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tIn this note we investigate the question of higher regularity up to the boundaryfor quasilinear ellipti
 systems whi
h origin from the time-dis
retization of modelsfrom in�nitesimal elasto-plasti
ity. Our main fo
us lies on an elasto-plasti
 Cosseratmodel. More spe
i�
ally we show that the time dis
retization renders H2-regularityof the displa
ement and H1-regularity for the symmetri
 plasti
 strain εp up to theboundary provided the plasti
 strain of the previous time step is in H1, as well.This result 
ontrasts with 
lassi
al Hen
ky and Prandtl-Reuss formulations whereit is known not to hold due to the o

urren
e of slip lines and shear bands. Similarregularity statements are obtained for other regularizations of ideal plasti
ity likevis
osity or isotropi
 hardening.In the �rst part we re
all the time 
ontinuous Cosserat elasto-plasti
ity prob-lem, provide the update fun
tional for one time step and show various preliminaryresults for the update fun
tional (Legendre-Hadamard/monotoni
ity). Using nonstandard di�eren
e quotient te
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ial for qualitative statements of �nite element 
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tion1.1 Plasti
ity and Cosserat modelsThis arti
le addresses the regularity question for time-in
remental formulations of geomet-ri
ally linear elasto-plasti
ity. As a representative model problem we 
onsider generalized
ontinua of Cosserat-mi
ropolar type.The basi
 di�eren
e of a Cosserat model as 
ompared with 
lassi
al 
ontinuum modelsis the appearan
e of a nonsymmetri
 stress tensor whi
h is augmented by a generalizedbalan
e of angular momentum equation allowing to model intera
tion of parti
les not onlyby surfa
e for
es (
lassi
al Cau
hy 
ontinuum) but also through surfa
e 
ouples (Cosserat
ontinuum). General 
ontinuum models involving independent rotations as additionaldegrees of freedom have been �rst introdu
ed by the Cosserat brothers [15℄. For anintrodu
tion to the theory of Cosserat and mi
ropolar models we refer to the introdu
tionin [49, 43, 45, 44, 48℄, see also [22, 9℄.There are a great many proposals for extensions of the elasti
 Cosserat framework toin�nitesimal elasto-plasti
ity. We mention only [17, 19, 31, 55℄. Re
ently the �nite-strainformulation has been put into fo
us, see, e.g., [56, 62, 23℄ and referen
es therein.The �rst author has also proposed an elasto-plasti
 Cosserat model [45, 44℄ in a �nitestrain framework. A geometri
al linearization of this model has been investigated in [46,2



48℄ and is shown to be well-posed also in the rate-independent limit for both quasistati
and dynami
 pro
esses.When it 
omes to numeri
ally solving problems in elasto-plasti
ity, then it is 
ommonpra
ti
e to dis
retize the time-evolution in the �ow-rule for the plasti
 variable with aba
kward Euler method and to 
onsider a sequen
e of dis
rete-in-time problems [50℄.Provided that the elasto-plasti
 model has 
ertain variational features (hyperelasti
ityof the elasti
 response, asso
iative �ow rule) it is possible to re
ast the problem for onetime-step (
alled the update problem in the following) itself into a variational framework:the updated displa
ement is obtained as a minimizer of some update fun
tional, see e.g.,[61, 60, 2, 66, 67℄. This line of thought 
an be ni
ely extended to �nite-strain multipli
ativeplasti
ity, see [52, 37, 36, 38℄ and referen
es therein. In the geometri
ally linear setting theresulting variational update problem usually has the form of a quasilinear ellipti
 systemwhose 
orresponding energy has only linear growth (in 
ase of perfe
t plasti
ity).For qualitative statements on the rate of 
onvergen
e of �nite element methods itis ne
essary to know pre
isely the regularity of the fun
tion to be approximated. Thisthen is the question on the regularity of the solution of the quasilinear ellipti
 system
onstituting the update problem.As far as 
lassi
al rate-independent (perfe
t) elasto-plasti
ity is 
on
erned we remarkthat global existen
e for the displa
ement has been shown only in a very weak, measure-valued sense, while the stresses 
ould be shown to remain in L2(Ω), provided a safe-load 
ondition is assumed. For these results we refer for example to [3, 13, 64℄. Ifhardening or vis
osity is added, then global H1-displa
ement solutions are found see e.g.[1, 12, 11℄, already without safe-load assumption. A 
omplete theory for the 
lassi
alrate-independent 
ase remains, however, elusive, see also the remarks in [13℄.Sin
e 
lassi
al perfe
t plasti
ity is, therefore, notoriously ill-posed (the updated dis-pla
ements have derivatives only in a measure-valued sense) we fo
us in our investigationof higher regularity on 
ertain modi�ed update fun
tionals whi
h might allow for moreregular updates. The Cosserat elasto-plasti
 model in [46℄ is our basi
 
