersection are given as shown. Then, we
have δ+

ν = {i} for the set of indices of ingoing edges and δ−ν = {j, k}
for the set of indices of outgoing edges. The node ν is associated with
the family of intermediate nodes {νi, νj , νk}, where values of physical
state variables are described.

T = T̄ . In such a situation, isothermal flow is an appropriate model. Taking into
account a non-ideal gas behaviour, the Euler equations reduce to the continuity and
the momentum equation, together with the equation of state. On each pipe e ∈ EP

of the network, we have for t > t0

∂tρ + ∂x(ρv) = 0 ,(2.1)

∂t(ρv) + ∂x(ρv2) + ∂xp = −gρ∂xh− λ

2D
ρ|v|v ,(2.2)

ρ =
p

z(p)R0T̄
,(2.3)

where (ρ, v, p) is the state vector consisting of the density, the flow velocity and the
pressure of the gas, respectively. The two terms on the right-hand side of (2.2) describe
the influence of gravity and friction. Here, g is the acceleration constant, ∂xh is the
slope of the pipe, λ is the pipe friction value, and D is the diameter of the pipe. In
our practical computations, all pipes are nearly horizontal. So, we will neglect the
gravity term.

The friction factor λ is implicitly given by the Prandtl-Colebrook law,

1√
λ

= −2 log10

(
2.51

Re
√

λ
+

k

3.71 D

)
(2.4)

with the Reynolds number Re = Dρ|v|/η, where η is the dynamic viscosity of the
gas, and with the roughness k of the pipe. The compressibility factor z(p) in (2.3) is
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defined by

z(p) = 1 + 0.257
p

pc
− 0.533

p Tc

T̄ pc
,(2.5)

where pc and Tc are the pseudo-critical pressure and temperature, respectively. This
formula from the American Gas Association works quite well for pressures up to 70bar.
Due to the constant temperature T̄ , we get z(p) = 1 + α p with α < 0, leading to
0 < z(p) < 1. Typical values in gas networks are pc = 46.4512bar, Tc = 192.033K,
T̄ =283.15K, which gives α=−0.00224928/bar. Finally, R0 in (2.3) is the normalized
gas constant.

In practical gas network calculations, the gas flow rate q under norm conditions is
considered in addition to the pressure p. We have q = Aρv/ρ0 with the cross-sectional
area A of the pipe and the norm density ρ0. Replacing the density ρ and the velocity
v in (2.1)-(2.2) and defining C0 = R0ρ0T̄ /A, we get the following system of equations

∂t

(
p

z(p)

)
+ C0∂xq = 0 ,(2.6)

∂tq + C0∂x

(
z(p)
p

q2

)
+

A

ρ0
∂xp = − C0

2D

z(p)
p

λ(|q|) q|q|.(2.7)

To solve these equations numerically, it is important to study their flow characteristics.
Setting P = p/z(p) = p/(1 + αp) and reformulating (2.6)-(2.7) in terms of the vector
u = (P, q) as ∂tu + ∂xF (u) = Q(u), a short calculation yields the eigenvalues of the
Jacobian ∂uF (u). We obtain λ1/2 = v ± c(p), where c is the speed of sound defined
by c2 = ∂ρp. From (2.3), we have c(p) = z(p)

√
R0T̄ .

The system of differential equations (2.6)-(2.7) has to be completed by initial,
boundary, and coupling conditions across the whole network. Suppose initial data
p(x, t0) = p0(x) and q(x, t0) = q0(x) are given. Admissible boundary values must be
chosen in accordance to the characteristics [7]. In our application, we make either the
gas flow rate q or the pressure p available at sources and sinks. At each node ν ∈ V
with ingoing pipes ei, i ∈ δ+

ν , outgoing pipes ej , j ∈ δ−ν , and a family of intermediate
vertices {νk}, k ∈ δ−ν ∪ δ+

ν , we enforce conservation of mass,∑
i∈δ+

ν

q(νi, t) =
∑
j∈δ−ν

q(νj , t),(2.8)

and consistency of the pressure,

p(νi, t) = p(νj , t) for all i ∈ δ+
ν , j ∈ δ−ν .(2.9)

Condition (2.8) is known as Kirchoff’s law and is often referred to as Rankine-Hugoniot
condition at a node [7].

Gas networks are operated in the subsonic flow region, that is, |v|< c. Usually,
we even observe |v| � c in practically relevant situations. We thus can conclude
that although the characteristics are solution-dependent, they do not change their
sign, that is, the information directions are maintained. In this case, implicit box
schemes are known to work very effectively. Box schemes, originally introduced by
Wendroff [22], have been used for several years. They are conservative schemes,
i.e., they guarantee exact conservation of physical quantities at the level of the box.



