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Abstract

This paper is concerned with fully space-time adaptive magnetic
field computations. We describe a Whitney finite element method for
solving the magnetoquasistatic formulation of Maxwell’s equations on
unstructured 3D tetrahedral grids. Spatial discretization is done by
employing hierarchical tetrahedral H(curl)-conforming elements pro-
posed by Ainsworth and Coyle. For the time discretization, we use
a newly constructed one-step Rosenbrock method ROS3PL with 3rd
order accuracy in time. Adaptive mesh refinement and coarsening are
based on hierarchical error estimators especially designed for Rosen-
brock methods. An embedding technique is applied to get efficiency
in time through variable time steps. Finally, we present numerical
results for the benchmark problem TEAM 7.
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1 Introduction

The magnetoquasistatic approximation (MQS) arises from Maxwell’s equa-
tions by dropping the displacement current. This is reasonable for many
electrical machines, generators and transformers which work in the low-
frequency high-conductivity range. Wave propagation can then be neglected
and vanishing tangential traces are used for artificial boundary conditions.
The aim of our work is to develop a fully adaptive algorithm which provides
numerical solutions to three-dimensional MQS problems. There is nowadays
an increasing emphasis on all aspects of adaptively generating a space-time
grid that evolves with the solution. Another challenge is to develop effi-
cient higher-order one-step integration methods which can handle very stiff
differential-algebraic electromagnetic problems and which allow us to accom-
modate a grid in each time step without any specific difficulties. A combined
space-time adaptivity is widely used in computational fluid dynamics and
thermodynamics, but it has received much less attention in MQS simula-
tions. The authors are only aware of a recently published paper by Zheng,
Chen, and Wang [19] where first-order approximations in time and space are
used.

Here, we make use of hierarchical Whitney finite elements in space [3]
and variable step-size one-step Rosenbrock methods in time [14, 15]. Imple-
mentations have been done in the KARDOS library [9, 2], which provides
a suitable programming environment for adaptive algorithms to solve insta-
tionary PDEs. We wish to adaptively refine the space-time grid in order to
capture local effects efficiently and to guarantee a prescribed accuracy for
the approximate solution. This is described in the following Sections.

2 Numerical algorithm

There are different formulations of the MQS approximation. We use a mag-
netic vector potential A(x, t) as primary unknown. The equations can be
written in the following form

σ∂tA + ∇× (µ−1 ∇× A) = J s, in Ω× (0, T ]
A× n = 0, on ∂Ω× (0, T ]
A(·, 0) = A0, on Ω .

(1)

Since there may be insulating regions with σ = 0, system (1) is in general
an elliptic-parabolic initial-boundary value problem. We consider inhomo-
geneous, linear and isotropic materials, i.e., σ ≥ 0 and µ > 0 are scalar
functions of the spatial variable x ∈ Ω. The source term J s(x, t) stands

2



for the applied current density and has to satisfy the consistency condition
∇ · J s = 0. The physically relevant quantities which can be derived from
A are the magnetic induction B = ∇×A and the eddy current density
JE = −σ∂tA. The vector potential formulation (1) is widely used in elec-
tromagnetic computations due to its robustness. However, there are two
essential difficulties: the uniqueness of A in parts of the domain where σ=0,
and the consistency of J s which has to be ensured on each spatial mesh. For
gauging, we use a tiny conductivity in the non-conducting regions, six orders
of magnitude smaller than the minimum positive value for σ [17].

To discretize (1), we apply the adaptive Rothe method based on the
discretization sequence first in time than in space, in contrast to the usual
Method of Lines approach (see e.g. [14] and references therein). The spatial
discretization is considered as a perturbation of the time integration process.
It has to be controlled in an appropriate way within each time step.