andidate. Basedon this time-
ontinuous model we investigate the time-in
remental formulation and studythe global regularity of minimizers of the 
orresponding update fun
tional. In [49℄ thistime-in
remental formulation is the basis of a �nite-element approximation.Our fo
us on Cosserat models is justi�ed by the fa
t that the Cosserat type modelsare today in
reasingly advo
ated as a means to regularize the pathologi
al mesh sizedependen
e of lo
alization 
omputations where shear failure me
hanisms [14, 40, 4℄ playa dominant role, for appli
ations in plasti
ity, see the non-exhaustive list [31, 19, 55, 17℄.1.2 Outline of this 
ontributionOur 
ontribution is organized as follows: �rst, we re
all the time-
ontinuous geometri
allylinear elasto-plasti
 Cosserat model as introdu
ed in [45, 44℄ and investigated mathemat-i
ally in [46, 48, 47℄.Referring to the development in [49℄ we provide in se
tion 2 the 
orresponding time-dis
retized formulation based on a fully impli
it ba
kward Euler dis
retization of theplasti
 �ow rule in time. It is shown in [49℄ that at ea
h time step tn the updateddispla
ement �eld un and the updated �Cosserat�mi
rorotation�matrix� An 
an equiva-3



lently be obtained from a 
onvex minimization problem whi
h involves only data fromthe previous time step. The plasti
 strain εn
p is then derived from An and un via a simpleupdate formula. Furthermore, in [49℄ it has been shown that the update problem ad-mits unique minimizers un ∈ H1(Ω, R3), An ∈ H1(Ω, so(3)) and εn

p ∈ L2(Ω, Sym(3))provided that the data 
oming from the previous time step are smooth enough. Inorder to quantify the rate of 
onvergen
e of 
orresponding �nite element methods forthe update problem we investigate the regularity of the displa
ements un by studyingthe 
orresponding weak Euler�Lagrange equations. These equations form a quasilin-ear ellipti
 system of partial di�erential equations. The main result of this paper isTheorem 5.2 in se
tion 5, where we formulate a global regularity result for weak so-lutions of a rather general 
lass of quasilinear ellipti
 systems of se
ond order. Thetime-in
remental Cosserat plasti
ity formulation satis�es all the ne
essary assumptionsof the regularity result whi
h allows us to show higher regularity to the extent that
∀n ∈ N : un ∈ H2(Ω, R3) , An ∈ H2(Ω, so(3)), εn

p ∈ H1(Ω, Sym(3)) if pure Diri
hletdata are assumed. Let us remark that it remains an open problem whether a similarregularity result is also valid for the time-
ontinuous Cosserat model or other regularizedtime-
ontinuous plasti
ity formulations.The general quasilinear ellipti
 systems, whi
h we study in se
tion 5, are of the fol-lowing type: Find u ∈ H1
0 (Ω) su
h that for every v ∈ H1

0 (Ω)

