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Abstract

We present several new regularity criteria for weak solutions u of the
instationary Navier-Stokes system which additionally satisfy the strong
energy inequality. (i) If the kinetic energy 1

2‖u(t)‖2
2 is Hölder continu-

ous as a function of time t with Hölder exponent α ∈ (1
2 , 1), then u

is regular. (ii) If the dissipation energy satisfies the left-side condition
lim infδ→0 δ−α

∫ t
t−δ ‖∇u‖2

2 dτ < ∞, α ∈ (1
2 , 1), for all t of the given time

interval, then u is regular. The proofs use local regularity results which
are based on the theory of very weak solutions and on uniqueness argu-
ments for weak solutions. Finally, in the last section, we mention a local
space-time regularity condition.
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1 Introduction and main results

Let Ω ⊆ R3 be a bounded domain with boundary ∂Ω of class C2,1, [0, T ) a time
interval with 0 < T ≤ ∞, and let u0 ∈ L2

σ(Ω) be some initial value. Then in
[0, T )× Ω we consider a weak solution u of the Navier-Stokes system

ut −∆u + u · ∇u +∇p = 0, div u = 0

u|∂Ω
= 0, u|t=0

= u0 (1.1)

with vanishing external force and with viscosity ν = 1 as follows.
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Definition 1.1 A vector field

u ∈ L∞(
0, T ; L2

σ(Ω)
)
∩ L2

loc

(
[0, T ); W 1,2

0 (Ω)
)

(1.2)

is called a weak solution of the system (1.1) if the relation

−〈u, wt〉Ω,T + 〈∇u,∇w〉Ω,T − 〈uu,∇w〉Ω,T = 〈u0, w(0)〉Ω (1.3)

is satisfied for all test functions w ∈ C∞
0 ([0, T ); C∞

0,σ(Ω)).

In this definition 〈·, ·〉Ω means the usual pairing of functions on Ω, 〈·, ·〉Ω,T

means the corresponding pairing on [0, T ) × Ω, L2
σ(Ω) = C∞

0,σ(Ω)
‖·‖2 with

C∞
0,σ(Ω) = {v ∈ C∞

0 (Ω); div v = 0} and W 1,2
0 (Ω) = C∞

0 (Ω)
‖·‖W1,2

. Finally
uu = (uiuj)

3
i,j=1 for u = (u1, u2, u3) such that u · ∇u = (u · ∇)u = div (uu)

when div u = 0.
We may assume, without loss of generality, that

u : [0, T ) → L2
σ(Ω) is weakly continuous (1.4)

in Definition 1.1, with u(0) = u0, see [14], p. 271. Moreover, there exists a
distribution p, called an associated pressure, such that

ut −∆u + u · ∇u +∇p = 0 (1.5)

holds in the sense of distributions, see [14], p. 264.
Since the domain Ω is bounded, it is not difficult to prove the existence of

a weak solution u as in Definition (1.1) which additionally satisfies the strong
energy inequality

1

2
‖u(t)‖2

2 +

∫ t

t0

‖∇u‖2
2 dτ ≤ 1

2
‖u(t0)‖2

2 (1.6)

for almost all t0 ∈ [0, T ), including t0 = 0, and all t ∈ [t0, T ), see [14], p. 340.
For further results in this context for unbounded domains we refer to [5].

A weak solution u of (1.1) is called regular in some interval (a, b) ⊆ (0, T ),
a < b, if Serrin’s condition

u ∈ Ls
loc

(
a, b; Lq(Ω)

)
with 2 < s < ∞, 3 < q < ∞,

2

s
+

2

q
≤ 1 (1.7)

is satisfied, see [13], [14]. This means it holds

‖u‖Ls(a′,b′;Lq(Ω)) =
( ∫ b′

a′
‖u‖s

q dx
)1/s

< ∞

for each interval (a′, b′) with a < a′ < b′ < b; here ‖u‖q =
( ∫

Ω
|u|q dx

)1/q
.
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The condition (1.7) implies that

u ∈ C∞(
(a, b)× Ω

)
, p ∈ C∞(

(a, b)× Ω
)
, (1.8)

if ∂Ω is of class C∞; see e.g. [14], Theorem V, 1.8.2.
A time t ∈ (0, T ) is called a regular point of a weak solution u if u is regular

in some interval (a, b) ⊆ (0, T ) with a < t < b.
Concerning a criterion based on the kinetic energy 1

2
‖u(t)‖2

2, t ∈ (0, T ), we
have the following result.

Theorem 1.2 Let Ω ⊆ R3 be a bounded domain with boundary ∂Ω of class C2,1,
and let 0 ≤ a < b ≤ T ≤ ∞. Consider a weak solution u of the Navier-Stokes
system (1.1) with u0 ∈ L2

σ(Ω), satisfying the strong energy inequality (1.6).
Suppose t 7→ 1

2
‖u(t)‖2

2, t ∈ (a, b), is Hölder continuous with exponent α ∈
(1

2
, 1) in the sense that

sup
a<t<t′<b

|1
2
‖u(t)‖2

2 − 1
2
‖u(t′)‖2

2|
|t− t′|α

< ∞. (1.9)

Then u is regular in (a, b).

