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Abstract

Convergence of the solution to the exterior Robin problem to the so-
lution of the Dirichlet problem, as the impedance tends to infinity, is
proved. The rate of convergence is established. A method for deriving
higher order terms of the asymptotics of the solution is given.
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1 Introduction

Consider the following problem:

Lu := ∇2u = f in D′, u(∞) = 0 (1)

uN − ζu = 0 on S, (2)

where D ⊂ R3 is a bounded domain with an infinitely smooth boundary S,
D′ := R3|D, N is an outer unit normal to S, f ∈ L2

0(D
′), ζ is a constant,
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Im ζ 6= 0, or Im ζ = 0 and then ζ ≥ 0, see lemma 2 in Appendix. It is known
that problem (1) - (2) has a solution, and the solution is unique under the
above assumptions. For convenience of the reader a short proof is given in
the Appendix. The problems we are studying in this paper are the following.
The smoothness of the boundary can be assumed finite. Then, the number
m in Theorem will not be arbitrary large: it depends on the smoothness of
the boundary.

1. Does u converge in some sense to the solution of the problem

∇2v = f in D′, v = 0 on S; v(∞) = 0, (3)

as |ζ| → ∞?

2. At what rate does u converge to v as |ζ| → ∞?

We assume throughout that |ζ| → ∞ means that ζ1 := Re ζ → +∞, and
ζ2 := Im ζ is bounded. It is a common belief that u := uζ → v as |ζ| → ∞.
We prove that this is correct and estimate the rate of convergence, namely,
we prove that this rate is O( 1

|ζ|). We give a method for finding asymptotics

of uζ as |ζ| → ∞.
We also prove that these conclusions hold for the problem in which ∇2 is

replaced by a more general elliptic operator of the second order.

Theorem 1. Under the above assumptions one has

uζ = v +O
( 1

|ζ|
)
, |ζ| → ∞, (4)

where v solves the Dirichlet problem (3) and O
(

1
|ζ|

)
=

∫
S
ψ(s,ζ)ds
4π|x−s| , where

‖ψ(s, ζ)‖Hm(S) ≤ cm
|ζ| for sufficiently large |ζ|, cm = const > 0, and m ≥ 0 is

arbitrary large.

Theorem 1 gives an exact description of the sense in which uζ converges
to the solution v of the Dirichlet problem (3).

2 Proofs

Let

w := −
∫
D′
g(x, y)f(y)dy,
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where g(x, y) = 1
4π|x−y| . Then u = w + ϕ, where

∇2ϕ = 0 in D′, ϕ(∞) = 0,
(
ϕN − ζϕ

)∣∣
S

= −
(
wN − ζw

)∣∣
S
. (5)

Let us look for ϕ of the form

ϕ(x) =

∫
S

g(x, s)σ(s)ds, (6)

where σ is to be found from the boundary condition (5), ϕ solves equation
(5), and ϕ vanishes at infinity. The boundary condition (5) yields (see e.g.
[3])

Aσ − σ

2
− ζTσ = −h, h := (wN − ζw)

∣∣
S
, (7)

where the operators A and T are defined as follows:

Aσ := 2

∫
S

∂g(s, t)

∂NS

σ(t)dt, Tσ :=

∫
S

g(s, t)σ(t)dt. (8)

Let us write equation (7) as:

Tσ = −w + τwN + τ
Aσ − σ

2
, τ :=

1

ζ
=
ζ1 − iζ2
|ζ|2

:= τ1 + iτ2 , (9)

where ζ1 = Re ζ, ζ2 = Im ζ. Let us assume, for example, that ζ1 > 0. If
ζ1 < 0, the argument is similar. As |ζ| → ∞, |τ | → 0 and τ1 > 0. Let us
prove that

σ = −T−1w +O(τ), τ → 0. (10)

The operator T is known to be an isomorphism between H` and H`+1, where
H` := H`(S) is the Sobolev space, and ` is an arbitrary real number if S is an
infinitely smooth manifold (see e.g. [3]). Moreover, T is a positive selfadjoint
compact operator in H0 = L2(S). Indeed, the Fourier transform of 1

|x| in R3

is ∫
R3

eiξ·x

|x|
dx =

4π

|ξ|2
,

so it is positive,
1

4π|x|
=

1

(2π)3

∫
R3

e−iξ·x
dξ

|ξ|2
.
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Therefore, if ϕ ∈ L2(S), then∫
S