GAS NETWORK OPTIMIZATION 5

Nonphysical oscillations, often caused by parasitic solution components in standard
finite difference or finite volume approximations, are avoided. Box schemes are stable
under mild conditions or even unconditionally stable and therefore allow large time
steps, while they are as easy to program as explicit methods.

The basic idea of box schemes is to locate the degrees of freedom at the centre of
the nodes instead at the centre of the edges as in finite volume schemes. We consider
a sequence of discrete time points t0 < t1 < . . . < tN . Let pn

νi
, pn

wi
, qn

νi
, and qn

wi
be

grid functions at time tn and the ends of pipe ei = νiwi. Then, our box scheme on ei

reads

Pn+1
wi

+ Pn+1
νi

2τn
−

Pn
wi

+ Pn
νi

2τn
+ C0

qn+1
wi

− qn+1
νi

hi
= 0(2.10)

qn+1
wi

+ qn+1
νi

2τn
−

qn
wi

+ qn
νi

2τn
+

C0

hi

((
qn+1
wi

)2
Pn+1

wi

−
(
qn+1
νi

)2
Pn+1

νi

)
+

A

ρ0

pn+1
wi

− pn+1
νi

hi
=

− C0

2D

(
λ(|qn+1

wi
|) qn+1

wi
|qn+1

wi
|

2Pn+1
wi

+
λ(|qn+1

νi
|) qn+1

νi
|qn+1

νi
|

2Pn+1
νi

)
.(2.11)

Here, Pn
ν = P (pn

ν ) = pn
ν /z(pn

ν ) for all ν, hi = |ei| is the box length, and τn = tn+1− tn
is the time step size. The scheme is symmetric in space and first order. For scalar
conservation laws, it is stable for τn ≥ kh, where the constant k > 0 depends on the
flux function and h is the uniform box length, and converges to the entropy solution
[5]. Finally, to built up the fully coupled grid equations, the coupling conditions (2.8)
and (2.9) are discretized at t = tn+1.

We note that a pipe can always be subdivided into smaller pieces of pipes in order
to improve the approximation property of the proposed box scheme.

Valves and Compressors. Valves and compressors are modelled by segments of zero
length. A valve is a control element which can be opened or closed. A compressor
compensates for the pressure loss in pipes due to friction. Since the operation of a
compressor is quite complex and often steered by empirical data, we use an idealized
model for a compressor [12]. Let νiwi = c ∈ EC and νjwj = v ∈ EV . Then, we have
the following two conditions in each case,

qνj
= qwj

= 0, valve closed,(2.12)
qνj

= qwj
, pνj

= pwj
, valve opened,(2.13)

qwi
= qνi

− dcz(pνi
)qνi

((
pwi

pνi

) γ−1
γ

− 1

)
, pwi

= pc
out, compressor on,(2.14)

qνi = qwi , pνi = pwi , compressor off.(2.15)

Here, γ is the isentropic exponent, dc is a specific compressor constant, and pc
out is

the desired outgoing pressure. We note that a compressor is usually combined with
a so-called bypass valve. If the compressor is on, then the bypass valve is closed and
vice versa. All equations are discretized at t = tn+1.

Optimization Task. The task is to route the gas through the network to satisfy
the consumers’ demands such that the fuel gas consumption of the compressors is
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minimized. To keep the running costs at an acceptable level, all compressor stations
have to work efficiently to transport the gas through the network. The costs of each
compressor νiwi =c ∈ EC are modelled by its entire fuel gas consumption,

Fc (pνi , p
c
out, qνi) = dcz(pνi)qνi

((
pc

out

pνi

) γ−1
γ

− 1

)
.(2.16)

The fuel gas consumption is proportional to the compressor power Hc(pνi
, pc

out, qνi
),

i.e., Hc = dhFc with a constant dh > 0. We replace pc
out in (2.14), using the formula

for Hc, and take the set of all Hc as control variables. In real-world gas networks, it is
necessary to bound the compressor power. Therefore, we have to choose the outgoing
pressure pc

out such that 0 ≤ Hc ≤ Hmax
c . Due to efficiency, it is also common to

require Hmin
c ≤ Hc whenever the compressor is on.

