
Numerically Solving Maxwell’s Equations.
Implementation Issues for Magnetoquasistatics

in KARDOS

Delia Teleaga and Jens Lang 1

Abstract.

Having experienced a couple
of tricky issues during the implementation

of edge elements within the fully space-time adaptive
PDE solver KARDOS [6] to solve magnetoquasistatic problems
we found it useful to share our exciting learning process with

interested readers and beginners.

June 20, 2008

1This work was partly supported by the Deutsche Forschungsgemeinschaft
(DFG) within the project ”Space-time adaptive magnetic field computation” under
the grants LA1372/3-1 and LA1372/3-2.

Contents

1 Maxwell’s Equations and Magnetoquasistatics 3

2 Edge FEM for Maxwell’s Equations 6
2.1 Towards discrete equations for EFEM 7
2.2 H(curl)-conforming basis functions 10
2.3 The problem of enforcing conformity 17
2.4 Managing the degrees of freedom 21
2.5 Numerical integration . 28

3 Eigenvalues Computation 31
3.1 The two-dimensional case . 31

3.1.1 The L-shape domain 31
3.1.2 The square domain . 32

3.2 The three-dimensional case . 36

4 Magnetoquasistatic problems 38
4.1 A magnetostatic boundary value problem 38
4.2 TEAM 7 problem: asymmetrical conductor with hole 40

Appendices 40

A 42

2

Chapter 1

Maxwell’s Equations and
Magnetoquasistatics

Electromagnetic phenomena are governed by Maxwell’s equations. These
equations relate the electric and magnetic field intensity vectors and the
material properties of a medium. The full set of equations may be written
as

curlE = −∂B
∂t

(Faraday’s law) (1.1)

curlH =
∂D

∂t
+ J (Ampere’s law) (1.2)

together with the material laws

B = µH , J = σE + J s, D = εE , (1.3)

and the continuity equation

∂ρ

∂t
+ div J = 0, (1.4)

3

where

B − magnetic flux density

H − magnetic field intensity

D − displacement current density

E − electric field intensity

J − electric current density

J s − applied current density

ρ − charge density

µ − medium’s permeability

σ − medium’s electric conductivity

ε − medium’s permittivity

Important consequences are

div D = ρ (1.5)

div B = 0 (1.6)

Boundary conditions.
The equations above must be supplemented by appropriate boundary con-
ditions. At the surface of a perfect electrical conductor (PEC), the electric
and the magnetic fields must be such that

n×E = 0, n ·H = 0, (1.7)

where n is the unit outward normal vector to the boundary, i.e., the PEC
boundary condition sets the tangential component of the electric field and
the normal component of the magnetic field to zero. Correspondingly, at the
surface of a perfect magnetic conductor (PMC), the fields must be such that

n×H = 0, n ·E = 0. (1.8)

If problems formulated in infinite domains are considered, these conditions
must be supplemented by suitable radiation conditions.

Interface conditions.
If regions of the domain have different material properties, one should impose
at an interface between sub-domains a and b the tangential jump conditions

n× (Ea −Eb) = 0, n× (Ha −Hb) = 0 (1.9)

4

on the electric and magnetic fields and the normal jump conditions

n · (εaEa − εbEb) = 0, n · (µaHa − µbHb) = 0 (1.10)

on the flux densities.
Maxwell’s equations describe the most intricate electromagnetic wave phe-
nomena. Of course, the analysis of such fields is difficult and not always
necessary. Wave phenomena occur on short time scales or at high frequen-
cies that are often of no practical concern. If this is the case, the fields may
be described by truncated versions of Maxwell’s equations applied to rela-
tively long time scales and low frequencies (quasistatics). The quasistatic
laws are obtained from Maxwell’s equations by neglecting either the mag-
netic induction or the electric displacement current. Here, we are interested
in the latter, also known as eddy current model.

Magnetoquasistatics.
It is assumed that

∂D

∂t
= 0. (1.11)

Using the magnetic vector potential A defined by

B = curlA , (1.12)

we obtain from (1.1) the electric field intensity E expressed as function of A

E = −∂A
∂t

. (1.13)

Now from (1.1), (1.11), and (1.3) we end up with an equation for the magnetic
vector potential A :

curl(
1

µ
curlA) + σ

∂A

∂t
= J s, (1.14)

where

div J s = 0, (1.15)

if we use the Coulomb gauging div A = 0.
In what follows we are interested in solving equation (1.14) for A .

5

Chapter 2

Edge FEM for Maxwell’s
Equations

Besides finite difference methods and the method of moments, another at-
tempt to solve Maxwell’s equations is the classical Finite Element Method
(FEM). In literature, as e.g. in [9], it is shown that when the usual node-
based elements, obtained by interpolating the nodal values, are employed to
represent vector electric or magnetic fields, then several serious problems are
encountered. There are three main problems:

• the occurence of non-physical or so-called spurious solutions, which is
generally attributed to lack of enforcement of the divergence condition,

• the inconvenience of imposing boundary conditions at material inter-
faces as well as at conducting surfaces,

• the difficulty in treating conducting and dielectric edges and corners
due to field singularities associated with these structures.

Another approach, more suitable for solving electromagnetic problems, is
the vector or edge FEM (EFEM). This uses vectorial basis function in the
space H(curl). The properties of these functions are presented in Section 2.2.
Firstly, a scalar weak formulation is derived from (1.14) and the main differ-
ences between a nodal and a vector FEM are underlined, because we have to
correspondingly modify the fully adaptive space-time solver KARDOS.

6

2.1 Towards discrete equations for EFEM

Let Ω be a bounded domain in R3 with boundary Γ. The outer normal vector
is denoted by n. We introduce the following spaces:

H(curl; Ω) = {v ∈ (L2(Ω))3 : curlv ∈ (L2(Ω))3},
H0(curl; Ω) = {v ∈ H(curl; Ω) : v × n = 0 on Γ}.

We are looking for a solution A to (1.14) in the space H0(curl; Ω). A
variational formulation of (1.14) is the following: find A ∈ V = H0(curl; Ω)
such that

(µ−1curlA , curlW)Ω + σ(
∂A

∂t
,W)Ω = (J s,W)Ω,∀W ∈ V . (2.1)

Remarks:
1. There is often a debate in the literature about whether or not it is neces-
sary to specify the divergence condition div A = 0 explicitly. Theoretically,
one should always include a Lagrange multiplier in the variational formula-
tion.
2. We have not yet considered a Lagrange multiplier in our weak formulation,
because this would imply that we should use simultaneously edge and clas-
sical elements in KARDOS, since the Lagrange multiplier belongs to H1

0 (Ω).

The Galerkin FE approximation is usually obtained by replacing the con-
tinuous space V by conforming discrete subspaces, i.e., we are looking for a
solution AN ∈ V N , where V N is a finite-dimensional subspace of V such
that

(µ−1curlAN , curlW N)Ω + σ(
∂AN

∂t
,W N)Ω = (J s,W N)Ω,∀W N ∈ V N .

(2.2)
Let {Φi : i = 1, . . . , N} be a basis of V N . This implies that AN ∈ V N can
be written as:

AN(x) =
N∑

i=1

uiΦi(x), ∀x ∈ Ω. (2.3)

One has to determine the coefficients ui, called also degrees of freedom.