∫
S

ds dt
ϕ(s)ϕ(t)

4π|s− t|
=

1

(8π)3

∫
R3

dξ

|ξ|2
|ϕ̃(ξ)|2 > 0 if ϕ̃ 6= 0,

where the overbar stands for complex conjugate, and

ϕ̃(ξ) =

∫
S

ϕ(s)eiξ·s ds =

∫
R3

eiξ·x δS(x)ϕ(s)dx.

Here δS(x) is the delta function supported on the surface S, and ϕ(s) is the
density function on S, so the integral on the right is defined as the integral
on the left. In [2] one can find the formula:∫

Rn

|x|λ eiξ·x dx = 2λ+n πn/2
Γ(λ+n

2
)

Γ(−λ
2
)

1

|ξ|λ+n
,

where Γ(z) is the Gamma-function, and λ 6= 2m, m = 0, 1, 2, . . ., λ+n 6= −2p,
p = 0, 1, 2, . . . . If λ = −1 and n = 3, one obtains 1

|x| = 4π
|ξ|2 , i.e., the formula,

given above.
Let us denote by (p, q)` the inner product in H`, and

(p, q) := (p, q)0 = (p, q)L2(S).

Since T = T ∗ > 0, there exists a unique square root T 1/2 > 0, and

(Tσ, σ) = ‖T 1/2σ‖2
0 = ‖σ‖2

−1/2 ,

since T 1/2 : H` → H`+1/2. Similarly

(p, q)` = (T−`
p , T−`

q )0; (Tσ, σ)` = ‖T−`+1/2σ‖2
0 = ‖σ‖2

`−1/2 . (11)

Recall that T is surjective, as was stated below formula (10). Note that

|(p, q)0| ≤ ‖p‖` ‖q‖−`, p ∈ H`, q ∈ H0, (12)

so that the form (p, q)0 extends to a pairing between H` and H−` for any
` ∈ R, provided that S is infinitely smooth, which we assume for simplicity,
although S can be of finite smoothness, and then (12) holds for ` correspond-

ing to the smoothness of S. The operator Tσ =
∫
S

σ(t)dt
4π|s−t| is an elliptic PDO

(pseudodifferential operator of order −1 in H0 = L2(S) (see [5]).
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The Sobolev spaces Hs, 0 ≤ s ≤ 1, can be defined as interpolation spaces,
intermediate between H0 = L2(S) and H1 = H1(S), by the formula Hs =
D(T s), whereD is the domain of definition of the positive-definite unbounded
selfadjoint operator T−s, D(T−1) = H1(S), D(T−0) = H0(S) = L2(S), (see,
e.g., [1]).

Recall that A : H` → H`+1 (see, e.g., [3]). The proof below uses an idea
from [4].

Equation (9) can be considered as a singular perturbation problem, be-
cause the small parameter τ is in front of the ”senior derivative”. Indeed,
the identity operator is a ”senior derivative” compared with the operators T
and A, which improve smoothness by one derivative.

Multiply (9) by σ in the H` inner product and get:

(Tσ, σ)` = −(w, σ)` + τ(wN , σ)` +
τ

2
(Aσ, σ)` −

τ

2
(σ, σ)` . (13)

The functions w and wN belong to H` for any ` if S is infinitely smooth and
supp f ⊂ D′. Take the real part of (13) and use the fact that τ1 > 0. Then,
(13) and (11) imply:

‖σ‖2
`− 1

2
≤ ‖w‖`+ 1

2
‖σ‖`− 1

2
+ |τ | ‖wN‖`+ 1

2
‖σ‖`− 1

2
+
|τ |
2
‖Aσ‖`+ 1

2
‖σ‖`− 1

2
,

so σ := στ satisfies the inequality:

