
Diagonally Drift–Implicit Runge–Kutta

Methods of Weak Order One and Two for Itô
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Abstract

Families of first and second order diagonally drift–implicit SRK (DDISRK) methods
for the weak approximation of SDEs contained in the class of SRK methods pro-
posed by Rößler are calculated. Their asymptotic stability as well as mean–square
stability (MS–stability) properties are studied for a linear stochastic test equation
with multiplicative noise. The stability functions for the DDISRK methods are de-
termined and their domains of stability are compared to the corresponding domain
of stability of the considered test equation. Stability regions are presented for vari-
ous coefficients of the families of DDISRK methods in order to determine step size
restrictions such that the numerical approximation reproduces the characteristics
of the solution process.
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1 Introduction

Numerical methods are an important tool for the calculation of approximate
solutions of stochastic differential equations (SDEs) which possess no ana-
lytical solution formula. Therefore, many approximation schemes have been
developed in recent years and much research has been carried out to develop
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derivative free stochastic Runge–Kutta (SRK) type methods [2,17–19,27]. Sim-
ilar to the well understood deterministic setting of ordinary differential equa-
tions (ODEs), one has to pay much attention to the stability properties of the
solution as well as of the numerical approximations. Therefore, implicit meth-
ods have been proposed for the strong pathwise approximation of solutions
of SDEs and their stability has been analyzed [2,9,16,25]. However, for the
approximation of moments of the solution process special numerical methods
converging in the weak sense have to be applied (see, e.g., [11–14,17–21,27])
and a stability analysis has to be carried out similar to that for strong ap-
proximations [9,13,26]. In the present paper, we present families of first and
second order diagonally drift–implicit SRK (DDISRK) methods for the weak
approximation of SDEs contained in the class of SRK methods proposed by
Rößler [20]. Further, we analyze their asymptotic stability and mean–square
stability for linear test equations with multiplicative noise. Finally, the regions
of stability of the DDISRK methods are compared to the regions of stability
of the linear test equation. Thus, in Section 2 we consider the class of SRK
methods and coefficients families for weak order one and order two DDISRK
methods are presented. Then, we discuss the concepts of stability for solutions
of SDEs and for numerical approximations in Section 3 and Section 4, respec-
tively. In Section 5, some numerical experiments are carried out in order to
justify our theoretical results.

Let (Ω,F , P) be a probability space with a filtration (Ft)t≥0 which fulfills
the usual conditions and I = [t0, T ] for some 0 ≤ t0 < T < ∞. Then, let
X = (Xt)t∈I denote the solution process of an Itô SDE

dXt = a(t,Xt) dt + b(t,Xt) dWt, Xt0 = x0, (1)

for t ∈ I where a : I × R
d → R

d is the drift and b : I × R
d → R

d×m is the
diffusion, (Wt)t≥0 is a m-dimensional Wiener process and a Ft0–measurable
initial condition x0 independent of Wt−Wt0 for t ≥ t0 such that E(‖x0‖2r) < ∞
for some r ∈ N. The jth column of the d × m–diffusion matrix b = (bij) will
be denoted by bj in the following. Further, we suppose that the conditions of
the existence and uniqueness theorem [11] are fulfilled for SDE (1).

In the following, we consider time discrete approximations Y h = (Yt)t∈Ih
w.r.t.

a constant step size h = T−t0
N

for some N ∈ N and Ih = {t0, t1, . . . , tN}
where tn = t0 + nh for 0 ≤ n ≤ N . As usual, we also write Yn = Ytn for
0 ≤ n ≤ N . Further, let C l

P (Rd, R) denote the space of all g ∈ C l(Rd, R)
fulfilling a polynomial growth condition [11].

Definition 1.1 A time discrete approximation Y h converges weakly with or-
der p > 0 to X as h → 0 at time t ∈ Ih if for each f ∈ C

2(p+1)
P (Rd, R) exists

a constant Cf , which does not depend on h, and a finite δ0 > 0 such that for
each h ∈ ]0, δ0[

|E(f(Xt)) − E(f(Yt))| ≤ Cf hp . (2)
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2 Diagonally Drift-Implicit Stochastic Runge–Kutta Methods

For the weak approximation of the solution of the Itô SDE (1), we consider
the class of SRK methods introduced by Rößler [20]. Then, the d-dimensional
approximation process Y h with Yn = Ytn for tn ∈ Ih is given by the following
SRK method of s-stages with Y0 = x0 and

Yn+1 = Yn +
s

∑

i=1

αi a(tn + c
(0)
i hn, H

(0)
i ) hn

+
s

∑

i=1

m
∑

k=1

(

β
(1)
i Î(k),n + β

(2)
i

Î(k,k),n√
hn

)

bk(tn + c
(1)
i hn, H

(k)
i )

