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Abstract

We call a unital locally convex algebra A a continuous inverse
algebra if its unit group A× is open and inversion is a continuous map.
For any smooth action of a, possibly infinite-dimensional, connected
Lie group G on a continuous inverse algebra A by automorphisms and
any finitely generated projective right A-module E, we construct a
Lie group extension Ĝ of G by the group GLA(E) of automorphisms
of the A-module E. This Lie group extension is a “non-commutative”
version of the group Aut(V) of automorphism of a vector bundle over
a compact manifold M , which arises for G = Diff(M), A = C∞(M, C)
and E = ΓV. We also identify the Lie algebra ĝ of Ĝ and explain how
it is related to connections of the A-module E.
AMC Classification: 22E65, 58B34
Keywords: Continuous inverse algebra, infinite dimensional Lie group,
vector bundle, projective module, semilinear automorphism, covariant
derivative, connection

Introduction

In [ACM89] it is shown that for a finite-dimensional K-principal bundle P
over a compact manifold M , the group Aut(P ) of all bundle automorphisms
carries a natural Lie group structure whose Lie algebra is the Fréchet–Lie
algebra of V(P )K of K-invariant smooth vector fields on M . This applies
in particular to the group Aut(V) of automorphisms of a finite-dimensional
vector bundle with fiber V because this group can be identified with the
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automorphisms group of the corresponding frame bundle P = Fr V which is
a GL(V )-principal bundle.

In this paper, we turn to variants of the Lie groups Aut(V) arising in non-
commutative geometry. In view of [Ko76], the group Aut(V) can be identified
with the group of semilinear automorphisms of the C∞(M,R)-module Γ(V)
of smooth sections of V, which, according to Swan’s Theorem, is a finitely
generated projective module. Here the gauge group Gau(V) corresponds to
the group of C∞(M,R)-linear module isomorphisms.

This suggests the following setup: Consider a unital locally convex al-
gebra A and a finitely generated projective right A-module E. When can
we turn groups of semilinear automorphisms of E into Lie groups? First of
all, we have to restrict our attention to a natural class of algebras whose
unit groups A× carry natural Lie group structures, which is the case if A×

is an open subset of A and the inversion map is continuous. Such alge-
bras are called continuous inverse algebras, CIAs, for short. The Fréchet
algebra C∞(M,R) is a CIA if and only if M is compact. Then its automor-
phism group Aut(C∞(M,R)) ∼= Diff(M) carries a natural Lie group structure
with Lie algebra V(M), the Lie algebra of smooth vector fields on M . An-
other important class of CIAs whose automorphism groups are Lie groups
are smooth 2-dimensional quantum tori with generic diophantine properties
(cf. [El86], [BEGJ89]). Unfortunately, in general, automorphism groups of
CIAs do not always carry a natural Lie group structure, so that it is much
more natural to consider triples (A,G, µA), where A is a CIA, G a possibly
infinite-dimensional Lie group, and µA : G→ Aut(A) a group homomorphism
defining a smooth action of G on A.

For any such triple (A,G, µA) and any finitely generated projective A-
module E, the subgroup GE of all elements of G for which µA(g) lifts to a
semilinear automorphism of E is an open subgroup. One of our main results
(Theorem 3.3) is that we thus obtain a Lie group extension

1 → GLA(E) = AutA(E) → ĜE → GE → 1,

where ĜE is a Lie group acting smoothly on E by semilinear automorphisms.
For the special case where M is a compact manifold, A = C∞(M,R), E =

Γ(V) for a smooth vector bundle V, and G = Diff(M), the Lie group Ĝ is
isomorphic to the group Aut(V) of automorphisms of the vector bundle V,
but our construction contains a variety of other interesting settings. From a
different perspective, the Lie group structure on Ĝ also tells us about possible
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smooth actions of Lie groups on finitely generated projective A-modules by
semilinear maps which are compatible with a smooth action on the algebra
A.

A starting point of our construction is the observation that the connected
components of the set Idem(A) of idempotents of a CIA coincide with the
orbits of the identity component A×0 of A× under the conjugation action.
Using the natural manifold structure on Idem(A) (cf. [Gram84]), the action
of A× on Idem(A) even is a smooth Lie group action.

On the Lie algebra side, the semilinear automorphisms of E correspond to
the Lie algebra DEnd(E) of derivative endomorphisms, i.e., those endomor-
phisms ϕ ∈ EndK(E) for which there is a continuous derivation D ∈ der(A)

with ϕ(s.a) = ϕ(s).a + s.(D.a) for s ∈ E and a ∈ A. The set D̂End(E) of
all pairs (ϕ,D) ∈ EndK(E)×der(A) satisfying this condition is a Lie algebra
and we obtain a Lie algebra extension

0 → EndA(E) = glA(E) ↪→ D̂End(E) →→ der(A) → 0.

Pulling this extension back via the Lie algebra homomorphism g → der(A)

induced by the action of G on A yields the Lie algebra ĝ of the group Ĝ from
above (Proposition 4.7).

In Section 5 we briefly discuss the relation between linear splittings of
the Lie algebra extension ĝ and covariant derivatives in the context of non-
commutative geometry (cf. [Co94], [MMM95], [DKM90]).

Thanks: We thank Hendrik Grundling for reading erlier versions of this
paper and for numerous remarks which lead to several improvements of the
presentation.

Preliminaries and notation

Throughout this paper we write I := [0, 1] for the unit interval in R and
K either denotes R or C. A locally convex space E is said to be Mackey
complete if each smooth curve γ : I → E has a (weak) integral in E. For a
more detailed discussion of Mackey completeness and equivalent conditions,
we refer to [KM97, Th. 2.14].

A Lie group G is a group equipped with a smooth manifold structure
modeled on a locally convex space for which the group multiplication and
the inversion are smooth maps. We write 1 ∈ G for the identity element
and λg(x) = gx, resp., ρg(x) = xg for the left, resp., right multiplication on
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G. Then each x ∈ T1(G) corresponds to a unique left invariant vector field
xl with xl(g) := dλg(1).x, g ∈ G. The space of left invariant vector fields
is closed under the Lie bracket of vector fields, hence inherits a Lie algebra
structure. In this sense we obtain on g := T1(G) a continuous Lie bracket
which is uniquely determined by [x, y]l = [xl, yl] for x, y ∈ g. We shall also
use the functorial notation L(G) for the Lie algebra of G and, accordingly,
L(ϕ) = T1(ϕ) : L(G1) → L(G2) for the Lie algebra morphism associated to
a morphism ϕ : G1 → G2 of Lie groups.

A Lie group G is called regular if for each ξ ∈ C∞(I, g), the initial value
problem

γ(0) = 1, γ′(t) = γ(t).ξ(t) = T (λγ(t))ξ(t)

has a solution γξ ∈ C∞(I,G), and the evolution map

evolG : C∞(I, g) → G, ξ 7→ γξ(1)

is smooth (cf. [Mil84]). For a locally convex space E, the regularity of the
Lie group (E,+) is equivalent to the Mackey completeness of E ([Ne06,
Prop. II.5.6]). We also recall that for each regular Lie group G its Lie algebra
g is Mackey complete and that all Banach–Lie groups are regular (cf. [Ne06,
Rem. II.5.3] and [GN08]).

A smooth map expG : L(G) → G is called an exponential function if each
curve γx(t) := expG(tx) is a one-parameter group with γ′x(0) = x. The Lie
group G is said to be locally exponential if it has an exponential function for
which there is an open 0-neighborhood U in L(G) mapped diffeomorphically
by expG onto an open subset of G.

If A is an associative algebra with unit, we write 1 for the identity ele-
ment, A× for its group of units, Idem(A) = {p ∈ A : p2 = p} for its set of
idempotents and ηA(a) = a−1 for the inversion map A× → A. A homomor-
phism ρ : A→ B is unital algebras is called isospectral if ρ−1(B×) = A×. We
write GLn(A) := Mn(A)× for the unit group of the unital algebra Mn(A) of
n× n-matrices with entries in A.

Throughout, G denotes a (possibly infinite-dimensional) Lie group , A
a Mackey complete unital continuous inverse algebra (CIA for short) and
G× A→ A, (g, a) 7→ g.a = µA(g)(a) is a smooth action of G on A.
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1 Idempotents and finitely generated projec-

tive modules

The set Idem(A) of idempotents of a CIA A plays a central role in (topolog-
ical) K-theory. In [Gram84, Satz 2.13], Gramsch shows that this set always
carries a natural manifold structure, which implies in particular that its con-
nected components are open subsets. Since we shall need it in the following,
we briefly recall some basic facts on Idem(A) (cf. [Gram84]; see also [Bl98,
Sect. 4]).

