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Abstract

In this paper we develop an abstract setup for hamiltonian group
actions as follows: Starting with a continuous 2-cochain ω on a Lie
algebra h with values in an h-module V , we associate subalgebras
sp(h, ω) ⊇ ham(h, ω) of symplectic, resp., hamiltonian elements. Then
ham(h, ω) has a natural central extension which in turn is contained
in a larger abelian extension of sp(h, ω). In this setting, we study
linear actions of a Lie group G on V which are compatible with a ho-
momorphism g → ham(h, ω), i.e., abstract hamiltonian actions, cor-
responding central and abelian extensions of G and momentum maps
J : g → V .
Keywords: central extension, momentum map, hamiltonian action,
abelian extension, infinite dimensional Lie group
MSC: 17B56, 35Q53

Introduction.

In [Br93] Brylinski describes how to associate to a connected, not necessarily
finite-dimensional, smooth manifold M , endowed with a closed 2-form ω ∈
Ω2(M, R), a central extension of the Lie algebra ham(M, ω) of hamiltonian
vector fields on M . If there exists an associated pre-quantum bundle P with
connection 1-form θ and curvature ω (which is the case if ω is integral and
M is smoothly paracompact), then Kostant’s central extension ([Ko70]) is
given by the short exact sequence

1 → T ↪→ Aut(P, θ)0 →→ Ham(M, ω) → 1 (1)
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of groups, where Aut(P, θ)0 is the group of those connection preserving auto-
morphisms of P isotopic to the identity and Ham(M, ω) is the group of hamil-
tonian diffeomorphisms of M . In general, neither Ham(M, ω) nor Aut(P, θ)0

carries a Lie group structure if M is not assumed to be compact.
However, we have shown in [NV03] that central Lie group extensions

can be obtained as follows, even if M is infinite dimensional. Let Z be an
abelian Lie group of the form Z = z/ΓZ , where ΓZ is a discrete subgroup
of the Mackey complete space z, ω ∈ Ω2(M, z) a closed 2-form, and (P, θ)
a corresponding Z-pre-quantum bundle, i.e., P is a Z-principal bundle and
θ ∈ Ω1(P, z) a connection 1-form with dθ = q∗P ω, where qP : P → M is the
bundle projection. We call a smooth action of a (possibly infinite dimen-
sional) connected Lie group G on a (possibly infinite dimensional) manifold
M hamiltonian if the derived homomorphism maps into hamiltonian vector
fields:

ζ : g → ham(M, ω) := {X ∈ V(M) : (∃f ∈ C∞(M, R)) iXω = df}.

Then the pullback of Aut(P, θ) defines a central Lie group extension

1 → Z ↪→ Ĝcen →→ G → 1, (2)

i.e., Ĝcen carries a Lie group structure for which it is a principal Z-bundle
over G. A Lie algebra 2-cocycle for the associated central Lie algebra ex-
tension ĝ of g by R is given by (X,Y ) 7→ −ω(ζ(X), ζ(Y ))(m0) for any fixed
element m0 ∈ M .

The main point of the present paper is to provide an abstract setting for
this kind of hamiltonian group actions, momentum maps, and the associated
central Lie group actions. As we shall see in the examples in Section 1, our
setting is sufficiently general to cover various kinds of examples of different
nature described below.

Starting with a continuous 2-cochain ω on a Lie algebra h with values in
a topological h-module V , we associate the subalgebras

sp(h, ω) := {ξ ∈ h : Lξω = 0, iξdhω = 0} = {ξ ∈ h : dh(iξω) = iξdhω = 0}
⊇ham(h, ω) := {ξ ∈ h : iξdhω = 0, (∃v ∈ V ) iξω = dhv}.

of symplectic, resp., hamiltonian elements of h. Then ham(h, ω) has a natural
central extension

ĥam(h, ω) := {(v, ξ) ∈ V × ham(h, ω) : dhv = iξω}
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by the trivial module V h which in turn is contained in the larger abelian ex-
tension of sp(h, ω) by V defined by ω. To obtain the Lie bracket on ĥam(h, ω),
we observe that the space Vω := {v ∈ V : (∃ξ ∈ ham(h, ω)) dhv = iξω} of
so-called admissible elements carries a Lie bracket analogous to the Poisson
bracket:

{v1, v2} := ω(ξ2, ξ1) for dhvj = iξj
ω,

and ĥam(h, ω) is a subalgebra of the Lie algebra direct sum Vω ⊕ ham(h, ω).
The classical example is given by h = V(M), V = C∞(M, R) and a closed

2-form ω. In a similar spirit is the example arising from a Poisson manifold
(M, Λ), where we put h = Ω1(M, R), endowed with the natural Lie bracket
(cf. Example 1.6), V = C∞(M, R) and ω := Λ, considered as a V -valued
2-cocycle on h. Of a different character are the examples obtained with h =
V(M), V := Ω

p
(M, R) := Ωp(M, R)/dΩp−1(M, R) and ω(X, Y ) := [iY iX ω̃],

where ω̃ is a differential (p+2)-form on M . There are more examples arising
from associative algebras in the spirit of non-commutative geometry.

In Section 2 we turn to abstract hamiltonian actions of a Lie group G on
V , i.e., actions which are compatible with a homomorphism ζ : g → ham(h, ω)

and the h-action on V . Then the pullback extension ĝcen := ζ∗ĥam(M, ω)
defines a central extension of g by V h, and a momentum map is a continuous
linear map J : g → V satisfying

dh(J(X)) = iζ(X)ω for X ∈ g,

i.e., J defines a continuous linear section σ := (J, ζ, idg) : g → ĝcen of the asso-
ciated central extension. The obstruction to the existence of an equivariant
momentum map is measured by the 1-cocycle κ : G → C1(g, V h), κ(g) :=
g.J−J which in turn can be used to describe the adjoint action of the group
G on the extended Lie algebra ĝcen.

In Section 3 we briefly discuss the existence of a central Lie group ex-
tension Ĝcen with Lie algebra ĝcen. Once a momentum map J is given
for a hamiltonian G-action, the only condition for the existence of such an
extension is the discreteness of the image Πω of a period homomorphism
perωg

: π2(G) → V h, associated to the Lie algebra cocycle ωg := ζ∗ω. If Πω

is discrete, there also is an abelian Lie group extension Ĝab of G integrating
the Lie algebra extension ĝab := V oωg g.

In many situations the period map perωg
is quite hard to evaluate, but

one may nevertheless show that its image is discrete. To illustrate this point,
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we take in Section 4 a closer look at a smooth action of a connected Lie group
G on a manifold M , leaving a closed z-valued 2-form ω invariant. If the group
Sω =

∫
π2(M)

ω of spherical periods of ω is discrete in V , then Z := z/Sω is an

abelian Lie group, and there exists a Lie group extension

1 → Z → Ĝcen → G̃ → 1

integrating the Lie algebra ĝcen. Here qG : G̃ → G denotes a simply connected
covering group of G, so that Ĝcen can also be viewed as an extension of G by
a 2-step nilpotent Lie group π̂1(G) which is a central extension of the discrete
group π1(G) = ker qG by Z. Here we use that the universal covering manifold
qM : M̃ → M , endowed with ω̃ := q∗Mω, permits us to embed sp(M, ω) into
sp(M̃, ω̃) = ham(M̃, ω̃), so that we actually obtain an abstract hamiltonian
action of the universal covering group G̃ for the module V := C∞(M̃, z) and

the central extension Ĝcen acts by quantomorphisms on a Z-principal bundle
P over M̃ . This further leads to an abelian Lie group extension

1 → C∞(M, Z)0 → Ĝab → G̃ → 1,

integrating the cocycle ζ∗ω ∈ Z2(g, C∞(M, z)). In the short Section 5 we
formulate the algebraic essence of the Noether Theorem in our context and
the paper concludes with an appendix recalling some of the results from
[Ne04] on the integrability of abelian Lie algebra extensions to Lie group
extensions.

1 A Lie algebraic hamiltonian setup

Let V be a topological module of the topological Lie algebra h, i.e., the mod-
ule operation h×V → V, (ξ, v) 7→ ξ.v, is continuous. We write (C•(h, V ), dh)
for the Chevalley–Eilenberg complex of continuous Lie algebra cochains with
values in V , Zp(h, V ) denotes the space of p-cocycles, Hp(h, V ) the cohomol-
ogy space etc. We further write Lξ for the operators defining the natural
action of h on the spaces Cp(h, V ). We refer to [FF01] for the basic notation
concerning continuous Lie algebra cohomology.