Remark 1.3 (1) An inspection of the proof of Theorem 1.2, which is based on
Lemma 2.5 below, shows that at time t the left-side Hölder condition

sup
t−δ<τ<t

|1
2
‖u(t)‖2

2 − 1
2
‖u(τ)‖2

2|
|t− τ |α

< ∞, 0 < δ < t < T,

suffices to get regularity of u in a neighborhood of t. Moreover, the supremum in
this condition may be replaced by its infimum or even by the condition

lim inf
δ→0+

|1
2
‖u(t− δ)‖2

2 − 1
2
‖u(t)‖2

2|
δα

< ∞. (1.10)

However, if (1.10) is satisfied for some α ∈ (1
2
, 1), then there exists α′ ∈ (1

2
, α)

such that even

lim inf
δ→0+

|1
2
‖u(t− δ)‖2

2 − 1
2
‖u(t)‖2

2|
δα′ = 0. (1.11)

Hence (1.10) may be replaced by the formally stronger, but nevertheless equiva-
lent condition (1.11). For a discussion of the limit case α = 1

2
we refer to Remark

1.5 (3) below.
(2) Conversely, if u is not regular at t, then the kinetic energy 1

2
‖u(τ)‖2

2 either
has a jump downward at t− or it is continuous, but not left-side Hölder continuous
at t of order α ∈ (1

2
, 1).
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(3) Using the relation c2 − d2 = (c− d)(c + d) and the energy inequality (1.6)
with t0 = 0, we see that the condition

sup
a<t<t′<b

| ‖u(t)‖2 − ‖u(t′‖2 |
|t− t′|α

< ∞ (1.12)

is sufficient for (1.9). Thus u in Theorem 1.2 is regular in (a, b) if (1.12) is
satisfied for all t ∈ (a, b) and α ∈ (1

2
, 1). This condition means that t 7→ 1

2
‖u(t)‖2

is contained in the Hölder space Cα(a, b) for α ∈ (1
2
, 1). The expression on the

left-side side of (1.12) yields the seminorm ‖·‖Cα(a,b) of this space.

Using a notation introduced in [8], Part 1, Section 9, Problem (3), and moti-
vated by certain embedding estimates, we can write the Hölder space Cα(a, b) for-
mally as the Lebesgue space Ls(a, b) = Cα(a, b) with negative exponent s = − 2

α
.

Then the condition 1
2

< α < 1 can be written in the form 1
2

< 2
s
+ 3

2
< 1, and the

regularity condition (1.12) now reads as follows: If

u ∈ Ls
loc

(
a, b; L2(Ω)

)
with − 4 < s < −2,

2

s
+

3

2
< 1, (1.13)

then u is regular in (a, b). Here ‖u‖Ls(a,b;L2(Ω)) is defined by the left-side side of
(1.12).

Therefore (1.13) can be considered as an extension of Serrin’s regularity con-
dition (1.7) to negative exponents s. As expected in this context we see, if the
space Lq(Ω) in (1.7) is replaced by the strictly larger space L2(Ω) because of
2 < q, we have to replace on the other hand the space Ls(a, b) in (1.7) by the
strictly smaller space Cα(a, b).

The next result concerns the dissipation energy
∫ t

t−δ
‖∇u‖2

2 dτ in the interval
(t−δ, t). In order to prove the regularity of u in (a, b) we need a certain smallness
condition of this expression for all t ∈ (a, b). Note that this condition is required
only on the left-side side (t− δ, t) of t.

Theorem 1.4 Let Ω ⊆ R3 be a bounded domain with boundary ∂Ω of class C2,1,
and let 0 ≤ a < b < T . Consider a weak solution u of the Navier-Stokes system
(1.1) with u0 ∈ L2

σ(Ω), satisfying the strong energy inequality (1.6).
Let 1

2
< α < 1 and assume that

lim inf
δ→0+

1

δα

∫ t

t−δ

‖∇u‖2
2 dτ < ∞ (1.14)

for each t ∈ (a, b). Then u is regular in (a, b).

Remark 1.5 (1) By (1.14) u is regular in (a, b) if e.g. lim infδ→0+ of the left-side
mean value of ‖∇u‖2

2 is finite at each t ∈ (a, b), i.e., if

lim inf
δ→0+

1

δ

∫ t

t−δ

‖∇u‖2
2 dτ < ∞
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holds for all t ∈ (a, b). For example, this condition is satisfied if each t ∈ (a, b) is
a (left-side) Lebesgue point of ‖∇u‖2

2 in the sense that

lim inf
δ→0+

1

δ

∫ t

t−δ

‖∇u‖2
2 dτ = ‖∇u(t)‖2

2.