Proposition 1.1 For each p ∈ Idem(A), the set

Up := {q ∈ Idem(A) : pq + (1− p)(1− q) ∈ A×}

is an open neighborhood of p in Idem(A) and, for each q ∈ Up, the element

sq := pq + (1− p)(1− q) ∈ A× satisfies sqqs
−1
q = p.

The connected component of p in Idem(A) coincides with the orbit of the
identity component A×0 of A× under the conjugation action A×× Idem(A) →
Idem(A), (g, p) 7→ cg(p) := g.p := gpg−1.

Proof. Since the map q 7→ pq + (1 − p)(1 − q) is continuous, it maps
p to 1 and since A× is open, Up is an open neighborhood of p. Hence, for
each q ∈ Up, the element sq is invertible, and a trivial calculation shows that
sqq = psq.

If q is sufficiently close to p, then sq ∈ A×0 because sp = 1 and A×0 is an
open neighborhood of 1 in A (recall that A is locally convex and A× is open).
This implies that q = s−1

q psq lies in the orbit {cg(p) : g ∈ A×0 } of p under A×0 .
Conversely, since the orbit map A× → Idem(A), g 7→ cg(p) is continuous,
it maps the identity component A×0 into the connected component of p in
Idem(A).

Lemma 1.2 Let A be a CIA, n ∈ N, and p = p2 ∈ Mn(A) an idempotent.
Then the following assertions hold:

(1) The subalgebra pMn(A)p is a CIA with identity element p.

(2) The unit group (pMn(A)p)× is a Lie group.
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Proof. Since Mn(A) also is a CIA ([Swa62]; [Gl02]) which is Mackey
complete if A is so, it suffices to prove the assertion for n = 1.

(1) From the decomposition of the identity 1 as a sum 1 = p+ (1− p) of
two orthogonal idempotents, we obtain the direct sum decomposition

A = pAp⊕ pA(1− p)⊕ (1− p)Ap⊕ (1− p)A(1− p).

We claim that an element a ∈ pAp is invertible in this algebra if and
only if the element a+ (1− p) is invertible in A. In fact, if b ∈ pAp satisfies
ab = ba = p, then

(a+ (1− p))(b+ (1− p)) = ab+ (1− p) = 1 = (b+ (1− p))(a+ (1− p)).

If, conversely, c ∈ A is an inverse of a+(1−p) in A, then ca+c(1−p) = 1 =
ac+ (1− p)c leads after multiplication with p to ca = p = ac, which implies
(pcp)a = p = a(pcp), so that pcp is an inverse of a in pAp. The preceding
argument implies in particular that (pAp)× = pAp ∩ (A× − (1 − p)) is an
open subset of pAp, and that the inversion map

ηpAp : (pAp)× → pAp, a 7→ a−1 = ηA(a+ 1− p)− (1− p)

is continuous.
(2) is an immediate consequence of (1) (cf. [Gl02], [Ne06], Ex. II.1.4,

Th. IV.1.11).

Let E be a finitely generated projective right A-module. Then there is
some n ∈ N and an idempotent p = p2 ∈ Mn(A) with E ∼= pAn, where
A acts by multiplication on the right. Conversely, for each idempotent
p ∈ Idem(Mn(A)), the right submodule pAn of An is finitely generated (as
a quotient of An) and projective because it is a direct summand of the free
module An ∼= pAn ⊕ (1 − p)An. The following lemma provides some infor-
mation on A-linear maps between such modules.

Lemma 1.3 Let p, q ∈ Idem(Mn(A)) be two idempotents. Then the follow-
ing assertions hold:

(1) The map x 7→ λx|pAn (left multiplication) yields a bijection

αp,q : qMn(A)p = {x ∈Mn(A) : qx = x, xp = x} → HomA(pAn, qAn).
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(2) pAn ∼= qAn if and only if there are x, y ∈Mn(A) with xy = q and yx = p.
If, in particular, q = gpg−1 for some g ∈ GLn(A), then x := gp and
y := g−1 satisfy xy = q and yx = p.

(3) pAn ∼= qAn if and only if there are x ∈ qMn(A)p and y ∈ pMn(A)q with
xy = q and yx = p.

(4) If pAn ∼= qAn, then there exists an element g ∈ GL2n(A) with gp̃g−1 = q̃,
where

p̃ =

(
p 0
0 0

)
and q̃ =

(
q 0
0 0

)
.

Proof. (1) Each element of EndA(An) is given by left multiplication with a
matrix, so thatMn(A) ∼= EndA(An). Since pAn and qAn are direct summands
of An, each element of Hom(pAn, qAn) can be realized by left multiplication
with a matrix, and we have the direct sum decomposition

EndA(An) ∼= Hom(pAn, qAn)⊕ Hom(pAn, (1− q)An)

⊕ Hom((1− p)An, qAn)⊕ Hom((1− p)An, (1− q)An),

which corresponds to the direct sum decomposition

Mn(A) ∼= qMn(A)p⊕ (1−q)Mn(A)p⊕qMn(A)(1−p)⊕ (1−q)Mn(A)(1−p).

Now the assertion follows from qMn(A)p = {x ∈Mn(A) : qx = x, xp = x}.
(2), (3) If pAn and qAn are isomorphic, there is some x ∈ qMn(A)p ∼=

Hom(pAn, qAn) for which λx : pAn → qAn, s 7→ xs is an isomorphism. Writ-
ing λ−1

x as λy for some y ∈ Hom(qAn, pAn) ∼= pMn(A)q, we get

p = λy ◦ λx(p) = yxp = yx and q = λx ◦ λy(q) = xyq = xy.

If, conversely, p = yx and q = xy hold for some x, y ∈Mn(A), then p2 = p
implies p = yx = yxyx = yqx and likewise q = xy = xpy, which leads to

(pyq)(qxp) = pyqxp = p3 = p and (qxp)(pyq) = qxpyq = q3 = q.

Therefore, we also have p = y′x′ and q = x′y′ with x′ := qxp ∈ qMn(A)p
and y′ := pyq ∈ pMn(A)q. Then λx′ : pA

n → qAn and λy′ : qA
n → pAn are

module homomorphisms with λx′ ◦ λy′ = λx′y′ = λq = idqAn and λy′ ◦ λx′ =
λy′x′ = λp = idpAn .
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(4) (cf. [Bl98, Prop. 4.3.1]) Pick x, y as in (3). Let

α :=

(
1− q x
y 1− p

)
and β :=

(
1− p p
p 1− p

)
∈M2n(A).

Then a direct calculation yields α2 = 1 = β2. Therefore z := βα ∈ GL2n(A).
Moreover, we have

αq̃α−1 =

(
0 0
0 p

)
and β

(
0 0
0 p

)
β−1 = p̃,

so that zq̃z−1 = p̃.

Proposition 1.4 For each finitely generated projective right A-module E,
we pick some idempotent p ∈ Mn(A) with E ∼= pAn. Then we topologize
EndA(E) by declaring

αp,p : pMn(A)p→ EndA(E), x 7→ λx|pAn

to be a topological isomorphism. Then the algebra EndA(E) is a CIA and
GLA(E) is a Lie group. This topology does not depend on the choice of p and
if A is Mackey complete, then GLA(E) is locally exponential.

Proof. We simply combine Lemma 1.2 with Lemma 1.3(1) to see that we
obtain a CIA structure on EndA(E), so that GLA(E) is a Lie group which is
locally exponential if A is Mackey complete ([Gl02]).

To verify the independence of the topology on EndA(E) from p, we first
note that for any matrix

p̃ =

(
p 0
0 0

)
∈MN(A), N > n,

we have a natural isomorphism p̃MN(A)p̃ ∼= pMn(A)p, because all non-zero
entries of matrices of the form p̃Xp̃, X ∈MN(A), lie in the upper left (p×p)-
submatrix and depend only on the corresponding entries of X.