We first recall some results from [Ne06a] which we specialize here for
2-cochains. Fix a continuous 2-cochain ω ∈ C2(h, V ). Then

sp(h, ω) := {ξ ∈ h : Lξω = 0, iξdhω = 0} = {ξ ∈ h : dh(iξω) = 0, iξdhω = 0}
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is a closed subspace of h and from

[Lξ,Lη] = L[ξ,η] and [Lξ, iη] = i[ξ,η]

it follows that sp(h, ω) is a Lie subalgebra of h, called the Lie algebra of
symplectic elements of h. Since dhω vanishes on sp(h, ω), the restriction of
ω to this subalgebra is a Lie algebra 2-cocycle. Using the Cartan formula
Lξ = iξ ◦ dh + dh ◦ iξ, we find for ξ, η ∈ sp(h, ω) the relation

i[ξ,η]ω = [Lξ, iη]ω = Lξ(iηω) = dh(iξiηω) = dh(ω(η, ξ)), (3)

showing that the flux homomorphism,

fω : sp(h, ω) → H1(h, V ), ξ 7→ [iξω],

is a homomorphism of Lie algebras if H1(h, V ) is endowed with the trivial
Lie bracket. Its kernel is the ideal

ham(h, ω) := {ξ ∈ sp(h, ω) : (∃v ∈ V ) iξω = dhv}

of hamiltonian elements. The set of admissible vectors

Vω := {v ∈ V : (∃ξ ∈ ham(h, ω)) dhv = iξω}

contains the subspace

V h = {v ∈ V : (∀ξ ∈ h) ξ.v = 0} = H0(h, V )

of h-invariant vectors. We then have a well-defined linear map

q : ham(h, ω) → dhVω
∼= Vω/V h, q(ξ) = iξω

whose kernel is the radical rad(ω, dhω) := {ξ ∈ h : iξω = 0, iξdhω = 0} of ω
and dhω.

Proposition 1.1 (i) The space Vω of admissible vectors carries a Lie algebra
structure defined by

{v1, v2} := ξ1.v2 = −ξ2.v1 = −ω(ξ1, ξ2) for dhvj = iξj
ω, j = 1, 2,

and for which V h is central. We have the following exact sequence of Lie
algebras

0 → rad(ω, dhω) ↪→ ham(h, ω)
q→→ dh(Vω) → 0. (4)
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(ii) If hω := {ξ ∈ h : iξdω = 0, [ξ, rad(ω, dhω)] ⊆ rad(ω, dhω)} is the
normalizer of rad(ω, dhω), then sp(h, ω) ⊆ hω and the set

C1(h, V )ω := {iξω : ξ ∈ hω} ⊆ C1(h, V )

inherits a Lie algebra structure, defined by

[iξ1ω, iξ2ω] := i[ξ1,ξ2]ω.

For αj = iξj
ω, j = 1, 2, we then have

[α1, α2] = Lξ1α2 − iξ2Lξ1ω. (5)

The maps

iω : hω → C1(h, V )ω, ξ 7→ iξω and dh : Vω → C1(h, V )ω, v 7→ dhv

are homomorphisms of Lie algebras. In particular

0 ↪→ rad(ω, dhω) → hω
iω→→ C1(h, V )ω → 0 (6)

is an exact sequence of Lie algebras extending (4).

Proof. (i) First we note that {v1, v2} is well-defined because the formula

ξ1.v2 = iξ1dhv2 = iξ1iξ2ω = ω(ξ2, ξ1)

shows that each choice of ξ2 with iξ2ω = dhv2 leads to the same value of
ω(ξ2, ξ1), and a similar argument applies to ξ1.

By (3), dh{v1, v2} = i[ξ1,ξ2]ω, so that Vω is closed under the bracket {·, ·}
and q is compatible with the brackets. It remains to verify the Jacobi identity
in Vω: For ξj ∈ ham(h, ω) with dhvj = iξj

ω, j = 1, 2, 3, we have ξj ∈ sp(h, ω),
so that

0 = (dhω)(ξ1, ξ2, ξ3) =
∑
cycl.

ξ1.ω(ξ2, ξ3)−
∑
cycl.

ω([ξ1, ξ2], ξ3)

(3)
= −2

∑
cycl.

ω([ξ1, ξ2], ξ3) = 2
∑
cycl.

{{v1, v2}, v3}.

(ii) The inclusion sp(h, ω) ⊆ hω follows from (3), so that rad(ω, dhω) ⊆ hω

is an ideal of hω. Hence the set C1(h, V )ω
∼= hω/ rad(ω, dhω) inherits a quo-

tient Lie algebra structure for which iω is a morphism of Lie algebras. Fur-
ther, dh : Vω → C1(h, V )ω is a homomorphism of Lie algebras since for dhvj =
iξj

ω, j = 1, 2, equation (3) leads to dh{v1, v2} = i[ξ1,ξ2]ω = [iξ1ω, iξ2ω] =
[dhv1, dhv2]. Now (5) follows from [α1, α2] = i[ξ1,ξ2]ω = [Lξ1 , iξ2 ]ω = Lξ1(iξ2ω)−
iξ2Lξ1ω.
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The pullback by q of the central extension V h ↪→ Vω →→ dhVω provides a
central extension

0 → V h ↪→ ĥam(h, ω) →→ ham(h, ω) → 0, (7)

where
ĥam(h, ω) = {(v, ξ) ∈ Vω × ham(h, ω) : iξω = dhv}

is endowed with the Lie bracket

[(v1, ξ1), (v2, ξ2)] = ({v1, v2}, [ξ1, ξ2]) = (−ω(ξ1, ξ2), [ξ1, ξ2]).

We thus arrive at the following commutative diagram

V h id−−→ V h → 0yinc.

yinc.

0 → rad(ω, dhω) → ĥam(h, ω) −−→ Vω → 0yid

y ydh

0 → rad(ω, dhω) → ham(h, ω)
q−−→ dhVω → 0.

Lemma 1.2 The subspace Vω is an sp(h, ω)-submodule of V and the V -
valued 2-cocycle ω on h restricts to a Vω-valued 2-cochain on sp(h, ω).

Proof. Let η ∈ sp(h, ω) and v ∈ Vω with iξω = dhv for some ξ ∈
ham(h, ω). Then

dh(Lηv) = Lηdhv = Lηiξω = i[η,ξ]ω + iξLηω = i[η,ξ]ω

implies Lηv ∈ Vω. That ω(ξ, η) ∈ Vω for ξ, η ∈ sp(h, ω) follows from (3).

Proposition 1.3 The central extension ĥam(h, ω) is a Lie subalgebra of the
abelian extension Vω oω sp(h, ω), defined by the Lie bracket

[(v1, ξ1), (v2, ξ2)] = (ξ1.v2 − ξ2.v1 + ω(ξ1, ξ2), [ξ1, ξ2]),

as well as of the central extension Vω×−ω0 sp(h, ω), ω0 denoting the 2-cocycle
ω on sp(h, ω), considered as a cocycle with values in the trivial sp(h, ω)-
module Vω.

Proof. Both assertions follow from ξ1.v2 = −ξ2.v1 = −ω(ξ1, ξ2) for dhvj =
iξj

ω, j = 1, 2.
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In the remainder of this section we describe several examples illustrating
the abstract context described above. We start with an almost tautological
example.

Example 1.4 Let q : ĥ → h be a central extension of Lie algebras with ker-
nel z. Then the adjoint action of ĥ on itself factors through a representation
âd : h → der(ĥ), defined by âd(q(X))(Y ) = [X, Y ]. Therefore V := ĥ carries

a natural h-module structure. Moreover, the Lie bracket on ĥ defines an
invariant 2-cocycle ω ∈ Z2(h, V )h, determined by

ω(q(X), q(Y )) := −[X, Y ] = q(Y ).X.

Clearly, V h = z(ĥ) is the center of the Lie algebra ĥ and Vω = V follows from

the fact that iq(X)ω = dhX holds for each X ∈ ĥ. This in turn implies that

the “Poisson bracket” on V = ĥ is

{X, Y } = −ω(q(X), q(Y )) = [X, Y ],

so that we recover the Lie bracket on ĥ. This shows that any central Lie
algebra extension can be written as some Vω, associated to an invariant 2-
cocycle.

We also obtain h = sp(h, ω) = ham(h, ω) and the corresponding central
extension is

ĥam(h, ω) = {(v, X) ∈ V × h : iXω = dhv} = {(Y,X) ∈ ĥ× h : iXω = iq(Y )ω}

= {(Y,X) ∈ ĥ× h : q(Y )−X ∈ ker âd}

= {(Y, q(Y )) : Y ∈ ĥ}+ {(0, X) : X ∈ ker âd} ∼= ĥ⊕ q(z(ĥ)).

If, in addition, z = z(ĥ), then q(z(ĥ)) = {0}, and we simply obtain ĥ ∼=
ĥam(h, ω), considered as a central extension of h = ham(h, ω).