Note that this equation holds for almost all t ∈ (0, T ), see, e.g. [14], p. 341.
(2) Condition (1.14) for some α ∈ (1

2
, 1) implies for any α′ ∈ (1

2
, α) that

lim inf
δ→0+

1

δα′

∫ t

t−δ

‖∇u‖2
2 dτ = 0. (1.15)

Hence (1.14) may be replaced by the condition (1.15).
(3) It is known, see e.g. [Ga2], Theorem 6.4, that if (0, t) is a maximal

regularity interval of a weak solution u, then it necessarily holds ‖∇u(τ)‖2 ≥
c(t − τ)−1/4, 0 < τ < t, where c = c(Ω) > 0. Hence (1.14) with α = 1

2
fails

to imply regularity whereas (1.14) with a smallness condition could still lead to
regularity when α = 1

2
. Moreover, the estimate

2c2 ≤ 1

δ1/2

∫ t

t−δ

‖∇u(τ)‖2 dτ ≤ 1

2δ1/2

(
‖u(t)‖2

2 − ‖u(t− δ)‖2
2

)
(for a.a. δ ∈ (0, t)) shows that the condition (1.10) with α = 1

2
does not imply

regularity. However, (1.10) with a smallness assumption could imply regularity
when α = 1

2
.

A third regularity criterion is not based on energy terms, but on local Ls(Lq)-
norms of u in time and space; for details see Theorem 4.1 below. However, the
idea of the proof is the same by identifying locally in space and time the given
weak solution with a very weak one.

2 Preliminary local regularity results

Let Ω ⊆ R3 and 0 < a < b ≤ T be as in Section 1. We use the well-known
spaces Lq = Lq(Ω), 1 < q < ∞, with norm ‖·‖Lq(Ω) = ‖·‖q and pairing 〈v, w〉Ω =∫

Ω
v · w dx for v ∈ Lq(Ω), w ∈ Lq′(Ω), q′ = q

q−1
. Further we need the Bochner

spaces Ls
(
a, b; Lq(Ω)

)
, 1 < s < ∞, with norm ‖·‖Ls(a,b;Lq(Ω)) =

( ∫ b

a
‖·‖s

q dt
)1/s

and corresponding pairing 〈·, ·〉Ω,(a,b). If (a, b) = (0, T ) we write 〈·, ·〉Ω,(a,b) =
〈·, ·〉Ω,T . We also use the usual smooth function spaces C∞

0 (Ω), C∞
0,σ(Ω) = {v ∈

C∞
0 (Ω); div v = 0}, and Lq

σ = Lq
σ(Ω) = C∞

0,σ(Ω)
‖·‖q

.
The proof of our theorems rests on a local existence result of regular solutions,

which has been developed in the theory of very weak solutions, see [1] and [4]. In
this context we use the Stokes operator

Aq = −Pq∆ : D(Aq) → Lq
σ(Ω), D(Aq) = Lq

σ ∩W 1,q
0 ∩W 2,q,
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where W 1,q
0 = W 1,q

0 (Ω) = C∞
0 (Ω)

‖·‖1,q
, the Helmholtz projection Pq : Lq(Ω) →

Lq
σ(Ω), and the semigroup e−tAq : Lq

σ(Ω) → Lq
σ(Ω), 0 ≤ t < ∞, generated by Aq.

See [3], [5], [9] – [12] and [15] concerning properties of these operators.
The following local result, see [6], Lemma 2.1, is essentially a consequence of

[4], Theorem 1.

Lemma 2.1 ([6]) Let Ω ⊆ R3 be a bounded domain with boundary ∂Ω of class
C2,1, let 4 < s < ∞, 3 < q < 6, 2

s
+ 3

q
= 1, and v0 ∈ Lq

σ(Ω). Then there is a

constant C = C(Ω, q) > 0 with the following property: If∫ T0

0

‖e−τAqv0‖s
q dτ ≤ C (2.1)

for some T0, 0 < T0 ≤ ∞, then there exists a unique regular weak solution
v ∈ L∞(

0, T0; L
2
σ(Ω)

)
∩ L2

loc([0, T0); W 1,2
0 (Ω)

)
of the Navier-Stokes system

vt −∆v + v · ∇v +∇p = 0, div v = 0
v|∂Ω

= 0, v|t=0
= v0,

satisfying Serrin’s condition v ∈ Ls
(
0, T0; L

q(Ω)
)

and the energy inequality (1.6)
with t0 = 0, u replaced by v.