+
s

∑

i=1

m
∑

k=1

(

β
(3)
i Î(k),n + β

(4)
i

√

hn

)

bk(tn + c
(2)
i hn, Ĥ

(k)
i )

(3)

for n = 0, 1, . . . , N − 1 with stage values

H
(0)
i = Yn +

s
∑

j=1

A
(0)
ij a(tn + c

(0)
j hn, H

(0)
j ) hn

+
s

∑

j=1

m
∑

l=1

B
(0)
ij bl(tn + c

(1)
j hn, H

(l)
j ) Î(l),n

H
(k)
i = Yn +

s
∑

j=1

A
(1)
ij a(tn + c

(0)
j hn, H

(0)
j ) hn

+
s

∑

j=1

B
(1)
ij bk(tn + c

(1)
j hn, H

(k)
j )

√

hn

Ĥ
(k)
i = Yn +

s
∑

j=1

A
(2)
ij a(tn + c

(0)
j hn, H

(0)
j ) hn

+
s

∑

j=1

m
∑

l=1
l 6=k

B
(2)
ij bl(tn + c

(1)
j hn, H

(l)
j )

Î(k,l),n√
hn

for i = 1, . . . , s and k = 1, . . . ,m. The random variables of the method are
defined by

Î(k,l),n =















1
2
(Î(k),nÎ(l),n −

√
hnĨ(k),n) if k < l

1
2
(Î(k),nÎ(l),n +

√
hnĨ(l),n) if l < k

1
2
(Î2

(k),n − hn) if k = l

(4)

for 1 ≤ k, l ≤ m with independent random variables Î(k),n for 1 ≤ k ≤ m and

Ĩ(k),n for 1 ≤ k ≤ m−1 and 0 ≤ n < N . Thus, only 2m−1 independent random

variables have to be simulated for each step. In the following, we choose Î(k),n

as a three point distributed random variable with P(Î(k),n = ±
√

3 hn) = 1
6

and P(Î(k),n = 0) = 2
3
. The random variables Ĩ(k),n are defined by a two point

distribution with P(Ĩ(k),n = ±
√

h) = 1
2
.

3



The main advantage of this class of SRK methods is the significant reduction
of complexity compared to present SRK methods in recent literature, because
the number of stages does not depend on the dimension m of the driving
Wiener process [20]. We denote by α = (αi) and β(k) = (β

(k)
i ) for 1 ≤ k ≤ 4

the corresponding vectors of weights and by A(k) = (A
(k)
ij ) and B(k) = (B

(k)
ij )

for k = 0, 1, 2 the corresponding coefficients matrices. Then, the coefficients
of the SRK method (3) can be represented by an extended Butcher array:

c(0) A(0) B(0)

c(1) A(1) B(1)

c(2) A(2) B(2)

αT β(1)T β(2)T

β(3)T β(4)T

Weak order one and two conditions for the SRK method (3) have been cal-
culated in [20] by applying the colored rooted tree theory due to Rößler in-
troduced in [17]. Now, let pS = p denote the order of convergence of the SRK
method (3) if it is applied to an SDE and let pD with pD ≥ pS denote the
order of convergence if it is applied to a deterministic ODE, i.e., SDE (1) with
b ≡ 0 and we also write (pD, pS) [17,18]. Since we are interested in SRK meth-
ods which inherit good stability properties, we consider families of DDISRK
methods which are diagonally implicit in the deterministic part of the scheme.

2.1 Weak Order One DDISRK Methods

Firstly, we consider weak order one DDISRK methods (3) with s = 1 stage [20].
However, in order to cover the stochastic theta method [9,11], we also consider
the case that the stage number is s = 2 for the drift function only, whereas it
is still one for the diffusion function. Then, from the order conditions [20] it
follows that the family of weak order one DDISRK methods is characterized
by the Butcher table (5) with some coefficients c1, c2, c3, c4, c5 ∈ R. As an
example, in the case of s = 1 stage we obtain for c1 = c2 = c3 = c4 = c5 = 0
the explicit Euler-Maruyama scheme of order (1, 1) [11]. For c1 = 1

2
and c2 =

c3 = c4 = c5 = 0 we obtain the SRK scheme DDIRDI1 with s = 1 stage of
order (2, 1), which reduces to the midpoint rule if it is applied to an ODE [5].
If we consider the case of s = 2 stages, then we get for c1 = 0, c2 = 1 − θ,
c3 = θ, c4 = 1 and c5 = θ for some θ ∈ [0, 1] the SRK scheme DDIRDI2
of order (2, 1) which coincides with the stochastic theta method [9,11,23,24].