2.1 Rosenbrock methods

To approximate the vector potential A(·, t) defined in (1) by values An ≈
A(·, tn) at a certain time grid

0 = t0 < t1 < · · · < tn < · · · < tM−1 < tM = T , (2)

we apply an s-stage one-step method of Rosenbrock type. This has the form

An+1 = An +
s∑

i=1

miAni, (3)

with stage values Ani, i = 1, . . . , s, determined from

∇×
(
µ−1 ∇× Ani

)
+

σ

τnγ
Ani = Rni, in Ω

Ani × n = 0, on ∂Ω
(4)

with the time step τn = tn+1 − tn and γ being the stability constant of the
method. The right hand side Rni is defined by

Rni = −∇×
(
µ−1 ∇× Ai

)
+ J s(·, ti)− σ

i−1∑
j=1

cij
τn

Anj + τnγi∂tJs(·, tn),

where Ai = An +
∑

j=1,...,i−1 aijAnj and ti = tn + αiτn. Observe that the
system (4) has to be solved successively for i=1, . . . , s. In addition, the stage
values Ani can be also used to derive approximations Zn ≈ ∂tA(·, tn) of the
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same order to the first derivative and therefore for the eddy current density
JE. We compute

Zn+1 = Zn +
s∑

i=1

mi

(
1

τ

i∑
j=1

(cij − sij)Anj + (di − 1)An

)
.

The stage number s and the defining formula coefficients mi, cij, γi, aij, αi,
sij, di, and γ are chosen to obtain a desired order of consistency and good
stability properties for differential-algebraic equations [14]. The A-stable
Rosenbrock solver ROS3P from [15] was constructed for parabolic problems.
For differential-algebraic equations (as (1) with σ=0 somewhere), we would
like to have also L-stability and the property of stiff accuracy. For this, we
have designed a new Rosenbrock solver ROS3PL. The number of stages is
s= 4, the order of the method is p= 3, and it fulfills additional conditions
to avoid order reduction (see [15] for more details). The set of coefficients is
given in Table 1.

Rosenbrock methods offer a simple way to estimate the local error. A
second solution Ân+1 of inferior order, say p̂, can be computed by replacing
the original weights mi by m̂i in (3). In order to take into account the scale of
the problem, the local error estimator is defined by the weighted root mean
square norm

rn+1 =

(
‖An+1 − Ân+1‖2

L2(Ω)

ATOL+RTOL ‖An+1‖2
L2(Ω)

)1/2

. (5)

The tolerances ATOL and RTOL have to be selected carefully to furnish
meaningful input for the error control. The estimator can be used to propose
a new time step by

τn+1 =
τn
τn−1

(
TOLtrn

rn+1rn+1

)1/(p̂+1)

τn, (6)

where TOLt is a desired tolerance prescribed by the user [11]. If rn+1 > TOLt

the step is rejected and redone. Otherwise the step is accepted and we
advance in time. The order of the embedded solution of ROS3PL is p̂=2.

Rosenbrock methods have been successfully applied in [7] to nonlinear
magnetic field problems.

2.2 Adaptive multilevel Whitney finite elements

For spatial adaptivity, a multilevel finite element method is used to solve
the s linear systems (4) in each time step. The solution space is replaced
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γ = 4.358665215084590e− 01

a11 = 0.000000000000000e + 00 α1 = 0.000000000000000e + 00
a21 = 1.147140180139521e + 00 α2 = 5.000000000000000e− 01
a22 = 0.000000000000000e + 00 α3 = 1.000000000000000e + 00
a31 = 2.463070773030053e + 00 α4 = 1.000000000000000e + 00
a32 = 1.147140180139521e + 00
a33 = 0.000000000000000e + 00
a41 = 2.463070773030053e + 00
a42 = 1.147140180139521e + 00
a43 = 0.000000000000000e + 00
a44 = 0.000000000000000e + 00

c11 = 2.294280360279042e + 00 s11 = 0.000000000000000e + 00
c21 = 2.631861185781065e + 00 s21 = 2.631861185781065e + 00
c22 = 2.294280360279042e + 00 s22 = 0.000000000000000e + 00
c31 = 1.302364158113095e + 00 s31 = 5.650974900540168e + 00
c32 = −2.769432022251304e + 00 s32 = 2.631861185781065e + 00
c33 = 2.294280360279042e + 00 s33 = 0.000000000000000e + 00
c41 = 1.552568958732400e + 00 s41 = 5.650974900540168e + 00
c42 = −2.587743501215153e + 00 s42 = 2.631861185781065e + 00
c43 = 1.416993298352020e + 00 s43 = 0.000000000000000e + 00
c44 = 2.294280360279042e + 00 s44 = 0.000000000000000e + 00