Examples 1.5 (a) If (M, ω) is a finite-dimensional connected symplectic
manifold, h = V(M) and V = C∞(M, R), then sp(h, ω) = sp(M, ω) is the
Lie algebra of symplectic vector fields on M , ham(h, ω) = ham(M, ω) is the
Lie algebra of hamiltonian vector fields on M , and rad ω = rad(ω, dhω) = {0}
implies hω = h. In this case

C1(h, V )ω = {iξω : ξ ∈ h} = Ω1(M, R)
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is the space of all smooth 1-forms on M and the Lie bracket on this space is
given by

[α1, α2] = Lξ1α2 − iξ2Lξ1ω

for αj = iξj
ω, j = 1, 2. We also have V h = R (the constant functions),

and ĥam(h, ω) ∼= (C∞(M, R), {·, ·}) is a central Lie algebra extension of
ham(M, ω).

(b) If ω is a only a 2-form on M , h = V(M), and

sp(M, ω) := {X ∈ V(M) : LXω = 0, iXdω = 0}.

Considering V = C∞(M, R) as above, we put

ham(M, ω) := {X ∈ V(M) : LXω = 0, (∃f ∈ V ) iXω = df}.

Then hω may be a proper Lie subalgebra of V(M). In this case the space
of admissible functions Vω = {f ∈ V : (∃ξ ∈ ham(M, ω)) df = iξω} is an
associative subalgebra of V because df = iξω and dg = iηω imply

d(fg) = fdg + gdf = ifηω + igξω = ifη+gξω,

and

Lfηω = d(ifηω) = d(fiηω) = df ∧ iηω + f · d(iηω)

= df ∧ iηω + f · d2g = iξω ∧ iηω = −Lgξω

show that fη + gξ ∈ ham(M, ω). We thus obtain on Vω the structure of
a commutative Poisson algebra by {f1, f2} := ω(ξ2, ξ1) for iξj

ω = dfj (cf.
[Gra85]). Hamiltonian actions in this context are studied in [DTK07]. Our
definition of sp(M, ω) does not coincide with the definition given there, where
the condition iXdω = 0 is omitted. This leads to a larger Lie algebra to which
the restriction of ω is not necessarily a cocycle.

For the case of closed 2-forms, the Lie bracket on Vω already occurs in
Fuchssteiner’s paper [Fu82, p. 1085].

Example 1.6 It is interesting to compare Examples 1.5 with the situation
arising from a Poisson manifold (M, Λ). Here Λ denotes the bivector field
defining the Poisson bracket on C∞(M, R) by {f, g} := Λ(df, dg). Then we
associate to α ∈ Ω1(M, R) the vector field Xα = Λ](α), defined by β(Xα) =
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Λ(α, β) for β ∈ Ω1(M, R). The vector fields of the form Xdf are called
hamiltonian. Then

[α, β] := LXαβ − iXβ
dα = LXαβ − LXβ

α− d(Λ(α, β))

= iXαdβ − iXβ
dα + d(Λ(α, β))

defines a Lie bracket on the space Ω1(M, R) of 1-forms on M for which the
map

Λ] : Ω1(M, R) → V(M), α 7→ Xα

is a homomorphism of Lie algebras ([Fu82], Thm. 1). We then have in par-
ticular

[df, dg] = LXdf
dg = d(iXdf

dg) = d
(
Λ(df, dg)

)
= d{f, g},

so that the exterior derivative

d : (C∞(M, R), {·, ·}) → (Ω1(M, R), [·, ·])

is a homomorphism of Lie algebras.
Using Λ], we obtain the structure of an Ω1(M, R)-module on C∞(M, R).

Then the space Xp(M) of sections of the bundle Λp(T (M)) can be viewed as
a space of C∞(M, R)-valued Lie algebra p-cochains on Ω1(M, R). We thus
obtain a subcomplex of the corresponding Chevalley–Eilenberg complex, on
which the differential is given by f 7→ −[Λ, f ], where

[·, ·] : Xp(M)× Xq(M) → Xp+q−1(M)

denotes the Schouten–Nijenhuis bracket ([Vai94], Prop. 4.3). In particular,
the relation [Λ, Λ] = 0 implies that Λ ∈ Z2(Ω1(M, R), C∞(M, R)) is a Lie
algebra 2-cocycle.

With h := Ω1(M, R), V := C∞(M, R) and ω := −Λ we are now in the
setting described above. Then sp(h, ω) is a Lie subalgebra containing the
Lie subalgebra of closed 1-forms. Indeed, the claim being local, it suffice to
prove it for exact 1-forms, so that it follows from the relation

Xdf (Λ(dg, dh)) = {f, {g, h}} = {{f, g}, h}+ {g, {f, h}}
= Λ(LXdf

dg, dh) + Λ(dg,LXdf
dh).

Since Λ] is a homomorphism of Lie algebras, its kernel rad ω is an ideal, so
that hω = h.
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For each α ∈ Ω1(M, R) and f ∈ V we have

(dhf)(α) = Xα.f = df(Xα) = Λ(α, df) = −(idfΛ)(α) = −α(Λ](df)),

showing that V = Vω, and the corresponding Lie algebra structure on V
coincides with the given Poisson bracket. We also note that

V h = {f ∈ V : (∀α ∈ h) df(Xα) = 0} = {f ∈ V : (∀α ∈ h) α(Xdf ) = 0}
= {f ∈ V : Xdf = 0} = z(C∞(M, R))

is the center of the Poisson–Lie algebra C∞(M, R), so that

dhV = Λ](dC∞(M, R)) ∼= C∞(M, R)/z(C∞(M, R))

is the set ham(M, Λ) of hamiltonian vector fields of (M, Λ). This leads to the
short exact sequence

0 → V h = z(C∞(M, R)) → V = C∞(M, R) → dh(V ) = ham(M, Λ) → 0,

and the map q : ham(Ω1(M, R), Λ) → dh(V ) corresponds to the homomor-
phism

Λ] : ham(Ω1(M, R), Λ) → ham(M, Λ), α 7→ Xα.

Example 1.7 (cf. [DKM90], [DV91]) In the context of non-commutative
geometry, one considers the following situation: A is an associative, possibly
non-commutative, algebra and h is a Lie algebra acting by derivations on A.
Then (C•(h, A), dh) is a differential graded algebra which can be considered
as a variant of the exterior algebra (Ω•(M, R), d) of a smooth manifold M .
In the abstract context, symplectic forms on A correspond to elements of
Z2(h, A).

(a) Matrix algebras are particularly simple examples. For A = Mn(R),
we consider h := der(A) ∼= sln(R). Then Hp(h, A) vanishes for p = 1, 2 by
the Whitehead Lemmas. The Lie bracket

ω(x, y) = [x, y]

defines an h-invariant A-valued 2-cocycle on h and since H1(h, A) vanishes,
we have

h = sp(h, ω) = ham(h, ω).
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The inclusion η : h → A satisfies dhη = ω, and ixω = ad x : h → A, so that,
for x ∈ h, ax := −x ∈ A satisfies dhax = ad x = ixω. We thus get Aω = A and
Ah = R1. The Poisson bracket on Aω = A coincides with the commutator
bracket:

{a, b} = ω(−a,−b) = [a, b].

(b) More generally, for any locally convex associative algebra A, the Lie
algebra h := A/z(A) acts by inner derivation on A, and the Lie bracket
ω([a], [b]) := [a, b] is an element ω ∈ Z2(h, A). It is a coboundary if and only
if the central Lie algebra extension

0 → z(A) → A → A/z(A) → 0

splits.1 Here we have h = ham(h, ω), A = Aω, Ah = z(A), and

{a, b} = [a, b]

implies that ĥam(h, ω) ∼= A (as a Lie algebra).
For any continuous linear splitting σ : h → A of the quotient map, we

have

dhσ(x, y) = [σ(x), σ(y)]− [σ(y), σ(x)]− σ([x, y]) = 2ω(x, y)− σ([x, y]),

so that ω̃ := ω − dhσ is a 2-cocycle equivalent to ω, as an A-valued cocycle,
but whose values lie in the trivial h-module z(A).

(c) Another, closely related example, arises for h := V(M), M a smooth
manifold and the algebra A := C∞(M, Md(R)) for some d > 0. Then each
closed 2-form ω ∈ Ω2(M, R) defines an A-valued 2-cocycle on h because we
may identify C∞(M, R) with the center of A.

Examples arising from differential forms

Example 1.8 Let M be a finite-dimensional paracompact smooth manifold,
z be a Mackey complete locally convex space and

V := Ω
p
(M, z) := Ωp(M, z)/dΩp−1(M, z).