Our continuous optimization problem now reads as follows:

min
Hc∈Had

c ,c∈EC

J(p, q) :=
∑

c∈EC

∫ tN

t0

Fc(t) dt(2.17)

subject to all continuous state equations describing the instationary behaviour of
(p, q). Here, Had

c = {H : H = 0 or Hmin
c ≤ H ≤ Hmax

c } is the set of admissible
controls, which guarantees the boundedness of the compressor power for c ∈ EC .
Observe that the objective function is neither convex nor concave. In order to get
a fully discretized model, the objective function is approximated by the trapezoidal
rule using the discrete time points tn.

3. Mixed Integer Linear Programming Formulation. In this section, we
derive a mixed integer linear programming (MILP) formulation for our gas network
optimization problem.

Discrete processes. In a gas network, there are mainly two types of components which
require the modelling of discrete processes: (i) a compressor is either switched off or
works at least with a certain minimum power Hmin

c and (ii) a valve can either be closed
or opened, whereas its switching time is negligible. To reflect this behaviour in our
model, we introduce binary variables sn

c ∈ {0, 1}, c ∈ EC , and sn
v ∈ {0, 1}, v ∈ EV ,

for each compressor and valve. If sn
c = 1, the compressor is running at tn, otherwise

it is turned off. A valve is open at the same time iff sn
v = 1.

Linearization. In the preceding section, we have introduced a symmetric implicit box
scheme to discretize the isothermal Euler equations. The scheme allows large time
steps, resulting in relatively few coupled time levels. This makes it attractive for
setting up a MILP model. Since the discrete equations are still nonlinear, we have to
approximate the nonlinear terms by piecewise linear functions, which will be described
next.

The nonlinearities in the discrete continuity equation (2.10) result from the ex-
pressions P (pn

ν ) = pn
ν /(1 + αpn

ν ). The function P only depends on the pressure and
can be approximated by piecewise linear interpolation. Let pn

ν ∈ [pmin, pmax] and
pressure nodes given with pmin = p0 < p1 < . . . < pl = pmax. Then, the errors of the
local interpolation

P (pn
ν ) ≈ P (pj) +

P (pj+1)− P (pj)
pj+1 − pi

(pn
ν − pj) , pn

ν ∈ [pj , pj+1],(3.1)
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can be balanced over all subintervals by choosing appropriate inner nodes pi. For
example, setting pmin = 30 bar, pmax = 70 bar, and p1 = 48.5 bar gives together with
α = −0.00224928/bar (which is the value in our applications) a relative maximum
interpolation error of less than 0.6%.

The discrete momentum equation (2.11) can be rewritten as

qn+1
wi

+ qn+1
νi

2τn
−

qn
wi

+ qn
νi

2τn
+ C0(In+1

wi
+ Rn+1

νi
) +

A

ρ0

pn+1
wi

− pn+1
νi

hi
= 0,(3.2)

where the nonlinearities are given by functions I and R,

In
ν = I(pn

ν , qn
ν ) =

(qn
ν )2

P (pn
ν )

(
1
hi

+
λ(|qn

ν |)
4D

)
,(3.3)

Rn
ν = R(pn

ν , qn
ν ) =

(qn
ν )2

P (pn
ν )

(
λ(|qn

ν |)
4D

− 1
hi

)
.(3.4)

Both functions depend on the pressure and the flow rate. Since 1/hi is in general very
small in comparison to λ/(4D), the two functions are nearly identical. Introducing
nonnegative bounds qmin and qmax as minimum and maximum flow rate, we use a
triangulation of the rectangular domain [pmin, pmax]×[qmin, qmax] to construct piece-
wise linear approximations over triangles to I and R through interpolation in the mesh
points. In order to achieve a desired maximum relative error with a nearly optimal
number of mesh points, we combine a successive local insertion of new nodes with
a common two-dimensional Delaunay mesh generator. Fig. 3.1 shows an illustrative
example.
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Fig. 3.1: Example: Two-dimensional adaptive Delaunay triangulation for the function
I(p, q) over the domain [30 bar, 70 bar]× [1.5×106 m3/h, 1.7×106 m3/h] with
a maximum relative approximation error of 1%. The triangulation consists
of 71 vertices and 126 triangles. Left: Mesh used to interpolate I(p, q).
Right: Surface plot for the piecewise linear interpolant ΠI of I.

It remains to discretize the trivariate function Fc in (2.16), describing the fuel
gas consumption of a compressor. Analogously to the bivariate case, we apply an
adaptive tetrahedralization. We note that all these mesh generations can be done a
priori.