If q ∈ Idem(M`(A)) is another idempotent with qA` ∼= E, then the preced-
ing argument shows that, after passing to max(n, `), we may w.l.o.g. assume
that ` = n. Then Lemma 1.3 yields a g ∈ GL2n(A) with gpg−1 = q, and then
conjugation with g induces a topological isomorphism

pMn(A)p ∼= pM2n(A)p
cg−−−−−→qM2n(A)q ∼= qMn(A)q.
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Example 1.5 (a) Let M be a smooth paracompact finite-dimensional man-
ifold. We endow A := C∞(M,K) with the smooth compact open topology,
i.e., the topology inherited by the natural embedding

C∞(M,K) ↪→
∞∏
k=0

C(T kM,T kK), f 7→ (T k(f))k∈N0 ,

where all spaces C(T kM,T kK) carry the compact open topology which co-
incides with the topology of uniform convergence on compact subsets.

If E is the space of smooth sections of a smooth vector bundle
q : V → M , then E is a finitely generated projective A-module ([Swa62]).
The algebra EndA(E) is the space of smooth sections of the vector bundle
End(V) and its unit group GLA(E) ∼= Gau(V) is the corresponding gauge
group. We shall return to this class of examples below.

(b) We obtain a similar picture if A is the Banach algebra C(X,K), where
X is a compact space and E is the space of continuous sections of a finite-
dimensional topological vector bundle over X. Then EndA(E) is a Banach
algebra, so that its unit group GLA(E) is a Banach–Lie group.

2 Semilinear automorphisms of finitely gen-

erated projective modules

In this section we take a closer look at the group ΓL(E) of semilinear au-
tomorphism of a right A-module E. One of our main results, proved in
Section 3 below, asserts that if E is a finitely generated projective module of
a CIA A, certain pull-backs of this group by a smooth action of a Lie group
G on A lead to a Lie group extension Ĝ of G by the Lie group GLA(E) (cf.
Proposition 1.4) acting smoothly on E.

The discussion in this section is very much inspired by Y. Kosmann’s
paper [Ko76].

Definition 2.1 Let E be a topological right module of the CIA A, i.e., we
assume that the module structure E × A → E, (s, a) 7→ s.a =: ρE(a)s is a
continuous bilinear map. We write EndA(E) for the algebra of continuous
module endomorphisms of E and GLA(E) := EndA(E)× for its group of units,
the module automorphism group of E. For A = K we have in particular
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GL(E) = GLK(E). The group GLA(E) is contained in the group

ΓL(E)

:= {ϕ ∈ GLK(E) : (∃ϕA ∈ Aut(A))(∀s ∈ E)(∀a ∈ A) ϕ(s.a) = ϕ(s).ϕA(a)}
= {ϕ ∈ GLK(E) : (∃ϕA ∈ Aut(A))(∀a ∈ A) ϕ ◦ ρE(a) = ρE(ϕA(a)) ◦ ϕ}.

of semilinear automorphisms of E, where we write Aut(A) for the group of
topological automorphisms of A. We put

Γ̂L(E) := {(ϕ, ϕA) ∈ GLK(E)×Aut(A) : (∀a ∈ A) ϕ◦ρE(a) = ρE(ϕA(a))◦ϕ},

where the multiplication is componentwise multiplication in the product
group. In [Har76], the elements of Γ̂L(E) are called semilinear automor-
phisms and, for A commutative, certain characteristic cohomology classes of
E are constructed for this group with values in differential forms over A. If
the representation of A on E is faithful, then ϕA is uniquely determined by
ϕ, so that Γ̂L(E) ∼= ΓL(E).

The map (ϕ, ϕA) 7→ ϕA defines a short exact sequence of groups

1 → GLA(E) → Γ̂L(E) → Aut(A)E → 1,

where Aut(A)E denotes the image of the group Γ̂L(E) in Aut(A).

Remark 2.2 (a) For each ψ ∈ Aut(A), we define the corresponding twisted
module Eψ by endowing the vector space E with the new A-module structure
defined by s ∗ψ a := s.ψ(a), i.e., ρEψ = ρE ◦ψ. Then a continuous linear map
ϕ : E → Eψ is a morphism of A-modules if and only if ϕ(s.a) = ϕ(s).ψ(a)
holds for all s ∈ E and a ∈ A, i.e.,

ϕ ◦ ρE(a) = ρEψ(a) ◦ ϕ for a ∈ A.

Therefore (ϕ, ψ) ∈ Γ̂L(E) is equivalent to ϕ : E → Eψ being a module iso-
morphism. This shows that

Aut(A)E = {ψ ∈ Aut(A) : Eψ ∼= E}.

(b) Let ψ ∈ Diff(M) and q : V →M be a smooth vector bundle over M .
We consider the pull-back vector bundle

Vψ := ψ∗V := {(x, v) ∈M × V : ψ(x) = qV(v)}
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with the bundle projection qψV : Vψ →M, (x, v) 7→ x.
If s : M → Vψ is a smooth section, then s(x) = (x, s′(ψ(x))), where

s′ : M → V is a smooth section, and this leads to an identification of the
spaces of smooth sections of V and Vψ. For a smooth function f : M → K
and s ∈ Γ(Vψ), we have (s.f)(x) = f(x)s(x) = (x, f(x)s′(ψ(x))), so that the
corresponding right module structure on E = ΓV is given by s′∗f = s′.(ψ.f),
where ψ.f = f ◦ψ−1. This shows that Eψ = (ΓV)ψ ∼= Γ(Vψ), i.e., the sections
of the pull-back bundle form a twisted module.

(c) Let E be a finitely generated projective right A-module and p ∈
Idem(Mn(A)) with E ∼= pAn. For ψ ∈ Aut(A) we write ψ(n) for the cor-
responding automorphisms of An, resp., Mn(ψ) for the corresponding auto-
morphism of Mn(A). Then the map ψn : Mn(ψ)−1(p)An → pAn induces a
module isomorphism Mn(ψ)−1(p)An ∼= (pAn)ψ.

(d) Let ρE : A→ End(E) denote the representation of A on E defining the

right module structure. Then, for each a ∈ A×, we have (ρE(a), c−1
a ) ∈ Γ̂L(E)

because ρE(a)(s.b) = s.ba = (s.a)(a−1ba).

Definition 2.3 Let G be a group acting by automorphism on the group N
via α : G→ Aut(N). We call a map f : G→ N a crossed homomorphism if

f(g1g2) = f(g1)α(g1)(f(g2)) for g1, g2 ∈ G.

Note that f is a crossed homomorphism if and only if (f, idG) : G→ N oαG
is a group homomorphism. The set of all crossed homomorphisms G→ N is
denoted by Z1(G,N). The group N acts naturally on Z1(G,N) by

(n ∗ f)(g) := nf(g)α(g)(n)−1

and the set of N -orbits in Z1(G,N) is denoted H1(G,N). If N is not abelian,
Z1(G,N) and H1(G,N) do not carry a group structure; only the constant
map 1 is a distinguished element of Z1(G,N), and its class [1] is distinguished
in H1(G,N). The crossed homomorphisms in the class [1] are called trivial.
They are of the form f(g) = nα(g)(n)−1 for some n ∈ N .

Proposition 2.4 Let ρE : A→ EndK(E) denote the action of A on the right
A-module E and consider the action of the unit group A× on the group ΓL(E)
by ρ̃E(a)(ϕ) := ρE(a)−1ϕρE(a). To each ψ ∈ Aut(A) we associate the func-
tion

C(ψ) : A× → ΓL(E), a 7→ ρE(ψ(a)a−1)−1 = ρE(ψ(a))−1ρE(a).
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Then C(ψ) ∈ Z1(A×,ΓL(E)), and we thus get an exact sequence of pointed
sets

1 → GLA(E) → Γ̂L(E) → Aut(A)
C−−→H1(A×,ΓL(E)),

characterizing the subgroup Aut(A)E as C
−1

([1]).

Proof. That C(ψ) is a crossed homomorphism follows from

C(ψ)(ab) = ρE(ψ(ab))−1ρE(ab) = ρE(ψ(a))−1ρE(ψ(b))−1ρE(b)ρE(a)

= C(ψ)(a)ρE(a)−1C(ψ)(b)ρE(a) = C(ψ)(a)ρ̃E(a)
(
C(ψ)(b)

)
.

That the crossed homomorphism C(ψ) is trivial means that there is a ϕ ∈
ΓL(E) with

C(ψ)(a) = ρE(ψ(a))−1ρE(a) = ϕρE(a)−1ϕ−1ρE(a),

which means that ρE(ψ(a))ϕ = ϕρE(a) for a ∈ A×. Since each CIA A is
generated by it unit group, which is an open subset, the latter relation is

equivalent to (ϕ, ψ) ∈ Γ̂L(E). We conclude that C
−1

([1]) = Aut(A)E.