1A typical example where this is not the case is the algebra A = B(H) of bounded oper-
ators on an infinite-dimensional complex Hilbert space because its center C1 is contained
in the commutator algebra (cf. Cor. 2 to Probl. 186 in [Ha67]).
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We write [α] = α + dΩp−1(M, z) for the elements of this space. In view
of de Rham’s Theorem, the subspace dΩp−1(M, z) of Ωp(M, z) consists of
all closed p-forms for which the integrals over all smooth singular p-cycles
vanish. Therefore it is closed and thus V inherits a natural Fréchet topology,
turning it into a topological module of the Lie algebra h := V(M), acting by

X.[α] = [LXα] = [iXdα + diXα] = [iXdα].

For any (p + 2)-form ω̃ ∈ Ωp+2(M, z), we now obtain a Lie algebra 2-
cochain ω ∈ C2(V(M), V ) by

ω(X, Y ) := [iY iX ω̃].

We may also define Lie subalgebras of symplectic, resp., hamiltonian vector
fields on M by

sp(M, ω̃) := {X ∈ V(M) : LX ω̃ = 0 = iXdω̃}

and
ham(M, ω̃) := {X ∈ sp(M, ω̃) : iX ω̃ ∈ dΩp(M, z)}.

If ω̃ is non-degenerate in the sense that ivω̃(p) 6= 0 for any non-zero v ∈
Tp(M) and dω̃ = 0, then the pair (M, ω̃) is called a multisymplectic manifold.
For more details on this class of manifolds and some of its applications, we
refer to [GIMM04, p.23], [CIL99] and [Ma88].

To understand the connection with our abstract algebraic setup, the fol-
lowing simple observation is quite useful:

Lemma 1.9 If a differential form α ∈ Ωp+1(M, z) on the finite-dimensional
manifold M has the property that iXα is exact for any vector field X ∈ V(M),
then α = 0.

Proof. The case p = dim M is trivial, so that we may assume that p <
dim M . Let X ∈ V(M). Then there exists θ ∈ Ωp−1(M, z) with dθ = iXα.
For any f ∈ C∞(M, R) the p-form fdθ = ifXα is exact. In particular
df ∧ dθ = 0 for any smooth function f , hence dθ = 0. Then α vanishes
because the vector field X was arbitrary.

As an immediate consequence of the preceding lemma, we see that X.[α] =
[iXdα] = 0 holds for all X ∈ V(M) if and only if dα = 0, so that

V h = Hp
dR(M, z)

(cf. [Ne06a, Lemma 23]).
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Proposition 1.10 For the Lie algebra 2-cochain ω ∈ C2(V(M), Ω
p
(M, z)),

the following assertions hold:

(a) ω is a 2-cocycle if and only if ω̃ is closed.

(b) sp(h, ω) = sp(M, ω̃).

(c) ham(h, ω) = ham(M, ω̃).

Proof. First we derive some useful formulas. For X, Y, Z ∈ V(M), we
have dω(X, Y, Z) = (iXdω)(Y, Z) = (LXω)(Y, Z)− d(iXω)(Y, Z). Further

(LXω)(Y, Z) = LXω(Y, Z)− ω([X,Y ], Z)− ω(Y, [X, Z])

= [LXiZiY ω̃ − iZi[X,Y ]ω̃ − i[X,Z]iY ω̃] = [iZiYLX ω̃], (8)

and

d(iXω)(Y, Z) = Y.ω(X, Z)− Z.ω(X,Y )− ω(X, [Y, Z])

= [LY iZiX ω̃ − LZiY iX ω̃ − i[Y,Z]iX ω̃]

= [iZLY iX ω̃ − iZd(iY iX ω̃)] = [iZiY d(iX ω̃)].

This leads to

dω(X, Y, Z) = [iZiY (LX ω̃ − d(iX ω̃))] = [iZiY iXdω̃]. (9)

From (9) and Lemma 1.9 we now immediately derive (a). More precisely,
we derive from Lemma 1.9 that for X ∈ V(M) the relation iXdω = 0 is
equivalent to iXdω̃ = 0 and from (8) that LXω = 0 is equivalent to LX ω̃ = 0.
This proves (b).

To verify (c), we first note that for any X ∈ ham(M, ω̃) and θ ∈ Ωp(M, z)
with dθ = iX ω̃ and Y ∈ V(M), we have

Y.[θ] = [LY θ] = [iY dθ] = [iY iX ω̃] = ω(X, Y ) = (iXω)(Y ),

so that X ∈ ham(h, ω). For the converse, let X ∈ ham(h, ω) and [θ] ∈ V
with dh[θ] = iXω. Then iY (dθ − iX ω̃) is exact for any vector field Y , hence
dθ = iX ω̃ by Lemma 1.9 and thus X ∈ ham(M, ω̃).
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Remark 1.11 The last part of the preceding proof shows in particular that
the Lie algebra of admissible vectors in V = Ω

p
(M, z) is

Vω = {[θ] ∈ V : (∃X ∈ ham(M, ω̃)) dθ = iX ω̃}

and its Lie bracket is

{[θ1], [θ2]} := ω(X2, X1) = [iX1iX2ω̃] for dθj = iXj
ω̃.

If θi is closed, then we may take Xi = 0, which shows that Hp
dR(M, z) is

central in the Lie algebra Vω. In view of Proposition 1.10, we thus obtain the
central Lie algebra extension

ĥam(M, ω̃) := {([θ], X) ∈ Vω × ham(M, ω̃) : dθ = iX ω̃}

of ham(M, ω̃) by Hp
dR(M, z), where the corresponding cocycle is the restric-

tion of −ω to ham(M, ω̃).

2 The momentum map

As in the previous section, let V a topological h-module and ω ∈ C2(h, V ).
In addition, we now consider a continuous homomorphism of Lie algebras

ζ : g → ham(h, ω).

Then we obtain via ζ a topological g-module structure on V defined by
X.v := ζ(X).v for X ∈ g, v ∈ V and the subspace Vω is a g-submodule
(Lemma 1.2).

Definition 2.1 The pullback ĝcen := {(v, X) ∈ V × g : iζ(X)ω = dhv} by ζ

of the central extension ĥam(h, ω) in (7) is a central extension

0 ↪→ V h → ĝcen →→ g → 0. (10)

It can also be viewed more directly as the pullback of the central extension
Vω of dh(Vω) by the homomorphism

ζV : g → dh(V ), X 7→ iζ(X)ω.
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A continuous linear map

J : g → Vω with dh(J(X)) = iζ(X)ω for X ∈ g (11)

is called a momentum map for ζ.
Momentum maps are in one-to-one correspondence with continuous linear

sections of this extension because any continuous linear section s : g → ĝcen

is of the form s(X) = (J(X), X) for some momentum map J and vice versa.
For any such section, we obtain a 2-cocycle by

τJ(X, Y ) := τ(X, Y ) := [s(X), s(Y )]− s([X, Y ])

= ({J(X), J(Y )}, [X, Y ])− (J([X, Y ]), [X, Y ])

= (X.J(Y )− J([X, Y ]), 0) ∈ V h,

satisfying
ĝcen

∼= V h ×τ g.

Lemma 2.2 For a momentum map J : g → Vω, the following are equivalent:

(i) J is a Lie algebra homomorphism.

(ii) J is g-equivariant.

(iii) τJ = 0.

(iv) s = (J, idg) : g → ĝcen is a homomorphism of Lie algebras.

Proof. (i) ⇔ (ii): The g-equivariance of the momentum is equivalent to
X.J(Y ) = J([X, Y ]) for X, Y ∈ g. Hence the assertion follows from

{J(X), J(Y )} = ω(ζ(Y ), ζ(X)) = (dhJ(Y ))(ζ(X)) = X.J(Y ). (12)

(ii) ⇔ (iii) ⇔ (iv) follow from the definition and the above formula for τ .

Example 2.3 In the situation of Example 1.4, where V = ĥ was a central
extension of h, we also have h = ham(h, ω). Then an equivariant momentum

map J : h → ĥ is the same as the splitting of the central Lie algebra extension
ĥ of h by z.

For two choices J, J ′ ∈ C1(g, Vω) of momentum maps for ζ the difference
J − J ′ has values in V h, and this leads directly to the following:
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Proposition 2.4 The cohomology class [τJ ] ∈ H2(g, V h) does not depend on
the choice of the momentum map J . It is the obstruction to the existence
of a g-equivariant momentum map for ζ : g → ham(h, ω). In particular,
the central extension ĝcen splits if and only if an equivariant momentum map
exists.

Remark 2.5 If we replace g by the central extension ĝcen and ζ by the
homomorphism ζ̂ : ĝcen → ham(h, ω), ζ̂(v, X) = ζ(X), we obtain the g-
equivariant momentum map

Ĵ : ĝcen = V h ×τ g → V, (v, X) 7→ J(X) + v.

