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Consider the instationary Navier-Stokes system in a smooth bounded
domain Ω ⊂ R3 with vanishing force and initial value u0 ∈ L2

σ(Ω).
Since the work of Kiselev-Ladyzhenskaya [15] in 1963 there have been
found several conditions on u0 to prove the existence of a unique
strong solution u ∈ Ls

(
0, T ;Lq(Ω)

)
with u(0) = u0 in some time

interval [0, T ), 0 < T ≤ ∞, where the exponents 2 < s <∞, 3 < q <
∞ satisfy 2

s
+ 3

q
= 1. Indeed, such conditions could be weakened step

by step, thus enlarging the corresponding solution classes. Our aim is
to prove the following optimal result with the weakest possible initial
value condition and the largest possible solution class: Given u0, q, s
as above and the Stokes operator Aq, we prove that the condition∫ ∞

0
‖e−tAqu0‖s

q dt < ∞ is necessary and sufficient for the existence
of such a strong solution u. The proof rests on arguments from the
recently developed theory of very weak solutions.
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1 Introduction

Throughout this paper we consider the instationary Navier-Stokes system

ut −∆u+ u · ∇u+∇p= 0, div u= 0

u|∂Ω
= 0, u(0) =u0

(1.1)
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in a bounded domain Ω ⊂ R3 with boundary ∂Ω of class C2,1 and a time interval
[0, T ), 0 < T ≤ ∞, with initial value u0, vanishing external force and viscosity
ν = 1. First we recall the definition of weak and strong solutions.

Definition 1.1 Given an initial value u0 ∈ L2
σ(Ω) a vector field

u ∈ L∞
(
0, T ;L2

σ(Ω)
)
∩ L2

loc

(
[0, T );W 1,2

0 (Ω)
)

(1.2a)

is called a weak solution (in the sense of Leray and Hopf) of the Navier-Stokes
system (1.1) if the relation

−〈u,wt〉Ω,T + 〈∇u,∇w〉Ω,T − 〈uu,∇w〉Ω,T = 〈u0, w(0)〉Ω (1.2b)

holds for each test function w ∈ C∞
0

(
[0, T );C∞

0,σ(Ω)
)
, and if the energy inequality

1

2
‖u(t)‖2

2 +

∫ t

0

‖∇u‖2
2 dτ ≤

1

2
‖u0‖2

2 (1.2c)

is satisfied for all t ∈ [0, T ).
A weak solution u of (1.1) is called a strong solution if there exist exponents

2 < s <∞, 3 < q <∞ with 2
s

+ 3
q

= 1 such that additionally Serrin’s condition

u ∈ Ls
(
0, T ;Lq(Ω)

)
(1.2d)

is satisfied.

Given a weak solution u of (1.1) we may assume without loss of generality that

u : [0, T ) → L2
σ(Ω) is weakly continuous,

see [19, Theorem V, 1.3.1]. Moreover, there exists a distribution p on (0, T )×Ω,
the so-called associated pressure, such that

ut −∆u+ u · ∇u+∇p = 0

in the sense of distributions [19, V.1.7].

Serrin’s condition (1.2d) with 2
s

+ 3
q

= 1 yields the regularity property

u ∈ C∞(
(0, T )× Ω

)
, p ∈ C∞(

(0, T )× Ω
)

if ∂Ω is of class C∞, see [19, Theorem V, 1.8.2]. Therefore, a strong solution is
also called a regular solution.

The existence of at least one weak solution of (1.1) is well-known since the
pioneering work of J. Leray [17] and E. Hopf [14]. To prove the existence of a
strong solution u ∈ Ls

(
0, T ;Lq(Ω)

)
, 2

s
+ 3

q
= 1, in some time interval [0, T ) we need

besides the condition u0 ∈ L2
σ(Ω) a further regularity property of the initial value
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u0. The first sufficient condition on the initial value for a bounded domain seems
to have been described in [15]. Since then many results on sufficient conditions on
u0 to guarantee the existence of local strong solutions were proved, see, e.g., [2],
[8], [11], [13], [16], [18], [20], [21]. Indeed, during the last 40 years, the conditions
on u0 could be weakened step by step. The following result yields the weakest –
necessary and sufficient – condition in this context. Here Aq denotes the Stokes

operator on Lq
σ(Ω = C∞

0,σ(Ω)
‖·‖q

, 1 < q < ∞, where C∞
0,σ(Ω) = {u ∈ C∞

0 (Ω) :
div u = 0}, and e−tAq , t ≥ 0, is the semigroup generated by Aq on Lq

σ(Ω).