γ1 = 4.358665215084590e− 01 d1 = 0.000000000000000e + 00
γ2 = −6.413347849154100e− 02 d2 = 1.147140180139521e + 00
γ3 = 1.110281725125051e− 01 d3 = 2.294280360279042e + 00
γ4 = 0.000000000000000e− 00 d4 = 2.294280360279042e + 00

m1 = 2.463070773030053e + 00 m̂1 = 2.346947683513665e + 00
m2 = 1.147140180139521e + 00 m̂2 = 4.565305694518951e− 01
m3 = 0.000000000000000e + 00 m̂3 = 5.694924394549457e− 02
m4 = 1.000000000000000e + 00 m̂4 = 7.386849361662244e− 01

Table 1: Set of coefficients for ROS3PL

5



by a sequence of discrete spaces with successively increasing dimension to
improve their approximation property. A posteriori error estimates provide
the appropriate framework to determine where a mesh refinement is necessary
and where degrees of freedom are no longer needed. Adaptive multilevel
methods have proven to be a useful tool for drastically reducing the size of the
arising linear algebraic systems and to achieve high and controlled accuracy of
the spatial discretization [8, 14]. For stationary and time-harmonic Maxwell
problems, they have been considered in [4, 5, 6, 18]. We extent this approach
to MQS approximations (1) discretized in time by a variable step-size one-
step Rosenbrock method.

Let Th be an admissible tetrahedral mesh at t = tn and W q
h be the

associated H0(curl)-conforming Whitney finite element space consisting of
polynomials of order q on each finite element T ∈ Th. Then the Galerkin
approximation Ah

ni ∈ W q
h of the stage values Ani, i = 1, . . . , s, satisfies the

weak formulation

bn(Ah
ni,V

h) = (Rni,V
h) , ∀V h ∈ W q

h, (7)

where the bilinear bn(·, ·) is defined as

bn(Ah
ni,V

h) = (µ−1 ∇× Ah
ni,∇×V h) +

(
σ

τnγ
Ah

ni,V
h

)
and (·, ·) stands for the usual scalar product in L2(Ω). As a basis in W q

h we
take the hierarchical tetrahedral basis functions proposed in [3]. The weak
formulation (7) is equivalent to a linear system for each stage value Ah

ni,
i = 1, ..., s. Observe that the operator associated with the bilinear bn(·, ·)
is independent of the stage level i, and thus the calculation of the stiffness
matrix is required only once within each time step. To solve the linear
systems we use the AMG solver with Hiptmair smoother [13] implemented
in the package ML of the Trilinos library [12].

After computing the approximate stage values Ah
ni, a posteriori error es-

timates for the approximate Rosenbrock solution Ah
n+1 ∈ W q

h can be used
to give specific assessment of the error distribution and to improve the spa-
tial discretization. Hierarchical basis error estimators are well-known for
standard conforming discretizations, e.g., [8, 14]. Considering a hierarchical
decomposition

W q+1
h = W q

h ⊕Zq+1
h ,

where Zq+1
h is the subspace needed to extend the space W q

h to higher order,
the idea of a hierarchical error estimator is to bound the spatial error by eval-
uating its components in the space Zq+1

h only. Hierarchical error estimators

6



for problems as (7) are investigated in [5, 6]. Here, we want to estimate the
error An+1 −Ah

n+1 caused by the interpolation error of the initial value An

and by the spatial approximation of all stage values Ah
ni ∈ W q

h, i = 1, . . . , s.
We define an a posteriori error estimator Eh

n+1 ∈ Z
q+1
h as

Eh
n+1 = Eh

n0 +
s∑

i=1

miE
h
ni , (8)

with Eh
n0 approximating the projection error of the initial value An in Zq+1

h

bn(Eh
n0,Φ) = bn(An −Ah

n,Φ), Φ ∈ Zq+1
h (9)

and Eh
ni estimating the spatial error of the stage value Ah

ni

bn(Eh
ni,Φ) = (Rh

ni,Φ)− bn(Ah
ni,Φ), Φ ∈ Zq+1

h (10)

where
Rh

ni =Rni(A
h
n1 + Eh

n1, . . . , A
h
ni−1 + Eh

ni−1).