∫

Ω

〈M(x,∇u(x), z(x)),∇v(x)〉 dx =

∫

Ω

〈f, v〉dx.Here, z ∈ L2(Ω, RN) and f ∈ L2(R3) are given data. For the Cosserat model, z is identi�edwith (εn
p , A

n), the expli
it stru
ture of M = MC is given in se
tion 2.4. It is shownthat MC is rank�one monotone in ∇u and Lips
hitz 
ontinuous but not di�erentiable.Consequently, we assume in the general 
ase that the fun
tion M : Ω × Mm×d × RN →
Mm×d is Lips
hitz 
ontinuous, rank�one monotone in∇u and indu
es a Gårding inequality.The pre
ise 
onditions on M are formulated as R1�R3 in se
tion 5.1. Our main result istheorem 5.2, where we prove for smooth domains that u ∈ H2(Ω) provided that z ∈ H1(Ω)and f ∈ L2(Ω). We emphasize that we do not need the di�erentiability of M and thatwe require M to be rank-one monotone, only, instead of uniformly or strongly monotone.A further new aspe
t 
ompared to systems studied in the literature is the presen
e of thefun
tion z in the de�nition of the di�erential operator.Let us give a short overview on global regularity results for quasilinear se
ond ordersystems. Systems with quadrati
 growth or, more general, with p�growth are studied byseveral authors. We mention here the books [42, 39, 6℄, and the paper [53℄ where globalregularity results for systems of the type

DivM(x,∇u(x)) + f(x) = 0, u
∣∣
∂Ω

= gD ,are shown for smooth domains assuming that M is di�erentiable and strongly monotone.Further results for Lips
hitz domains were obtained in [21, 20, 57℄ again assuming that
M is strongly monotone (or uniformly monotone, if p 6= 2), di�erentiable and that thereis a fun
tion W su
h that M = DW . These results are proved with a di�eren
e quotientte
hnique whi
h relies on the standard �nite di�eren
es δhu(x) := u(x + h) − u(x).4



In Dan¥£ek [16℄ the authors study systems, whereM(x, u,∇u) = B(x)∇u+h(x, u,∇u).The main assumption in [16℄ is that B is uniformly positive de�nite, h is Hölder-
ontinuouswith respe
t to ∇u and h(x, u, ·) is uniformly monotone in zero. They prove that the gra-dient of solutions belongs lo
ally to 
ertain Campanato-Spanne spa
es. With our mainresult we 
an treat the 
ase, where h does not depend on u, is Lips
hitz 
ontinuousand monotone but not ne
essarily uniformly monotone and where B indu
es a rank-onepositive quadrati
 form. We obtain u ∈ H2(Ω) globally.In [58℄ a nonlinear ellipti
 system is studied whi
h is more related to our Cosserat-model. There, M is 
hosen as M(∇u) = h(|ε(u)|)
|ε(u)|

ε(u), where ε(u) is the linearized straintensor, and it is assumed that h is di�erentiable ex
ept for a �nite number of pointsand that h is strongly monotone. It is shown for smooth domains that u ∈ H2(Ω) byinvestigating the regularity of fun
tions uδ with Div(δε(uδ) + M(ε(uδ))) + f = 0 for
δ ց 0. The results for uδ are obtained with standard �nite di�eren
es. Further results forrelated models where obtained in [54, 7℄. Let us remark that the quasilinear system weare interested in 
ontains the above des
ribed systems as spe
ial 
ases (if p = 2) and thatour main result is not 
overed by the above referen
es. The lo
al and global regularity ofthe stress �elds of a 
lass of degenerated quasilinear ellipti
 systems is investigated in thepapers [10, 33℄.Note that higher regularity is not known to hold for the displa
ements of the 
lassi
allimit of our formulation, whi
h is the 
lassi
al time-in
remental Prandtl-Reuss model. Inthe �rst update step this model in turn is nothing else than the total deformation Hen
kyplasti
ity model. The Hen
ky model does not allow for regular displa
ements. Here, itis known that the displa
ement u ∈ L