Theorem 1.2 Let Ω ⊂ R3 be a bounded domain with boundary ∂Ω of class C2,1,
let 2 < s <∞, 3 < q <∞ satisfy 2

s
+ 3

q
= 1 and let u0 ∈ L2

σ(Ω).

(1) The condition ∫ ∞

0

‖e−tAqu0‖s
q dt <∞ (1.3)

is necessary and sufficient for the existence of a unique strong solution u ∈
Ls

(
0, T ;Lq(Ω)

)
in some time interval [0, T ), 0 < T ≤ ∞, of the Navier-

Stokes system (1.1) with initial value u(0) = u0.

(2) There exists a constant ε∗ = ε∗(Ω, q) > 0 with the following property: If∫ T

0

‖e−tAqu0‖s
q dt ≤ ε∗ for some 0 < T ≤ ∞, (1.4)

then (1.1) has a unique strong solution u on the interval [0, T ) satisfying
(1.2a) – (1.2d) and u(0) = u0.

To interpret the results of Theorem 1.2 let us recall some well-known facts on
the Stokes operator. Let Aα

q : D(Aα
q ) ⊆ Lq

σ(Ω) → Lq
σ(Ω), −1 ≤ α ≤ 1, denote the

fractional powers of the Stokes operator. As is well-known,

D(Aq) = W 2,q(Ω) ∩W 1,q
0 (Ω) ∩ Lq

σ(Ω) ⊂ D(Aα
q ) ⊆ Lq

σ(Ω)

for 0 ≤ α ≤ 1, and (Aα
q )−1 = A−α

q . Moreover,

‖v‖q ≤ c‖Aα
γv‖γ, v ∈ D(Aα

γ ), 1 < γ ≤ q, 2α+
3

q
=

3

γ
, (1.5)

and
‖Aα

q e
−tAqv‖q ≤ ce−δt t−α‖v‖q, v ∈ Lq

σ(Ω), 0 ≤ α ≤ 1, t > 0, (1.6)

with constants c = c(Ω, q) > 0, δ = δ(Ω, q) > 0, see [1], [4], [9], [10], [12], [19],
[21], [23].

The next remark yields some further aspects of this result.
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Remark 1.3 (1) Since for u0 ∈ L2
σ(Ω)

‖e−tAqu0‖q = ‖Aα
q e

−tAqA−α
q u0‖q ≤ ct−αe−δt‖A−α

q u0‖q

and ‖A−α
q u0‖q ≤ c‖u0‖2, where 2α+ 3

q
= 3

2
, we get that

‖e−tAqu0‖s
q ≤ cst−αse−δst‖u0‖s

2

with constants c = c(Ω, q) > 0. Hence ‖e−tAqu0‖s
q is well-defined and even con-

tinuous for every t > 0. Therefore, the integrability condition (1.3) is equivalent
to the condition ∫ T0

0

‖e−tAqu0‖s
q dt <∞ (1.7)

for each given T0 > 0. If (1.3) is satisfied, the term
∫ T0

0
‖e−tAqu0‖s

q dt tends to
0 as T0 → 0+, hence (1.3) implies that condition (1.4) is always satisfied with
some sufficiently small T = T (Ω, q, u0) > 0 depending on u0 ∈ L2

σ(Ω).

(2) Let B
2/s
q′,s′(Ω) denote the usual Besov space ([22, Definition 4.2.1]) and let

B−2/s
q,s (Ω) be the Besov space of solenoidal vector fields introduced in [3, (0.5),