Considering the error estimators already computed takes into account the
successive error transport within the sequence of stage problems. The local
spatial error for a finite element T ∈ Th can be estimated by computing the
norm of Eh

n+1 over T . For the overall spatial error, we define

|‖Eh
n+1‖| =

(
‖Eh

n+1‖2
L2(Ω)

ATOL+RTOL ‖Ah
n+1‖2

L2(Ω)

)1/2

. (11)

We have implemented our a posteriori error estimator for q=1. As proposed
in [6], we further take advantage of a localization strategy. For this, we define
a direct decomposition of the surplus space

Zq+1
h =

∑
edge e

Zq+1
h (e) ⊕

∑
face f

Zq+1
h (f)

and end up with a sequence of scalar equations for each edge and of 2 × 2
linear systems for each face. From many practical computations, we have
also experienced that using the simplified error estimator Eh

n+1 ≈ Eh
n0 +

Eh
n1/γ, that is an error estimator for the embedded, locally second order Euler

solution, is quite efficient [14]. For more details, we refer to the forthcoming
paper [16].

A maximum selection strategy is used to mark elements for refinement.
The iterative process estimate-refine-solve within a time step is continued
until |‖Eh

n+1‖| ≤ TOLx with TOLx being a prescribed tolerance for the
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spatial discretization error. To maintain the nesting property of the finite
element subspaces, coarsening takes place only after an accepted time step
before starting the multilevel process at a new time. The detailed algorithm
of the spatial grid adaptation is fully described in [14]. For the convenience
of the reader, in Fig. 1 the internal work steps are briefly illustrated.

STOP

T 0
1 τ1

Given TOL  , TOL    t
Select 
Set 1τ:=1n:=0, t

, 
  x 

|||E(j) |||<TOL

Set

Construct 

j:=j+1
T j

n+1

Construct

Set n:=n+1
Choose new τn+1

Tn+10
Set tn+1:=tn+ τn+1

= tn+1 T

START

h,n+1 x

n

j:=0

T 0
n+1

|||

y

n

y

n

y

Choose reduced
Set

Reconstruct
τn+1

|||<TOL th,n+1r

h,n+1
(0)

j:=0Set
Compute 

h,n+1
(j)Compute

A

A

Figure 1: Flow chart for the time-space adaptive solver KARDOS.

3 Numerical results

We consider the TEAM 7 benchmark problem [10]. The problem consists of a
rectangular aluminium plate, σ = 3.526 107 S/m, with eccentric rectangular
cutout placed under an eccentrically positioned coil, Fig. 2. A sinusoidal
current of 2742A and 50Hz flows through the coil and induces a current in
the plate. As computational domain we use a cube with 1m edge length.
Homogeneous boundary conditions, n × A = 0, are taken. The results are
simulated with KARDOS [2] and are visualized with AMIRA [1].

To check our implementation, we have first compared our results with
experimental data. Fig. 3 reveals good agreement. In Fig. 4 various results
illustrating the coupled time-space adaptivity are displayed. Comparisons
with uniform approaches are given.

8



Figure 2: Coarse (left) and selected fine (right) tetrahedral meshes.

Figure 3: Comparison of computed and measured real part of Bz (left) and
of JE,y (right), see [10] for reference values.

4 Conclusion

We have combined variable step size one-step methods of Rosenbrock type
and adaptive H(curl)-conforming Whitney finite elements to solve linear
three-dimensional magnetoquasistatics problems. Numerical investigations
for the TEAM7 problem show the great potential of space-time adaptive
methods with respect to reliability and efficiency.

5 Acknowledgments

This work is supported by the Deutsche Forschungsgemeinschaft (DFG). We
acknowledge, with thanks, the fruitful cooperation with Markus Clemens and
Georg Wimmer within the joint DFG-project ”Space-time adaptive magnetic
field computation”.

9



Figure 4: From above: (a) Js(t) in the coil, (b) typical evolution of time
steps controlled by the estimator (5), (c) observed local time errors (5) for
controlled and uniform step size, (d) evolution of spatial degrees of freedom
necessary to reach TOLx =0.0008 in each time step, (e) comparison of esti-
mated spatial errors (11) for fully adaptive and uniform approach.
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