Indeed, since v ∈ V h, we have dh(Ĵ(v, X)) = dhJ(X) = iζ(X)ω, and the

equivariance of Ĵ follows from

X.Ĵ(v, Y )− Ĵ(âd(X)(v, Y )) = X.(J(Y ) + v)− Ĵ(τ(X, Y ), [X, Y ])

= X.J(Y )− J([X,Y ])− τ(X, Y )) = 0,

for v ∈ V h and X,Y ∈ g.

The pullback cochain ωg := ζ∗ω ∈ C2(g, V ) is a g-invariant 2-cocycle
with values in the g-module Vω because ζ(g) ⊆ sp(h, ω). With (12) it can be
expressed by the momentum map as ωg(X, Y ) = Y.J(X).

Lemma 2.6 In C2(g, Vω) we have τJ = dgJ + ωg.

Proof. This follows from the relation

(dgJ)(X, Y ) = X.J(Y )− Y.J(X)− J([X, Y ]) = τJ(X, Y )− ωg(X, Y )

for X, Y ∈ g.

Remark 2.7 If ω = dhα is a coboundary and J a momentum map, the
linear map fJ = J + ζ∗α ∈ C1(g, V ) has the property that for all X ∈ g,

Lζ(X)α = iζ(X)dhα + dh(iζ(X)α) = iζ(X)ω + dh(ζ
∗α(X))

= dh(J(X) + ζ∗α(X)) = dh(fJ(X)),

and Lemma 2.6 immediately yields τJ = dgfJ . In general, for any f ∈
C1(g, V ) with Lζ(X)α = dh

(
f(X)

)
for all X ∈ g, we have (f − fJ)(g) ⊆ V h,

so that [dgf ] = [dgfJ ] = [τJ ] in H2(g, V h).
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Definition 2.8 Let G be a connected Lie group with Lie algebra g and
ρV a linear action of G on the h-module V . The G-action ρV is called an
abstract hamiltonian action for the continuous 2-cochain ω ∈ C2(h, V ) if the
derived g-action on V factors through ham(h, ω). This means there exists a
Lie algebra homomorphism ζ : g → ham(h, ω) with X.v = ζ(X).v. When
the Lie algebra homomorphism ζ is given, we call ρV an abstract hamiltonian
G-action for ζ.

One sees immediately that V G = V g ⊇ V h. The g-invariant pullback
cocycle ωg ∈ Z2(g, Vω) is also G-invariant:

g.ωg(X, Y ) = ωg(Ad(g)X, Ad(g)Y ). (13)

Considering the natural G-action on C1(g, V ) by (g.c)(Y ) = g.c(Ad(g)−1Y )
and its infinitesimal version (X.c)(Y ) = X.c(Y )−c([X, Y ]), the Lie algebra 2-
cocycle τJ ∈ Z2(g, V h) satisfies τJ = dgJ ∈ Z1(g, C1(g, V h)). As a C1(g, V )-
valued cocycle it is a coboundary, since J ∈ C1(g, V ), but in general not as
a C1(g, V h)-valued 1-cocycle.

We define a C1(g, V )-valued group cocycle by

κ = dGJ : G → C1(g, V ), κ(g) = g.J − J.

Lemma 2.9 κ(g)(X) ∈ V h for all g ∈ G and X ∈ g.

Proof. We have already seen above that G acts trivially on V g ⊇ V h. To
see that all the maps κ(g) have values in V h, pick ξ ∈ h. It suffices to show
that the function

F : G → V, g 7→ ξ.κ(g)X = ξ.
(
(g.J − J)(X)

)
is constant because it vanishes in 1. Since G is connected, it suffices to see
that for each g ∈ G and Y ∈ g we have

0 = Tg(F )(g.Y ) = ξ.
(
(g.(Y.J))(X)

)
.

Since (Y.J)(Z) = τ(Y, Z) ∈ V h for Y, Z ∈ g, and (g.(Y.J))(X) =
g.(Y.J)(Ad(g)−1X), this follows from the triviality of the action of G on V h.
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The lemma implies that κ is a C1(g, V h)-valued 1-cocycle on G. It mea-
sures the failure of the momentum map J to be G-equivariant because

g.
(
κ(g−1)(X)

)
= J(Ad(g)X)− g.J(X).

Proposition 2.10 The object measuring the failure of the momentum map
J ∈ C1(g, Vω) to be G-equivariant is the group 1-cocycle

κ : G → C1(g, V h), κ(g) = g.J − J.

Its cohomology class [κ] ∈ H1(G, C1(g, V h)) does not depend on the choice of
J . It is the obstruction for the existence of a G-equivariant momentum map
for ζ.

Proof. The cohomology class [κ] ∈ H1(G, C1(g, V h)) does not depend on
the choice of the momentum map. Indeed, for two momentum maps J and
J ′, we have J−J ′ ∈ C1(g, V h) and the corresponding group 1-cocycles κ and
κ′ satisfy κ− κ′ = dG(J − J ′).

If κ is a C1(g, V h)-valued 1-coboundary on G, then there is an element
c ∈ C1(g, V h) such that κ(g) = g.c − c. Then J − c is a G-equivariant
momentum map because, by definition, κ(g) = g.J − J .

Proposition 2.11 If ρV is an abstract Hamiltonian G-action for ζ, then the
adjoint action of g on ĝcen = V h ×τ g integrates to a smooth G-action, given
by

Âd(g)(v, X) :=
(
v + κ(g)(Ad(g)X), Ad(g)X

)
=

(
v − κ(g−1)(X), Ad(g)X

)
,

for (v, X) ∈ ĝcen and g ∈ G. With respect to this action, the momentum map

Ĵ : ĝcen → V, (v, X) 7→ J(X) + v

is G-equivariant.

Proof. First we recall from Lemma 2.9 that κ(g)(Ad(g)X) ∈ V h, so

that Âd(g) defines a continuous linear automorphism of ĝcen. From the G-
invariance of ω and the relation

τ(X,Y ) = X.J(Y )− J([X,Y ]) = ωg(Y,X)− J([X, Y ]),
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we derive (g.τ − τ)(X, Y ) = (J − g.J)([X,Y ]) = dg(κ(g))(X, Y ), so that

Âd(g)(v, X) =
(
v + κ(g)(Ad(g)X), Ad(g)X

)
is a Lie algebra automorphism ([Ne06c, Lemma II.5]). Further, the cocycle

property of κ implies that Âd defines a smooth action of G on ĝcen, and the
corresponding derived action is

âd(Y ).(v, X) = ((Y.J)(X), [Y, X]) = (τJ(Y,X), [Y, X]) = [(0, Y ), (v, X)],

which is the g-action on ĝcen induced by the adjoint action of ĝcen. Since
any representation of the connected group G is determined by its derived
representation (cf. [Ne06b, Rem. II.3.7]), Âd is the unique smooth action of

G on ĝcen, integrating the adjoint action âd of g on ĝcen. Since κ has values
in V G, we obtain the relation

κ(g) ◦ Ad(g) = g−1.κ(g) = J − g−1.J = −κ(g−1).

Finally, the G-equivariance of Ĵ with respect to the G-action follows from
the connectedness of G and the equivariance with respect to the g-action
(Remark 2.5).

We also note that the description of ĝcen as V h×τ g, yields an identification
of the affine space

A := {f ∈ Hom(ĝcen, V
h) : f |V h = idV h}

with its translation space C1(g, V h), and the G-action on A induced by Âd
thus corresponds to the affine action on C1(g, V h), defined by

(g ∗ α)(X) := α(Ad(g)−1X)− κ(g)(X). (14)

Example 2.12 (cf. [Ko70]) Let us take a closer look at the prototypical
example for our setup. Let (M, ω) be a connected presymplectic manifold,
i.e., ω is a closed 2-form, and G → Ham(M, ω) a hamiltonian action of
the connected Lie group G on M , where the infinitesimal action is denoted
ζ : g → ham(M, ω).

For h = V(M) and V = C∞(M, R), we then have V h = R, and a momen-
tum map J : g → V , with iζ(X)ω = d(J(X)) corresponds to a map µ : M → g∗
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with µ(m)(X) = J(X)(m), i.e., µ is a momentum map for the hamiltonian
G-action on (M, ω).

The function κ(g)(X) = (g.J − J)(X) on M is constant and the so
obtained map κ : G → g∗ is a group 1-cocycle whose cohomology class is the
obstruction for the existence of a G-equivariant momentum map µ : M → g∗.
In any case there is an affine G-action on g∗, defined by ag(α) = Ad∗(g)α−
κ(g) for which µ is G-equivariant. The g-equivariance of the momentum

map Ĵ : ĝcen → V implies its G-equivariance, so that the corresponding map
µ̂ : M → ĝ∗cen is G-equivariant. By identifying g∗ with the affine subspace
{1}× g∗ ⊆ (ĝcen)

∗, we obtain the affine action (14): g ∗α := Ad∗(g)α−κ(g).