(0.6)], i.e., B−2/s
q,s (Ω) =

(
B2/s

q′,s′(Ω)
)′

, q′ = q
q−1

, s′ = s
s−1

, means the dual space of

B2/s
q′,s′(Ω) =B

2/s
q′,s′(Ω) ∩ Lq′

σ (Ω) = (Lq′
σ (Ω),D(Aq′))1/s,s′

= {v ∈ B2/s
q′,s′(Ω) : div v = 0, N · v|∂Ω

= 0},

where (·, ·)1/s,s′ denotes the real interpolation space. Note that here 2
s
< 1 − 1

q

and that N ·v|∂Ω
is the normal component of v at ∂Ω. Then the real interpolation

method [22, Theorem 1.14.5] yields the equivalence of norms( ∫ ∞

0

‖e−tAqu0‖s
q dt

)1/s

=
( ∫ ∞

0

‖Aqe
−tAq(A−1

q u0)‖s
q dt

)1/s

≈‖A−1
q u0‖(Lq

σ ,D(Aq))1−1/s,s
= ‖u0‖(AqLq

σ ,Lq
σ)1−1/s,s

where

AqL
q
σ = {v ∈ C∞

0,σ(Ω)′ : ∃c = c(v) ≥ 0 : |〈v, ϕ〉| ≤ c ‖Aq′ϕ‖q′ for all ϕ ∈ D(Aq′)}

coincides with the dual space D(Aq′)
′ and is equipped with the norm ‖v‖AqLq

σ
:=

inf c(v) defined as the infimum of these constants c(v). Moreover, duality theory
[22, Theorem 1.11.2] and [3, Proposition 3.4] imply that( ∫ ∞

0

‖e−tAqu0‖s
q dt

)1/s

≈‖u0‖(D(Aq′ ),L
q′
σ )′

1−1/s,s′
= ‖u0‖(Lq′

σ ,D(Aq′ ))
′
1/s,s′

≈‖u0‖(B2/s

q′,s′ )
′ = ‖u0‖B−2/s

q,s
.
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Hence we get an equivalent formulation of Theorem 1.2(1) in Besov spaces: The
initial value u0 admits a local strong solution u ∈ Ls

(
0, T ;Lq(Ω)

)
of (1.1) on

some interval [0, T ), 0 < T ≤ ∞, if and only if u0 ∈ B−2/s
q,s (Ω).

(3) In Theorem 1.2 let 3 < q ≤ s so that s′ ≤ q′ < 2. Then by [3] and [22,
Theorem 4.6.1]

B2/s
q′,s′(Ω) =B

2/s
q′,s′(Ω) ∩ Lq′

σ (Ω) ⊂ B
2/s
q′,q′(Ω) ∩ Lq′

σ (Ω)

⊂H2/s
q′ (Ω) ∩ Lq′

σ (Ω) =: H2/s
q′ (Ω) = D(A

1/s
q′ )

with continuous embeddings so that a duality argument yields the estimate

‖u0‖B−2/s
q,s

≤ c‖A−1/s
q u0‖q.

By part (2) we conclude that( ∫ ∞

0

‖e−tAqu0‖s
q dt

)1/s

≤ c‖A−1/s
2 u0‖q

with c = c(Ω, q) > 0. Hence, if 3 < q ≤ s < ∞ and A
−1/s
2 u0 ∈ Lq(Ω), Theorem

1.2(1) yields the existence of a unique strong solution u ∈ Ls
(
0, T ;Lq(Ω)

)
in some

interval [0, T ), 0 < T ≤ ∞, of (1.1) with u(0) = u0.

We note that conditions on initial values as weak as possible can be used in
the regularity theory of weak solutions: For at least almost all t ∈ (0, T ) the
term u(t) plays the role of an initial value of a local strong solution which can
be identified locally with u. By this idea several global regularity properties of u
can be obtained, see [6], [7], [20].

Before coming to the proof of Theorem 1.2 let us explain some notations and
the concept of very weak solutions. In this paper 〈·, ·〉Ω denotes the usual pairing
of functions on Ω, and 〈·, ·〉Ω,T means the corresponding pairing on [0, T )×Ω. For
1 < q <∞ and k ∈ N we need the usual Lebesgue and Sobolev spaces Lq(Ω) with
norm ‖·‖Lq(Ω) = ‖·‖q and W k,q(Ω) with norm ‖ · ‖W k,q(Ω) = ‖ · ‖k;q, respectively.