The following local regularity criterion is obtained when we apply (2.1) to a
given weak solution u for appropriate initial values of the form v0 = u(t0) with
0 < t0 < T . Then (2.1) is applied in the form∫ T0−t0

0

‖e−τAqu(t0)‖s
q dτ ≤ C, t0 < T0 < T, (2.2)

and the solution v in [t0, T0] × Ω will be identified with u locally within [t0, T0).
See [6] concerning other results in this context.

Lemma 2.2 Let Ω ⊆ R3 be a bounded domain with boundary ∂Ω of class C2,1,
let 0 < T < ∞, 1 ≤ s ≤ s∗ < ∞, 3 < q < 6 satisfying

2

s
+

3

q
≥ 1,

2

s∗
+

3

q
= 1, (2.3)

and let u be a weak solution of the Navier-Stokes system (1.1) with u0 ∈ L2
σ(Ω),

satisfying the strong energy inequality (1.6).
Then there is a constant C = C(Ω, q, s) > 0 with the following property: If

0 < δ < t < T and ∫ t

t−δ

‖u(τ)‖s
q dτ ≤ Cδ1− s

s∗ , (2.4)

then u is regular in some interval (t− δ′, t + δ′) ⊆ (0, T ), 0 < δ′ < δ, in the sense
that u ∈ Ls∗

(
t− δ′, t + δ′; Lq(Ω)

)
.
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Remark 2.3 If (2.4) holds for each t ∈ (0, T ) with some δ = δ(t) ∈ (0, t), then
u is regular in (0, T ). In particular we obtain in the case s = s∗ that if the local
left-side Serrin condition ∫ t

t−δ

‖u(τ)‖s∗
q dτ ≤ C

holds for each t ∈ (0, T ) with some δ = δ(t) ∈ (0, t), then u is regular in (0, T ). If
2
s
+ 3

q
> 1, beyond Serrin’s condition, then (2.4) requires a local left-side smallness

condition depending on δ.

The next lemma shows that Serrin’s regularity condition (1.7) can be extended
to larger spaces Lq, Ls such that 2

s
+ 3

q
> 1, if we additionally suppose a certain

smallness condition on the norm ‖u‖Ls(0,T ;Lq(Ω)). The corresponding smallness
criterion depends on the initial value u0 which is supposed to belong to Lq

σ.

Lemma 2.4 Let Ω, T, u be as in Lemma 2.2, assume additionally that u0 ∈
Lq

σ(Ω), 3 < q < 6, and let 1 ≤ s ≤ s∗ < ∞ with 2
s

+ 3
q
≥ 1, 2

s∗
+ 3

q
= 1.

Then there is a constant C = C(Ω, q, s) > 0 such that u is regular in (0, T ) in
the sense u ∈ Ls∗

loc

(
(0, T ); Lq(Ω)

)
if

‖u‖s
Ls(0,T ;Lq(Ω)) ≤ C‖u0‖s−s∗

q (2.5)

is satisfied.

If s = s∗, then ‖u0‖s−s∗
q = 1. Hence (2.5) can be applied with (0, T ) replaced

by (t0, T0) ⊆ (0, T ), u0 replaced by u(t0) ∈ Lq(Ω) for almost all t0 ∈ (0, T ), and
we obtain again Serrin’s regularity condition.

On the other hand, choose s < s∗ such that 2
s

+ 3
q

= 3
2
. Then we know, see

[14], p. 266, that u ∈ Ls
(
0, T ; Lq(Ω)

)
; this follows from (1.6) with t0 = 0. Thus

the left-side side of (2.5) is finite in this case; since s − s∗ < 0, (2.5) yields the
regularity of u if ‖u0‖q depending on s < s∗ is sufficiently small.

The proof of Lemma 2.4 shows that (2.5) can be replaced by the weaker
condition (3.13), see Remark 3.1 below.

The next lemma yields the regularity of u in some point t ∈ (0, T ) if certain
energy quantities of u are sufficiently small in a left-side neighborhood of t.

Lemma 2.5 Let Ω, T, u, u0 be as in Lemma 2.2. Then there is a constant C =
C(Ω, s) > 0 with the following property: If 0 < δ < t < T , 2 < s < 4, and

(i)
1

δs/4

∫ t

t−δ

‖∇u‖2
2 ‖u‖s−2

2 dτ ≤ C (2.6)

or

(ii)
1

δs/4

∫ t

t−δ

‖∇u‖2
2 dτ ≤ C

‖u0‖s−2
2

, (2.7)
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then u is regular in some interval (t− δ′, t+ δ′) ⊆ (0, T ), 0 < δ′ < δ, in the sense
that

u ∈ Ls∗
(
t− δ′, t + δ′; Lq(Ω)

)
, (2.8)

where 4 < s∗ < ∞, 3 < q < 6, 2
s∗

+ 3
q

= 1.

Consider the case T = ∞. Then (1.6) with t0 = 0 yields
∫∞

0
‖∇u‖2

2 dτ < ∞,
and there exists δ0 > 0 such that∫ ∞

0

‖∇u‖2
2 dτ ≤ C

‖u0‖s−2
2

δ
s/4
0 .