An equivariant cohomology picture of the momentum
map

Let G be a connected Lie group with Lie algebra g. A G?-module is a topolog-
ical super vector space Ω, endowed with a smooth G-action ρ : G → Aut(Ω)
by automorphisms, a continuous odd derivation dΩ commuting with the G-
action, and a G-equivariant map ι : g → End1(Ω) such that ι, together with
the derived representation LX := dρ(X) turns (Ω, dΩ) into a differential
graded g-module.

If (Ω, dΩ) is a G?-module, then the corresponding Cartan complex is the
space

Pol(g, Ω)G :=
⊕
n∈N0

Poln(g, Ω)G

of continuous G-equivariant polynomial maps g → Ω, endowed with the
differential

dG(f)(X) := dΩ(f(X)) + ιXf(X) for X ∈ g, f ∈ Pol(g, Ω)G.

If Ω is Z-graded, then the natural grading on the space of polynomials is
defined by

Pol(g, Ω)G
d =

⊕
2n+k=d

Poln(g, Ωk)G.

Note that d2
G(f)(X) = LX(f(X)) = 0 vanishes because of the invariance, so

that we obtain a cochain complex (cf. [GS99], Sect. 4.2). Its cohomology is
called the G-equivariant cohomology of the G?-module Ω.
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Elements of degree 2 in Pol(g, Ω)G have the form

f = ω + J, ω ∈ (Ω2)G = Pol0(g, Ω2)G, J ∈ Lin(g, Ω0)G = Pol1(g, Ω0)G,

and the condition dGf = 0 is equivalent to

dΩω = 0 and ιXω = dΩJ(X) for X ∈ g. (15)

The same remains true for G-equivariant momentum maps for Lie algebra
2-cocycles in the setup developed above. If h and V are both smooth G-
modules, so that the h-action on V is G-equivariant and the corresponding
g-actions come from a continuous homomorphism ζ : g → h, then the Cartan-
Eilenberg complex (C•(h, V ), dh) is a G?-module. Further, a 2-cochain for
the corresponding Cartan complex is of the form ω + J for ω ∈ C2(h, V )G

and J ∈ C1(g, V )G. By (15), the relation dG(ω + J) = 0 is equivalent to ω
being a 2-cocycle and J an equivariant momentum map for ω.

3 Central Lie group extensions

Let V a topological h-module, ω ∈ C2(h, V ) and ζ : g → ham(h, ω) a contin-
uous homomorphism of Lie algebras. Any momentum map J for ζ provides
us with a continuous V h-valued 2-cocycle τ(X,Y ) = X.J(Y )− J([X, Y ]) on
g, defining the central extension ĝcen = V h ×τ g from (10). The pullback
ωg = ζ∗ω

ωg(X,Y ) := ω(ζ(X), ζ(Y )) = ζ(Y ).J(X) = Y.J(X) (16)

is a Vω-valued 2-cocycle on g and defines an abelian extension ĝab := Vω oωg g

of g by Vω. In view of Proposition 1.3, ĝcen is a Lie subalgebra of ĝab.
Now we assume, in addition, that V is Mackey complete and ρV : G →

GL(V ) is an abstract hamiltonian action for ζ. Then all period integrals are
defined (cf. Appendix 6), and we assume that the period group Πωg is discrete,
so that the Lie algebra ĝab integrates to an abelian Lie group extension, and
we may compare the groups corresponding to the Lie algebras ĝcen and ĝab.

Proposition 3.1 (i) The cocycles τ ∈ Z2(g, V h) and ωg ∈ Z2(g, Vω) have
the same period group Πτ = Πωg ⊂ V h.

(ii) The flux homomorphisms Fτ : π1(G) → H1(g, V h) and Fωg : π1(G) →
H1(g, Vω) both vanish.
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Proof. (i) In view of Lemma 2.6, [τ ] = [ωg] in H2(g, Vω), so that their
period homomorphisms coincide by [Ne04, Thm. 7.2].

(ii) The relation τ − ωg = dgJ (Lemma 2.6) implies τ eq − ωeq
g = dJeq in

Ω2(G, V ) (cf. Appendix 6), so that we also derive with LXrJ
eq = dρV (X)◦Jeq

for each loop γ in G∫
γ

iXrτ
eq −

∫
γ

iXrω
eq
g =

∫
γ

iXr(dJ
eq) =

∫
γ

LXrJ
eq = dρV (X).

∫
γ

Jeq,

and since this is a V -coboundary, for the inclusion ι : V h → Vω, we have

ι∗ ◦ Fτ = Fωg : π1(G) → H1(g, Vω).

Hence it suffices to see that Fτ vanishes, but this follows from the existence
of the smooth G-action on ĝcen, integrating the adjoint action of g (Proposi-
tion 2.11 and [Ne02], Prop. 7.6).

The next theorem provides a central Lie group extension similar to (1) in
the introduction.

Theorem 3.2 Suppose that ρV is an abstract hamiltonian G-action on V
for the Lie algebra homomorphism ζ : g → ham(h, ω) such that the period
group Π := Πωg = Πτ is discrete. Then the following assertions hold:

(1) There exists a central Lie group extension Ĝcen of G by Z := V h/Π,
integrating the Lie algebra ĝcen = V h ×τ g from (10).

(2) The quotient Lie group Ĝab := (Vω/Π o Ĝcen)/∆Z by the antidiagonal
∆Z := {(z, z−1) : z ∈ Z} is an abelian Lie group extension of G by the
smooth G-module Vω/Π, integrating the Lie algebra ĝab := Vω oωg g.

Proof. (1) The 2-cocycle τ ∈ Z2(g, V h) has discrete period group Π and
vanishing flux homomorphism Fτ (Proposition 3.1). Hence the central Lie
algebra extension ĝcen = V h ×τ g integrates to a central Lie group extension
Ĝcen of G by Z = V h/Π (Theorem 6.1).

(2) We know from Remark 6.3 in Appendix 6 below that Ĝab is a Lie group
extension of G by Vω/Π. Its Lie algebra is isomorphic to (Vωoĝcen)/∆V h , and
this is the extension of g by Vω, defined by the cocycle τ , which is equivalent
to ωg (Lemma 2.6).
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Example 3.3 (Differential (p + 2)-forms) Let ρ : G → Ham(M, ω̃) be a
smooth hamiltonian action in the context of Example 1.8. Then the in-
duced G-action on V = Ω

p
(M, z) is an abstract hamiltonian action for the

V -valued 2-cocycle ω on V(M). Let Γω̃ =
∫

Hp+2(M)
ω̃ ⊆ z be the group of

periods of ω̃. Then the Period Formula in [Ne08, Thm. 3.18] shows that the
image of the period map

perωg
: π2(G) → Hp

dR(M, z) = V h

is contained in {
[θ] :

∫
Hp(M)

θ ⊆ Γω̃

}
∼= Hom(Hp(M), Γω̃),

and this group is discrete whenever Γω̃ is discrete and Hp(M) is finitely
generated (which is the case if M is compact).

In the following section we take a closer look at the case p = 2, where ω̃
is a closed 2-form on M .

Example 3.4 (Continuous inverse algebras) If, in the setting of
Example 1.7(b), A is a Mackey complete continuous inverse algebra, i.e., its
unit group A× is open and the inversion is continuous, then A× is a locally ex-
ponential Lie group, Z(A)× = Z(A×) is a Lie subgroup, and G := A×/Z(A)×

also carries a Lie group structure (cf. [GN08] for all that). The action of G
on A by inner automorphisms is hamiltonian. Now the existence of the Lie
group extension

1 → Z(A)× → A× → G → 1

implies that the corresponding period group Πω is contained in π1(Z(A)) =
{z ∈ Z(A) : exp z = 1} (cf. [Ne02], Prop. V.11), hence is in particular dis-
crete.

Example 3.5 (Poisson manifolds) We consider the situation arising for a
Poisson manifold (M, Λ) (Example 1.6). Suppose that ρ : G → GL(V ) is an
abstract hamiltonian action, corresponding to the Lie algebra homomorphism
ζ : g → ham(Ω1(M, R), Λ). Then g acts on V = C∞(M, R) by

ζV : g → ham(M, Λ), X 7→ iζ(X)Λ = Λ](ζ(X))
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which implies that ρ(G) ⊆ Ham(M, Λ) ⊆ Aut(M, Λ), so that we obtain a
Hamiltonian action of G on (M, Λ). The central extension ĝcen is the pullback
of the central extension of ham(M, Λ) ∼= dh(V ) given by the Poisson–Lie
algebra V = C∞(M, R):

ĝcen
∼= {(f, X) ∈ C∞(M, R)× g : ζV (X) = −Λ](df)},

a central extension of g by z(C∞(M, R)) = V h.
We are interested in criteria for the corresponding period group Πτ ⊆

z(C∞(M, R)) to be discrete. Let us assume that (M, Λ) admits a quantization
line bundle q : L → M , i.e., L is a complex line bundle on which we have a
covariant derivative ∇ for which the operators

f̂ .s := ∇Xdf
s + 2πif · s

define a homomorphism of Lie algebras

C∞(M, R) → End(ΓL), f 7→ f̂ .