Further we need the Bochner spaces Ls
(
0, T ;Lq(Ω)

)
, 1 < s <∞, with the norm

‖·‖Ls(0,T ;Lq) = ‖·‖q,s =
( ∫ T

0
‖·‖s

q dt
)1/s

. Concerning smooth functions we use
the spaces C∞

0 (Ω) and C∞
0,σ(Ω) = {u ∈ C∞

0 (Ω) : div u = 0}. Then Lq
σ(Ω) =

C∞
0,σ(Ω)

‖·‖q
and W 1,q

0 (Ω) = C∞
0 (Ω)

‖·‖W1,q(Ω) .
Let Pq : Lq(Ω) → Lq

σ(Ω) denote the Helmholtz projection, and let Aq =
−Pq∆ : D(Aq) → Lq

σ(Ω) be the Stokes operator with domain D(Aq) = W 2,q(Ω)∩
W 1,q

0 (Ω) ∩ Lq
σ(Ω) and range R(Aq) = Lq

σ(Ω). Note that Pqv = Pγv for all v ∈
Lq(Ω) ∩ Lγ(Ω), Aqv = Aγv for v ∈ D(Aq) ∩ D(Aγ), 1 < q, γ < ∞, and that

‖A1/2
q v‖q ≈ ‖v‖W 1,q(Ω) for all v ∈ D(A

1/2
q ) = W 1,q

0 (Ω) ∩ Lq
σ(Ω).

Using the theory of maximal regularity, for every f ∈ Ls
(
0, T ;Lq

σ(Ω)
)
, 1 < q,

s <∞, the instationary Stokes system

wt + Aqw = f, w(0) = 0, (1.8)

5



has a unique solution w ∈ C0
(
[0, T ];Lq

σ(Ω)
)

with w(t) ∈ D(Aq) for a.a. t ∈ [0, T ]
which additionally satisfies the a priori estimate

‖wt‖Ls(0,T ;Lq) + ‖Aqw‖Ls(0,T ;Lq) ≤ c ‖f‖Ls(0,T ;Lq), (1.9)

with c = c(Ω, q, s) > 0 independent of T ∈ (0,∞], see [12]. This solution has the
representation

w(t) =

∫ t

0

e−(t−τ)Aqf(τ) dτ, (1.10)

using the bounded analytic semigroup e−tAq , t ≥ 0, on Lq
σ(Ω) generated by Aq.

Assume that v ∈ C∞
0,σ(Ω)′ is a functional (distribution) well-defined for all

ϕ ∈ C∞
0,σ(Ω) such that the estimate

|〈v, ϕ〉| ≤ c ‖A1/2
q′ ϕ‖q′

holds for all ϕ ∈ D(A
1/2
q′ ) with a constant c = c(v) > 0 independent of ϕ. Then

there exists a unique vector field w ∈ Lq
σ(Ω), also denoted by A

−1/2
q Pqv, such that

〈v, A−1/2
q′ ψ〉 = 〈w,ψ〉 = 〈A−1/2

q Pqv, ψ〉

for all ψ ∈ Lq′
σ (Ω). In particular, for v = divF =

( ∑3
i=1 ∂Fij/∂xi

)3

j=1
, F =

(Fij)
3
i,j=1 ∈ Lq(Ω), we obtain that A

−1/2
q Pq divF ∈ Lq

σ(Ω) and

‖A−1/2
q Pq divF‖q ≤ c ‖F‖q (1.11)

with a constant c = c(Ω, q) > 0. Note that u = A
−1/2
q Pq divF is the weak solution

of the stationary Stokes system

−∆u+∇p = divF, div u = 0 in Ω, u|∂Ω
= 0

in Lq
σ(Ω).

In the same way we obtain a unique vector field A−1
q Pqv ∈ Lq

σ(Ω) defined by
the relation

〈v, A−1
q′ ψ〉 = 〈A−1

q Pqv, ψ〉

for all ψ ∈ Lq′
σ (Ω) if the estimate

|〈v, ϕ〉| ≤ c‖Aq′ϕ‖q′

holds for all ϕ ∈ D(Aq′) with some constant c = c(v) ≥ 0. For further details in
this context we refer to [5] and [19, III 2.6].
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Definition 1.4 Let 1 < s, q <∞ satisfy 2
s
+ 3

q
= 1, let the space of initial values,

J q,s
σ (Ω), be defined as the set of all v ∈ C∞

0,σ(Ω)′ satisfying A−1
q Pqv ∈ Lq

σ(Ω) and

‖v‖J q,s
σ (Ω) := ‖A−1

q Pqv‖q +

∫ ∞

0

‖Aqe
−tAq(A−1

q Pqv)‖s
q dt <∞, (1.12)

and let u0 ∈ J q,s
σ (Ω). Then u ∈ Ls

(
0, T ;Lq(Ω)

)
is called a very weak solution of

the Navier-Stokes system (1.1) if

〈u,wt〉Ω,T − 〈u,∆w〉Ω,T − 〈uu,∇w〉Ω,T = 〈u0, w(0)〉Ω (1.13)

holds for all test functions w ∈ C1
0

(
[0, T );C2

0,σ(Ω)
)
; here C2

0,σ(Ω) = {v ∈ C2(Ω) :
div v = 0, v|∂Ω

= 0}.