‖σ‖`− 1
2
≤ ‖w‖`+ 1

2
+ |τ |‖wN‖`+ 1

2
+
|τ |
2
‖Aσ‖`+ 1

2
. (14)

We have
‖w‖`+ 1

2
+ |τ |‖wN‖`+ 1

2
≤ c ; ‖Aσ‖`+ 1

2
≤ c‖σ‖`− 1

2
, (15)

where c > 0 stands for various constants independent of τ , |τ | ∈ (0, 1). It
follows from (15) that

‖στ‖`− 1
2
≤ c, 0 < |τ | < 1. (16)

Let Tν = −w. If w ∈ Hm+2, then wN ∈ Hm+1, ν = −T−1w ∈ Hm+1,
and Aν ∈ Hm+2, so wN + Aν−ν

2
∈ Hm+1.

We want to prove that the estimate

στ = ν +O(|τ |), τ → 0, (17)
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holds in Hm, provided that w ∈ Hm+2.
Let στ − ν := ψτ and write equation (9) as

(T +
τ

2
)ψτ =

τ

2
Aψτ + τ

(
wN +

Aν − ν

2

)
.

Assume that τ > 0. If w ∈ Hm+2, then wN + Aν−ν
2

∈ Hm+1, as we have
mentioned above. Applying the operator (T + τ

2
)−1 to the above equation,

using the assumption wN + Aν−ν
2

∈ Hm+1, the boundedness of the norm
||(T + τ

2
)−1A||m < c, where the constant c > 0 does not depend on τ , the

boundedness of ψτ in Hm, and the fact that T : Hm → Hm+1, one obtains
estimate (17) for the remainder ||ψτ ||m := ||στ − ν||m.

The function ψτ is denoted ψ(s, ζ) in Theorem 1. Since we have assumed
that supp f ⊂ D′, the function w is infinitely smooth in a neighborhood of
the boundary S, so our data is in Hm+1 for any m ≥ 0.

If S is assumed to be Lipschitz, rather than C∞, then m = 0.
Since

uζ = w +

∫
S

g(x, s)στ (s)ds, τ =
1

ζ
, (18)

the relation (17) implies

uζ(x) = w(x) +

∫
S

g(x, s)ν(s)ds+O(
1

|ζ|
). (19)

The function

v := w(x) +

∫
S

g(x, s)ν(s)ds (20)

solves problem (3).
Indeed,

∇2v = ∇2w = f in D′, v(∞) = 0, (21)

v
∣∣
S

= w(s) + Tν = 0. (22)

The last relation holds because Tν = −w.

3 Generalizations

3.1 Suppose that the Laplace operator ∇2 in (1) is replaced by a general
selfadjoint second order elliptic differential expression L, and its fundamen-
tal solution G(x, y), LGL = −δ(x − y) in R3, defines a positive selfadjoint
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operator TL in H` = H`(S),

TLσ :=

∫
S

GL(s, t)σ(t)dt,

where TL : H` → H`+1 is an isomorphism between H` and H`+1. Then
the arguments, given in Section 2, remain valid, and the theorem, similar to
Theorem 1, holds.

If, for example

LG =
3∑

i,j=1

∂

∂xi

(
aij(x)

∂G

∂xj

)
− q(x)G,

where aij(x) is a smooth, uniformly with respect to x ∈ R3 positive-definite
matrix, aij(x) = aij(∞) for |x| > R, where R > 0 is an arbitrary large fixed
number, q(x) is a smooth function, 0 < b ≤ q(x), q(x) = q(∞) for |x| > R,
then |x− y|G(x, y) > 0 as |x− y| → 0, and∫

S

∫
S

G(s, t)ϕ(t)ϕ(s)dsdx > 0

if ϕ 6= 0. To prove this, one may take a ball Ba ⊃ D, Ba := {x : |x| ≤ a},
and define Ga(x, y) as the unique solution to the problem

LGa = −δ(x− y) in Ba, Ga

∣∣
∂Ba

= 0.