Example 2.5 Let qV : V → M be a smooth K-vector bundle on the com-
pact manifold M and Aut(V) the group of smooth bundle isomorphisms.
Then each element ϕ of this group permutes the fibers of V, hence induces a
diffeomorphism ϕM of M . We thus obtain an exact sequence of groups

1 → Gau(V) → Aut(V) → Diff(M)[V] → 1,

where Gau(V) = {ϕ ∈ Aut(V) : ϕM = idM} is the gauge group of V and

Diff(M)V = {ψ ∈ Diff(M) : ψ∗V ∼= V}

is the set of all diffeomorphisms ψ of M lifting to automorphisms of V (cf.
Remark 2.2(b)). The group Diff(M) carries a natural Fréchet–Lie group
structure for which Diff(M)V is an open subgroup, hence also a Lie group.
Furthermore, it is shown in [ACM89] that Aut(V) and Gau(V) carry natural
Lie group structures for which Aut(V) is a Lie group extension of Diff(M)V
by Gau(V).

Consider the CIA A := C∞(M,K) and recall from Example 1.5(a) that
the space E := C∞(M,V) of smooth sections of V is a finitely generated
projective A-module. The action of Aut(V) on V induces an action on E by

ϕE(s)(x) := ϕ.s(ϕ−1
M (x)).
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For any smooth function f : M → K, we now have ϕE(fs)(x) := f(ϕ−1
M (x)) ·

ϕE(s)(ϕ−1
M (x)), i.e., ϕE(fs) = (ϕM .f) ·ϕE(s). We conclude that Aut(V) acts

on E by semilinear automorphisms of E and that we obtain a commutative
diagram

Gau(V) → Aut(V) → Diff(M)[V]y y y
GLA(E) → ΓL(E) → Aut(A)E.

Next, we recall that

Aut(A) = Aut(C∞(M,K)) ∼= Diff(M) (1)

(cf. [Ne06, Thm. IX.2.1], [Bko65], [Gra06], [Mr05]). Applying [Ko76, Prop. 4]
to the Lie group G = Z, it follows that the map Aut(V) → ΓL(E) is a
bijective group homomorphism. Let us recall the basic idea of the argument.

First we observe that the vector bundle V can be reconstructed from
the A-module E as follows. For each m ∈ M , we consider the maximal
closed ideal Im := {f ∈ A : f(m) = 0} and associate the vector space Em :=
E/ImE. Using the local triviality of the vector bundle V, it is easy to see
that Em ∼= Vm. We may thus recover V from E as the disjoint union

V =
⋃
m∈M

Em.

Any ϕ ∈ ΓL(E) defines an automorphism ϕA of A, which we identify with
a diffeomorphism ϕM of M via ϕA(f) := f ◦ ϕ−1

M . Then ϕA(Im) = IϕM (m)

implies that ϕ induces an isomorphism of vector bundles

V → V, s+ ImE 7→ ϕ(s+ ImE) = ϕ(s) + IϕM (m)E.

Its smoothness follows easily by applying it to a set of sections s1, . . . , sn
which are linearly independent in m. This implies that each element ϕ ∈
ΓL(E) corresponds to an element of Aut(V), so that the vertical arrows in
the diagram above are in fact isomorphisms of groups.

Finally, we take a look at the Lie structures on these groups. A priori, the
automorphism group Aut(A) of a CIA carries no natural Lie group structure,
but the group isomorphism Diff(M) → Aut(A) from (1) defines a smooth
action of the Lie group Diff(M) on A. Indeed, this can be derived quite
directly from the smoothness of the map

Diff(M)× C∞(M,K)×M → K, (ϕ, f,m) 7→ f(ϕ−1(m))
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which is smooth because it is a composition of the smooth action map
Diff(M) × M → M and the smooth evaluation map A × M → M (cf.
[NeWa08, Lemma A.2]).

Since the vector bundle V can be embedded into a trivial bundle
M × Kn, we obtain a topological embedding of Gau(V) as a closed sub-
group of Gau(M × Kn) ∼= C∞(M,GLn(K)) ∼= GLn(A). Accordingly, we
obtain an embedding E ↪→ An and the preceding discussion yields an iden-
tification of GLA(E) with Gau(V) as the same closed subgroups of GLn(A)
(cf. Proposition 1.4). Since both groups are locally exponential Lie groups,
the homeomorphism Gau(V) → GLA(E) is an isomorphism of Lie groups (cf.
[Ne06, Thm. IV.1.18] and [GN08] for more details on locally exponential Lie
groups).

3 Lie group extensions associated to projec-

tive modules

In this section we consider a Lie group G, acting smoothly by automorphisms
on the CIA A. We write µA : G→ Aut(A) for the corresponding homomor-
phism. For each right A-module E, we then consider the subgroup

GE := {g ∈ G : Eg ∼= E} = µ−1
A (Aut(A)E),

where we write Eg := EµA(g) for the corresponding twisted module (cf. Re-
mark 2.2(a)). The main result of this section is Theorem 3.3 which asserts

that for G = GE, the pull-back of the group extension Γ̂L(E) of Aut(A)E by

GLA(E) yields a Lie group extension Ĝ of G by GLA(E).

Proposition 3.1 If E is a finitely generated projective right A-module, then
the subgroup GE of G is open. In particular, we have µA(G) ⊆ Aut(A)E if
G is connected.

Proof. Since E is finitely generated and projective, it is isomorphic to an
A-module of the form pAn for some idempotent p ∈ Mn(A). We recall from
Remark 2.2(c) that for any automorphism ψ ∈ Aut(A) and γ ∈ GLn(A) with
Mn(ψ)−1(p) = γ−1pγ, the maps

Mn(ψ)−1(p)An → (pAn)ψ, x 7→ ψ(n)(x), Mn(ψ)−1(p)An → pAn, s 7→ γ · s
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are isomorphisms of A-modules. According to Proposition 1.1, all orbits of
the group GLn(A)0 in Idem(Mn(A)) are connected open subsets of
Idem(Mn(A)), hence coincide with its connected components. Therefore the
subset {g ∈ G : g.p ∈ GLn(A)0.p} of G is open. In view of Lemma 1.3(2),
this open subset is contained in the subgroup GE, hence GE is open.

From now on we assume that G = GE. Then we obtain a group extension

1 → GLA(E) → Ĝ
q−−→G→ 1,

where q(ϕ, g) = g, and

Ĝ := {(ϕ, g) ∈ ΓL(E)×G : (ϕ, µA(g)) ∈ Γ̂L(E)} ∼= µ∗AΓ̂L(E) (2)

acts on E via π(ϕ, g).s := ϕ(s) by semilinear automorphisms. The main

result of the present section is that Ĝ carries a natural Lie group structure
and that it is a Lie group extension of G by GLA(E). Let us make this more
precise:

Definition 3.2 An extension of Lie groups is a short exact sequence

1 → N
ι−−→Ĝ

q−−→G→ 1

of Lie group morphisms, for which Ĝ is a smooth (locally trivial) principal
N -bundle over G with respect to the right action of N given by (ĝ, n) 7→ ĝn.

In the following, we identify N with the subgroup ι(N) E Ĝ.

Theorem 3.3 If A is a CIA, G is a Lie group acting smoothly on A by
µA : G→ Aut(A), and E is a finitely generated projective right A-module with

µA(G) ⊆ Aut(A)E, then GLA(E) and Ĝ carry natural Lie group structures
such that the short exact sequence

1 → GLA(E) → Ĝ
q−−→G→ 1

defines a Lie group extension of G by GLA(E).

Proof. In view of Proposition 1.4, EndA(E) is a CIA and its unit group
GLA(E) is a Lie group. The assumption µA(G) ⊆ Aut(A)E implies that

G = GE, so that the group Ĝ is indeed a group extension of G by GLA(E).
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Choose n and p ∈ Idem(Mn(A)) with E ∼= pAn and let Up be as in
Proposition 1.1. In the following we identify E with pAn. We write g ∗ a :=
Mn(µA(g))(a) for the smooth action of G on the CIA Mn(A) and g]x :=
µA(g)(n)(x) for the action of G on An, induced by the smooth action of G on
A. Then UG := {g ∈ G : g ∗ p ∈ Up} is an open neighborhood of the identity
in G, and we have a map

γ : UG → GLn(A), g 7→ sg∗p := p · g ∗ p+ (1− p) · (1− g ∗ p),

which, in view of Proposition 1.1, satisfies

γ(g)(g ∗ p)γ(g)−1 = p for all g ∈ UG. (3)

This implies in particular that the natural action of the pair

(γ(g), µA(g)) ∈ GLn(A) o Aut(A) ∼= GLA(An) o Aut(A)

on An by (γ(g), µA(g))(x) = γ(g) · (g]x) preserves the submodule pAn = E,
and that we thus get a map

SE : UG → ΓL(E) = ΓL(pAn), SE(g)(s) := γ(g) · (g]s).