We note that Definition 1.4 is a special case of the concept of very weak solu-
tions to inhomogeneous (Navier-)Stokes systems, see [5], [7]. In the corresponding
definition of very weak solutions for the linear case (instationary Stokes system)
where the nonlinear term u · ∇u is absent, we have to omit in Definition 1.4 the
restriction 2

s
+ 3

q
= 1 and in (1.13) the term 〈uu,∇w〉Ω,T .

Theorem 1.5 ([5], [7]) Let Ω ⊂ R3 be a bounded domain of class C2,1, let 1 < s,
q < ∞ satisfy 2

s
+ 3

q
= 1 and let u0 ∈ J q,s

σ (Ω). Then there exists a constant

ε∗ = ε∗(Ω, q) > 0 with the following property: If for some 0 < T ≤ ∞∫ T

0

‖Aqe
−tAq (A−1

q Pqu0)‖s
q dt ≤ ε∗, (1.14)

then the Navier-Stokes system (1.1) has a unique very weak solution u ∈
Ls

(
0, T ;Lq(Ω)

)
. Moreover, u has the representation

u(t) = E(t)−
∫ t

0

A1/2
q e−(t−τ)Aq A−1/2

q Pq div (uu)dτ, 0 ≤ t < T, (1.15)

where E(t) = Aqe
−tAq(A−1

q Pqu0) is the unique very weak solution of the insta-
tionary Stokes system Et − ∆E + ∇p = 0, divE = 0 in (0, T ) × Ω, E|∂Ω

= 0,

E(0) = u0. Finally, there exists a constant C = C(Ω, q) > 0 such that

‖u‖Ls(0,T ;Lq) ≤ C‖E‖Ls(0,T ;Lq). (1.16)

Theorem 1.5 is a special case of the general result on existence and uniqueness
of very weak solutions to the inhomogeneous Navier-Stokes system. We will apply
Theorem 1.5 for the proof of Theorem 1.2 only when u0 ∈ L2

σ(Ω). In that case
(1.14) and (1.15) simplify and E(t) = e−tAqu0 = e−tA2u0.
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2 Proof of Theorem 1.2

Proof of Theorem 1.2(2) First suppose that the condition∫ T

0

‖e−tAqu0‖s
q dt ≤ C (2.1)

is satisfied for some constant C > 0 and 0 < T ≤ ∞. Later on we will choose
C = ε∗ sufficiently small.

Since by (1.5) with 2α+ 3
q

= 3
2
, 0 < α < 3

4
,

‖A−1
q Pqu0‖q ≤ c‖Aα

qA
−1
q u0‖q ≤ c‖u0‖2,

we conclude with (1.6) from (2.1) that

‖A−1
q Pqu0‖q +

∫ ∞

0

‖Aq e
−tAq(A−1

q Pqu0)‖s
q dt <∞.

Therefore, u0 lies in the set of admissible initial values, J q,s
σ (Ω). Hence Theo-

rem 1.5 yields the existence of a unique very weak solution u ∈ Ls
(
0, T ;Lq(Ω)

)
provided that T > 0 satisfies the condition (2.1) with C = ε∗ as in (1.14).