Further, for s = 2 stages with c1 = c3 = 3+
√

3
6

, c2 = − 1√
3
, c5 = 1

2
and c4 ∈ R

we get DDISRK schemes of order (3, 1) which are A-stable in case of ODEs
[5]. Especially, in the case of c4 = 3

2
we denote the scheme as DDIRDI3 in the
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c1 c1 0 0 0

c2 + c3 c2 c3 c4 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 − c5 c5 1 0 0 0

0 0 0 0

(5)

following. Note that the schemes DDIRDI1 and DDIRDI2 for θ = 1
2

are also
A-stable if they are applied to ODEs [5].

2.2 Weak Order Two DDISRK Methods

Next, we consider weak second order DDISRK methods (3) with s = 3 stages.

Here, we claim that α3 = 0 and A
(2)
ij = 0 for 1 ≤ i, j ≤ 3 in order to reduce

the computational effort. Since in this case the third stage H
(0)
3 does not

matter anymore, we let A
(0)
3j = B

(0)
3j = 0 for 1 ≤ j ≤ 3. Then, we can obtain

α1 = α2 = 1
2

from some order conditions of weak order two [20] and from
the classification given in [4] in the case of an explicit SRK scheme. On the
other hand, since we assume A(2) ≡ 0, all conditions for A(0) to satisfy are
αT A(0)e = 1

2
only. Therefore, we can consider arbitrary coefficients A

(0)
ij as

long as αT A(0)e = 1
2

is fulfilled for α1 = α2 = 1
2
. As a result of this, the weak

order two DDISRK schemes (3) are given by the infinite coefficients family
(6) with c1, c2 ∈ R and c3, c4 ∈ R \ {0}. Clearly, one has to solve 2 (in general
nonlinear) systems of equations from the stage values, each of dimension d, for
the DDISRK method if c1 6= 0 and c2 6= 0. Therefore, as in the deterministic
setting, some simplified Newton iterations have to be performed in each step
in order to solve the nonlinear system of equations [3,5]. As an example, for

c1 = c2 = 3+
√

3
6

and for all c3, c4 ∈ R \ {0} we obtain an DDISRK scheme of
order (3, 2) which is A-stable if it is applied to a deterministic ODE [5].

3 Stability analysis for SDEs

For SDEs several stochastic stability concepts have been proposed in literature,
see e.g., [9–11,13,15,22–24,26] and the literature therein. In the following, we
consider SDE (1) with a steady solution Xt ≡ 0 such that a(t, 0) = b(t, 0) = 0
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c1 c1 0 0 0 0 0

1 − c1 1 − c1 − c2 c2 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

c2
3 c2

3 0 0 c3 0 0

c2
3 c2

3 0 0 −c3 0 0

0 0 0 0 0 0 0

0 0 0 0 c4 0 0

0 0 0 0 −c4 0 0

1
2

1
2 0 1 − 1

2c2
3

1
4c2

3

1
4c2

3

0 1
2c3

− 1
2c3

− 1
2c2

4

1
4c2

4

1
4c2

4

0 1
2c4

− 1
2c4

(6)

holds, which is also called an equilibrium position. Suppose that there exists
a unique solution Xt = X(t; t0, x0) for all t ≥ t0 and for each nonrandom
initial value x0 under consideration. Then, stochastic stability can be defined
as the stochastic counterparts of stability, asymptotic stability and asymptotic
stability in the large for ODEs [1,6,11].

Definition 3.1 Let X be the solution of the scalar Itô SDE (1). Then, the
equilibrium position of the SDE is said to be

(i) stochastically stable if for all ǫ > 0 and t0 ≥ 0 holds

lim
x0→0

P

(

sup
t≥t0

|X(t; t0, x0)| ≥ ǫ

)

= 0 ,

(ii) stochastically asymptotically stable if (i) holds and if

lim
x0→0

P
(

lim
t→∞

|X(t; t0, x0)| = 0
)

= 1 ,

(iii) or stochastically asymptotically stable in the large if (i) holds and if for
all x0 ∈ R holds

P
(

lim
t→∞

|X(t; t0, x0)| = 0
)

= 1 .

Further, stability analysis involving the pth moments of the solution process
is also widely considered, see e.g. [1,9–11,13].

Definition 3.2 Let X be the solution of the scalar Itô SDE (1). Then, the
equilibrium position of the SDE is said to be
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(i) stable in the pth–mean if for every ǫ > 0 and t0 ≥ 0 there exists a
δ = δ(t0, ǫ) > 0 such that for all t ≥ t0 and |x0| < δ

E (|X(t; t0, x0)|p) < ǫ ,

(ii) asymptotically stable in the pth–mean if (i) holds and if there exists a
δ0 = δ0(t0) > 0 such that for all |x0| < δ0

lim
t→∞

E (|X(t; t0, x0)|p) = 0 .