Piecewise linear functions in MILPs. We will now describe how general piecewise
linear functions can be treated within a MILP framework.
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Let φ : Ω ⊂ Rm → R, x 7→ φ(x) be a continuous nonlinear function on a polygo-
nally bounded domain Ω and Πφ its piecewise linear interpolant constructed through
the approach described above. We assume that T = {S1, . . . , Sl} is the set of m-
simplices forming the underlying triangulation of Ω, which is a simplicial complex.
For each simplex Si, we denote with vj

i ∈ Rm, j = 0, . . . ,m, the set of its vertices. We
assume the simplices to be ordered in such a way that two successive simplices, Si and
Si+1, share at least one vertex and vm

i =v0
i+1 holds for all i=1, . . . , l−1. Such a linear

ordering of simplices and vertices is trivial for m = 1. In [1], an algorithm has been
designed to find such an ordering for m=2, the most complicated case. An example
is presented in Fig. 3.2(a). For m ≥ 3, we construct an appropriate ordering as follows:

(S1) We choose two m-simplices S1 and S2 which have a common facet and number
their vertices such that vm

1 =v0
2 and v0

1 =vm
2 holds.

(S2) We mark S1 and S2 as ordered.
(S3) Since T is a simplicial complex, we can find some unordered simplex Si which

has a common facet with some already ordered simplex Sj .
(S4) Since m ≥ 3, there is at least one common vertex of Si and Sj which is

neither v0
j nor vm

j . Thus, we can extend the set of ordered simplices by Si,
changing only the vertex numbering for Si and Sj .

(S5) We repeat steps (S3) and (S4) until all simplices are ordered.

This leads to an appropriate ordering, where additionally vm
l =v0

1 holds.
Suppose such an ordering to be given. The so-called incremental method (some-

times also referred to as δ-method) [9, 23] can then be used to describe the interpolant
Πφ in terms of linear constraints. Introducing nonnegative variables δj

i and binary
variables wi for i = 1, . . . , l and j = 1, . . . ,m, we add the following constraints to our
MILP:

x = v0
1 +

l∑
i=1

m∑
j=1

(
vj

i − v0
i

)
δj
i(3.5)

Πφ(x) = φ(v0
1) +

l∑
i=1

m∑
j=1

(
φ(vj

i )− φ(v0
i )
)

δj
i(3.6)

m∑
j=1

δj
i ≤ 1 for i = 1, . . . , l(3.7)

m∑
j=1

δj
i+1 ≤ wi for i = 1, . . . , l − 1(3.8)

wi ≤ δm
i for i = 1, . . . , l − 1(3.9)

δj
i ≥ 0 for i = 1, . . . , l and j = 1, . . . ,m(3.10)

wi ∈ {0, 1} for i = 1, . . . , l.(3.11)

The first constraint is used to express a certain point x ∈ T as a sum of vectors pointing
along the edges of the triangulation, multiplied by their associated δ-variables. As a
direct consequence, the piecewise linear function Πφ can be described through (3.6).
The other constraints guarantee that the choice of all δj

i is admissible. For this,
the so-called filling condition has to be satisfied: If a variable δj

i+1 associated to the
(i + 1)th simplex is positive for some 1 ≤ j ≤ m, then all δm

j with j < i have to equal
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one. Observe that the vectors vm
1 − v0

1, . . . ,v
m
l − v0

l build a path along all simplices
of the triangulation, see Fig. 3.2(b).

The incremental method is superior to the standard textbook approach as de-
scribed, e.g., in [13]. There, convex combinations of variables associated to the ver-
tices are used to describe a point in the triangulation. The advantage is based on the
property that the polytope defined by (3.7)–(3.10), together with the nonnegativity
constraints wi ≥ 0 for i = 1, . . . , l, is integral [15, 23]. This means that all vertices of
the polytope, described by inequalities (3.7)–(3.10), are integral, even if we relax the
integrality condition (3.11) on the w variables.

A third way to incorporate piecewise linear functions into a MILP is to use SOS
branching, which was successfully implemented for gas network optimization in [11,
12]. Unfortunately, up to now, it is only suitable when uniform grids are applied.

(a) A triangulation where the vertices are or-
dered within each triangle in such a way that
v2

i = v0
i+1 holds for i = 1, . . . , 5.

(b) The dashed arrows show a path through the
triangulation, which is defined by the vectors
v2

i − v0
i for i = 1, . . . , 6.

Fig. 3.2: Example: A triangulation with a vertex path inducing a linear ordering of
all simplices.