To prove that u is a strong solution on (0, T ) it remains to show that u satisfies
(1.2a), (1.2c); then the variational equation (1.2b) will be an easy consequence of
(1.13). Looking at the representation formula (1.15) note that E(t) = e−tAqu0 =
e−tA2u0 is the weak solution of a homogeneous instationary Stokes system with
initial value E(0) = u0 ∈ Lq

σ(Ω) ⊆ L2
σ(Ω); thus

E ∈ L∞
(
0, T ;L2(Ω)

)
∩ L2

loc

(
[0, T );W 1,2

0 (Ω)
)
,

‖E(t)‖2 ≤ ‖u0‖2, ‖∇E‖2,2 ≤ ‖u0‖2 .
(2.2)

Hence it suffices to analyze integrability properties of

ũ(t) := u(t)−E(t) = −
∫ t

0

A1/2
q e−(t−τ)Aq A−1/2

q Pq div (uu)dτ, 0 ≤ t < T, (2.3)

and also of ∇ũ(t), or equivalently of

A1/2
q ũ(t) = −

∫ t

0

A1/2
q e−(t−τ)Aq Pq div (uu)dτ. (2.4)

To this reason we use the Yosida approximation of ũ, defined by

ũn = Jnũ, Jn =
(
I +

1

n
A1/2

q

)−1
, n ∈ N,
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so that ũ = ũn + 1
n
A

1/2
q ũn, see e.g. [19, II.3.4]. In order to smooth (2.3) we apply

Jn and note that

JnPq div (uu) = JnPq div (uũ) + JnPq div (uE)

= JnPq(u · ∇ũn) +
1

n
A1/2

q JnA
−1/2
q Pq div (uA1/2

q ũn) + JnPq(u · ∇E).

By the properties of the Yosida approximations – in particular Jn and 1
n
A

1/2
q Jn

are bounded on Lq
σ(Ω) uniformly with respect to n ∈ N – we get from (1.11) and

Hölder’s inequality with γ = (1
2

+ 1
q
)−1 that

‖JnPq div (uu)‖γ ≤ c
(
‖u · ∇ũn‖γ + ‖A−1/2

q Pq div (uA1/2
q ũn)‖γ + ‖u · ∇E‖γ

)
≤ c‖u‖q

(
‖A1/2

q ũn‖2 + ‖∇E‖2

)
.

Using (1.5), (1.6) with 2α+ 3
2

= 3
γ

(
α = 3

2q
< 1

2

)
, we obtain the estimate

‖A1/2
q ũn(t)‖2 = ‖A1/2

q Jnũ(t)‖2

≤ c
∫ t

0

‖Aα
q A

1/2
q e−(t−τ)Aq Jn Pq div (uu)‖γ dτ

≤ c
∫ t

0

(t− τ)−α−1/2‖u‖q

(
‖A1/2

q ũn‖2 + ‖∇E‖2

)
dτ

with a constant c = c(Ω, q) > 0 independent of n ∈ N. Next we apply the Hardy-
Littlewood inequality with

(
1
2
− α

)
+ 1

2
= 1

2
+ 1

s
, see [19, Lemma II.3.3.2], and

Hölder’s inequality to see that

‖A1/2
q ũn‖2,2 ≤ c̃‖u‖q,s

(
‖A1/2

q ũn‖2,2 + ‖∇E‖2,2

)
with c̃ = c̃(Ω, q) > 0 independent of n ∈ N. Using (1.16) and (1.4) we see that
the constant ε∗ = ε∗(Ω, q) > 0 can be chosen in such a way that

c̃‖u‖q,s = c̃‖u‖Ls(0,T ;Lq) ≤
1

2
.

Then the absorption principle leads to the estimate

‖A1/2
q ũn‖2,2 ≤ 2c̃‖u‖q,s ‖∇E‖2,2.

As n→∞ we conclude that A
1/2
q ũ ∈ L2

(
0, T ;L2(Ω)

)
and that

‖∇ũ‖2,2 = ‖A1/2
q ũ‖2,2 ≤ 2c̃‖u‖q,s ‖∇E‖2,2.

In particular, due to (2.2) we get that

∇ũ,∇u ∈ L2
(
0, T ;L2(Ω)

)
. (2.5)
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In the next step we show that

uu ∈ L2
(
0, T ;L2(Ω)

)
. (2.6)

For this purpose we write (2.3) in the form

ũ(t) = −
∫ t

0

e−(t−τ)AqPq(u · ∇u) dτ ,

choose α = 3
q
, 1

q1
= 1

2
− 1

q
, 1

q2
= 1

2
+ 1

q
and use (1.5), (1.6) with 2α + 3

q1
= 3

q2
to

see that

‖ũ(t)‖q1 ≤ c
∫ t

0

‖Aα
q2
e−(t−τ)Aq2Pq2(u · ∇u)‖q2 dτ

≤ c
∫ t

0

(t− τ)−α‖u · ∇u‖q2 dτ

with c = c(Ω, q) > 0. Next we apply the Hardy-Littlewood inequality with
(1−α) + 1

s1
= 1

s2
where 1

s1
= 1

2
− 1

s
, 1

s2
= 1

2
+ 1

s
so that α = 1− 2

s
= 3

q
and obtain

from (2.5) that

‖ũ‖q1,s1 ≤ c ‖u · ∇u‖q2,s2 ≤ c ‖u‖q,s ‖∇u‖2,2 <∞.