Then we conclude from (2.6) that u is regular in (δ0,∞). For each given
δ0 > 0 we obtain the regularity of u in (δ0,∞) if ‖u0‖2 is sufficiently small.

Using again (1.6) with t0 = 0 we get from (2.6) that u is regular in (δ0,∞)

with some δ0 > 0 if 1
2
‖u0‖s

2 ≤ Cδ
s/4
0 .

3 Proofs of the previous results

Proof of Lemma 2.2 (cf. [7], Corollary 1.4) Using (1.4) we see that u(t0) ∈
L2

σ(Ω) is well-defined for each t0 ∈ [0, T ), and that by Definition 1.1 ∇u ∈
L2

(
0, T ; L2(Ω)

)
. Therefore, applying Sobolev’s embedding estimate with some

constant C = C(q) > 0 in the form

‖u(t0)‖q ≤ C‖∇u(t0)‖β
2 ‖u(t0)‖1−β

2 , (3.1)

see [14], p. 52, with 3 < q < 6, 0 ≤ β ≤ 1, β(1
2
− 1

3
) + (1 − β)1

2
= 1

q
, we get

that ∇u(t0) ∈ L2(Ω) and u(t0) ∈ Lq
σ(Ω) are well-defined, and satisfy (3.1) for all

t0 ∈ (0, T )\N where N ⊆ (0, T ) is a null set.
First we assume that the condition (2.4) is satisfied with any given constant

C1 > 0, i.e., it holds ∫ t

t−δ

‖u(τ)‖s
q dτ ≤ C1δ

1− s
s∗ (3.2)

with 0 < δ < t < T , and with 1 ≤ s ≤ s∗ < ∞, 3 < q < 6 as in (2.3).
Choose δ0 ∈ (0, δ] with t + δ0 < T , and set T0 = t + δ0. Then for each

t0 ∈ (t− δ, t)\N the expression

E(T0, t0) =
( ∫ T0−t0

0

‖e−τAqu(t0)‖s∗
q dτ

) s
s∗

(3.3)

is well-defined, and obviously, there is at least one t′0 ∈ (t− δ, t)\N , such that

E(T0, t
′
0) ≤

1

δ

∫ t

t−δ

E(T0, t0)dt0; (3.4)
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the mean value in (3.4) cannot be strictly smaller than all these values E(T0, t
′
0).

Since there is a constant C0 = C0(Ω, q) > 0 such that

‖e−τAqv‖q ≤ C0‖v‖q, v ∈ Lq
σ(Ω), t ≥ 0, (3.5)

see [3], [11], [15], we obtain from (3.4) and (3.2) the estimate

E(T0, t
′
0) ≤ Cs

0 ·
1

δ

(
T0 − (t− δ)

) s
s∗

∫ t

t−δ

‖u(t0)‖s
q dt0

≤ Cs
0 2

s
s∗ δ

s
s∗
−1

∫ t

t−δ

‖u(t0)‖s
q dt0

≤ Cs
0 2

s
s∗ δ

s
s∗
−1C1δ

1− s
s∗ = C1C

s
02

s
s∗ . (3.6)

For a moment let C2 = C2(Ω, q) > 0 denote the constant in Lemma 2.1. Then we

set C1 = C
s

s∗
2 C−s

0 2−
s

s∗ and take this constant as C = C(Ω, q, s) in Lemma 2.2,
so that (3.6) yields

E(T0, t
′
0)

s∗
s ≤ C2.

Applying Lemma 2.1 in the formulation (2.2), now t, t0, s replaced by τ, t′0, s∗, we
obtain a weak solution v of the Navier-Stokes system

vτ −∆v + v · ∇v +∇p = 0, div v = 0
v|∂Ω

= 0, v|τ=t′0
= u(t′0)

(3.7)

in [t′0, T0)× Ω, satisfying Serrin’s condition

v ∈ Ls∗
(
t′0, T0; L

q(Ω)
)
, (3.8)

and the energy inequality in the form

1

2
‖v(τ)‖2

2 +

∫ τ

t′0

‖∇v‖2
2 dσ ≤ 1

2
‖u(t′0)‖2

2, t′0 ≤ τ < T0. (3.9)

Since u satisfies the strong energy inequality (1.6) for almost all t0 ∈ [0, T ),
we may assume without loss of generality that the null set N ⊆ (0, T ) is chosen
in such a way that for each t0 ∈ (0, T )\N in (3.3) the inequality (1.6) is satisfied.
Thus also u satisfies the inequality

1

2
‖u(τ)‖2

2 +

∫ τ

t′0

‖∇u‖2
2 dσ ≤ 1

2
‖u(t′0)‖2

2, t′0 ≤ τ < T0. (3.10)