It is straightforward to apply the above approach to the nonlinearities Pn
ν , In

ν ,
and Rn

ν arising from the discretization of the isothermal Euler equations. For the
piecewise linear approximation of Fc in (2.16), we have to modify the incremental
method in order to satisfy ΠFc ≥ Hmin

c /dh whenever the compressor c=νkwk ∈ EC

is on. To meet this requirement, we introduce auxiliary variables paux
νk

, paux
wk

≥ 0 and
apply a slightly modified version of the incremental method to approximate Fc:

pνk
(x) = paux

νk
+ pνk

(v0
1)sc +

l∑
i=1

3∑
j=1

(
pνk

(vj
i )− pνk

(v0
i )
)

δj
i(3.12)

pwk
(x) = paux

wk
+ pwk

(v0
1)sc +

l∑
i=1

3∑
j=1

(
pwk

(vj
i )− pwk

(v0
i )
)

δj
i(3.13)

qνk
(x) = qνk

(v0
1)sc +

l∑
i=1

3∑
j=1

(
qνk

(vj
i )− qνk

(v0
i )
)

δj
i(3.14)
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ΠFc(x) = Fc(pνk
(v0

1), pwk
(v0

1), qνk
(v0

1))sc +(3.15)

+
l∑

i=1

3∑
j=1

(
Fc(pνk

(vj
i ), pwk

(vj
i ), qνk

(vj
i ))− Fc(pνk

(v0
i ), pwk

(v0
i ), qνk

(v0
i )
)

δj
i

sc ≥
3∑

j=1

δj
i for i = 1, . . . , l(3.16)

wi ≥
3∑

j=1

δj
i+1 for i = 1, . . . , l − 1(3.17)

wi ≤ δ3
i for i = 1, . . . , l − 1(3.18)

δj
i ≥ 0 for i = 1, . . . , l and j = 1, . . . , 3(3.19)

wi ∈ {0, 1} for i = 1, . . . , l.(3.20)

If the compressor is switched off, equation (3.16) forces all δ-variables to equal zero.
In this case, we get from (3.12) and (3.13) the identities pνk

= paux
νk

and pwk
= paux

wk
.

The auxiliary variables are needed to provide the additional flexibility necessary to
ensure the consistence of the pressure (2.9) at each time point. If the compressor is
running, i.e., sc = 1, then both auxiliary variables should vanish. To this end, we
introduce two additional constraints,

pmax
νk

(sc − 1) + paux
νk

≤ 0,(3.21)
pmax

wk
(sc − 1) + paux

wk
≤ 0,(3.22)

where pmax
νk

and pmax
wk

are the maximum pressure values at node νk and wk, respec-
tively. These values are given due to technical restrictions.

4. Nonlinear Continuous optimization. We want to compare optimal solu-
tions obtained with our MILP formulation with those computed with a fully nonlinear
continuous optimization approach. The latter requests an appropriate treatment of
binary variables. This is described next. Afterwards, we will shortly explain the in-
gredients of our simulation tool and the optimizer used.

Treatment of binary control variables. As introduced in section 2, the set of admissible
controls for a compressor station is of the form Had

c = {0} ∪ [Hmin
c ,Hmax

c ]. That is,
for a running compressor station, the compressor drive unit has to generate a certain
power Hc ∈ [Hmin

c ,Hmax
c ], and we have Hc = 0 when the compressor is switched off.

Therefore, the control of a compressor station includes a binary decision in every time
step whether to switch it on or off. This switching process has to be modelled in the
context of continuous optimization.

Not only in the context of continuous optimization, it is common practice to relax
binary variables. We extend Had

c used in (2.17) to a relaxed set of admissible controls
H̃ad

c = [0,Hmax
c ]. Since we cannot expect the optimal solution of the relaxed problem

to be admissible for the original problem, we have to define a strategy how to process
the computed information. The main idea of our algorithm is the following [6]: First,
we add a variable penalty term, as shown in Fig. 4.1, to the cost function of each
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Fig. 4.1: Penalty function Fp(Hc), which is added to the cost function of each com-
pressor in order to penalize values of Hc(t) within (0,Hmin

c ). Both the
position of the peak Hp and its maximum value yp can be varied.