KARDOS uses classical FEM. If the unknown is a vector, as e.g. A =
(A1, A2, A3)

T in (1.14), then the variable noOfEquations should be set to 3
in kardos.c and we should have indeed three equations for finding the three
components of the solution Ai, i = 1, 2, 3. But this is not the case when

7

using edge elements, i.e., when the basis functions are vector functions. Af-
ter multiplying (1.14) with a vector basis function, integrating over Ω and
using integration by parts, one obtains the scalar variational problem (2.2).
Thus, although the basis functions and the solution are vectors, the degrees
of freedom are scalars.

This implies the following modifications in KARDOS:

1. In kardos.c: set noOfEquations = 1.

2. Inmax.c/InitMax(): the variables u0, ux0, sourceS and others similar
to them get allocated memory with the help of function
GetUMemMaxw, since they have now three components.

3. The choice and organization of the basis functions will be explained in
Section 2.2.

4. The dofs ui are not anymore defined as values of the solution computed
at node points. E.g., the edge dofs are given by

ui =

∫
ei

A · τ ei
ds, (2.4)

where τ ei
is defined in (2.16).

This implies that the following functions have to be modified:

• In triangutil.c: ValueAtPartner(...) and similar functions.

• In timeinteg.c: InitAndStartValues(...), SetInitValuesOnNodes(...)
and similar functions.

• In tsetup.c: TimePreSets(), SetNewValuesOnNodes(...), RefTe-
trahedronTime(...).

But more on dofs in Section 2.4.

Now we proceed as usually in a Galerkin approach towards obtaining a linear
system. We choose the discrete test functions W N to be the functions {Φi :
i = 1, . . . , N}. Inserting (2.3) into (2.2), we obtain (after discretizing in
time) a linear system written in the form

(C − kM)u = B, (2.5)

8

where u = (u1, . . . , uN)T and C, M and B are

Cij =

∫
Ω

µ−1curlΦi · curlΦj dx, Mij =
∫

Ω
Φi ·Φj dx,

Bi =

∫
Ω

J s ·Φi dx. (2.6)

These entries are computed in assmax.c, but only locally, i.e., for Ω = tetra-
hedron t. As we will see in Section 2.2, the basis functions are given only on a
reference tetrahedron and they have to be transformed on every tetrahedron
t in the mesh. For this we need the covariant transformation [13]. Let K̂
denote a reference element and K its image through a map FK ,

FK : K̂ → K, FK(ξ) = x, ∀ ξ ∈ K̂, x ∈ K.

In [13] it is proved that a vector function û ∈ H(curl; K̂) is transformed to
a vector function u ∈ H(curl;K) by the so-called covariant transformation

u = JF−T
K · û, (2.7)

and then it yields (see also [13], pg. 77-78)

[∇× u] = JF−T
K [∇̂ × û]JF−1

K , (2.8)

where the Jacobian matrix JFK and the curl matrix [∇× u] are defined by

[JFK]ij =
∂(FK)i

∂ξj
, [∇× u]ij =

∂ui

∂xj

− ∂uj

∂xi

, 1 ≤ i, j ≤ 3. (2.9)

In the particular case of an affine map of the form

x = FK(ξ) = BKξ + bK , (2.10)

where BK is a constant matrix given by (using KARDOS notations)

Bk =

(
f11 f12

f21 f22

)
, or Bk =

f11 f12 f13

f21 f22 f23

f31 f32 f33

 ,

we have JFK = BK and thus u = B−T
K û. In 2D, one may verify that

curl u =
1

detBK

ˆcurlû. (2.11)

9

In 3D, in [13], pg. 78, Corr. 3.58, it is proved that

curlu =
1

detBK

BK · ˆcurl û. (2.12)

See the Appendix for definition of curl and curl. Thus, in 2D, the entries in
the curl-curl matrix C and in the mass matrix M take the following form:

cij =

∫
K

µ−1 curlΦi curlΦj dxdy

=
1

detBK

∫
K̂

µ̂−1(
∂Φ2

i

∂ξ
− ∂Φ1

i

∂η
)(
∂Φ2

j

∂ξ
−
∂Φ1

j

∂η
) dξdη,

mij =

∫
K

kΦi ·Φj dxdy = detBK

∫
K̂

k̂(B−T
K Φ̂i) · (B−T

K Φ̂j) dξdη

=
1

detBK

∫
K̂

k̂ [(f22Φ
1
i − f21Φ

2
i)(f22Φ

1
j − f21Φ

2
j)+

+(f12Φ
1
i − f11Φ

2
i)(f12Φ

1
j − f11Φ

2
j)] dξdη.

These formulas appear in assmax.c, in e.g. CompOpCurlMaxw(...). In 3D,
we have obtained similar, but rather lengthy formulas. The case when µ−1

is a 3× 3 matrix is also considered.

2.2 H(curl)-conforming basis functions

The following description of the popularisation of edge elements is taken from
[12]:
In 1980, Nedelec [14] gave the details of a recipe for the construction of
H(curl) and H(div) conforming elements on tetrahedra and hexahedra. He
also proposed the conditions which these elements should satisfy in order for
them to be regarded as conforming. More precisely, Nedelec [14] shows that
if domains K und K ′ share a common face f with normal n, then a smooth
vector field u on each domains belongs to H(curl;K∪K ′) provided that n×u
is the same on each side of the face f . Thus a conforming discretization of
H(curl) is characterized by continuity of tangential components across ele-
ment interfaces.
He also proposed [15] a second family of H(curl) conforming elements, with
basis functions requiring double the number of unknowns. The new family
produced a better convergence rate for the vector, but an identical convergence

10

rate for the curl, when compared to the original family. Although Nedelec pro-
posed recipes for the construction of H(curl) conforming elements, there are
many choices which can be adopted for the basis functions and all have their
respective advantages and disadvantages. For example, certain choices may
lead to matrices which are ill-conditioned and difficult to solve, while others
may be difficult to implement in computer programs. Subsequently, in the
1980s and the 1999s, many different sets of basis functions have been pro-
posed.

In [12] may be also found a summary of these developments. Here we will
mention only a few of them, namely the ones who gained more applicability
and attention.

• In 1997, Graglia et al. [8] proposed a set of interpolatory basis functions
of type I, i.e., without gradients. The Nedelec’s 0th order vector basis
functions multiplied by a complete interpolatory polynomial of order p
generate the vector basis functions of pth order.

• In 2000, Demkowicz et al. pioneered the application of hp-adaptive
finite element techniques to electromagnetics. They allow for locally
variable order elements of type I, under the so-called minimum rule,
i.e., the degree of polynomial on an edge or on a face is restricted to be
equal to the order of the lowest polynomial employed on the elements
which contain the edge, or contain the face. In 2D, they describe in [16]
a complete finite element package which allowed for the use of hybrid
quadrilateral/triangular meshes with simultaneous h and p-refinement.
In 3D, they describe in [17] also a complete finite element package, but
only for hexahedral elements. Their approach allows for hanging nodes
and for anisotropic refinement. They describe a data structure which
allow such refinement, although they do not have yet a strategy for the
correct selection of the combination of h and p-refinements. Curved
elements are allowed through the definition of a reference element and
a geometric mapping.