The weak solution E, see (2.2), also satisfies E ∈ Ls1
(
0, T ;Lq1(Ω)

)
since 2

s1
+ 3

q1
=

3
2
. Hence we conclude that u ∈ Ls1

(
0, T ;Lq1(Ω)

)
, and Hölder’s inequality proves

(2.6) since
‖uu‖2,2 ≤ c ‖u‖q,s‖u‖q1,s1 <∞.

In the final step we set F = uu and conclude from (2.4) that u is a solution
of the linear Stokes system

ut + Aqu = −divF, u(0) = u0 (2.7)

in the weak sense. Since ∇u ∈ L2
(
0, T ;L2(Ω)

)
and F ∈ L2

(
0, T ;L2(Ω)

)
, classical

linear theory yields u ∈ L∞
(
0, T ;L2(Ω)

)
and the energy inequality

1

2
‖u(t)‖2

2 +

∫ t

0

‖∇u‖2
2 dτ ≤

1

2
‖u0‖2

2 −
∫ t

0

〈uu,∇u〉 dτ.

Moreover, 〈uu,∇u〉 = 0 for a.a. t ∈ (0, T ) since uu,∇u ∈ L2(Ω) for a.a. t ∈
(0, T ). This proves the energy inequality (1.2c) (indeed as an equality). The
uniqueness of u, even within the class of weak solutions, follows from Serrin’s
uniqueness theorem, see [19, Theorem V.1.5.1].

Proof of Theorem 1.2(1) Suppose that (1.3) is satisfied. Then the function t 7→
‖e−tAqu0‖s

q is integrable on (0,∞), and there exists some T ∈ (0,∞] such that
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(1.4) is satisfied. Now part (2) shows that condition (1.3) is sufficient for the
existence of a strong solution.

Suppose that u ∈ Ls
(
0, T ;Lq(Ω)

)
is a strong solution of (1.1) in some inter-

val [0, T ), 0 < T ≤ ∞. Since by definition u is also a weak solution, Hölder’s
inequality easily implies that F = uu ∈ L2

(
0, T ;L2(Ω)

)
, see [19, p. 297]. More-

over, u can be considered as the weak solution of the linear system (2.7) so that
ũ = u− E has the representation (2.3) with q = 2, cf. [19, Theorem IV.2.4.1].

Using (1.5) with 2α+ 3
q

= 3
q/2

, i.e. α = 3
2q

, and (1.11) we conclude from (2.3)
that

‖ũ(t)‖q ≤ c

∫ t

0

(t− τ)−α−1/2‖uu‖q/2 dτ, 0 ≤ t ≤ T,

with c = c(Ω, q) > 0. Then the Hardy-Littlewood inequality, using (1
2
−α) + 1

s
=

1
s/2

, α = 1
2
(1− 2

s
) = 3

2q
, implies that

‖ũ‖q,s ≤ c ‖uu‖q/2,s/2 ≤ c ‖u‖2
q,s <∞.

Hence ũ ∈ Ls
(
0, T ;Lq(Ω)

)
and also E = u − ũ ∈ Ls

(
0, T ;Lq(Ω)

)
, which shows

that the function t 7→ ‖e−tA2u0‖s
q is integrable on (0, T ). By (1.5) with 2α′+ 3

q
= 3

2

(α′ ∈ (0, 3
4
)) and (1.6) we see that

‖e−tA2u0‖q ≤ c ‖Aα′

2 e
−tA2u0‖2 ≤ c t−α′e−δt‖u0‖2

with c = c(Ω, q) > 0, δ = δ(Ω, q) > 0. Therefore, the map t 7→ ‖e−tA2u0‖s
q is

integrable on (0,∞), i.e., condition (1.3) is satisfied.
Now the proof of Theorem 1.2 is complete.
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