A characterization of Poisson manifolds for which such bundles exist is given
in [Vai91] (see also [Vai94] and [Hu90]). It is equivalent to the existence of a
closed 2-form λ representing an integral cohomology class and a vector field
A for which the bivector field λ] defined by λ](α, β) := λ(α], β]) satisfies

Λ + LAΛ = λ].

Then λ is the curvature of the pair (L,∇), hence a 2-cocycle describing the
Lie algebra extension

0 → EndC∞(M,R)(ΓL) ∼= C∞(M, R) → dend(ΓL) → V(M) → 0,

where dend(ΓL) is the Lie algebra of derivative endomorphisms, i.e., those
endomorphisms D ∈ End(ΓL) for which there exists a vector field X ∈ V(M),
such that [D,∇X ] is multiplication with a smooth function (cf. [Ko76]).

We conclude that the restriction of the C∞(M, R)-valued cocycle ζ∗V λ is
equivalent to ζ∗τ , hence leads to the same period homomorphism

per : π2(G) → V h ⊆ V.

Since the existence of the line bundle L with curvature λ implies that all
periods of λ are integral, the discussion in Example 3.3 (specialized to p = 0),

25



implies that the period group of ζ∗τ is discrete, so that Theorem 3.2 implies
the existence of a central Lie group extension Ĝcen with Lie algebra ĝcen acting
by bundle automorphisms on L. The crucial difference to the symplectic case
is that in this situation the Lie algebra ĝcen acts on L by vector fields not
necessarily preserving the connection, resp., the covariant derivative.

Problem 3.6 Suppose that (M, Λ) is a Poisson manifold (Example 1.6).
When is the Lie algebra Ω1(M, R) integrable in the sense that it is the Lie
algebra of some infinite-dimensional Lie group? Since it is an abelian exten-
sion of the Lie algebra im Λ] of vector fields, one would like to prove first
that this Lie algebra is integrable and then try to use the results on abelian
extensions in [Ne04], but the integrability of such Lie algebras of vector fields
defined by integrable distributions is a difficult problem which is still open
(cf. [Ne06b], Problem IV.13).

We can ask the same question for the Poisson–Lie algebra C∞(M, R),
which is a central extension of the Lie algebra of Hamiltonian vector fields.
Under which conditions does any of these two Lie algebras integrate to a Lie
group? If (M, Λ) is compact symplectic, then ham(M, Λ) always does and
its central extension C∞(M, R) does at least if the cohomology class of the
symplectic form has a discrete period group (cf. Example 3.3).

4 From symplectic to hamiltonian actions

Let z be a Mackey complete locally convex space, M a connected smooth
manifold (possibly infinite-dimensional) and ω ∈ Ω2(M, z) a closed 2-form.
Under the rather weak assumption that the group Sω :=

∫
π2(M)

ω of spher-

ical periods of ω is discrete, we use a bypass through the simply connected
covering qM : M̃ → M to associate to a smooth symplectic action

G → Sp(M, ω) := {ϕ ∈ Diff(M) : ϕ∗ω = ω}

of a connected Lie group G a hamiltonian action of the simply connected
covering group G̃ on M̃ and further a corresponding central Lie group exten-
sion.

We now turn to the details. Let Z = z/ΓZ , where ΓZ ⊆ z is a discrete
subgroup. We write qZ : z → Z for the quotient map and assume that the
group Sω of spherical periods of ω is contained in ΓZ . Whenever Sω is discrete,
this is in particular satisfied if we put ΓZ := Sω.
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We write π1(M) for the group of deck transformations of M̃ over M , act-
ing from the left. Then ω̃ := q∗Mω is a closed z-valued 2-form on M̃ , and since
the natural homomorphism π2(M̃) → π2(M) is an isomorphism, it has the
same group Sω of spherical periods. Moreover, the Hurewicz homomorphism
π2(M̃) → H2(M̃) is an isomorphism, so that all periods of ω̃ are contained
in ΓZ . If, in addition, M is smoothly paracompact, then this implies the ex-
istence of a pre-quantum principal Z-bundle qP : P → M̃ with a connection
1-form θ ∈ Ω1(P, z) whose curvature is ω̃, i.e., q∗P ω̃ = dθ (cf. [Br93]).

The following theorem is a slight generalization of Kostant’s Theorem con-
cerning finite-dimensional manifolds and the case Z = T ([Ko70], Prop. 2.2.1).

Theorem 4.1 We have an abelian group extension

1 → C∞(M̃, Z) ∼= Gau(P ) → Aut(P ) → Diff(M̃)[ω̃] → 1

and a central extension

1 → Z → Aut(P, θ) → Sp(M̃, ω̃) → 1.

Proof. Smooth Z-bundles over M̃ are classified by the group

H2(M̃, ΓZ) ∼= Hom(π2(M), ΓZ) ↪→ H2
dR(M̃, z) ∼= Hom(π2(M), z).

Therefore ϕ ∈ Diff(M̃) lifts to a bundle isomorphism of P if and only if
[ϕ∗ω̃] = [ω̃], which in turn is equivalent to ϕ∗P ∼= P as Z-bundles. This
leads to the abelian extension, where C∞(M̃, Z) ∼= Gau(P ) acts on P by
ϕF (p) := p.F (qP (p)).

Any quantomorphism ϕ̃ ∈ Aut(P, θ) factors through an element of the
group Sp(M̃, ω̃). To see that, conversely, each element ϕ of Sp(M̃, ω̃) lifts to
a quantomorphism of P , we first note that the preceding paragraph yields
the existence of a lift ϕ̃ to some bundle automorphism. Then ϕ̃∗θ− θ can be
written as q∗P α for some α ∈ Ω1(M̃, z), and we have

q∗Pdα = dq∗P α = ϕ̃∗(dθ)− dθ = ϕ̃∗q∗P ω̃ − q∗P ω̃ = q∗P (ϕ∗ω̃ − ω̃),

so that α is closed if ϕ ∈ Sp(M̃, ω). As H1
dR(M̃, z) vanishes, there exists a

smooth function f : M̃ → z with df = α. For F := qZ ◦ f ∈ C∞(M̃, Z) and
the corresponding gauge transformation ϕF ∈ Gau(P ), we then have

ϕ∗F θ − θ = q∗Pdf = q∗P α = ϕ̃∗θ − θ,

so that ϕ̃◦ϕ−1
F ∈ Aut(P, θ) is a lift of ϕ. Now the observation that Aut(P, θ)

intersects Gau(P ) in Z leads to the desired central extension.
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Now let G be a connected Lie group and ρ : G → Sp(M, ω) a homo-
morphism defining a smooth action of G on M preserving ω. Then there
exists a unique smooth action ρ̃ : G̃ → Sp(M̃, ω̃) of the universal covering
group G̃ of G on M̃ . Further, ω̃ = q∗Mω is invariant under π1(M). Let
S̃p(M, ω) := NSp(M̃,ω̃)(π1(M)) denote the normalizer of π1(M) in Sp(M̃, ω̃),

which coincides with the set of all lifts of elements of Sp(M, ω) to M̃ . We
thus obtain a short exact sequence

1 → π1(M) → S̃p(M, ω) → Sp(M, ω) → 1

with ρ̃(G̃) ⊆ S̃p(M, ω).
Since G̃ is connected and ham(M̃, ω̃) = sp(M̃, ω̃), the action of G̃ on M̃

is hamiltonian, and we derive from [NV03], Prop. 1.12 and Thm. 3.4, that

the pullback Ĝcen := ρ̃∗ Aut(P, θ) is a central Lie group extension of G̃ by Z,

i.e., Ĝcen carries a Lie group structure which is a principal Z-bundle over G̃.
A Lie algebra 2-cocycle representing the corresponding central Lie algebra
extension ĝcen of g by z is given in terms of the derived action

ζ̃ : g → ham(M̃, ω̃)

of ρ̃, resp., the derived action ζ : g → sp(M, ω) of ρ by

τ(X,Y ) = −ω̃(ζ̃(X), ζ̃(Y ))(m̃0) = −ω(ζ(X), ζ(Y ))(m0),

where m̃0 ∈ M̃ and m0 ∈ M are points with qM(m̃0) = m0. This further
leads to an abelian Lie group extension