• In 2001, Ainsworth and Coyle [2] have proposed an alternative hierar-
chical basis of type II for triangles and quadrilaterals which has certain
advantages over the basis proposed by Demkowicz. For example, nu-
merical results for triangular and quadrilateral discretisations [2] show
that the basis proposed by Ainsworth and Coyle has superior condi-
tioning properties ([12]). Also in 3D, they proposed an alternative
hierarchical basis for hexahedral elements, for which they also give the-
oretical estimates which bound the condition number of the mass and
stiffness matrices for arbitrary order p, and a hierarchical basis on tetra-

11

hedral meshes [1]. Since KARDOS is based on tetrahedral meshes, we
choose the basis described in [1] to work with and we will shortly give
more details on it.

• The most recent hp-finite element package based on a new hierarchical
tetrahedral element is developed by J. Schoeberl et al. [20]. The new
shape functions provide not only the global complete sequence property,
but also local complete sequence property for each edge, face, element-
block. This local property allows an arbitrary and variable choice of
the polynomial degree for each edge, face and element, without any
minimal order conditions. Another advantage underlined in [20] is that
the gradient shape functions are contained explicitely, such that they
can be skipped when needed (e.g. magnetostatic bvp). Furthermore,
the simple block-diagonal preconditioner gets efficient.

Now we focus on our choice of a hierarchical tetrahedral basis, namely the
one given by Ainsworth and Coyle [1]. The vector-valued polynomial space
of order p on the reference element t̂ is given by

X̂
curl

p = (P(t̂))3.

The set of hierarchical basis functions for X̂
curl

p is given in Table 2.1 [1].

The reference tetrahedron t̂ used by Ainsworth and Coyle is represented in
Figure 2.1. Its edges are all of the same length, in contrast to the reference
tetrahedron used up to now in KARDOS, see Figure 2.2. We may either
transform the basis functions on our tetrahedron or change the reference ele-
ment with the equilateral one. The latter choice implies modifications on the
(i) integration rules, (ii) the transformation from a tetrahedron in the mesh
to the reference tetrahedron, and (ii) thus (since the transformation map is
not explicitly defined in KARDOS) the functions in assmax.c, triangutil.c.
In the new 3D-version of KARDOS, this equilateral reference tetrahedron is
introduced, together with the necessary modifications.

In KARDOS, the basis functions are organized as follows:

• for p = 0 in function NedVecSShape(...),

• for p = 1 in function NedVecLShape(...),

• for p = 2 in function NedVecQShape(...),

• for p = 3 in function NedVecCShape(...).

12

Figure 2.1: The equilateral reference tetrahedron [1] used in KARDOS for
H(curl) discretizations

Figure 2.2: The reference tetrahedron used in KARDOS for Lagrange dis-
cretizations

In each function NedVec-Shape(...), the vector valued basis functions are

13

Space: (P(t̂))3, p ∈ N

Edge functions: e = [oi] ∈ E(t̂)

φ̂
e

0 = λ̂i∇̂λ̂o − λ̂o∇̂λ̂i

φ̂
e

1 = λ̂i∇̂λ̂o + λ̂o∇̂λ̂i

φ̂
e

l+1 = 2l+1
l+1

Ll(ξ̂oi)φ̂
e

1 − l
l+1
Ll−1(ξ̂oi)φ̂

e

0, 1 ≤ l ≤ p− 1

Edge-based face functions: f ∈ F(t̂)

For each edge e ∈ ∂f :

φ̂
f

e,l = βeψl(ξ̂e)∇̂λ̂f\e, 0 ≤ l ≤ p− 2,

where f\e denotes the vertex opposite edge e in face f .

Face bubble functions: f = [oij] ∈ F(t̂)

φ̂
f

i,lm = βoijψl(ξ̂oi)ψm(ξ̂oj)τ̂
[oi],

φ̂
f

j,lm = βoijψl(ξ̂oi)ψm(ξ̂oj)τ̂
[oj], 0 ≤ l,m, l +m ≤ p− 3

Face-based interior functions: f = [oij] ∈ F(t̂)

φ̂
t̂

f ,lm = βfψl(ξ̂oi)ψm(ξ̂oj)∇̂λ̂t\f , 0 ≤ l,m, l +m ≤ p− 3

where t\f denotes the vertex of t̂ opposite face f .

Interior bubble functions: t̂ = [oijk]

φ̂
t̂

d,lmn = βtψl(ξ̂oi)ψm(ξ̂oj)ψn(ξ̂ok)êd,

d ∈ {1, 2, 3}, 0 ≤ l,m, n, l +m+ n ≤ p− 4.

Table 2.1: Hierarchic basis functions for H(curl)-conforming FE space of
order p [1].

listed component by component, i.e., in 3D, the first three functions (cases
0, 1, 2) form the first vector-valued basis function, the next three form the
second one and so on, and in the following order:

a) Firstly, the edge functions, edge by edge, i.e., firstly all edge functions
associated with edge ê1, then those with ê2 and so on.

b) Then the face functions, face by face. These are of two types: (i) edge-
based face functions, listed edge by edge wrt. a face, (ii) face bubble
functions (only for p ≥ 3).

14

c) Finally, the interior functions (only for p ≥ 3). These are also of
two types: (i) face-based interior functions, listed face by face wrt. a
tetrahedron, (ii) interior bubble functions (only for p ≥ 4).

Up to now we have only considered p ≤ 3. The basis functions computa-
tion may be found in ksrc/nedshape.c. To get an idea how it looks like in
KARDOS, we list below a few functions from ksrc/nedshape.c:

static double coordx[4]={-1.0, 1.0, 0.0, 0.0},
coordy[4]={0.0, 0.0, SQRT3, SQRT3/3.},
coordz[4]={0.0, 0.0, 0.0, 2.*SQRT2/SQRT3};

static int edges[6][2]={{1, 3},{2, 3},{1, 2},{3, 4},{2, 4},{1, 4}};
static int faces[4][3]={{2, 3, 4},{1, 3, 4},{1, 2, 4},{1, 2, 3}};

static void Lambda(real x, real y, real z, int no, real *f)
{
switch (no)
{
case 1:
f=0.5(1.0-x-y*sqrt(3.)/3.-z*sqrt(6.)/6.);
break;
case 2:
f=0.5(1.0+x-y*sqrt(3.)/3.-z*sqrt(6.)/6.);
break;
case 3:
*f=y*sqrt(3.)/3.-z*sqrt(6.)/12.;
break;
case 4:
*f=z*sqrt(6.)/4.;
break;
}
return;
}

static void GradLambda(int no, real *fx, real *fy, real *fz)
{
switch (no)
{
case 1:
*fx=-0.5;
*fy=-0.5*sqrt(3.)/3.;
*fz=-0.5*sqrt(6.)/6.;
break;
case 2:
*fx=0.5;
*fy=-0.5*sqrt(3.)/3.;
*fz=-0.5*sqrt(6.)/6.;

15

break;
case 3:
*fx=0.;
*fy=sqrt(3.)/3.;
*fz=-sqrt(6.)/12.;
break;
case 4:
*fx=0.;
*fy=0.;
*fz=sqrt(6.)/4.;
break;
}
return;
}

static void EdgeShapep0(real x, real y, real z, int p1, int p2,
real *f1, real *f2, real *f3)

{
real l1, l2, l1x, l1y, l1z, l2x, l2y, l2z;

Lambda(x, y, z, p1, &l1);
GradLambda(p1, &l1x, &l1y, &l1z);
Lambda(x, y, z, p2, &l2);
GradLambda(p2, &l2x, &l2y, &l2z);