The most frequently used cases in applications are p = 1 and p = 2, i.e.,
stability in mean (M-stability) and mean–square stability (MS-stability). In
the present paper, we will focus on asymptotic stability in the large and MS-
stability for a linear test equation with multiplicative noise [8–10,23]

dXt = λXt dt + µXt dWt (7)

for t ≥ t0 and with some constants λ, µ ∈ C and with a nonrandom initial
condition Xt0 = x0 ∈ R\{0}, which reproduces the dynamics of more complex
SDEs better than in the case of additive noise [7,11]. The exact solution of (7)
can be calculated as Xt = x0 exp((λ − 1

2
µ2)(t − t0) + µ(Wt − Wt0)) which is

stochastically asymptotically stable in the large [23] if

lim
t→∞

|Xt| = 0 with probability 1 ⇔ ℜ(λ − 1
2
µ2) < 0 . (8)

We calculate that |Xt|p = |x0|p exp(pℜ(λ − 1
2
µ2)(t − t0) + pℜ(µ)(Wt − Wt0))

which yields E(|Xt|p) = |x0|p exp(pℜ(λ − 1
2
µ2)(t − t0) + 1

2
p2(ℜ(µ))2(t − t0)).

Then the pth–mean stability domain where SDE (7) possesses an equilibrium
position can be determined as follows:

lim
t→∞

E(|Xt|p) = 0 ⇔ 2ℜ(λ) −ℜ(µ2) + p (ℜ(µ))2 < 0 . (9)

Thus, the equilibrium position of SDE (7) is asymptotically MS–stable if

lim
t→∞

E(|Xt|2) = 0 ⇔ 2ℜ(λ) + |µ|2 < 0 (10)

for the coefficients λ, µ ∈ C (see, e.g., [9,23,26]). We remark that due to
ℜ(2λ−µ2) ≤ 2ℜ(λ)+|µ|2 MS-stability always induces asymptotically stability
in the large. Further, for µ = 0 the stability condition (9) reduces to the well
known deterministic stability condition ℜ(λ) < 0.

4 Numerical stability of SRK methods

We are now looking for conditions such that a numerical method applied to
SDE (7) yields numerically stable solutions. Therefore, we say that the method
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is numerically asymptotically stable or MS–stable if the numerical solutions
Yn satisfy limn→∞ |Yn| = 0 with probability one or limn→∞ E (|Yn|2) = 0,
respectively. If we apply the numerical method to the linear test equation
(7), then we obtain with the parametrization ĥ = λh and k = µ

√
h [9,13] a

one–step difference equation of the form

Yn+1 = Rn(ĥ, k) Yn =
n

∏

i=0

Ri(ĥ, k) Y0 . (11)

with a stability function Rn(ĥ, k). The domain of asymptotic stability of a
numerical method can be determined by the following lemma [9]:

Lemma 4.1 Given a sequence of real-valued, non-negative, independent and
identically distributed random variables (|Rn(ĥ, k)|)n∈N0

, consider the sequence
of random variables (|Yn|)n∈N0

defined by (11) where |Y0| 6= 0 with probability
1. Suppose that the random variables log(Rn(ĥ, k)) are square-integrable. Then

lim
n→∞

|Yn| = 0 , with probability 1 ⇔ E(log(Rn(ĥ, k))) < 0 . (12)

We call the set RAS = {(ĥ, k) ∈ C
2 : E(log(Rn(ĥ, k))) < 0} ⊂ C

2 the do-
main of asymptotical stability of the method. Note that one can also find
some alternative parameterizations like k = −µ2

λ
in the literature [1,23,26].

Analogously, if we calculate the mean–square norm zn = E(|Yn|2) then we
obtain a one–step difference equation of the form zn+1 = R̂(ĥ, k) zn where
R̂(ĥ, k) = E(|Rn(ĥ, k)|2) is called the MS–stability function of the numerical
method. Thus, we obviously yield MS–stability, i.e. zn → 0 as n → ∞, if
R̂(ĥ, k) < 1. The set RMS = {(ĥ, k) ∈ C

2 : R̂(ĥ, k) < 1} ⊂ C
2 is called the

domain of MS–stability of the method.

Especially, the domain is called region of stability in the case of (ĥ, k) ∈ R
2

[23]. The numerical method is said to be A–stable if the domain of stability
of the test equation (7) is a subset of the domain of numerical stability. Since
the domain of stability for λ, µ ∈ C is not easy to visualize, we restrict our
attention to figures presenting the region of stability with λ, µ ∈ R in the ĥ–k2

plane. Then, for fixed values of λ and µ, the set {(λh, µ2 h) ⊂ R
2 : h > 0} is a

straight ray starting at the origin and going through the point (λ, µ2). Clearly,
varying the step size h corresponds to moving along this ray. For λ, µ ∈ R,
the region of asymptotical stability for SDE (7) reduces to the area of the
ĥ–k2 plane with the ĥ–axis as the lower bound if ĥ < 0 and with k2 > 2ĥ
as the lower bound if ĥ ≥ 0 whereas the region of MS–stability for SDE (7)
reduces to the area of the ĥ–k2 plane with the ĥ–axis as the lower bound and
k2 < −2ĥ as the upper bound for ĥ < 0.