Using Serrin’s uniqueness criterion, see [13], [14], V, Theorem 1.5.1, we obtain
that u = v on [t′0, T0). Setting δ′ = t − t′0 < δ we conclude that u belongs to
Serrin’s class Ls∗

(
t− δ′, t + δ′; Lq(Ω)

)
.
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Proof of Lemma 2.4 Let C1 = C1(Ω, q) > 0 be the constant in (2.1), and let
C2 = C2(Ω, q, s) > 0 be the constant in (2.4). Since by (3.5) for T0 > 0∫ T0

0

‖e−τAqu0‖s∗
q dτ ≤ T0C

s∗
0 ‖u0‖s∗

q ,

Lemma 2.1 implies the following: For

T0 = C1C
−s∗
0 ‖u0‖−s∗

q (3.11)

there exists a weak solution v ∈ Ls∗
(
0, T0; L

q(Ω)
)

of the Navier-Stokes system

vt −∆v + v · ∇v +∇p = 0, div v = 0

v|∂Ω
= 0, v|t=0

= u0,

in [0, T0)× Ω satisfying the energy inequality 1
2
‖v(t)‖2

2 +
∫ t

0
‖∇v‖2

2 dτ ≤ 1
2
‖u0‖2

2,
0 ≤ t < T0. If T0 ≥ T , then Serin’s uniqueness condition as in the previous proof
leads to u = v in (0, T ), and u is regular in (0, T ). In the case 0 < T0 < T we
obtain u = v with the corresponding regularity first of all only in (0, T ). Next we
consider the interval [T0, T ), set δ = 1

2
T0, C3 = C2(

1
2
C1C

−s∗
0 )1−s/s∗ , and conclude

from Lemma 2.2, (2.4): If∫ t

t−δ

‖u(τ)‖s
q dτ ≤ C2δ

1− s
s∗ = C3‖u0‖s−s∗

q , (3.12)

then u is regular in some interval (t− δ′, t + δ′) ⊆ (0, T ), 0 < δ′ < δ, in the sense

that u ∈ Ls∗
(
t − δ′, t + δ′; Lq(Ω)

)
. Finally, if

∫ T

0
‖u(τ)‖s

q dτ ≤ C3‖u0‖s−s∗
q , then

(3.12) holds for all t ∈ [T0, T ), and this proves Lemma 2.4.

Remark 3.1 The proof of Lemma 2.4 shows that the result can be improved as
follows: Let Ω, T, u, u0, q, s, s∗ be as in this lemma, and let T0 ∈ (0, T ) be defined
by (3.11). Then there is a constant C = C(Ω, q, s) > 0 such that u is regular in
(0, T ) in the sense u ∈ Ls∗

loc

(
(0, T ); Lq(Ω)

)
, if

sup
T0≤t<T

∫ t

t− 1
2
T0

‖u‖s
q dτ ≤ C‖u0‖s−s∗

q (3.13)

is satisfied.

Proof of Lemma 2.5 Applying Sobolev’s embedding estimate (3.1) we obtain
with 0 < δ < t < T , 2 < s < 4, 3 < q < 6, 0 ≤ β ≤ 1, β(1

2
− 1

3
) + (1− β)1

2
= 1

q
,

βs = 2, the inequality∫ t

t−δ

‖u‖s
q dτ ≤ C1

∫ t

t−δ

‖∇u‖βs
2 ‖u‖(1−β)s

2 dτ (3.14)

= C1

∫ t

t−δ

‖∇u‖2
2 ‖u‖s−2

2 dτ,
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where C1 = C1(q) > 0 means the constant in (3.1).
Let C0 = C0(Ω, q, s) > 0 be the constant in (2.4). Then we use 2

s
= 3

2
− 3

q
,

2
s∗

= 1− 3
q
, s

4
= 1− s

s∗
, and obtain from (3.14) that the condition (2.4) is satisfied

when C = C0C
−1
1 in (2.6). This proves Lemma 2.5 in the case (i).

Using the energy inequality (1.6) with t0 = 0 we obtain ‖u(τ)‖2 ≤ ‖u0‖2 for
t− δ ≤ τ ≤ t, and (3.14) leads to∫ t

t−δ

‖u‖s
q dτ ≤ C1‖u0‖s−2

2

∫ t

t−δ

‖∇u‖2
2 dτ. (3.15)

Therefore, if (2.7) holds with C = C0C
−1
1 , then (2.4) is satisfied.