For g ∈ G, s ∈ E and a ∈ A, we then have

SE(g)(s.a) = γ(g) · (g](sa)) = γ(g) · (g]s) · (g ∗ a) = SE(g)(s).(g.a),

which shows that σ : UG → Ĝ, g 7→ (SE(g), g) is a section of the group

extension q : Ĝ → G. We now extend σ in an arbitrary fashion to a map
σ : G→ Ĝ with q ◦ σ = idG.

Identifying GLA(E) with the kernel of the factor map q : Ĝ → G, we
obtain for g, g′ ∈ G an element

ω(g, g′) := σ(g)σ(g′)σ(gg′)−1 ∈ GLA(E),

and this element is given for g, g′ ∈ UG by

ω(g, g′) = γ(g) · g ∗
(
γ(g′) · g−1 ∗ γ(gg′)−1

)
= γ(g) · (g ∗ γ(g′)) · γ(gg′)−1.

Since all the maps involved are smooth, the preceding formula shows imme-
diately that ω is smooth on the open identity neighborhood

{(g, g′) ∈ UG × UG : g, g′, gg′ ∈ UG}
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of (1,1) in G×G.
Next we observe that the map

S : G→ Aut(GLA(E)), S(g)(ϕ) := σ(g)ϕσ(g)−1

has the property that the corresponding map

UG ×GLA(E) → GLA(E), (g, ϕ) 7→ S(g)(ϕ) = γ(g)(g ∗ ϕ)γ(g)−1

is smooth because γ and the action of G on Mn(A) are smooth.
In the terminology of [Ne07, Def. I.1], this means that ω ∈ C2

s (G,GLA(E))
and that S ∈ C1

s (G,Aut(GLA(E))). We claim that we even have ω ∈
C2
ss(G,GLA(E)), i.e., for each g ∈ G, the function

ωg : G→ GLA(E), x 7→ ω(g, x)ω(gxg−1, g)−1 = σ(g)σ(x)σ(g)−1σ(gxg−1)−1

is smooth in an identity neighborhood of G.
Case 1: First we consider the case g ∈ U ′

G := {h ∈ G : h∗p ∈ GLn(A).p}.
The map γ : UG → GLn(A) extends to a map γ : U ′

G → GLn(A) satisfying
g ∗ p = γ(g)−1pγ(g) for each g ∈ U ′

G. Then S ′E(g)(s) := γ(g) · (g]s) defines
an element of ΓL(E), and we have σ(g) = (ϕ(g)S ′E(g), g) for some ϕ(g) ∈
GLA(E). For x ∈ UG ∩ g−1UGg we now have

ωg(x)s = σ(g)σ(x)σ(g)−1σ(gxg−1)−1s

= ϕ(g)γ(g) · g]
(
γ(x) · x]

(
g−1]

(
γ(g)−1ϕ(g)−1 ·

[
(gx−1g−1)]γ(gxg−1)−1s

])))
= ϕ(g)γ(g)(g ∗ γ(x))

(
(gxg−1) ∗

(
γ(g)−1 · ϕ(g)−1

))
· γ(gxg−1)−1s.

We conclude that

ωg(x) = ϕ(g)γ(g)(g ∗ γ(x))
(
(gxg−1) ∗

(
γ(g)−1 · ϕ(g)−1

))
· γ(gxg−1)−1.

If g is fixed, all the factors in this product are smooth GLn(A)-valued func-
tions of x in the identity neighborhood UG ∩ g−1UGg, hence ωg is smooth on
this set.

Case 2: Now we consider the case g ∗ p 6∈ GLn(A).p. Since g ∗ p
corresponds to the right A-module (g ∗ p)An ∼= (pAn)µA(g)−1

= EµA(g)−1

and EµA(g)−1 ∼= E follows from g ∈ GE = G, there exists an element

η(g) ∈ GL2n(A) with η(g)(g ∗ p̃)η(g)−1 = p̃ for p̃ =

(
p 0
0 0

)
∈ M2n(A)
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(Lemma 1.3). We now have pAn ∼= p̃A2n, and g ∗ p̃ ∈ GL2n(A).p̃, so that
the assumptions of Case 1 are satisfied with 2n instead of n. Therefore ωg is
smooth in an identity neighborhood.

The multiplication in Ĝ = GLA(E)σ(G) is given by the formula

nσ(g) · n′σ(g′) =
(
nS(g)(n′)ω(g, g′)

)
σ(gg′), (4)

so that the preceding arguments imply that (S, ω) is a smooth factor system
in the sense of [Ne07, Def. II.6]. Here the algebraic conditions on factor
systems follow from the fact that (4) defines a group multiplication. We now

derive from [Ne07, Prop. II.8] that Ĝ carries a natural Lie group structure

for which the projection map q : Ĝ → G defines a Lie group extension of G
by GLA(E).

Proposition 3.4 (a) The group Ĝ acts smoothly on E by (ϕ, g).s := ϕ(s).

(b) Let p1 : Ĝ → ΓL(E) denote the projection to the first component. For a

Lie group H, a group homomorphism Φ: H → Ĝ is smooth if and only if
q ◦ Φ: H → G is smooth and the action of H on E, defined by
p1 ◦ Φ: H → ΓL(E), is smooth.

(c) The Lie group extension Ĝ of G splits if and only if there is a smooth
action of G on E by semilinear automorphisms which is compatible with
the action of G on A in the sense that the corresponding homomorphism
πE : G→ ΓL(E) satisfies

πE(g) ◦ ρE(a) = ρE(µA(g)a) ◦ πE(g) for g ∈ G. (5)

Proof. (a) Since Ĝ acts by semilinear automorphisms of E which are con-
tinuous and hence smooth, it suffices to see that the action map
Ĝ × E → E is smooth on a set of the form U × E, where U ⊆ Ĝ is an
open 1-neighborhood. With the notation of the proof of Theorem 3.3, let

U := GLA(E) · σ(UG),

which is diffeomorphic to GLA(E)× UG via the map (ϕ, g) 7→ ϕ · σ(g). Now
it remains to observe that the map

GLA(E)× UG × E → E, (ϕ, g, s) 7→ ϕ(SE(g)s) = ϕ(γ(g) · (g]s))
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is smooth, which follows from the smoothness of the action of GLA(E) on E,
the smoothness of γ : UG → GLn(A) and the smoothness of the action of G
on An.

(b) If Φ is smooth, then q ◦ Φ is smooth and (a) implies that f := p1 ◦ Φ
defines a smooth action of H on E. Suppose, conversely, that q ◦Φ is smooth
and that f defines a smooth action on E. Let UG and U be as in (a) and put
W := Φ−1(U). Since q ◦ Φ is continuous,

W = Φ−1(q−1(UG)) = (q ◦ Φ)−1(UG)

is an open subset of H. Since Φ is a group homomorphism, it suffices to
verify its smoothness on W . We know from (a) that the map

S̃E : UG × E → E, (g, s) 7→ SE(g)s

is smooth. For h ∈ W we have Φ(h) = f1(h)σ(f2(h)), where f1(h) ∈ GLA(E)
and f2 := q ◦ Φ: W → UG is a smooth map. Therefore the map

W × E → E, (h, s) 7→ f(h)
(
σ(f2(h))

−1.s
)

= f(h)SE(f2(h))
−1.s = f1(h).s

is smooth. If e1, . . . , en ∈ An denote the canonical basis elements of the right
A-module An, then we conclude that all maps

W → GLA(E), h 7→ f1(h) · ei = f1(h)pei

are smooth because pei ∈ E. Hence all columns of the matrix f1(h) depend
smoothly on h, and thus f1 : W → GLA(E) ⊆Mn(A) is smooth. This in turn
implies that Φ(h) = f1(h)σ(f2(h)) is smooth on W , hence on H because it
is a group homomorphism.

(c) First we note that any homomorphism Φ: G→ Ĝ is of the form σ̃(g) =
(f(g), g), where f : G→ ΓL(E) is a homomorphism satisfying (f(g), µA(g)) ∈
Γ̂L(E).