In the following, all figures presenting regions of stability for some numerical
method under consideration are plotted by the software Mathematica. The
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regions of numerical asymptotically stability and MS–stability are indicated
by two dark–grey tones whereas the regions of MS–stability are more dark
than the regions of asymptotical stability. Further, the corresponding regions
of stability for the test equation (7) are filled by two light–grey tones whereas
again the regions of MS–stability are more dark than the regions of asymptot-
ical stability. In all presented figures, the regions of MS–stability are a subset
of the regions of asymptotical stability.

4.1 Stability of Order One DDISRK Schemes

We consider the family of order one DDISRK schemes (5) with coefficients
c1, . . . , c5 ∈ R. If we apply these schemes to the linear test equation (7) then
we obtain the difference equation

Yn+1 = Yn + (1 − c5) λh H
(0)
1 + c5 λh H

(0)
2 + µ Î(1),n H

(1)
1 (13)

with the stage values

H
(0)
1 = Yn + c1 λh H

(0)
1

H
(0)
2 = Yn + c2 λh H

(0)
1 + c3 λh H

(0)
2 + c4 µ Î(1),n H

(1)
1

H
(1)
1 = Yn

(14)

where the implicit equations for H
(0)
1 and H

(0)
2 can be solved in the case of

1 − c1 λh 6= 0 and 1 − c3 λh 6= 0, which is fulfilled for step sizes h 6= 1
c1 λ

if

c1 6= 0 and h 6= 1
c3 λ

if c3 6= 0. With ĥ = λh and k = µ
√

h let

Γ = 1 +
ĥ − c3 ĥ2 + c5 (c2 + c3 − c1) ĥ2

(1 − c1 ĥ)(1 − c3 ĥ)
, Σ =

c4 c5 ĥ

1 − c3 ĥ
k + k .

Then, we can write (13) by the recursion formula Yn+1 = Rn(ĥ, k) Yn with
the stability function Rn(ĥ, k) = Γ + h−1/2 Σ Î(1),n for n = 0, . . . , N − 1. Since
the SRK schemes (5) are of weak order one, we can substitute the tree point
distributed random variables Î(j),n by two point distributed random variables

Ĩ(j),n for 1 ≤ j ≤ m in (3) and consider Rn(ĥ, k) = Γ + h−1/2 Σ Ĩ(1),n instead.
Now, we analyse the asymptotic stability of the SRK schemes (5) by apply-
ing Lemma 4.1. Further, in order to analyse the MS-stability, we calculate
the mean–square norm zn = E(|Yn|2). Then, we obtain the recursion formula
zn+1 = R̂(ĥ, k) zn with the MS–stability function R̂(ĥ, k) = |Γ|2 + |Σ|2.

Proposition 4.2 For SDE (7) with λ, µ ∈ C, the SRK schemes (5) are

(i) numerically asymptotical stable if |Γ2 − 3 Σ2| |Γ|4 < 1 and in the case
that the random variables Î(j),n are replaced by Ĩ(j),n for 1 ≤ j ≤ m, if
|Γ2 − Σ2| < 1,
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Fig. 1. Asymptotical and mean–square stability region for DDIRDI1 with two point
and three point distributed random variables in the left and right figure, respectively.

-150 -100 -50 0 50 100 150 200

25

50

75

100

125

150

175

200

h

k^2

-150 -100 -50 0 50 100 150 200

25

50

75

100

125

150

175

200

h

k^2

-150 -100 -50 0 50 100 150 200

25

50

75

100

125

150

175

200

h

k^2

-150 -100 -50 0 50 100 150 200

25

50

75

100

125

150

175

200

h

k^2

Fig. 2. Asymptotical and mean–square stability region for DDIRDI2 with two point
and three point distributed random variables in the left and right figure, respectively.

(ii) numerically MS–stable if |Γ|2 + |Σ|2 < 1.