Then, by the maximum principle,

0 ≤ Ga(x, y) < G(x, y), x, y ∈ Ba,

and

Ga(x, y) =
∞∑
j=1

λ−1
j ψj(x)ψj(y),

where λj are eigenvalues and ψj are orthonormal eigenfunctions of the Dirich-
let operator L in L2(Ba), λj > 0. Thus∫

S

∫
S

Ga(s, t)ϕ(t)ϕ(s)dsdt =
∞∑
j=1

λ−1
j

∣∣∣ ∫
S

ϕ(t)ψj(t)dt
∣∣∣2 ≥ 0.
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Indeed, if
∫
S
ϕ(t)ψj(t)dt = 0 ∀j, then

w(x) :=

∫
S

Ga(x, t)ϕ(t)dt = 0 on S and Lw = 0 in D.

Since L is a positive-definite operator, it follows that w = 0 in D, and w = 0
in D′. Then ϕ = 0 by the jump formula for the conormal derivative of the
potential of the single layer.

One can also prove an analog of Theorem 1 for operators L, which is not
necessarily positive-definite. For example, if L = ∇2+k2, k = const > 0, and
Im ζ ≤ 0, then, by Lemma 3 in Appendix, problem (1) – (2) with L = ∇2+k2

and the condition u(∞) = 0 replaced by the radiation condition (A.6) has
at most one solution. This solution converges, as ζ1 = Re ζ → +∞, |ζ2| ≤ c,
ζ2 := Im ζ, to the solution of the Dirichlet problem in D′ for the operator
L = ∇2 + k2, satisfying the radiation condition at infinity.

If k2 is not a Dirichlet eigenvalue of the Laplacian in D, then the operator

TLσ :=

∫
S

eik|s−t|

4π|s− t|
σ(t)dt

is an isomorphism of H` onto H`+1, so that the equation

TLν = −w,

similar to (19), is uniquely solvable in H` for any w ∈ H`+1 and our proof of
Theorem 1 remains valid.

If the diameter of D is sufficiently small, then k2 is not a Dirichlet eigen-
value of the operator L in D. This case is discussed in [4], where the wave
scattering by many small bodies was studied and the impedance boundary
conditions were assumed at the boundaries of the small bodies.

However, the assumption that k2 is not a Dirichlet eigenvalue of L in D
is not necessary for the validity of a Theorem similar to Theorem 1. If k2

is a Dirichlet eigenvalue of L in D, then the following change in the proof
is needed: in place of eik|x−y|

4π|x−y| one uses the kernel g(x, y, k), which solves the

equation (∆ + k2)g = −δ(x − y) in R3\Bρ, where ρ > 0 is a small number,
Bρ = {x : |x| ≤ ρ} ⊂ D, g satisfies the radiation condition, g

∣∣
∂Bρ

= 0, and

k2 is not a Dirichlet eigenvalue of the operator L = ∇2 + k2 in D\Bρ. Such
a method was used in [3].
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Let us explain what change in our proof should be made in the case

TLσ =

∫
S

eik|s−t|

4π|s− t|
σ(t)dt.

In this case the operator TL is non-selfajoint and not positive. The key points
are:

1) The operator TL = T + B, where Tσ :=
∫
S

σ(t)dt
4π|s−t| , so T = T ∗ is a

positive operator,
and
2) The operator Bσ :=

∫
S
eik|s−t|−1
4π|s−t| σ(t)dt is a smoothing operator, such

that T−1B is compact in H0 = L2(S) and I+T−1B is a boundedly invertible
operator (i.e., its inverse is a bounded operator in H0) because this operator
is of Fredholm type and its null-space is trivial.

To prove the last statement, assume that (I+T−1B)σ = 0. Then TLσ = 0.

This implies that s(x) :=
∫
S
eik|x−t|

4π|x−t| σ(t)dt = 0 in D′, and s(x) = 0 in D if

k2 is not a Dirichlet eigenvalue of the Laplacian in D. Thus, σ = 0 by
the jump relation for the normal derivatives of the single-layer potential
s(x). If k2 is a Dirichlet eigenvalue of the Laplacian in D, then, as has
been already explained above, we replace 1

4π|x−y| by Green’s function of the

Dirichlet Laplacian in R3\Bρ, where a ball Bρ of radius ρ belongs to D and
k2 is not a Dirichlet eigenvalue of the Dirichlet Laplacian in D\Bρ. Such a
ball alway exists (see [3]).