If the extension Ĝ of G by GLA(E) splits, then there is such a smooth
Φ, and then (a) implies that πE = f defines a smooth action of G on E,
satisfying all requirements.

If, conversely, πE : G→ ΓL(E) defines a smooth action with (5), then the

map Φ = (πE, idG) : G → Ĝ is a group homomorphism whose smoothness

follows from (b), and therefore the Lie group extension Ĝ splits.
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Examples 3.5 (a) If A is a Banach algebra, then Aut(A) carries a natural
Banach–Lie group structure (cf. [HK77], [Ne04, Prop. IV.14]). For each
finitely generated projective module pAn, p ∈ Idem(Mn(A)), the subgroup
G := Aut(A)E is open (Proposition 3.1), and we thus obtain a Lie group
extension

1 → GLA(E) ↪→ Ĝ→→ G = Aut(A)E → 1.

(b) For each CIA A, the Lie group G := A× acts smoothly by conjugation
on A and g 7→ ρE(g−1) defines a smooth action of G on E by semilinear
automorphisms. This leads to a homomorphism

σ : A× → Ĝ = {(ϕ, g) ∈ ΓL(E)×G : (ϕ, µA(g)) ∈ Γ̂L(E)}, g 7→ (ρE(g−1), g),

splitting the Lie group extension Ĝ (Proposition 3.4).
Note that for any CIA A, we have Z(A)× = Z(A×) because A× is an

open subset of A, so that its centralizer coincides with the center Z(A) of
A. We also note that ρE(Z(A)) ⊆ EndA(E) and that the direct product
group GLA(E) × A× acts on E by (ϕ, g).s := ϕ ◦ ρE(g−1)s, where the pairs
(ρE(z), z−1), z ∈ Z(A×), act trivially.

If, in addition, A is Mackey complete, the Lie group GLA(E) × A× and
both factors are locally exponential, the subgroup

∆Z := {(ρE(z), z−1) : z ∈ Z(A×)}

is a central Lie subgroup and the Quotient Theorem in [GN08] (see also
[Ne06, Thm. IV.2.9]) implies that (GLA(E) × A×)/Z(A×) carries a locally
exponential Lie group structure.

If, in addition, E is a faithful A-module, then ∆Z coincides with the kernel
of the action of GLA(E) × A× on E, so that the Lie group
(GLA(E)×A×)/Z(A×) injects into ΓL(E). If, moreover, all automorphisms
of A are inner, we have Aut(A) ∼= A×/Z(A×), which carries a locally expo-
nential Lie group structure ([Ne06, Thm. IV.3.8]). We obtain

ΓL(E) ∼= (GLA(E)× A×)/Z(A×),

and a Lie group extension

1 → GLA(E) → ΓL(E) →→ Aut(A) → 1.

(c) (Free modules) Let n ∈ N and let p = 1 ∈ Mn(A). Then pAn = An,
GLA(E) ∼= GLn(A) acts by left multiplication, and

ΓL(E) ∼= GLn(A) o Aut(A)
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is a split extension. For any smooth Lie group action µA : G → Aut(A), we

accordingly get GE = G and a split extension Ĝ ∼= GLn(A) oG.
(d) Let A = B(X) denote the Banach algebra of all bounded operators

on the complex Banach space X. If p ∈ A is a rank-1-projection,

pA ∼= X ′ = Hom(X,C)

is the dual space, considered as a right A-module, the module structure given
by ϕ.a := ϕ ◦ a. In this case pAp ∼= C, GLA(E) ∼= C×, and for the group
G := PGL(X) := GL(X)/C×, acting by conjugation on A, we obtain the
central extension

1 → C× → Ĝ ∼= GL(X) → G = PGL(X) → 1.

4 The corresponding Lie algebra extension

We now determine the Lie algebra of the Lie group Ĝ constructed in The-
orem 3.3. This will lead us from semilinear automorphisms of a module to
derivative endomorphisms. The relations to connections in the context of
non-commutative geometry will be discussed in Section 5 below.

Definition 4.1 We write glA(E) for the Lie algebra underlying the associa-
tive algebra EndA(E) and

DEnd(E)

:= {ϕ ∈ EndK(E) : (∃Dϕ ∈ der(A))(∀a ∈ A) [ϕ, ρE(a)] = ρE(Dϕ(a))}.

for the Lie algebra of derivative endomorphisms of E (cf. [Ko76]). We write

D̂End(E) := {(ϕ,D) ∈ EndK(E)× der(A) : (∀a ∈ A) [ϕ, ρE(a)] = ρE(D.a)}.

We then have a short exact sequence

0 → glA(E) → D̂End(E) → der(A)E → 0

of Lie algebras, where

der(A)E = {D ∈ der(A) : (∃ϕ ∈ DEnd(E)) Dϕ = D}

is the image of the homomorphism DEnd(E) → der(A).
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Example 4.2 If E = C∞(M,V) is the space of smooth sections of the vector
bundle V with typical fiber V on the compact manifold M , then it is inter-
esting to identify the Lie algebra DEnd(E). From the short exact sequence

0 → glA(E) = C∞(End(V)) ↪→ DEnd(E) →→ V(M) = der(A) → 0,

it easily follows that the Lie algebra DEnd(E) can be identified with the Lie
algebra V(Fr V)GL(V ) of GL(V )-invariant vector fields on the frame bundle
Fr V (cf. [Ko76] for details).

Lemma 4.3 For each a ∈ A we have (ρE(a),− ad a) ∈ D̂End(E) and in
particular ρE(A) ⊆ DEnd(E).

Proof. For each b ∈ A we have ρE(a)(s.b) − ρE(a)(s).b = s.(ba − ab) =
s.(− ad a(b)).

Lemma 4.4 Let p ∈ Idem(Mn(A)) and E := pAn. We define

γ : der(A) →Mn(A), γ(D) := (2p− 1) · (D.p).

Then [p, γ(D)] = D.p and the operator

∇Ds := γ(D)s+D.s

on An preserves E = pAn and (∇D, D) ∈ D̂End(E).

Proof. From p2 = p we immediately get D.p = D.p2 = p·(D.p)+(D.p)·p,
showing that p·(D.p) = p·(D.p)+p·(D.p)·p, and therefore p·(D.p)·p = 0.We
likewise obtain (1−p)·(D.p)·(1−p) = 0, so that D.p ∈ pA(1−p)+(1−p)Ap.
This leads to

[γ(D), p] = (2p− 1) · (D.p) · p− p(2p− 1) ·D.p
= −(D.p) · p− p ·D.p = −D.(p2) = −D.p.

For any s ∈ pAn we have ps = s and therefore

p(γ(D)s+D.s) = [p, γ(D)]s+ γ(D)ps+ p(D.s) = (D.p)s+ γ(D)s+ p(D.s)

= D.(ps) + γ(D)s = D.s+ γ(D)s.

This implies that ∇D.s ∈ pAn = {x ∈ An : px = x}.
The remaining assertion follows from the fact that left and right multi-

plications commute and D.(s.a) = (D.s).a+ s.(D.a).
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Remark 4.5 To calculate the Lie algebra L(G) of a Lie group G, one may
use a local chart ϕ : U → L(G), U ⊆ G an open 1-neighborhood and
ϕ(1) = 0, and consider the Taylor expansion of order 2 of the multipli-
cation

x ∗ y := ϕ(ϕ−1(x)ϕ−1(y)) = x+ y + bg(x, y) + · · · .

Then the Lie bracket in L(G) satisfies

[x, y] = bg(x, y)− bg(y, x)

(cf. [Mil84], [GN08]).

Suppose that a Lie group extension N ↪→ Ĝ →→ G is given by a pair
(S, ω) via the multiplication on the product set N ×G:

(n, g)(n′, g′) =
(
nS(g)(n′)ω(g, g′), gg′),

where the maps S : G→ Aut(N) and ω : G×G→ N satisfy:

(a) the map G × N → N, (g, n) 7→ S(g)n is smooth on a set of the form
U ×N , where U is an identity neighborhood of G.

(b) ω is smooth in an identity neighborhood with ω(g,1) = ω(1, g) = 1.

Let g = L(G), n = L(N) and ĝ = L(Ĝ) be the corresponding Lie al-

gebras. Then we may use a product chart of Ĝ in some sufficiently small
1-neighborhood. Write L(S(g)) ∈ Aut(n) for the Lie algebra automorphism
induced by S(g) ∈ Aut(N) and put L(S)(g, v) := L(S(g))(v). Then we
define DS : g → gl(n) by

DS(x)(v) := T(1,v)(L(S))(x, 0).