Here, we have to point out that the distribution of the random variables
used for the numerical method has significant influence on the domain of

asymptotical stability. As an example, for DDIRDI1 we have Γ =
1+ 1

2
ĥ

1− 1

2
ĥ
, Σ = k

and we calculate RAS = {(ĥ, k) ∈ C
2 : |(1+ 1

2
ĥ)2 − (1− 1

2
ĥ)2k2| < |1− 1

2
ĥ|2} if

the random variables Ĩ(j),n are used and RAS = {(ĥ, k) ∈ C
2 : |(1 − 1

2
ĥ)2(1 +

1
2
ĥ)2(1 − 3k2)||1 + 1

2
ĥ|4 < |1 − 1

2
ĥ|4} if Î(j),n are used. In both cases, we get

RMS = {(ĥ, k) ∈ C
2 : 2ℜ(ĥ) + ((1 − 1

2
ℜ(ĥ))2 + 1

4
(ℑ(ĥ))2) |k|2 < 0}. The

corresponding regions of stability are presented for both cases in Figure 1. For

DDIRDI2 we get Γ = 1+(1−θ)ĥ

1−θĥ
and Σ = θĥ

1−θĥ
k + k, θ ∈ [0, 1]. Then, for θ = 1

2

follows RAS = {(ĥ, k) ∈ C
2 : |(1 + 1

2
ĥ)2 − k2| < |1 − 1

2
ĥ|2} if Ĩ(j),n are used,

RAS = {(ĥ, k) ∈ C
2 : |(1− 1

2
ĥ)2((1+ 1

2
ĥ)2−3k2)||1+ 1

2
ĥ|4 < |1− 1

2
ĥ|4} if Î(j),n are

used and RMS = {(ĥ, k) ∈ C
2 : 2ℜ(ĥ)+ |k|2 < 0}. Thus, the scheme DDIRDI2

with θ = 1
2

is A–stable w.r.t. MS–stability and the corresponding regions
are presented in Figure 2 (see also [9,23]). Analogously, we can calculate the
domains of stability for DDIRDI3 which are presented in Figure 3. For all
considered schemes, we can see the influence of the random variables used by
the scheme to the domain of asymptotical stability.
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Fig. 3. Asymptotical and mean–square stability region for DDIRDI3 with two point
and three point distributed random variables in the left and right figure, respectively.

4.2 Stability of Order Two DDISRK Schemes

Next, we apply the DDISRK method (3) with the coefficients (6) to the linear
test equation (7). Then we obtain the difference equation

Yn+1 = Yn +
1

2
λh H

(0)
1 +

1

2
λh H

(0)
2

+

(

1 − 1

2c2
3

)

µ Î(1) H
(1)
1 +

1

4c2
3

µ Î(1) H
(1)
2 +

1

4c2
3

µ Î(1) H
(1)
3

+
1

2c3

µ
Î(1,1)√

h
H

(1)
2 − 1

2c3

µ
Î(1,1)√

h
H

(1)
3

(15)

with stage values

H
(0)
1 = Yn + c1 λh H

(0)
1

H
(0)
2 = Yn + (1 − c1 − c2) λh H

(0)
1 + c2 λh H

(0)
2 + µ Î(1) H

(1)
1

H
(1)
1 = Yn

H
(1)
2 = Yn + c2

3 λh H
(0)
1 + c3 µ

√
h H

(1)
1

H
(1)
3 = Yn + c2

3 λh H
(0)
1 − c3 µ

√
h H

(1)
1

(16)

where the values Ĥ
(1)
i do not appear due to m = 1 and A(2) ≡ 0. Suppose that

1 − c1 λh 6= 0 and that 1 − c2 λh 6= 0 which can always be fulfilled for step
sizes h with h 6= 1

c1 λ
and h 6= 1

c2 λ
. Then the implicit equations for H

(0)
1 and

H
(0)
2 can always be solved. Let with ĥ = λh and k = µ

√
h

Γ = 1 +
ĥ + (1

2
− c1 − c2)ĥ

2

(1 − c1 ĥ)(1 − c2 ĥ)
, Σ =

ĥ − 1
2
(c1 + c2)ĥ

2

(1 − c1 ĥ)(1 − c2 ĥ)
k + k , Λ =

1

2
k2 .

Then, we yield for (15) the recursion formula Yn+1 = Rn(ĥ, k) Yn with the
stability function Rn(ĥ, k) = Γ − Λ + h−1/2 Σ Î(1),n + h−1 Λ Î2

(1),n. In order to
analyse the asymptotic stability of the weak order two DDISRK schemes (6) we
apply again Lemma 4.1. For the determination of the domain of MS–stability,
we calculate the mean–square norm of (15). Then, we obatin the recursion

11
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Fig. 4. Asymptotical and mean–square stability regions for RI6 with c1 = c2 = 0 on
the left and for DDIRDI4 with c1 = 0 and c2 = 1

2 on the right.

zn+1 = R̂(ĥ, k) zn with MS–stability function R̂(ĥ, k) = |Γ|2 + |Σ|2 + 2|Λ|2.
Both stability functions Rn(ĥ, k) and R̂(ĥ, k) depend only on the coefficients
c1 and c2 of the scheme, i.e. the coefficients c3 and c4 are not relevant for the
stability in the case of the scalar linear test equation (7).