Proof of Theorem 1.2 Let Ω, a, b, T, u, u0 be as in this theorem. Using the
strong energy inequality (1.6) for almost all t0 = t′ ∈ (a, b), and all t = t′ + δ,
t ∈ (t′, b), we obtain that∫ t

t−δ

‖∇u‖2
2 dτ ≤ 1

2
‖u(t′)‖2

2 −
1

2
‖u(t)‖2

2. (3.16)

Now setting α = s
4

+ ε ∈ (1
2
, 1), ε > 0, (3.16) implies that

1

δs/4

∫ t

t−δ

‖∇u‖2
2 dτ ≤

∣∣1
2
‖u(t)‖2

2 − 1
2
‖u(t′)‖2

2

∣∣
|t− t′|α

δε ≤ C1δ
ε, (3.17)

where C1 denotes the left-side side of (1.9). Therefore, for each t ∈ (a, b) there
exist δ > 0, s ∈ (2, 4), ε > 0 as above such that (3.17) is satisfied. Choosing this
δ sufficiently small we see that (2.7) is satisfied. Thus by Lemma 2.5 (ii) each
t ∈ (a, b) is regular, and, therefore, u is regular in (a, b).

Proof of Theorem 1.4 Let Ω, a, b, T, u, u0 be as in this theorem, let t ∈ (a, b),
α ∈ (1

2
, 1), and assume that (1.14) is satisfied. Then there is a sequence (δj)j∈N ⊂

(0, t) with limj→∞ δj = 0 such that

C1 := lim
j→∞

1

δα
j

∫ t

t−δj

‖∇u‖2
2 dτ < ∞. (3.18)

Next we choose some ε > 0 and s ∈ (2, 4) such that s
4

= α−ε. Using limj→∞ δj =
0 and (3.18) find j0 ∈ N such that

1

δα
j0

∫ t

t−δj0

‖∇u‖2
2 dτ ≤ C1 + ε.

This yields – for j0 sufficiently large –

1

δ
s/4
j0

∫ t

t−δj0

‖∇u‖2
2 dτ ≤ δε

j0
(C1 + ε) ≤ C

‖u0‖s−2
2

.
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Then Lemma 2.5, (ii), shows that u is regular in some interval (t − δ′, t + δ′) ⊆
(0, T ) in the sense of (2.8). We can choose δ′ > 0 small enough such that (t −
δ′, t + δ′) ⊆ (a, b). Since t ∈ (a, b) was arbitrary, we obtain the result of Theorem
1.4. This completes the proof.

4 A local space-time regularity result

The results in Sections 1 and 2 rest on the idea to identify the given weak solu-
tion u locally in time via a unique very weak solution with a regular one. For
this identification we use Serrin’s uniqueness argument, and therefore the strong
energy inequality (1.6). In principle we can apply the same method in both space
and time direction. We mention a result in this context in the following Theorem
4.1.

In this section Ω ⊆ R3 means a completely general domain, i.e. a connected
open subset, with boundary ∂Ω uniformly of class C2,1. Further we need a special
weak solution, the so-called suitable weak solution introduced in [2]:

A weak solution u defined in [0, T ) × Ω, 0 < T ≤ ∞, as in Definition 1.1 is
called a suitable weak solution of (1.1) with initial value u0 ∈ L2

σ(Ω) if additionally
the following conditions are satisfied:

(i) The associated pressure term ∇p, defined in the sense of distributions by
(1.5), satisfies

∇p ∈ L
5/4
loc

(
(0, T )× Ω

)
. (4.1)

(ii) It holds the local energy inequality in the form

1

2
‖ϕu(t)‖2

2 +

∫ t

t0

‖ϕ∇u‖2
2 dτ ≤ 1

2
‖ϕu(t0)‖2

2 +
1

2

∫ t

t0

〈∇ϕ2,∇|u|2〉 dτ

−
∫ t

t0

〈p +
1

2
|u|2, u · ∇ϕ2〉 dτ (4.2)

for almost all t0 > 0, all t ∈ [t0, T ), and all test functions ϕ ∈ C∞
0 (Ω).

The existence of such a suitable weak solution has been shown in [5]. The reason
that we need (4.2) is again the local identification procedure, now in space-time,
with Serrin’s uniqueness argument. However, this local energy inequality contains
the associated pressure p which should satisfy (4.1); the exponent 5/4 comes from
the nonlinear term in (1.1). In the following we use the parabolic cylinder

Qr = Qr(t0, x0) = (t0 − r2, t0)×Br(x0) ⊆ (0, T )× Ω (4.3)

with r > 0, t0 ∈ (0, T ), x0 ∈ Ω, Br(x0) = {x ∈ R3; |x − x0| < r}, such that
Br(x0) ⊆ Ω, cf. [2].
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Theorem 4.1 Let Ω ⊆ R3 be a general domain with boundary ∂Ω uniformly
of class C2,1, and let 0 < T ≤ ∞. Consider a parabolic cylinder Qr(t0, x0)
with r, t0, x0 as in (4.3), and a suitable weak solution u in [0, T ) × Ω defined by
Definition 1.1 and by (4.1), (4.2). Then there is an absolute constant C > 0 with
the following property: If

‖u‖Ls(t0−r2,t0;Lq(Br(x0))) ≤ C r
2
s
+ 3

q
−1 (4.4)

with 2 < s ≤ q < ∞, 1 ≤ 2
s

+ 3
q
≤ 1 + 1

q
, then u is regular in Q r

2
(t0, x0) in the

sense that the local Serrin condition

u ∈ Ls∗
(
t0 − (r/2)2; t0; L

q∗
(
B r

2
(x0)

))
(4.5)

is satisfied with exponents 2 < s∗ < ∞, 3 < q∗ < ∞ satisfying s
s∗

+ 3
q∗

= 1.