compressor in every time step. The penalty term Fp(Hc) is given by

Fp(Hc) =


yp

(
2.5
(

Hc

Hp

)3

− 1.5
(

Hc

Hp

)5
)

if 0 ≤ Hc ≤ Hp

yp

(
2.5
(

Hmin
c −Hc

Hmin
c −Hp

)3

− 1.5
(

Hmin
c −Hc

Hmin
c −Hp

)5
)

if Hp ≤ Hc ≤ Hmin
c

0 otherwise,

(4.1)

where Hp ∈ (0,Hmin
c ) is the position of the peak of the penalty function and yp the

corresponding maximum value. These values have to be chosen for each compressor
and each discrete time point tn. Second, we keep switching decisions fixed for the
next run of the optimizer as soon as the optimal solution of the relaxed problem is
inside a ∆-region around the set of admissible controls. That is,

sn
c =

{
0 if 0 ≤ Hc(tn) ≤ ∆

1 if Hmin
c −∆ ≤ Hc(tn) ≤ Hmax

c .
(4.2)

Concerning the variation of the penalty term, we apply the following strategy: After
every run of the optimizer, the maximum value yp is increased by the factor of 1.1.
In addition, the position Hp of the peak of the penalty function is moved a certain
amount in the direction of the current control value Hc. More precisely,

Hp =

{
Hp −min(Hp −∆, βl) if Hc ≤ Hp

Hp + min(Hmin
c −∆−Hp, βr) if Hc > Hp.

(4.3)

We use ∆=βl =βr =Hmin
c /10. This way, the control is supposed to be pushed into

one of the ∆-regions in the next runs and the switching decision finally gets fixed.
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Note that it is possible and might be even necessary that the position of the peak
of the penalty function switches from one side of the current control value to the other.

Simulator and Optimizer. The main purpose of the simulator is to solve the system
of discrete, nonlinear grid equations derived from the isothermal Euler equations, the
coupling and boundary conditions, and the defining equations for compressors and
valves in Section 2. For that, all binary variables sn for the compressors and valves
as well as the compressor powers Hc must be known. In order to allow a direct
comparison, we use the same temporal and spatial discretization as for our MILP
formulation. The nonlinear equations are solved by means of an adapted Newton’s
method including the application of sparse matrix techniques and switching between
simplified and full mode. The simulator is also used to check the admissibility, i.e., the
compliance with given restrictions on the pressure and the flow rate, of the optimal
control computed with the MILP approach. This allows to estimate the pollution
effect of our linearizations.

The simulator is integrated into a black-box continuous optimizer that demands
for function and gradient evaluations of the objective functional and the constraints.
A single run of the simulator delivers a certain value for the objective functional
J(p, q) in (2.17). Gradients of J(p, q) are computed from the numerical solution of the
adjoint equations derived from the discrete model equations. We note that the adjoint
equations act backwards in time and need the complete forward solution obtained by
the simulator. As optimizer we choose the well-known SQP-solver DONLP2. It is
based on a sequential equality constrained quadratic programming method with an
active set technique. Bounds on the variables are treated in a gradient-projection like
fashion. For more details consult [19, 20].

5. Numerical illustrations. First numerical results are given for two example
networks, which are used to compare our linear and nonlinear approach to technical
transient gas network optimization. One compressor has to be optimized in the first
network, whereas for the second network, two compressors have to be efficiently op-
erated with respect to a temporally increasing customer’s demand. In Section 5.3, we
present optimal controls for a real-life problem.

The network structures of the example problems are shown in Fig. 5.1 and Fig. 5.2.

Fig. 5.1: First example network consisting of one source, one sink, two pipes, one
compressor, and its bypass valve. There are two inner nodes Nd1 and Nd2
before and after the compressor.

All pipes are discretized by a two-point discretization. We perform four time
steps with a constant τ =1h. The errors of the local interpolation are less than 0.5%
for the scalar and bivariate functions P , I, and R, and less than 5% for the trivariate
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Fig. 5.2: Second example network consisting of one source, one sink, four pipes, two
compressors, and their accompanying bypass valves. There are four inner
nodes labelled from Nd1 to Nd4.

Time [h] 0 1 2 3 4

Hc1 [kW] 0 0 0 0 600.00
Hc2 [kW] 0 0 705.89 1352.98 1479.70∑

c

∫ 4

0
Fc dt [m3] 1039.23

Table 5.1: Network 2. First feasible control found by CPLEX.

function Fc. The arising MILPs are solved with CPLEX [4], where the run time for
the branch-and-cut algorithm is limited to 120s. In order to provide an admissible
solution to start with, we first compute a steady state with all compressors switched
off. For this, we set p=70bar at the source for the first problem and p=65bar for the
second one. In both cases, q = 1.5 × 106m3/h is taken at the sink. We consider the
optimal control as sufficiently accurate if all pressure values stay within their desired
boxes or exceed their bounds by not more than 0.5bar.