Proposition 4.3 For SDE (7) with λ, µ ∈ C, the SRK schemes (6) are

(i) numerically asymptotical stable if |(Γ + 2 Λ)2 − 3 Σ2| |Γ − Λ|4 < 1,
(ii) numerically MS–stable if |Γ|2 + |Σ|2 + 2|Λ|2 < 1.

If we choose c1 = c2 = 0 and c3 = c4 = 1 in (6), then we yield the explicit SRK
scheme RI6 calculated in [20] which coincides for m = 1 with the SRK scheme
due to Platen [11,18,26]. If we apply Proposition 4.3 for RI6, then we obtain
RAS = {(ĥ, k) ∈ C

2 : |(1+ ĥ+ 1
2
ĥ2+k2)2−3(1+ ĥ)2k2||1+ ĥ+ 1

2
ĥ2− 1

2
k2|4 < 1}

and RMS = {(ĥ, k) ∈ C
2 : |1 + ĥ + 1

2
ĥ2|2 + |1 + ĥ|2|k|2 + 1

2
|k|4 < 1}. The

corresponding regions of stability are given in Figure 4. Further, we can choose
c1 = 0, c2 = 1

2
and e.g. c3 = c4 = 1 which defines the scheme DDIRDI4. Then,

the DDIRDI4 scheme (3) is an advancement of the stochastic theta method
DDIRDI2 with θ = 1

2
. However, for DDIRDI4 we get RAS = {(ĥ, k) ∈ C

2 :

|(1+ ĥ
1− 1

2
ĥ
+k2)2−3(1+

ĥ− 1

4
ĥ2

1− 1

2
ĥ

)2k2||1+ ĥ
1− 1

2
ĥ
− 1

2
k2|4 < 1} and RMS = {(ĥ, k) ∈

C
2 : |1+ ĥ

1− 1

2
ĥ
|2+|1+

ĥ− 1

4
ĥ2

1− 1

2
ĥ
|2|k|2+ 1

2
|k|4 < 1}. The regions of stability are given

in Figure 4. Here, we can see that the good stability properties of the order one
scheme DDIRDI2 are not carried over to the second order scheme DDIRDI4.
Therefore, we are looking for further second order DDISRK methods with
some better stability qualities.

It is usual to consider singly diagonally implicit Runge–Kutta methods for
ODEs where all coefficients A

(0)
ii are equal. Therefore, we assume that c1 = c2

for the schemes (6) in the following. Then, the domains of stability are RAS =

{(ĥ, k) ∈ C
2 : |(1+

ĥ+( 1

2
−2c1)ĥ2

(1−c1ĥ)2
+k2)2−3(1+ ĥ−c1ĥ2

(1−c1ĥ)2
)2k2||1+

ĥ+( 1

2
−2c1)ĥ2

(1−c1ĥ)2
− 1

2
k2|4 <

1} and RMS = {(ĥ, k) ∈ C
2 : |1 +

ĥ+( 1

2
−2c1)ĥ2

(1−c1ĥ)2
|2 + |1 + ĥ−c1ĥ2

(1−c1ĥ)2
|2|k|2 + 1

2
|k|4 <

1} which depend on the coefficient c1 of the scheme. In the following, we
consider various values for the parameter c1 of the DDISRK scheme (6) and

12
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Fig. 5. Stability regions for DDIRDI5 with c1 = 1
4 on the left and c1 = 1

2 on the
right.
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Fig. 6. Stability regions for DDIRDI5 with c1 = 1
2 +

√
3

6 on the left and c1 = 1 on
the right.
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Fig. 7. Stability regions for DDIRDI5 with c1 = 3
2 on the left and c1 = 3 on the

right.

we analyze the stability domain for λ, µ ∈ R. Therefore, we choose c1 ∈
{1

4
, 1

2
, 1

2
+ 1

6

√
3, 1, 3

2
, 3}. Especially, we consider the case of c1 = c2 = 1

2
+ 1

6

√
3

and c3 = c4 = 1 which we denote as the scheme DDIRDI5. Then, A(0) and α

coincide with the coefficients of the well known deterministic SDIRK scheme
which is A-stable and attains order pD = 3 for deterministic ODEs [5]. The
corresponding stability regions are presented in Figures 5–7.