*f1=(l2*l1x-l1*l2x);
*f2=(l2*l1y-l1*l2y);
*f3=(l2*l1z-l1*l2z);

return;
}

static void JacEdgeShapep0(real x, real y, real z, int p1, int p2,
real *f1x, real *f1y, real *f1z,
real *f2x, real *f2y, real *f2z,
real *f3x, real *f3y, real *f3z)

{
real l1x, l1y, l1z, l2x, l2y, l2z;

GradLambda(p1, &l1x, &l1y, &l1z);
GradLambda(p2, &l2x, &l2y, &l2z);

*f1x=(l2x*l1x-l1x*l2x); *f1y=(l2y*l1x-l1y*l2x); *f1z=(l2z*l1x-l1z*l2x);
*f2x=(l2x*l1y-l1x*l2y); *f2y=(l2y*l1y-l1y*l2y); *f2z=(l2z*l1y-l1z*l2y);
*f3x=(l2x*l1z-l1x*l2z); *f3y=(l2y*l1z-l1y*l2z); *f3z=(l2z*l1z-l1z*l2z);

return;
}

16

2.3 The problem of enforcing conformity

Up to now, in KARDOS (classical FEM) the so-called sign conflict prob-
lem was solved in nodes.c, GetNodeAddresses(...), where the addresses of the
nodes are called in the right order, i.e., if the numbering of an element does
not coincide with that of the reference element, then the order is changed
such that it coincides. But this is a consequence of the definition of Lagrange
basis functions and of nodal degrees of freedom, and it does not apply to the
edge FEM. In the classical FEM, a basis function and the corresponding de-
gree of freedom are associated to a point in the element.

The sign conflict problem for edge elements is discussed, e.g., in [1], where a
strategy based on considering two types of reference tetrahedra is presented.
In [11], for the 2D case, a very simple solution to this problem is proposed,
namely: assign a global direction to each edge in the mesh and multiply those
pth order local edge degrees of freedom whose local orientation is different
to the global one by the factor (−1)p+1. The tangential component of the
interior basis functions vanishes on the edges of the element and so they do
not contribute to the continuity requirements. The factor (−1)p+1 comes
from the following property of the edge basis functions:

τ e ·Φe
p|e = Lp(ξe), p 6= 1, τ e ·Φe

1|e = −L1(ξe), (2.13)

where ξe is a parametrization for the edge e, τ e is the unit tangent vector
to e, Φe

p|e is the pth order edge basis function on the edge e, and Lp is the
Legendre polynomial of degree p with the property

Lp(ξl) = (−1)pLp(ξr), (2.14)

where ξl and ξr are equal and opposite parametrizations for the edge on the
neighbouring elements.

We apply the same procedure to solve the sign conflict problem for edge dofs
also in 3D. More precisely, we have implemented the following:

1. In nodes.c/GetNodeAddresses(...):

for (k=j*noOfEdgElem; k<(j+1)*noOfEdgElem; k++)

{

l = (nodesState->startEdgeNodes)[k];

adr[i++] = (t->e1)->vec+l;

}

17

for (k=(j+1)*noOfEdgElem-1; k>=j*noOfEdgElem; k--)

{

l = (nodesState->startEdgeNodes)[k];

adr[i++] = (t->e1)->vec+l;

}

2. Each edge e has a global orientation, namely from the point e→ p1 to
e→ p2.

3. The local orientation of an edge e in the tetrahedron t is computed
w.r.t. the reference tetrahedron, which has a prescribed (fixed) edge
orientation as illustrated in Fig. 2.1 or 2.2.
This is set in assmaxw.c/OpenMaxwAss(...):

/* edge orientation: 1.0 or -1.0 (double)*/

((*lData)->orientEdges)[0] = Orient_Edge(t->p1, t->e1);

((*lData)->orientEdges)[1] = Orient_Edge(t->p2, t->e2);

((*lData)->orientEdges)[2] = Orient_Edge(t->p1, t->e3);

((*lData)->orientEdges)[3] = Orient_Edge(t->p3, t->e4);

((*lData)->orientEdges)[4] = Orient_Edge(t->p2, t->e5);

((*lData)->orientEdges)[5] = Orient_Edge(t->p1, t->e6);

4. The factor orientationp+1, where orientation = 1 or −1, is computed
in triangutil.c/Sign(TD *t, int k, int maxp) and the function Sign(...)
is used in assmaxw.c, triangutil.c and maxwell.c.

For p = 2, there are three face dofs per face and one may associate each face
dof with a vertex point from the corresponding face. Thus, in this case it is
possible to solve the orientation problem by rotating the face dofs according
to the ordering of the vertices in the corresponding face. This is done in
nodes.c, GetNodeAddresses(...), analogously to the Lagrange case.

Remarks:
1. In this way, for p ≤ 2 we could solve the sign conflict problem using only
one reference tetrahedron, in contrast to [1] where two reference tetrahedra
are proposed.

For completeness, we will give now the solution to the orientation problem
proposed in [1]. Denote the set of vertices, edges, and faces of a single element
t by V(t), E(t), and F(t), respectively, and the corresponding global sets by
V , E , and F . Then we have the following.

18

• Each edge e ∈ E is described by a pair [oi] of numbers for the global
vertices located at the endpoints of the edge. The ordering of the
numbers is determined by requiring

o < i.

The edge may be then assigned a unique parametrisation given by

ξe : R3− > R : ξe = ξoi = λi − λo. (2.15)

The parametrisation is intrinsic to the edge, depending solely on the
global numbering of the endpoints of the edge. Furthermore, the tan-
gent vector τe to e is defined by

τe = pi − po. (2.16)

• A face f ∈ F is described by a triple [oij] formed from the global
numbering of the vertices of the face. By applying a rotation of the
local numbering of the vertices, it is possible to ensure that the vertex
vo (with the smallest global numbering) has local number 1, i.e., it is
on the first position. Thus, we need to ensure that for each face

o < i and o < j.

The face is then assigned a unique parametrisation given by ξoi, ξoj.

• Likewise, a tetrahedron t = [oijk] ∈ T is parametrised by ξoi, ξoj and
ξok, where it is assumed that

o < i, j < k.

The relation between i and j is either i < j or j < i and must be
maintained during the orientation process. The proposed orientation
process leads to the conclusion that any tetrahedron t can be oriented
in one of only two ways (either with i < j or with j < i), and this calls
for the definition of two reference elements. This process consists in an
appropriate reordering of the local numbering of the vertices:

1. First bring o (i.e. the smallest global vertex) on the first position by
rotating the local numbering on a face (of the two) containing o and the
local vertex 1 (i.e., the vertex which seats on the first position, instead
of o). Of course, if the two are already aligned, then no action is needed.

19

2. Bring k (i.e. the largest global vertex) on the last position by ro-
tating the local numbering on the face opposite local vertex 1 (i.e. the
last 3 numbers).

3. Decide of which type is the tetrahedron. If i < j, then is of type I,
and otherwise of type II. See Figure 2.3.

Figure 2.3: The two possible reference tetrahedra. The arrows indicate the
global orientation of the edges. The tetrahedra differ only in the orientation
of the edge connecting vertices vi and vj, which depends on the ordering of
the global numbers i and j

Example:
As an example, consider a tetrahedron with global numbering [15 96 8 24].
The above procedure applied to this particular tetrahedron gives:
1. the triple [15 96 8] is cyclically permuted until the 8 is the first. This
yields [8 15 96] and gives the new local to global numbering [8 15 96 24] for
the tetrahedron.
2. rotate [15 96 24] until 96 becomes the last. This yields [24 15 96] and the
new numbering for the tetrahedron is [8 24 15 96]. 3. since 24 > 15, the tetra-
hedron is classified as being of type II.