We further define

Dω(y, y′) := d2ω(1,1)((y, 0), (0, y′))− d2ω(1,1)((y′, 0), (0, y))

and note that this is well-defined, i.e., independent of the chart, because (b)
implies that ω vanishes of order 1 in (1,1). We thus obtain the second order
Taylor expansion

(x, y) ∗ (x′, y′) = (x+DS(y)(x′) + bn(x, x
′) + d2ω(1,1)((y, 0), (0, y′)) + · · · ,

y + y′ + bg(y, y
′) + · · · ),
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which provides the following formula for the Lie bracket in ĝ, written as the
product set n× g:

[(x, y), (x′, y′)] = ([x, x′] +DS(y)(x′)−DS(y′)(x) +Dω(y, y′), [y, y′]).

To show that the Lie algebra of the group Ĝ, constructed in Theorem 3.3,
is the corresponding pull-back on the Lie algebra level, we need the following
lemma:

Lemma 4.6 Let G and H be Lie groups with Lie algebra g, resp., h, U ⊆ G
an open 1-neighborhood and σ : U → H a smooth map with σ(1) = 1. For
the map

ω : U × U → H, (g, g′) 7→ σ(g)σ(g′)σ(gg′)−1,

we then have

d2ω(1,1)((x, 0), (0, x′))− d2ω(1,1)((x′, 0), (0, x))

= [T1(σ)x, T1(σ)x′]− T1(σ)[x, x′].

Proof. For the function ωg(g
′) := ω(g, g′), we directly obtain with respect

to the group structure on the tangent bundle TH:

T1(ωg)x
′ = σ(g) · T1(σ)x′ · σ(g)−1 + σ(g)

(
− σ(g)−1Tg(σ)(g.x′)σ(g)−1

)
= σ(g) · T1(σ)x′ · σ(g)−1 − Tg(σ)(g.x′)σ(g)−1

= Ad(σ(g))T1(σ)x′ − δr(σ)(x′l)(g),

where δr(σ) ∈ Ω1(G, h) is the right logarithmic derivative of σ and x′l(g) =
g.x′ is the left invariant vector field on G, corresponding to x′. Taking deriva-
tives in g = 1 with respect to x, this in turn leads to

(dω)(1,1)(x, x′) = [T1(σ)x, T1(σ)x′]− xl
(
δr(σ)(x′l)

)
(1).

Using the Maurer–Cartan equation ([KM97])

dδr(σ)(X,Y ) = [δr(σ)(X), δr(σ)(Y )],

we now obtain

d2ω(1,1)((x, 0), (0, x′))− d2ω(1,1)((x′, 0), (0, x))

= 2[T1(σ)x, T1(σ)x′]− xl
(
δr(σ)(x′l)

)
(1) + x′l

(
δr(σ)(xl)

)
(1)

= 2[T1(σ)x, T1(σ)x′]− dδr(σ)(xl, x
′
l)(1)− δr(σ)([xl, x

′
l])(1)

= 2[T1(σ)x, T1(σ)x′]− [δr(σ)(xl), δ
r(σ)(x′l)](1)− T1(σ)([x, x′])

= 2[T1(σ)x, T1(σ)x′]− [T1(σ)x, T1(σ)x′]− T1(σ)([x, x′])

= [T1(σ)x, T1(σ)x′]− T1(σ)([x, x′]).
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Since, in general, Aut(A) does not carry a natural Lie group structure,
the Lie algebra der(A) is not literally the Lie algebra of Aut(A), but µA leads
to a homomorphism L(µA) : g → der(A) of Lie algebras, given by

x.a := L(µA)(x)(a) := (TµA)(1, a)(x, 0).

(cf. [GN08, App. E] for a discussion of these subtle points in the infinite-
dimensional context; see also [Ne06, Remark II.3.6(a)]).

Proposition 4.7 The Lie algebra ĝ := L(Ĝ) of the Lie group Ĝ from The-
orem 3.3 is isomorphic to

L(µA)∗D̂End(E) ∼= {(x, ϕ) ∈ g×DEnd(E) : (ϕ,L(µA)x) ∈ D̂End(E)}.

Proof. First we note that

L(µA)∗D̂End(E) = {(x, (ϕ,D)) ∈ g× D̂End(E) : L(µA)x = D}

= {(x, (ϕ,L(µA)x)) ∈ g×DEnd(E)× der(A) : (ϕ,L(µA)x) ∈ D̂End(E)}
∼= g̃ := {(x, ϕ) ∈ g×DEnd(E) : (ϕ,L(µA)x) ∈ D̂End(E)}.

Recall from the proof of Theorem 3.3 the maps

γ(g) = p · (g.p) + (1− p) · (1− (g.p)) and SE(g)(s) := γ(g) · (g.s).

Taking derivatives, we get

γ̇(x) := T1(γ)(x) = (2p− 1)L(µA)(x).p = (2p− 1) · (x.p)

and with Lemma 4.4 we obtain [γ̇(x), p] = −x.p. We further derive

T1(SE)(x).s := γ̇(x) · s+ x.s ∈ E,

and the linear map T1(SE) : g → DEnd(E) satisfies

[T1(SE)(x), ρE(a)] = ρE(x.a)

for each x ∈ g, which means that (T1(SE)(x), x) ∈ g̃. Now

Γ: ĝ = glA(E)⊕ g → g̃, (ϕ, x) 7→ (ϕ+ T1(SE)(x), x)
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is a linear isomorphism with

[Γ(ϕ, x),Γ(ϕ′, x′)]

= ([ϕ, ϕ′] + [T1(SE)(x), ϕ′]− [T1(SE)(x′), ϕ] + [T1(SE)(x), T1(SE)(x′)], [x, x′]).

On the other hand, we have seen in Remark 4.5 that the Lie bracket in
ĝ = glA(E)× g is given by

[(ϕ, x), (ϕ, x′)] = ([ϕ, ϕ′] +DS(x)(ϕ′)−DS(x′)(ϕ) +Dω(x, x′), [x, x′]).

From S(g)(ϕ) = Ad(γ(g))(g.ϕ) we derive that

DS(x)(ϕ) = [γ̇(x), ϕ] + x.ϕ = [T1(SE)(x), ϕ].

To show that Γ is an isomorphism of Lie algebras, it therefore suffices to
show that

[T1(SE)(x), T1(SE)(x′)] = Dω(x, x′) + T1(SE)([x, x′]) (6)

holds for x, x′ ∈ g.
To verify this relation, we first observe that the smoothness of the action

of G on GLn(A) implies that GLn(A)oG is a Lie group, acting smoothly on
An by (a, g).s := a(g]s). Then we consider the smooth map

S̃E : UG → GLn(A) oG, g 7→ (γ(g), g),

also satisfying ω(g, g′) = S̃E(g)S̃E(g′)S̃E(gg′)−1 and

S̃E(g).s = SE(g).s for s ∈ E = pAn. (7)

Lemma 4.6 provides the identity

Dω(x, x′) = [T1(S̃E)x, T1(S̃E)x′]− T1(S̃E)[x, x′],

in glA(E), so that (7) leads to

Dω(x, x′) = [T1(SE)x, T1(SE)x′]− T1(SE)[x, x′],

as linear operators on E, and this is (6).
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The following general lemma prepares the discussion in Example 4.9 be-
low, which exhibits the Lie group Aut(V) of automorphisms of a vector bun-
dle as one of the Lie group extensions from Theorem 3.3.

Lemma 4.8 If ϕ : G → H is a bijective morphism of regular connected Lie
groups and L(ϕ) : L(G) → L(H) is an isomorphism of locally convex Lie
algebras, then ϕ is an isomorphism of Lie groups.

Proof. Let qG : G̃ → G and qH : H̃ → H denote simply connected uni-
versal covering groups with L(qG) = idL(G) and L(qH) = idL(H). Then the

induced morphims ϕ̃ : G̃ → H̃ is the unique morphism of Lie groups with
L(ϕ̃) = L(ϕ), hence an isomorphism, whose inverse is the unique morphism
ψ : H̃ → G̃ with L(ψ) = L(ϕ)−1 ([Ne06, Thm. IV.1.19]). Since ϕ̃ is an
isomorphism, ϕ is a local isomorphism of Lie groups, so that its bijectivity
implies that it is an isomorphism.