5 Numerical Experiments

We compare the efficiency of the proposed second order DDISRK schemes
DDIRDI4 and DDIRDI5 with the second order drift–implicit SRK scheme
DIPL1WM due to Platen ([11], p. 501). Therefore, we take the number of
evaluations of the drift function a, of the diffusion functions bj, j = 1, . . . ,m,
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Fig. 8. Error vs computational effort with double logarithmic scales for SDE (17)
on the left and SDE (18) on the right hand side.

and the number of random numbers needed each step as a measure of the
computational complexity for each considered scheme. As a first example, we
consider for d = m = 1 the Itô SDE

dXt =
(

1
2
Xt +

√

X2
t + 1

)

dt +
√

X2
t + 1 dWt , X0 = 0, (17)

on the time interval I = [0, 2] with solution Xt = sinh(t+Wt). Here, we choose
f(x) = p(arsinh(x)), where p(z) = z3 − 6z2 + 8z is a polynomial. Then we
calculate that E(f(Xt)) = t3 − 3t2 + 2t which is approximated at time t = 2
with step sizes 2−1, . . . , 2−4 and 108 simulated trajectories. The results are
presented on the left hand side of Fig. 8. As a second example, we consider a
nonlinear SDE with a 10–dimensional driving Wiener process

dXt = Xt dt +
1

10

√

Xt +
1

2
dW 1

t +
1

15

√

Xt +
1

4
dW 2

t +
1

20

√

Xt +
1

5
dW 3

t

+
1

25

√

Xt +
1

10
dW 4

t +
1

40

√

Xt +
1

20
dW 5

t +
1

25

√

Xt +
1

2
dW 6

t +
1

20

√

Xt +
1

4
dW 7

t

+
1

15

√

Xt +
1

5
dW 8

t +
1

20

√

Xt +
1

10
dW 9

t +
1

25

√

Xt +
1

20
dW 10

t , X0 = 1.

(18)

with non-commutative noise. Here, we approximate the second moment of
the solution E(X2

t ) = − 68013
14629060

+ ( 68013
14629060

+ 1) exp(731453
360000

t) at time t = 1 by
108 simulated trajectories with step sizes 20, . . . , 2−3. The results are presented
on the right hand side of Fig. 8. Here, the schemes DDIDRI4 and DDIDRI5
perform impressively better than the drift–implicit scheme DIPL1WM [11].
This is a result of the reduced complexity for the new class of efficient SRK
schemes due to Rößler [20] which becomes significant especially for SDEs with
high-dimensional driving Wiener processes.

Next, we verify the theoretical results for the domains of stability of the pro-
posed SRK methods by numerical experiments. Therefore, we consider the test
equation (7) with parameters λ = −200, µ =

√
5 and with initial value X0 = 1
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Fig. 9. Asymptotical and MS–stability analysis for RI6, DDIRDI1 and DDIRDI5.

on the time interval [0, 10]. We apply the second order explicit SRK scheme
RI6 [20], the order one DDISRK scheme DDIRDI1 with two point as well
as with three point distributed random variables and the order two DDISRK
scheme DDIRDI5. We denote by DDIRDI1-2P the scheme DDIRDI1 if 2 point
distributed random variables Ĩ(j),n are used instead of Î(j),n.

In order to analyse the numerical asymptotically stability, a single approxima-
tion trajectory is simulated with each scheme under consideration for the step
sizes h = 0.01, h = 0.1, h = 0.2 and h = 0.5. Then, we obtain the following
theoretical results due to Proposition 4.2 and Proposition 4.3: the scheme RI6
is asymptotical stable for the step size h = 0.01 and it is unstable for h = 0.1,
h = 0.2 and h = 0.5. DDIRDI1 and DDIRDI1-2P are stable for h = 0.01 and
h = 0.1. In the case of h = 0.2 only DDIRDI1-2P is stable while DDIRDI1
is unstable. Further, DDIRDI1 and DDIRDI1-2P are unstable for h = 0.5.
Finally, the scheme DDIRDI5 is asymptotical stable for h = 0.01, h = 0.1 and
even for h = 0.2, however it is unstable for h = 0.5. The numerical results
for a single trajectory |Yn| are plotted with logarithmic scale to the base 10
versus the time on the left hand side of Fig. 9. We remark that the results for
DDIRDI1 with step size h = 0.01 tend to zero after two steps and are thus
not visible in Fig. 9.

For the analysis of the numerical MS–stability, the value E(|Xt|2) is approx-
imated by Monte Carlo simulation with 104 independent trajectories for the
step sizes h = 0.005, h = 0.01, h = 0.1 and h = 0.5. Proposition 4.2 and
Proposition 4.3 give the following results: RI6 is MS–stable for h = 0.005 and
MS–unstable for all other considered step sizes. DDIRDI1 and DDIRDI1-2P
are MS–stable for h = 0.005 and h = 0.01, however MS–unstable for h = 0.1
and h = 0.5. Further, DDIRDI5 is MS–stable for step sizes h = 0.005, h = 0.01
and even for h = 0.1 and MS–unstable for h = 0.5. The corresponding nu-
merical results of E(|Yn|2) are presented with logarithmic scale to the base 10
versus the time on the right hand side of Fig. 9. Again, the numerical results
exactly confirm our theoretical findings for the domains of stability.
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