Remarks:
1. In practice, the reduction to a type I or II reference element is performed
as a mesh post-processing step.
2. Once the tetrahedra have been classified as type I or II, there is no
more the need to check orientations. This means that the (−1)p+1 rule for

20

the edges is no longer needed. Also for the face orientation we don’t have
anymore to check, since very edge and every face of the appropriate reference
configuration is identical with the intrinsic orientations of the edges and faces
viewed in isolation.

2.4 Managing the degrees of freedom

Let us firstly remember the definition of a finite element, which is the basis
of a FEM. A finite element is a triple {T,K,Σ} where

• T is e.g. a tetrahedron.

• X is a polynomial space of element shape functions of dimemsion N.

• Σ = {Ψi : V ⊇ X → R, i = 1, . . . , N} is a space of linear functionals
(the degrees of freedom), dual to X, i.e.,

Ψi(Φj) = δij, (2.17)

where {Φj}N
j=1 is a basis of X.

The corresponding interpolation operator Π : V → X is defined as

Π u =
N∑

i=1

Ψi(u)Φi. (2.18)

As seen in Sect. 2.2, the basis functions are of three types: edge, face, and
interior functions. Thus, the dofs are also of three types. In [14] the following
expressions for the dofs are given:

• 6(p+ 1) edge dofs of the form

Ψϕ
e (u) :=

∫
e

(u · τ)ϕds, ∀ϕ ∈ Pp(e), ∀ edges e (2.19)

• 4(p− 1)(p+ 1) face dofs of the form

Ψq
f (u) :=

∫
f

(u · q) dγ, ∀q ∈ Dp−1(f), ∀ faces f (2.20)

• (p− 2)(p− 1)(p+ 1)/2 interior dofs of the form

Ψq
t (u) :=

∫
t

(u · q) dx, ∀q ∈ Dp−2(t), (2.21)

21

where Dk = (Pk−1)
3 ⊕ P̃k−1 · x, and P̃k is the space of homogeneous polyno-

mials of total degree exactly k.

Remark:
1. The problem with the above expressions is that the dofs are not uniquely
defined until the test polynomials ϕ and q in the above formulas are deter-
mined. They depend on the chosen basis functions, since we have to satisfy
condition (2.17).

We shall try another approach. One may write, ∀ũ ∈ (P3(t̂))
3, ∀x ∈ t̂:

ũ(x) =
6∑

i=1

3∑
k=0

uk
ei
Φk

ei
(x) +

+
4∑

j=1

3∑
i=1

1∑
k=0

u
fj

ei,k
Φ

fj

ei,k
(x) +

4∑
j=1

{ufj

p2,00Φ
fj

p2,00(x) + u
fj

p3,00Φ
fj

p3,00(x)}+

+
4∑

j=1

ut
fj ,00Φ

t
fj ,00(x), (2.22)

where uk
ei

denote the edge dofs, u
fj

ei,k
, u

fj

p,00 the face dofs and ut
fj ,00 the interior

dofs, and Φk
ei
, Φ

fj

ei,k
, Φ

fj

p,00, Φt
fj ,00 are the basis functions from Sect. 2.2. Now

we have to solve the following problem: assuming that in (2.22) the function
ũ(x) is given, find the dofs. This problem is addressed also in [12], pg. 18,
in the following way:

Edge dofs:
Multiplying (2.22) with the tangent vector τ ej

, where ej is an edge of t̂, and
using the following properties of the basis functions

Φk
ei
|ej
· τ ej

= 0, if i 6= j

Φ
fj

ei,k
|e · τ e = 0, Φ

fj

p,00|e · τ e = 0, ∀e
Φt

fj ,00|e · τ e = 0, ∀e

(i.e. the tangential components of the face and interior functions vanish on
all edges) one obtains

ũ · τ ej
=

3∑
k=0

uk
ej
Φk

ej
· τ ej

on edge ej

22

which implies(
3∑

k=0

uk
ej
Φk

ej
· τ ej

, Φl
ej
· τ ej

)
ej

=
(
ũ · τ ej

, Φl
ej
· τ ej

)
ej

, (2.23)

for ej edge of t̂ and l = 0, ..., 3. Thus, for each edge ej of t̂, it is obtained a
system with four unknowns (uk

ej
, k = 0, ..., 3) and four equations.

Remarks:
1. Using the property (2.13) and the orthogonality of Legendre polynomials

1∫
−1

Lk(ξ)Ll(ξ)dξ =
2

2k + 1
δkl, (2.24)

we observe that system (2.23) is diagonal, i.e., the edge dofs may be directly
computed

uk
ej

=

{
2k+1

2

∫
ej

ũ · τ ej
Lk(ξej

)dξej
, k = 0, 2, 3,

−3
2

∫
ej

ũ · τ ej
L1(ξej

)dξej
, k = 1,

(2.25)

However, we solve system (2.23) to obtain the edge dofs, because this is a
more general approach, i.e., could be applied also for another set of basis
functions.

Face dofs:
For each face f of t̂, let us consider the outer normal vector nf and multiply
(2.22) with it. On the face f we obtain

ũ× nf =
∑

ei∈∂f

∑3
k=0 u

k
ei
Φk

ei
× nf +

∑
ei∈∂f

∑1
k=0 u

f
ei,k

Φf
ei,k

× nf +

+uf
p2,00Φ

f
p2,00 × nf + uf

p3,00Φ
f
p3,00 × nf , (2.26)

since the tangential components of interior functions vanish on all faces. Then
one may write for each face f a system of six equations and six unknowns
uf

ei,k
, ei ∈ ∂f , i = 1, 2, 3, k = 0, 1):

∑
ei∈∂f

1∑
k=0

uf
ei,k

(
Φf

ei,k
×nf , Φ

f
ej ,k×nf

)
f

+

((((((((((((((((((∑
p

uf
p,00

(
Φf

p,00×nf ,Φ
f
ej ,k × nf

)
f

=

=

((
ũ−

∑
ei∈∂f

3∑
k=0

uk
ei
Φk

ei

)
× nf , Φ

f
ej ,k × nf

)
f

, (2.27)

23

since one may verify that the second term in the left hand side vanishes.
To obtain the face bubble coefficients, we multiply (2.26) with Φf

p,00 × nf ,
p = p2 or p3, and integrate over f , obtaining, for each face f , a system with
2 equations and 2 unknowns (uf

p,00):∑
p∈{p2,p3}

uf
p,00

(
Φf

p,00×nf , Φ
f
q,00×nf

)
f

=

=

((
ũ−

∑
ei∈∂f

3∑
k=0

uk
ei
Φk

ei
−
∑

ei∈∂f

1∑
k=0

uf
ei,k

Φf
ei,k

)
× nf , Φ

f
q,00 × nf

)
f

, (2.28)

Interior dofs:
Solve the following system with four equations and four unknowns ut

fj ,00:

4∑
j=1

ut
fj ,00

(
Φt

fj ,00 · nfi
, Φt

fi,00
· nfi

)
t
=

=

ũ−
∑
e,k

uk
eΦ

k
e −

fj∑
j,e,k

Φ
fj

e,k −
∑
j,p

u
fj

p,00Φ
fj

p,00

 · nfi
, Φt

fi,00
· nfi

t

, (2.29)

for i = 1, ..., 4.