Example 4.9 We continue the discussion of Example 2.5 in the light of The-
orem 3.3. Recall that qV : V →M denotes a smooth K-vector bundle on the
compact manifold M and Aut(V) its group of smooth bundle isomorphisms.

Let G := Diff(M)[V] and recall that this group acts smoothly on the
CIA A = C∞(M,K), preserving the equivalence class of the projective mod-

ule E = ΓV. Let Ĝ be the Lie group extension of G by GLA(E) from
Theorem 3.3. In view of Proposition 2.4, we have a smooth representation
π : Ĝ → ΓL(E) of Ĝ on E whose range is a subgroup of ΓL(E) containing
GLA(E) and projecting onto Diff(M)[V]

∼= Aut(A)E, which implies that the

representation π is a bijection. In Example 2.5 we have seen that Ĝ ∼= Aut(V)
as abstract groups.

Next we recall that G is a regular Lie group ([KM97, Thm. 38.6]), and
that we have seen in Example 2.5 that GLA(E) ∼= Gau(V) as Lie groups,

which implies that GLA(E) is regular ([KM97, Thm. 38.6]). Hence Ĝ is an
extension of a regular Lie group by a regular Lie group and therefore regular
(cf. [KM97], [GN08]). For similar reasons, the Lie group Aut(V) is regular.

To see that Aut(V) ∼= Ĝ as Lie groups, it therefore suffices to show that the

canonical isomorphism ϕ : Aut(V) → ΓL(E) ∼= Ĝ is smooth and that L(ϕ)
is an isomorphism of topological Lie algebras (Lemma 4.8).

In view of Proposition 3.4(b), the smoothness of ϕ follows from the
smoothness of the action of Aut(V) on ΓV. To verify this smoothness, let
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P = Fr V denote the frame bundle of V and recall that

ΓV ∼= {f ∈ C∞(P, V ) : (∀p ∈ P )(∀k ∈ GL(V )) f(p.k) = k−1f(p)}.

Since the evaluation map of C∞(P, V ) is smooth, the smoothness of the
action of Aut(V) ∼= Aut(P ) on ΓV now follows from the smoothness of the
action of Aut(P ) on P (cf. [ACM89]).

To see that ĝ ∼= L(Aut(V)) ∼= V(Fr V)GL(V ), we first recall from Exam-
ple 4.2 that DEnd(V) ∼= V(Fr V)GL(V ). Hence both ĝ and L(Aut(V)) are
Fréchet–Lie algebras and L(ϕ) is a continuous homomorphism inducing bi-
jections Γ(End(V)) → glA(E) and V(M) → g. Hence L(ϕ) is bijective, and
the Open Mapping Theorem ([Ru73, Thm. 2.11]) implies that it is an isomor-

phism of topological Lie algebras. This completes the proof that Ĝ ∼= Aut(V)
as Lie groups.

Remark 4.10 That the extension ĝ of g by glA(E) splits is equivalent to
the existence of a continuous linear map α : g → glA(E) for which

T1(SE) + α : g → DEnd(E)

is a homomorphism of Lie algebras (cf. Proposition 3.4 for the corresponding
group analog). This is equivalent to the existence of a g-module structure on
E, lifting the action of g on A, given by L(µA).

If such a homomorphism exists and the group Ĝ is regular, then there
exists a morphism of Lie groups G̃0 → Ĝ, splitting the pull-back extension
q∗GĜ of G̃0 by GLA(E).

5 Covariant derivatives

In this short final section, we briefly explain the connections between linear
splittings of the Lie algebra extension from Proposition 4.7 and covariant
derivatives, resp., connections, as they occur in non-commutative geometry.

Definition 5.1 (a) There are many ways to construct “differential forms”
for a non-commutative algebra (cf. [Co94]). One approach, which is closest
to our construction, is the one described by Dubois-Violette in [DV91] (cf.
[DV88] and [DVM94]): First, one considers A as a module of the Lie alge-
bra der(A), and since the multiplication on A is der(A)-invariant, the algebra
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multiplication provides on the Chevalley–Eilenberg complex (C(derA,A), dA)
the structure of a differential graded algebra. The differential subalgebra
generated by A ∼= C0(derA,A) and dA(A) is denoted ΩD(A). From the in-
clusion of A as a subalgebra, ΩD(A) inherits a natural A-bimodule structure.
In particular, E ⊗A Ω1

D(A) is defined and a right A-module.
(b) Let E be a right A-module. A connection on E is a linear map

∇ : E → E ⊗A Ω1
D(A) satisfying

∇(s.a) = ∇(s)a+ s⊗ dAa for s ∈ E, a ∈ A. (8)

Since the elements of Ω1
D(A) are linear maps der(A) → A, each element of

E⊗AΩ1
D(A) defines a linear map der(A) → E. If iD : Ω1

D(A) → A,α 7→ α(D),
denotes the evaluation map, we thus obtain for each derivation D ∈ derA a
linear map, the corresponding covariant derivative,

∇D := (idE ⊗iD) ◦ ∇ : E → E,

where we identify E ⊗A A with E. The covariant derivative satisfies

∇D(sa) = ∇D(s)a+ sDa for s ∈ E, a ∈ A.

Remark 5.2 (a) For any connection ∇ and D ∈ der(A), we have (∇D, D) ∈
D̂End(E). In particular, we have der(A)E = derA whenever a connection
exists, and in this case any connection ∇ defines a splitting of the Lie algebra

extension D̂End(E) → der(A) of der(A) by glA(E) (cf. Definition 4.1). In
this sense, we call any linear section of this Lie algebra extension a covariant
derivative on E.

(b) (Covariant coordinates) We have already seen in Lemma 4.3 that
for each a ∈ A, the operator ρE(a) is contained in DEnd(E) and satisfies
DρE(a) = − ad a. If ∇ is a connection, we therefore have

ρ̂E(a) := ρE(a) +∇ad a ∈ glA(E), i.e., [ρ̂E(A), ρE(A)] = {0}.

In the context of non-commutative geometry, the operators ρ̂E(a) are called
covariant coordinates because they commute with all “coordinate operators”
ρE(a), a ∈ A (cf. [Sch01], [JSW01]).

Remark 5.3 (a) If a E is a finitely generated projective module, then it is
of the form pAn for some idempotent p ∈ Mn(A). In this case we have the
Levi–Civita connection, given by

∇(s) := p · dAn(s),
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where dAn : An → An ⊗A Ω1
D(A) ∼= Ω1

D(A)n, (ai) 7→ (dA(ai)) is the canonical
connection of the free right module An. Note that the Levi–Civita connection
is not an intrinsic object, it depends on the embedding E ↪→ An and the
module complement, all of which is encoded in the choice of the idempotent p.
For a derivation D ∈ der(A), the operator ∇D ∈ DEnd(An), defined by

∇D(s) = p ·D.s

is the covariant derivative corresponding to the Levi–Civita connection.
In Lemma 4.4 we have seen that ∇′

Ds := (2p − 1)(D.p)s + D.s also
defines a covariant derivative on E. In view of ps = s for s ∈ E, we have
p(D.p)s = p(D.p)(ps) = 0 (see the proof of Lemma 4.4), so that

∇′
Ds = −(D.p)s+D.s = D.(ps)− (D.p)s = p(D.s) = ∇Ds.

(b) For E = pAn as above, any connection ∇′ on E is of the form

∇α = pdAn + α,

where α ∈ Mn(Ω
1
D(A)) satisfies α = pαp, i.e., α ∈ pMn(Ω

1
D(A))p. Here we

use that for any other connection ∇′ we have

∇′ −∇ ∈ Hom(E,E ⊗A Ω1
D(A)) = Hom(pAn, pAn ⊗A Ω1

D(A))
∼= pHom(An, An ⊗A Ω1

D(A))p = pMn(Ω
1
D(A))p.

For any gauge transformation g ∈ GLA(E), we then have

∇(g.s) = pdAn(g.s) = p(dMn(A)g · s+ g.dAns) = g.
(
∇(s) + g−1 · dMn(A)(g) · s

)
,

which for ∇g(s) := g−1∇(g.s) and the left logarithmic derivative δ(g) :=
g−1 · dMn(A)(g) ∈ pMn(Ω

1
D(A))p leads to

∇g = ∇+ δ(g).

More generally, we get

∇g
α = ∇+ δ(g) + Ad(g−1).α = ∇α′ for α′ = δ(g) + Ad(g−1).α.

From that we derive in particular that ∇g
α = ∇α is equivalent to δ(g) =

α− Ad(g−1).α.
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