The equation, analogous to (9), is

TLσ = −w + τwN + τ
Aσ

2
− τ

σ

2
,

where TL = T +B, T = T ∗ > 0, B is a smoothing operator, T−1B is compact
in H`, and the operator I + T−1B is boundedly invertible in H0 = L2(S).

Using the argument, given in Section 2, one writes

TLσ = T (I + T−1B)σ,

denotes
(I + T−1B)σ := η,

and get, as in (13) – (16) an estimate, analogous to (16) by taking into
account that

σ = (I +K)η,
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where (I + T−1B)−1 = I + K, K is a compact smoothing operator in H`.
We also use the following estimate:

−Re
τ

2
(σ, η)` = −Re

τ

2
(η, η)`−

τ

2
(Kη, η)` ≤

|τ |
2
‖Kη‖`+ 1

2
‖η‖`− 1

2
≤ cτ‖η‖2

`− 1
2
.

Here we have used the estimate

‖Kη‖`+1/2 ≤ c‖η‖`−1/2 ,

which holds because K is a smoothing operator. The rest of the argument is
similar to the one given in the proof of the estimate (16).

3.2 The method of the proof, given in Section 2, allows one to find asymp-
totics of στ as τ → 0 provided that w and wN are smooth.

4 An alternative approach to the derivation

of the asymptotics

Let us write the boundary condition (2) as

u = τuN , τ =
1

ζ
= τ1 + iτ2, τ1 > 0. (23)

Denote by uτ the unique solution to problems (1), (23) and let

‖u‖2 :=

∫
D′

(|∂2u(x)|2 + |∂u(x)|2 + |u(x)|2) dx
(1 + |x|)b

, b > 1, (24)

where ∂ stands for all first-order derivatives, so that ||u|| is a weighted
H2(D′) Sobolev norm. Let us prove that

lim sup
τ→0

‖uτ‖ ≤ c , c = const > 0. (25)

If (25) is false, then there is a sequence τn → 0 such that ‖uτn‖ → ∞. Let
wn := uτn

‖uτn‖
. Then ‖wn‖ = 1. Thus

wn ⇀
H2

loc(D
′)
w, ‖∇2wn‖ =

∥∥∥ f

‖uτn‖

∥∥∥ → 0,
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where wn ⇀
H2

loc(D
′)
w denotes weak convergence. Therefore,

∇2w = 0 in D′, wn ⇀
H2

loc(D
′)
w,

∥∥∥∥∂wn∂N
− ∂w

∂N

∥∥∥∥
L2(S)

+ ‖wn − w‖L2(S) →
n→∞

0,

where N = Ns is the unit normal to S at the point s ∈ S, pointing into
D′, and we have used the embedding theorem for the Sobolev space. This w
solves the problem:

∆w = 0 in D′, w|S = 0, w(∞) = 0. (26)

The last relation in (26) can be proved by passing to the limit in the formula

wn(s) =

∫
|x|=R

[
wn(s)

∂g(x, s)

∂Ns

− g(x, s)
∂wn(s)

∂Ns

]
ds, (27)

where R > 0 is sufficiently large, so that

supp f ⊂ BR = {x : |x| ≤ R} .

As n→∞ in (27), one gets

w(x) =

∫
|x|=R

[
w(s)

∂g(x, s)

∂Ns

− wNs(s)g(x, s)
]
ds, x ∈ B′

R = R3\BR. (28)

From this formula the last relation in (26) follows immediately.
The only solution to (26) is

w = 0. (29)

We now derive a contradiction by showing that

‖w‖ = 1. (30)

This contradiction will prove (25).
Since ‖wn‖ = 1 and w = 0, equation (30) holds if

lim
n→∞

‖wn − w‖ = 0, (31)

where the norm is defined in (24).