Thus, in timeintegmaxw.c, instead of the functions ValueAtPartner(...), Val-
ueAtTetra(...) and similar to them from triangutil.c, we have introduced the
following functions

• EdgeValuesMaxw(TD *t, int e, whichTet tet, int index, real *edgedofs),
which for each edge of a tetrahedron assembles and solves a system
(2.23) using the function DirectGauss(locA, noE, locB, edgedofs).

• FaceEdgeValuesMaxw(TD *t, int f, whichTet tet, int index, int in-
dexEdge, real *faceedgedofs), which for each face of a tetrahedron as-
sembles and solves a system (2.27) using also the DirectGauss function.

• FaceBubbleValuesMaxw(TD *t, int f, whichTet tet, int index, int in-
dexEdgeFace, real *facebubbledofs), which for each face of a tetrahe-
dron assembles and solves a system (2.28) using also the DirectGauss
function.

• InteriorValuesMaxw(TD *t, whichTet tet, int index, int indexEdgeFace-
Bubble, real *intdofs), which for each tetrahedron assembles and solves
a system (2.29) using also the DirectGauss function.

24

Remarks:
1. The parameter tet of type which Tet shows from which mesh the solu-
tion is computed. This way, e.g., the function EdgeValuesMaxw(...) plays
the role of the function EdgeValuesAtPartnerMaxw(...), EdgeValuesAtTetra-
Maxw(...) or InitAndStartValuesMaxw(...).

In timeintegmaxw.c, function SetInitValuesOnNodes(TD *td) is modified as
follows:

int SetInitValuesOnNodesMaxw(TD *td)
{
int i, j, p, e, f=0, fi, ke, ef, kef;
int no, noP, noE, noT, noTE, noTB, noTEperEdge, noTd,

noOfEqu, nodesOfTetVar, noOfStages;
int varUt = theTimePrbStruct->varUt;
char *adr[400];
REAL x, y, z;

noP = nodesState->noOfPointNodes;
noE = nodesState->noOfEdgeNodes;
noT = nodesState->noOfTriangleNodes;
noTE = 3*(noE-2);
noTB = noT-noTE;
noTEperEdge = noTE/3;
noTd = nodesState->noOfTetrahedronNodes;
noOfEqu = nodesState->noOfEquations;
noOfStages = actTimeIntegtor->noOfStages;
nodesOfTetVar = (4*(noP+noT) + 6*noE + noTd)/noOfEqu;
no = GetNodeAddresses(td,adr,400);

if (eVecInit==nil) if (!GetVecsMaxw()) return false;

i=0;
for (e=0;e<6;e++)
{
EdgeValuesMaxw(td, e, fromInit, rInit, eVecInit);
if (varUt)

EdgeValuesMaxw(td,e,fromInitUt,rInitUt,eVecInitUt);

switch (timeState->stepTypePar)
{
case START_STEP:
for (p=0;p<noOfStages;p++)
for (j=0; j<noE; j++) eMatStage[p][j] = 0.0;
break;

case LATER_STEP:
for (p=0;p<noOfStages;p++)
EdgeValuesMaxw(td, e, fromPartner,

25

rStage[p], eMatStage[p]);
break;

}
for (ke=0; ke<noE; ke++)

{
RV(adr[i],rInit) = eVecInit[ke];

if (varUt) RV(adr[i],rInitUt) = eVecInitUt[ke];
for (p=0;p<noOfStages;p++)

RV(adr[i],rStage[p]) = eMatStage[p][ke];
i++;

}
}

if (noTE>0)
for(f=0; f<4; f++)
{
FaceEdgeValuesMaxw(td, f, fromInit, rInit,

rInit, feVecInit);
if (varUt)
FaceEdgeValuesMaxw(td, f, fromInitUt, rInitUt,

rInitUt, feVecInitUt);

switch (timeState->stepTypePar)
{
case START_STEP:

for (p=0;p<noOfStages;p++)
for (j=0; j<noTE; j++)
feMatStage[p][j] = 0.0;

break;
case LATER_STEP:

for (p=0;p<noOfStages;p++)
FaceEdgeValuesMaxw(td, f, fromPartner,

rStage[p], rStage[p],
feMatStage[p]);

break;
}

for (ef=0; ef<3; ef++)
for (kef=0; kef<noTEperEdge; kef++)

{
RV(adr[i],rInit) = feVecInit[noTEperEdge*ef+kef];
if (varUt)
RV(adr[i],rInitUt) = feVecInitUt[noTEperEdge*ef+kef];
for (p=0;p<noOfStages;p++)
RV(adr[i],rStage[p]) = feMatStage[p][noTEperEdge*ef+kef];
i++;

}

if (noTB>0)

26

{
FaceBubbleValuesMaxw(td, f, fromInit, rInit, rInit,

fbVecInit);
if (varUt)

FaceBubbleValuesMaxw(td, f, fromInitUt, rInitUt,
rInitUt, fbVecInitUt);

switch (timeState->stepTypePar)
{
case START_STEP:
for (p=0;p<noOfStages;p++)
for (j=0; j<noTB; j++)

fbMatStage[p][j] = 0.0;
break;

case LATER_STEP:
for (p=0;p<noOfStages;p++)
FaceBubbleValuesMaxw(td, f, fromPartner, rStage[p],

rStage[p], fbMatStage[p]);
break;

}

for (fi=0; fi<noTB; fi++)
{
RV(adr[i],rInit) = fbVecInit[fi];
if (varUt)
RV(adr[i],rInitUt) = fbVecInitUt[fi];

for (p=0;p<noOfStages;p++)
RV(adr[i],rStage[p]) = fbMatStage[p][fi];

i++;
}
}

}

if (noTd>0)
{
InteriorValuesMaxw(td, fromInit, rInit, rInit,

intVecInit);
if (varUt)
InteriorValuesMaxw(td, fromInitUt, rInitUt,

rInitUt, intVecInitUt);

switch (timeState->stepTypePar)
{
case START_STEP:
for (p=0;p<noOfStages;p++)
for (j=0; j<noTd; j++)
intMatStage[p][j] = 0.0;

break;
case LATER_STEP:

27

for (p=0;p<noOfStages;p++)
InteriorValuesMaxw(td, fromPartner, rStage[p],

rStage[p], intMatStage[p]);
break;

}

for (f=0; f<noTd; f++)
{
RV(adr[i],rInit) = intVecInit[f];
if (varUt)
RV(adr[i],rInitUt) = intVecInitUt[f];

for (p=0;p<noOfStages;p++)
RV(adr[i],rStage[p]) = intMatStage[p][f];

i++;
}
}

return true;
}

So we compute successively the dofs. Firstly the edge dofs, then using the
already computed edge dofs, the face dofs and finally the interior dofs.
The functions SetStartValuesOnNodesMaxw(TD *td),
RefTetrahedronTimeMaxw(TD *td) are similarly modified.