From the local Serrin condition (4.5) we are not able to prove the same
smoothness property (1.8) for Q r

2
(t0, x0) as from the global Serrin condition (1.7).

However, see [2], p. 780, and [16], p. 440, p. 453, (4.5) implies the following prop-
erty: In each subdomain D ⊆ Qr/2 with D ⊆ Qr/2 there exists spatial derivatives
of arbitrary order which are essentially bounded in D.

In the special case 2
s
+ 3

q
= 1, (4.4) means the well-known local Serrin condition

while in the case 1 < 2
s

+ 3
q
≤ 1 + 1

q
we obtain a new regularity criterion beyond

Serrin’s condition.

Sketch of the proof. In the first step we reduce the general case 1 ≤ 2
s

+ 3
q
≤

1 + 1
q

to the case 2
s

+ 3
q

= 1 + 1
q
. Indeed, if we choose s0 with 2 < s0 ≤ s such

that 2
s0

+ 3
q

= 1 + 1
q
, then we see using Hölder’s inequality that if (4.4) is satisfied

with the given s, q, then (4.4) holds with the same constant for s0, q also. Thus
we may assume in the following that 2

s
+ 3

q
= 1 + 1

q
.

In the next step we reduce the given r, x0 to the case r = 1, x0 = 0. For
this purpose we use the scaling transform similarly as in [2], and define, with
λ > 0, the functions ũ, p̃, ũ0 in the variables τ = λ−2t, y = λ−1(x−x0) by setting
ũ(τ, y) = λu(t, x), p̃(τ, y) = λ2p(t, x), ũ0 = λu0. Then (t, x) ∈ Qr(t0, x0) if and
only if (τ, y) ∈ Qr/λ(τ0, 0). Setting λ = r we conclude that (4.4) is satisfied for
ũ with r = 1, x0 = 0 if (4.4) holds with given u, r, x0. This shows that we may
assume in the following that r = 1, x0 = 0.

In the third step we choose a certain cylinder Q′ = [t′0, t0)×Br′ , Br′ = Br′(0),
with Q1/2(t0, 0) ⊂ Q′ ⊂ Q1(t0, 0), t′0 ∈ (t0 − 1, t0 − 1

2
), r′ ∈ (1

2
, 1), in such a way

that
u(t′0) ∈ Lq(Br′) , u|(t′0,t0)×∂Br′

∈ Ls
(
t0 − 1, t0; L

q(∂Br′)
)

(4.6)

are well-defined and satisfy the estimates

‖u(t′0)‖Lq(Br′ )
≤ C1‖u‖Ls(t0−1,t0;Lq(B1)), (4.7)

‖u‖Ls(t′0,t0;∂Br′ )
≤ C1‖u‖Ls(t0−1,t0;Lq(B1)) (4.8)
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with C1 = C1(r
′) > 0. To prove these properties we use the mean value argument

in the same way as in (3.4), and the traces in (4.6) are well-defined in the sense
of Lebesgue points, see [14], p. 341.

The properties (4.6) – (4.8) enable us to construct a very weak solution v ∈
Ls∗

(
t′0, t0; L

q∗(Br′)
)
, 2 < s∗ < ∞, 3 < q∗ < ∞, 2

s∗
+ 3

q∗
= 1, of the local system

vt −∆v + v · ∇v +∇h = 0, div v = 0

v|(t′0,t0)×∂Br′
= u|(t′0,t0)×∂Br′

, v|t=0
= u(t′0)|Br′

, (4.9)

see [1] and [4], Theorem 1, if the smallness condition (4.4) is satisfied (with r = 1,
x0 = 0).

In the last step we have to identify u = v in Q′. For this purpose we use the
local energy inequality (4.2) in a similar way as in Serrin’s uniqueness criterion,
see [13], [14], V, Theorem 1.5.1. This leads to the estimate

1

2
‖u(t)− v(t)‖2

2 +

∫ t

t′0

‖∇(u− v)‖2
2 dτ ≤

∫ t

t′0

∣∣〈(u− v) · ∇(u− v), v〉Br′

∣∣ dτ.

Using a standard estimate of the right-hand side, and the well-known absorption
argument, we obtain in a finite number of steps with t′0 < t1 < · · · < tn = t0,
n ∈ N, that u = v in Q′. This completes the proof.
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