11



From the formulas (27) and (28) it follows that

lim
n→∞

‖wn − w‖H2(B′
R,

1

(1+|x|)b
) = 0 (32)

for R sufficiently large, such that supp f ⊂ BR.
In the region BR\D one has

wn(x) =

∫
SR

[
g(x, s)

∂wn(s)

∂N
− wn(s)

∂g(x, s)

∂N

]
ds

−
∫
S

[
g(x, s)

∂wn(s)

∂N
− wn(s)

∂g(x, s)

∂N

]
ds (33)

+

∫
BR\D

g(x, y) fn(y)dy, x ∈ BR\D, SR = {x : |x| = R}.

Since S and SR are smooth, the surface integrals converge in H2
loc(D

′) to the
function∫
SR

[
g(x, s)

∂w(s)

∂N
−w(s)

∂g(x, s)

∂N

]
ds−

∫
SR

[
g(x, s)

∂w(s)

∂N
−w(s)

∂g(x, s)

∂N

]
ds.

(34)
This is the function w(x), as follows by Green’s formula. The integral over
BR\D in (33) is a fixed function∫

BR\D
g(x, y)f(y)dy ∈ H2

loc(D
′)

divided by a number ‖wn‖, and limn→∞ ‖wn‖ = ∞. Thus, this integral con-
verges to zero in H2

(
BR\D, 1

(1+|x|)b

)
. Therefore the relation (32) is verified,

and one gets a contradiction

1 = lim
n→∞

‖wn‖ = ‖w‖ = 0, (35)

which proves inequality (25).
If (25) holds, then uτ converges weakly in the norm (24) to an element

v, while ∆uτ = f does not depend on τ , ‖∆uτ − f‖L2(D′) = 0. This implies
strong convergence of uτ to v in the norm (24). Passing to the limit in (23)
as τ → 0, one gets for the limit v problem (3). Let us estimate the rate of
convergence.
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Let uτ − v := zτ . Then

∆zτ = 0 in D′, zτ = τ(uτN − vN), zτ (∞) = 0. (36)

From (36) and either the integral representation for zτ or from the a priori
estimate of the solution to (36), one gets the following estimate:

‖zτ‖L2(D′, 1

(1+|x|)b
) ≤ cτ = O

( 1

|ζ|
)
. (37)

This is an estimate of the type (4), but less precise than the one obtained in
Theorem 1.

Appendix

Lemma 1. Problem (1) – (2) has at most one solution if Im ζ 6= 0.

Proof. Let w solve the homogeneous problems (1) – (2). We want to prove
that w = 0. Multiply equation (1) (with f = 0) by w, integrate over D′ ∩
BR := D′

R, BR := {x : |x| ≤ R}, assuming that the origin belongs to D, and
then integrate by parts to get:

0 = −
∫
D′

R

|∇w|2 dx− ζ

∫
S

|w|2 ds+

∫
SR

wwr ds, wr :=
∂w

∂r
. (A.1)

Taking the imaginary part and using the relations

|w| = O
( 1

|x|
)
, |wr| = O

( 1

|x|2
)

as |x| → ∞,

one concludes that ∫
S

|w|2 ds = 0.

Thus w = 0 on S, and the boundary condition (2) implies wN = 0 on S.
Thus, w = 0 in D′ by the uniqueness of the solution to the Cauchy problem
for the Laplace equation. Lemma 1 is proved.

Lemma 2. If Im ζ = 0 and ζ ≥ 0, then problem (1) – (2) has at most one
solution
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Proof. We argue as before, take the real part of (A.1), and use the relation

lim
R→∞

∫
SR

wwr ds = 0. (A.2)

The result is

0 =

∫
D′
|∇w|2 dx+ ζ

∫
S

|w|2 ds. (A.3)

If ζ = 0, then (A.3) and the condition w(∞) = 0 imply that w = 0 in D′. If
ζ > 0, then (A.3) implies w = 0 in D′. Lemma 2 is proved.

Lemma 3. Let

(∇2 + k2)u = f in D′, f ∈ L2
0(D

′), k = const > 0, (A.4)

uN − ζu = 0 on S, (A.5)

∂u

∂r
− iku = o

(1

r

)
, r →∞. (A.6)

Assume that Im ζ ≤ 0. Then problem (A.4) – (A.6) has at most one solution.

A proof of Lemma 3 can be found in [3] and in [4].
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