2.5 Numerical integration

To evaluate integrals over edges, faces, and tetrahedra we need quadrature
formulas. Special care has to be taken when solution data have to be inter-
polated from a fine to a coarse mesh as in space-adaptive approaches. Then
naive Gauss quadrature is not sufficient. Let us consider the following exam-
ple: we want to integrate over an edge e (coarse mesh), which is the union of
two similar edges e1 and e2 (fine mesh), see Figure 2.4. Suppose the integrant
is linear over each subedge, that is, piecewise linear over e. Then using e.g.
a two-point Gauss quadrature for an integration over e, we loose accuracy of
the integration. A remedy here is to choose integration points x1 and x2 in
the midpoints of e1 and e2. In this way one obtains the midpoint rule for e.
Clearly, the situation becomes more complicated for triangles and tetrahe-
dra, which may be refined in different ways and thus for each refinement type
(which is not a-priori known, it has to be checked for each element) we would
need different quadrature formula.

Remarks
1. Another idea would be to divide, if possible, the integral over an ele-

28

ment (edge, triangle or tetrahedron) into integrals over sub-elements to ap-
ply Gauss quadrature formula in each of them. This approach is not yet
implemented in KARDOS.

Figure 2.4: Example of an edge which is coarsened

We have implemented the following routines for lowest order edge elements.

• In assemble3.h new fields are introduced using the structure integData

struct integData
{

...
real **edgeIPX, **edgeIPY, **edgeIPZ, **edgeIW;
real ..., ***edgeVals;
int ..., noOfEdgeIP;

};
typedef struct integData integData;

• In shape.c, quadratures over edges are introduced.

• Inn shape.c, function CompShapeVals(...) is accordingly modified by
adding:

for (i=0; i<noSF; i++)
for(k=0; k<6; k++)

for (j=0; j<(iData->noOfEdgeIP); j++)
(*ShapeF)((iData->edgeIPX)[k][j],

(iData->edgeIPY)[k][j],
(iData->edgeIPZ)[k][j],
i,
&((iData->edgeVals)[i][k][j]),
&dum1,&dum2,&dum3,&dum4,&dum5,
&dum6,&dum7,&dum8,&dum9
);

• In nedshape.c, function static int UpdateIDataMaxw(integData *iData,
int iFormula, int iLFormula, int iEFormula, int SF, void (*ShapeF)(...),
int symP) is introduced, similar to the function UpdateIData(...) from
shape.c.

29

• In timeintegmaxw.c, in function EdgeValuesMaxw(...) special quadra-
tures are chosen when the partner is refined:

if (((tet == fromPartner)||
(tet == fromInit)||
(tet == fromInitUt)) &&

(tPartner->firstSon != nil))
{
edgeIPX = refEdgeIntegData->edgeIPX;
edgeIPY = refEdgeIntegData->edgeIPY;
edgeIPZ = refEdgeIntegData->edgeIPZ;
edgeIW = refEdgeIntegData->edgeIW;
edgeVals = refEdgeIntegData->edgeVals;
noOfEdgeIP = refEdgeIntegData->noOfEdgeIP;

}

30

Chapter 3

Eigenvalues Computation

Here we consider the eigenvalue problem described in [12], pg. 50. The
solution of Maxwell’s cavity problem involves the computation of the nonzero
resonant frequencies ω2\{0}, and the associated electric field E defined by

curlµ−1curlE − ω2εE = 0, in Ω (3.1)

n×E = 0, on ∂Ω. (3.2)

The variational problem, without including a Lagrange multiplier, is: find
E ∈ H0(curl) and ω2 ∈ R\{0} such that

(µ−1curlE , curlW)Ω − ω2(εE ,W)Ω = 0, W ∈ H0(curl). (3.3)

We first computed in KARDOS the curl-curl matrix C and the mass matrix
M . Using MATLAB’s function eigs for sparse matrices we got the generalized
eigenvalues from

C · V = M · V ·D,

where D is a diagonal matrix containing the eigenvalues, and V is a full
matrix which columns are the corresponding eigenvectors.
We consider this problem in the 2D and 3D case, as in [12].

3.1 The two-dimensional case

3.1.1 The L-shape domain

Firstly, the computation of the eigenvalues for the (−1,−1)× (1, 1) L-shape
domain with perfect electrical conductor (PEC) boundaries is considered.
At a PEC boundary the tangential component of the electric field and the
normal component of the magnetic field are zero.

31

Two sequences of five geometric meshes are constructed, the first sequence is
generated by uniform refinements, while the second one is constructed with
refinement towards the reentrant corner. On each mesh, the polynomial or-
der was uniformly increased from p = 0 to p = 3.
For each discretization, the first three eigenvalues were computed and the
errors in the computed eigenvalues are determined using the available bench-
mark values

ω2
1 = 1.47562182408, ω2

2 = 3.53403136678, ω2
3 = 9.86960440109.

The obtained results are shown in Figure 3.1 and 3.2.

3.1.2 The square domain

Now we consider the case when the cavity Ω is the unit cube [0, 1] × [0, 1].
In [2] also a square cavity is considered. The eigenvalues are known to be

λ2 = π2(m2 + n2), with m,n = 0, 1, ... s.t. m2 + n2 6= 0.

We consider again a sequence of 5 five graded meshes and on each mesh we
compute the first 15 eigenvalues for p = 0, 1, 2, 3. In Fig. 3.3, the first 15
eigenvalues computed with p = 0, 1, 2, 3 are shown, for the 4th mesh in the
sequence. Relative errors for the third eigenvalues are shown in Fig. 3.4.

32

Figure 3.1: Relative errors for the first three eigenvalues, left with increasing
p-refinement on the first sequence of five graded meshes generated by uniform
refinements, and right with uniform h-refinement, for p = 0, 1, 2, 3

33

Figure 3.2: Results displayed as in Fig. 3.1, but for the sequence of five
graded meshes constructed with refinement towards the reentrant corner

34

Figure 3.3: The first 15 eigenvalues for the square cavity, with p = 0, 1, 2, 3,
on a fixed mesh

Figure 3.4: Convergence studies for the third eigenvalue of the 2D square
cavity 35

3.2 The three-dimensional case

We consider again the case when the cavity Ω is the unit cube [0, 1]3, but
now in 3D. The eigenvalues are known to be

λ2 = π2(l2 +m2 + n2), with l,m, n = 0, 1, ... s.t. lm+ ln+mn > 0.

When lmn > 0, there are two identical eigenvalues associated with linearly
independent eigenfunctions. This problem is solved also in [4].
For this case, we considered three meshes: cubeD125.geo, cubeD729.geo and
cubeD4913.geo.
In Fig. 3.5 the first eigenvalues are shown, obtained with p = 0 on these three
meshes. For p = 1, 2, see Fig. 3.6 and Fig. 3.7, respectively.

Figure 3.5: The first eigenvalues for the cube cavity, with p = 0, on three
different meshes. The values above the solid lines indicate the exact values
and the multiplicity of the eigenvalues

36

Figure 3.6: The first eigenvalues for the cube cavity, with p = 1, on two
different meshes

Figure 3.7: The first eigenvalues for the cube cavity, with p = 2, on two
different meshes

37

Chapter 4

Magnetoquasistatic problems

4.1 A magnetostatic boundary value problem

We consider the magnetostatic boundary value problem (as in [20])

curlµ−1curlA = j, (4.1)

where j is the given current density, and A is the vector potential for the
magnetic flux B = curlA . For gauging, as in [20], we add a small (6 orders
of magnitudes smaller than µ−1) zero-order term to the operator, i.e., we
solve the problem (1.10) with

σ = 10−6µ−1.