Finally, all pipes are 50km long and have a diameter D = 1m. Their roughness
is k=0.01mm. All compressors are of the same type and their specific constants are
dc =0.053286 and dh =2.9818kWh/m3.

The computations were done on a PC with Intel processor x86.

5.1. Network with one compressor. The first test example serves to illustrate
the performance of the MILP approach. There is one source, where gas is fed into
the network, and one sink representing a customer. The customer’s demand is q =
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Time [h] 0 1 2 3 4

Hc1 [kW] 0 0 0 600.00 619.43
Hc2 [kW] 0 0 600.00 600.00 688.25∑

c

∫ 4

0
Fc dt [m3] 822.95

Table 5.2: Network 2. Best control found by CPLEX.

Time [h] 0 1 2 3 4

Hc1 [kW] 0 0 600 600 943.65
Hc2 [kW] 0 0 600 600 943.65∑

c

∫ 4

0
Fc dt [m3] 1121.37

Table 5.3: Network 2. Optimal control solution found by the SQP method.

2×106m3/h, which is 5×105m3/h higher than the value for the steady state solution.
For all times, the pressure p=70bar at the source is kept fixed. The specific bounds,
set for this problem, are

qmin = 1.4× 106m3/h, qmax = 2.1× 106m3/h, pmin =58bar, pmax = 71bar

and

Hmin = 1.0× 105kW, Hmax = 6.0× 105kW.

CPLEX delivers an optimal control for which the compressor is running at its technical
minimum all the time. The correctness of the solution is confirmed by our simulator.
All bounds are satisfied. The CPU time is negligible. It is remarkable that although
the problem seems to be simple, the nonlinear global optimization software BARON
[18] could not find a feasible solution.

5.2. Network with two compressors. Our second example network is slightly
more complex. We shall compare optimal control solutions obtained with MILP and
the optimizer DONLP2.

The customer’s demand at the sink varies linearly in time from 1.625× 106m3/h
to 2.0× 106m3/h. Again, the pressure p=65bar at the source is kept fixed. The flow
rate at the source into the network is forced to be in the interval [1.4×106m3/h, 2.2×
106m3/h]. For all other elements of the network, we have the specific bounds

qmin = 7.0× 105m3/h, qmax = 1.1× 106m3/h, pmin =61bar, pmax = 65bar

and

Hmin = 600kW, Hmax = 1500kW .

CPLEX finds a feasible solution to the linearized problem within 2s. Passing this
solution to our simulator and solving the nonlinear discrete equations, we find that
the variations with respect to the pressure bounds sum up to 0.0167bar, which is
negligible. The fuel gas consumption of the compressors is about 1039m3. The control
variables, i.e., the compressor power Hc, are given in Tab. 5.1.
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Time [h] 0 1 2 3 4

Hc1 [kW] 0 0 0 600 988.03
Hc2 [kW] 0 0 600 600 988.04∑

c

∫ 4

0
Fc dt [m3] 935.03

Table 5.4: Network 2. Optimal control solution found by the SQP method, if the
switching decisions from the best CPLEX-run are used.

Time [h] 0 1 2 3 4

Hc1 [kW] 2000 0 1949.91 2077.30 4027.47
Hc2 [kW] 2000 0 1972.06 1633.65 2716.44
Hc3 [kW] 2000 1932.78 2297.38 2703.24 2800.39∑

c

∫ 4

0
Fc dt [m3] 7598.24

Table 5.5: Network 3. Optimal control solution found by the SQP method.

After a run time of 120s, we find a solution that is not worse than the optimal
solution by a factor of 1.03. The fuel gas consumption of both compressors is about
823m3. In this case, the simulator delivers a total violation of the pressure bounds
of 0.46bar, which is still in the acceptable range. The corresponding control is given
in Tab. 5.2. We observe that the solution is improved at the price of larger pressure
violations. This is possible due to the linearization error.

The problem is also solved with the SQP-solver DONLP2 coupled with our simu-
lator. The result for the control is revealed in Tab. 5.3. An interesting observation is
that the SQP-solver finds a symmetric solution that is optimal for the switching deci-
sions made, but worse than the unsymmetric solutions found by the MILP approach.
Using the switching decisions from the best CPLEX-run, the SQP-solver improves its
solution by 16.6%. The results are shown in Tab. 5.4.

Fig. 5.3: Real-life network consisting of two sources, four sinks, a couple of pipes,
three compressors, and their accompanying bypass valves.