1 → C∞(M, Z)0 → Ĝab → G̃ → 1,

integrating the cocycle ζ∗ω ∈ Z2(g, C∞(M, z)).
Since the kernel of the universal covering homomorphism qG : G̃ → G is

the abelian group π1(G), the group Ĝcen can also be viewed as an extension
of G by the group π̂1(G), which is the inverse image of ker qG

∼= π1(G) in

Ĝcen. As a central extension

1 → Z → π̂1(G) → π1(G) → 1

of an abelian group, this group is 2-step nilpotent. Since Z is divisible, all
extensions of π1(G) which are abelian groups are trivial, so that π̂1(G) is
characterized by its commutator map

C : π1(G)× π1(G) → Z,
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([Bro82], Thm. 6.4). This map can be calculated by

C([α], [β]) = qZ

( ∫
α̃•β̃

τ eq
)
,

where τ eq ∈ Ω2(G̃, z) is the left invariant 2-form corresponding to τ and

α̃ • β̃ : [0, 1]2 → G̃, (t, s) 7→ α̃(t)β̃(s),

where α̃, β̃ : [0, 1] → G̃ are lifts of the smooth loops α, β in G, starting in 1
(cf. [Ne04], Cor. 6.5). Since the 2-form τ eq on G̃ is the pullback of the
corresponding form on G, we also have

C([α], [β]) = qZ

( ∫
α•β

τ eq
)

= qZ

( ∫
T2

(α • β)∗τ eq
)
, α • β(t, s) := α(t)β(s).

The orbit map ρm0 : G → M is equivariant with respect to the left action
of G on itself, so that (ρm0)∗ω ∈ Ω2(G, z) is the left invariant 2-form on G
whose value in 1 is −τ . Therefore τ eq = −(ρm0)∗ω, which leads to

C([α], [β]) = qZ

(
−

∫
(α•β).m0

ω
)
,

where (α • β).m0 can be considered as a smooth map T2 → M .

Remark 4.2 We have introduced P as a Z-bundle over M̃ , but we can also
interprete it as a bundle over M , as follows. Let π̂1(M) ⊆ Aut(P, θ) denote
the inverse image of the discrete subgroup π1(M) ⊆ Sp(M̃, ω̃). Then we have
a short exact sequence

1 → Z → π̂1(M) → π1(M) → 1,

and this group carries a natural Lie group structure for which Z is an open
central subgroup, π1(M) is its group of connected components, and the action
of this group on P is smooth. The orbit space of this action is P/π̂1(M) ∼=
M̃/π1(M) ∼= M and since the map to M has smooth local sections, P is a
smooth π̂1(M)-principal bundle over M . The extension π̂1(M) splits if and
only if there exists a Z-prequantum bundle (PM , θM) for (M, ω) (cf. [Ko70],
Prop. 2.4.1).
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5 The algebraic essence of the Noether The-

orem

Given a hamiltonian G-action on a presymplectic manifold (M, ω) (ω is a
closed 2-form on M), a momentum map µ : M → g∗ and a G-invariant
function f on M , Noether’s Theorem says that along the trajectories of
the hamiltonian vector field Xf := Xdf , the momentum map is constant.
An important result of Marsden and Weinstein [MW74] concerns symplectic
reduction in the context where two connected Lie groups G1 and G2 act in
a hamiltonian way on the presymplectic manifold (M, ω) with momentum
maps µ1, µ2, such that µ2 is constant along the G1-orbits. They show that µ1

is constant along the G2-orbits and the two actions commute. In the present
section we show that the algebraic essence of this result can be formulated
in our abstract setup of Lie algebra 2-cocycles.

Let V a topological h-module, ω ∈ Z2(h, V ) and ζ : g → ham(h, ω)
a continuous homomorphism of Lie algebras. The space V g of g-invariant
vectors for the topological g-module structure on V obtained via ζ contains
V h. The space of admissible g-invariant vectors V g

ω = V g ∩ Vω is a Lie
subalgebra of Vω containing V h (cf. Proposition 1.1).

Proposition 5.1 If ξ ∈ ham(h, ω) satisfies iξω = dhv for some v ∈ V g, then
ξ.J(X) = 0 holds for all X ∈ g.

Proof. Let v ∈ V g
ω and dhv = iξω. Then

ξ.J(X) =
(
dhJ(X)

)
(ξ) = iξiζ(X)ω = −iζ(X)dhv = −ζ(X).v = 0

for all X ∈ g.

Proposition 5.2 Let ζj : gj → ham(h, ω), j = 1, 2, be two Lie algebra
homomorphisms and Jj : gj → V , j = 1, 2, corresponding momentum map-
pings such that J2 takes values in V g1. Then J1 takes values in V g2 and
[ζ1(g1), ζ2(g2)] ⊆ rad ω.

Proof. Let X1 ∈ g1 and X2 ∈ g2. Then ζ1(X1).J2(X2) = 0. But
ζ2(X2).J1(X1) = ω(ζ1(X1), ζ2(X2)) = −ζ1(X1).J2(X2) = 0 and we further de-
rive 0 = dh(ω(ζ1(X1), ζ2(X2))) = −i[ζ1(X1),ζ2(X2)]ω, so that [ζ1(X1), ζ2(X2)] ∈
rad ω.
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6 Appendix: Integration of abelian Lie alge-

bra extensions

According to the general theory developed in [Ne02] and [Ne04], there are two
obstructions for the integration of a Lie algebra cocycle ω ∈ Z2(g, V ) with
values in a smooth Mackey complete G-module V to a Lie group extension of
G by a quotient group A = V/ΓA, where ΓA is a discrete subgroup of V : the
period map and the flux homomorphism. To define these homomorphisms,
we associate to α ∈ Cp(g, V ) the left equivariant V -valued p-form αeq ∈
Ωp(G, V ), determined by

αeq
1 = α, λ∗gα

eq = ρV (g) ◦ αeq,

where ρV : G → GL(V ) describes the G-module structure on V . We write
dρV : g → gl(V ) for the corresponding derived representation.

The period map is the group homomorphism

perω : π2(G) → V G, perω([σ]) =

∫
S2

σ∗ωeq for σ ∈ C∞(S2, G).

Its image Πω is called the period group of ω.
The flux homomorphism Fω : π1(G) → H1(g, V ), [γ] 7→ [Iω

γ ], assigns to
each piecewise smooth loop γ in G based at the identity, the cohomology
class of the 1-cocycle

Iω
γ : g → V, Iω

γ (X) = −
∫

γ

iXrω
eq,

where Xr ∈ V(G) denotes the right invariant vector field with Xr(1) = X.

Theorem 6.1 ([Ne04], Thm. 6.7) For a Lie algebra 2-cocycle ω ∈ Z2(g, V )
with discrete period group Πω and vanishing flux homomorphism, the Lie
algebra extension ĝ = V oω g integrates to an abelian Lie group extension

1 → V/Πω ↪→ Ĝ →→ G → 1.

Definition 6.2 Let G be a group, A an abelian group which is a G-module
and Z ⊆ AG a subgroup. Then we define the Baer product of a central
extension qc : Ĝc → G of G by Z and an abelian extension qa : Ĝa → G of G
by A by

Ĝc ⊗ Ĝa := Ĝ/{(z, z−1) : z ∈ Z},
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where
Ĝ := {(g1, g2) ∈ Ĝc × Ĝa : qc(g1) = qa(g2)}

is the fiber product of the two extensions, which is an abelian extension of
G by the product module Z × A, and the antidiagonal

∆Z := {(z, z−1) : z ∈ Z} ⊆ Z × A ⊆ Ĝ

is central in Ĝ.

Remark 6.3 (a) On the level of cocycles, the Baer product corresponds to
the natural action map H2(G, Z) × H2(G, A) → H2(G, A), induced by the
multiplication map Z × A → A, (z, a) 7→ za.

(b) Suppose, in addition, G, Z and A above are Lie groups, where the
action of G on A is smooth. Then the Baer product of two Lie group ex-
tensions Ĝc and Ĝa carries a natural structure of a Lie group extension of
G by A. Here we use that the antidiagonal ∆Z is a Lie subgroup of Z × A
with Z × A ∼= ∆Z × A, so that the factorization of ∆Z defines a Lie group
extension.

(c) If the extension Ĝa is trivial, i.e., of the form Ĝa = A o G, then we

have in the notation of the preceding definition Ĝ ∼= A o Ĝc, where Ĝc acts
on A through the quotient map qc, and this leads to

Ĝc ⊗ Ĝa
∼= (A o Ĝc)/∆Z ,

which is the abelian extension of G by A obtained from Ĝc by the natural
inclusion Z ↪→ A.
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