The magnetic field induced by a cylindrical coil is computed. We choose

µ = 4.0 ∗ π ∗ 10−7, σ = 0.8.

Up to now the current density j is explicitly given by

j(x, y, z) =

{
(− y√

(x2+y2
, x√

(x2+y2
, 0) ∗ 1000, in coil,

0, elsewhere.
(4.2)

Remarks:
1. j must be given or computed s.t. div j = 0.

In maxwelltime.ksk we set:

seliterate pcg

seldirect ma28

setpardirect dropfac 1.0e-8 licnfac 20 lirnfac 20

38

selprecond ilu

setpariter itertol 1.0e-4 itermaxsteps 1000 krylovdim 20

seldisc wfem

seltimeinteg ros1

solveinform iterinfo 1 estiinfo 0 refinfo 0 solveinfo 1 timeinfo 1

setpartime maxsteps 1 timetol 1.0e+30 spacetol 1.0e+0

setpartime maxtimestep 1.0e+30 direct 0 maxreductions 1

setscaling atol 1.0e-2 rtol 1.0

timestepping timestep 1.0e+30 tend 1.0e+30

Results are shown im Fig. 4.1-4.3.

Figure 4.1: The magnetic field induced by a cylindrical coil, p = 0.

Figure 4.2: The magnetic field induced by a cylindrical coil, p = 1.

39

Figure 4.3: The magnetic field induced by a cylindrical coil, p = 2.

4.2 TEAM 7 problem: asymmetrical conduc-

tor with hole

We consider the TEAM 7 benchmark problem [7]. The problem consists of a
rectangular aluminium plate, σ = 3.526 107 S/m, with eccentric rectangular
cutout placed under an eccentrically positioned coil, Fig. 4.4. A sinusoidal
current of 2742A and 50Hz flows through the coil and induces a current in
the plate. An analytic model is applied to ensure div Js = 0. As computa-
tional domain we use a cube with 1m edge length. Homogeneous boundary
conditions, n×A=0, are taken.

To check our implementation, we have compared our results with exper-
imental data. Fig. 4.5 reveals good agreement.

40

Figure 4.4: Coarse (left) and selected fine (right) tetrahedral meshes. The
surrounding mesh for the air region is not shown.

Figure 4.5: Comparison of computed and measured real part of Bz (left) and
of JE,y (right), see [7] for reference values.

41

Appendix A

Notations:

∇u = gradu = (
∂u

∂x
,
∂u

∂y
,
∂u

∂z
) (A.1)

∇ · u = div u =
∂u1

∂x
+
∂u2

∂y
+
∂u3

∂z
(A.2)

∇× u = curlu =

 ∂u3

∂y
− ∂u2

∂z
∂u1

∂z
− ∂u3

∂x
∂u2

∂x
− ∂u1

∂y

 (A.3)

If u = (u1, u2)
T , then

curl u =
∂u2

∂x
− ∂u1

∂y
. (A.4)

Vector identities:

curl gradu = 0 (A.5)

div curlu = 0. (A.6)

Integral theorems: ∫
V

∇ · u dV =

∫
S

u · n da (A.7)

∫
V

∇× u dV =

∫
S

n× u da (A.8)

∫
S

(∇× u) · n da =

∫
C

u · dx (A.9)

∫
S

(n×∇u) da =

∫
C

u dx (A.10)

42

Bibliography

[1] M. AINSWORTH, J. COYLE, Hierarchic Finite Element Basis on Un-
structured Tetrahedral Meshes, Int. J. Num. Meth. Eng., 58(14), pp.
2103-2130, 2003.

[2] M. AINSWORTH, J. COYLE, Hierarchic hp-edge element families for
Maxwell’s Equations on hybrid quadrilateral/triangular meshes, Com-
put. Methods Appl.Mech. Eng., 190, pp. 6709-6733, 2001.

[3] M. CLEMENS, J. LANG, D. TELEAGA, G. WIMMER, Adaptivity in
Space and Time for Magnetoquasistatics, submitted to JCM Special Is-
sue on Adaptive and Multilevel in Electromagnetics, 2007.

[4] J. COYLE, P.D. LEDGER, Evidence of Exponential Convergence in the
Computation of Maxwell Eigenvalues, Computer Methods in Applied
Mechanics and Engineering, 194, pp. 587-604, 2005.

[5] M. COSTABEL, M. DAUGE, Computation of resonance frequences for
Maxwell equations in non smooth domains, Lecture notes in computa-
tional science and engineering Vol. 31, Springer, 2003.

[6] B. ERDMANN, J. LANG, R. ROITZSCH, KARDOS User’s
Guide, Technical Report ZR-02-42, ZIB, 2002, see also
http://www.zib.de/Numerik/software/kardos.

[7] K. FUJIWARA, T. NAKATA, Results for benchmark problem 7 (asym-
metrical conductor with a hole), COMPEL, vol. 9, nr. 3, 137-154, 1990.

[8] R.D. GRAGLIA, D.R. WILTON, A.F. PETERSON, Higher Order In-
terpolatory Vector Bases for Computational Electromagnetics, IEEE
Trans. Antennas and Propagat., 45, 1997.

[9] J. JIN, The FEM in Electromagnetics, Wiley & Sons, New York, 1993.

[10] J. LANG, D. TELEAGA, Towards a Fully Space-Time Adaptive FEM
for Magnetoquasistatics, IEEE Trans. Magn., 44, pp. 1238-1241, 2008.

43

[11] P.D. LEDGER, An hp-Adaptive Finite Element Procedure for Electro-
magnetic Scattering Problems, PhD Thesis, Dept. Civil Engineering,
Univ. of Wales, Swansea, 2002.

[12] P.D. LEDGER, K.MORGAN, The Application of the hp-Finite Element
Method to Electromagnetic problems, Archives of Comput. Meth. in En-
grg., 12, pp. 235-302, 2005.

[13] P. MONK, Finite Element Methods for Maxwell’s Equations, Oxford
Univ. Press, 2003.

[14] J.C. NEDELEC, Mixed finite elements in R3, Numerische Mathematik,
35, pp. 315-341, 1980.

[15] J.C. NEDELEC, A new family of mixed finite elements in R3, Nu-
merische Mathematik, 50, pp. 57-81, 1986.

[16] W. RACHOWICZ, L. DEMKOWICZ, An hp-adaptive finite element
method for electromagnetics. Part1: Data structure and constrained ap-
proximation, Comput. Methods Appl. Mech. Eng. 187, pp. 307-335,
2000.

[17] W. RACHOWICZ, L. DEMKOWICZ, A three-dimensional hp-adaptive
finite element package for electromagnetics, Int. J. Num. Meth. Engin.,
53, pp. 147-180, 2002.

[18] Z. REN, Influence of the RHS on the convergence behaviour of the Curl-
Curl equation, IEEE Trans. Magn. 32, no.3, 1996.

[19] J. SCHOEBERL, Numerical Methods for Maxwell Equations, Skript
SS2005.

[20] J. SCHOEBERL, S. ZAGLMAYR, High Order Nedelec Elements with lo-
cal complete sequence properties, International Journal for Computation
and Mathematics in Electrical and Electronic Engineering (COMPEL),
24, pp. 374-384, 2005.

44