5.3. Real-life network with three compressors. Our third example is taken
from a real-life application. It consists of three compressors and four customers as
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Time [h] 0 1 2 3 4

Hc1 [kW] 2000 1000.00 1000.00 1000.00 1000.00
Hc2 [kW] 2000 1000.00 1000.00 1000.00 1000.00
Hc3 [kW] 2000 1624.78 1465.47 1808.16 2116.54∑

c

∫ 4

0
Fc dt [m3] 5430.36

Table 5.6: Network 3. Best solution found by CPLEX with maximum violation of
1.5bar for the pressure bounds.

Time [h] 0 1 2 3 4

Hc1 [kW] 2000 1000.00 1104.97 1117.02 2552.42
Hc2 [kW] 2000 1900.04 1559.86 1172.43 1794.92
Hc3 [kW] 2000 1307.18 2036.70 2491.78 2807.41∑

c

∫ 4

0
Fc dt [m3] 6880.55

Table 5.7: Network 3. Optimal control solution found by the SQP method, if the
switching decisions from the best CPLEX-run are used.

shown in Fig. 5.3. This problem is significantly more challenging than the previous
ones. Again we consider optimal control solutions obtained by CPLEX and the op-
timizer DONLP2 for a four hour time period. The customers’ demands at all sinks
increases linearly from 3.6 × 105m3/h to 4.2235 × 105m3/h, except the second sink,
where the outflow is a constant, 1.8× 105m3/h. There is a fixed pressure p=70bar at
the first source while a constant inflow rate q=7.2× 105m3/h is given at the second
source.

For all elements of the network, the corresponding flow and pressure values are
bounded from below and above. Typically, the flow is allowed to vary by some
105m3/h and the pressure values by about 3bar. For the compressors, we have the
specific bounds

Hmin = 1000kW, Hmax = 10000kW

and the individual constants dc = 0.053287, 0.051955, 0.055951, in (2.16) and dh =
2.981750kWh/m3, 3.058204kWh/m3, 2.839763kWh/m3. Recall Hc =dhFc.

After a few seconds, the SQP-solver DONLP2 coupled with our simulator delivers
a solution resulting in a fuel gas consumption of about 7598m3. Details are given in
Tab. 5.5. CPLEX finds a first feasible solution within 180s, but this does not give a
better solution when passed to the nonlinear optimizer. After about 7 hour runtime,
optimality is proven for the linearized model. The corresponding optimal control is
given in Tab. 5.6. The fuel gas consumption of all compressors is about 5430m3,
however the pressure bounds are violated by 1.6bar – a value, which is three times
higher than allowed. Using the binary decisions made and the control as initial state
for the SQP-solver, we obtain an improved feasible control solution with an overall
fuel gas consumption of 6881m3, see Tab. 5.7.

6. Summary and Conclusions. We have considered the problem of technical
transient gas network optimization. The gas flow through pipelines is modelled by
the instationary nonlinear isothermal Euler equations. The objective function, which
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is the overall sum of the fuel gas consumption of all compressors, is neither convex nor
concave. To attack the minimization problem, we have applied mixed integer linear
and sequential quadratic nonlinear programming-based algorithms. In a first step,
the Euler equations were discretized by a symmetric implicit box scheme. To set up
the mixed integer linear program (MILP), the incremental method was then used to
approximate the nonlinearities through piecewise linear functions.

On the basis of numerical experiments made for two academic problems and one
real-life application, we have come to three main conclusions. (i) Our algorithms are
able to compute feasible and physically meaningful optimal control solutions to tran-
sient gas network problems. Although less known in nonlinear network optimization,
MILPs are remarkably useful to handle combinatorial constraints and to find the best
binary decisions since their solution strategies guarantee to derive globally optimal
solutions. (ii) The classical sequential quadratic programming (SQP) extended with
a continuous treatment of binary control variables is able to deliver feasible opti-
mal control solutions in short running times, which seems to be also true for more
complex gas network problems. However, these solutions are in general only locally
optimal. (iii) Better results could be achieved by combining both the MILP and the
SQP approach. In a first step, the MILP solver equipped with an a priori control
of the linearization errors provides a globally optimal set of combinatorial decisions
for the switching network components, that is for compressors and valves. Taking
the corresponding discrete states as input, the SQP method is then used to solve the
remaining nonlinear optimization problem. The solution computed in such a way is
optimal with respect to the underlying linear model and satisfies all side constraints,
especially the often crucial bounds for the pressure variables.

Inspired by our first promising results, we will develop feedback strategies to pass
information from the SQP solver back to the MILP solver in order to speed up the
branch-and-cut algorithm in CPLEX. We will also study sensitivities of the binary
decisions in terms of the linearization errors.
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