3
2 (Ω, R3) (see, e.g., [6, p.423℄) while the 
lassi
alsymmetri
 stresses satisfy σ ∈ H1

loc(Ω, Sym(3)) ∩ H
1
2
−δ(Ω) for every δ > 0 if the data aresu�
iently regular and if Ω is a Lips
hitz domain. See [59, 24, 5, 51, 18℄ for the lo
al and[32℄ for the global result.The proof of our own regularity result is split into the three 
lassi
al steps. In the�rst step we investigate the tangential regularity of weak solutions in the 
ase where Ωis a 
ube. Sin
e we assumed rank�one monotoni
ity, only, we 
annot apply the standarddi�eren
e quotient te
hnique in this step. Instead, we use �nite di�eren
es whi
h are basedon inner variations: △hu(x) = u(τh(x))− u(x), where τh(x) = x + ϕ2(x)h for h ∈ Rd anda 
ut�o� fun
tion ϕ. This will be explained in more detail in remark 5.5. Let us notethat these nonstandard di�eren
es where re
ently applied by Nesenenko [51℄ in order toobtain higher lo
al regularity for models from elasto-plasti
ity with linear hardening. Inthe se
ond step we prove higher regularity in dire
tions normal to the boundary. Due tothe la
k of di�erentiability of M we 
annot apply the usual arguments (i.e. solving theequation for the normal derivatives) to obtain the di�erentiability of ∇u in the normaldire
tion. Instead, we exploit the rank�one monotoni
ity of M in order to get moreinformation on the missing derivative. In the �nal step we prove the result for arbitrarybounded C1,1-smooth domains by the usual lo
alization pro
edure. The notation is foundin the appendix.
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2 The in�nitesimal elasto-plasti
 Cosserat modelIn this se
tion we re
all the spe
i�
 isotropi
 in�nitesimal elasto-plasti
 Cosserat modelwhi
h has been proposed in a �nite-strain setting in [44℄ and whi
h was analyzed in [46℄.Moreover, we derive a dis
rete formulation. This se
tion does not 
ontain new results;it serves for the 
lear de�nition of the problem and for the introdu
tion of some of thenotation.2.1 Time 
ontinuous in�nitesimal elasto-plasti
 Cosserat modelThe geometri
ally linear time 
ontinuous system in variational form with non-dissipativeCosserat e�e
ts reads: for given body for
es f(t) ∈ L2(Ω, R3) and given Diri
hlet data�nd the displa
ement u(t) ∈ H1(Ω, R3), the skew-symmetri
 mi
rorotation A(t) ∈
H1(Ω, so(3)) and the symmetri
 plasti
 strain εp(t) ∈ L2(Ω, Sym(3)) with

∫

Ω

W (∇u, A, εp(t)) − 〈f(t), u〉 dx 7→ min . w.r.t. (u, A) at �xed εp(t) ,

W (∇u, A, εp) = µ ‖sym∇u − εp‖2

+ µc ‖skew(∇u − A)‖2 +
λ

2
tr [∇u]2 + 2µ L2

c ‖∇ axl(A)‖2 ,

ε̇p(t) ∈ ∂χ(TE(t)), TE = 2µ (ε − εp) , εp ∈ Sym(3) ∩ sl(3), εp(0) = ε0
p , (2.1)

u|ΓD
= gD(t, x) − x, A|ΓD

= skew(∇gD(t, x))|ΓD
.Here, Ω ⊂ R3 is a bounded smooth domain and ΓD ⊂ ∂Ω is that part of the boundarywhere Diri
hlet data are pres
ribed. The parameters µ, λ > 0 are the Lamé 
onstantsof isotropi
 linear elasti
ity, µc > 0 is the Cosserat 
ouple modulus and Lc > 0 is aninternal length parameter.1 The 
lassi
al symmetri
 elasti
 strain sym∇u is denoted by

ε. The linear operator axl : so(3) → R3 provides the 
anoni
al identi�
ation between theLie-algebra so(3) of skew-symmetri
 matri
es and ve
tors in R3. The Lie-algebra of tra
efree matri
es is denoted by sl(3) and dev : M
3×3 → sl(3), dev X = X − 1

3
11 is the orthog-onal proje
tion onto sl(3). As regards the plasti
 �ow rule, ∂χ is the subdi�erential of a
onvex �ow potential χ : M3×3 → R+ a
ting on the generalized 
onjugate for
es, i.e., theEshelby-stress tensor TE = −∂εp

W (∇u, A, εp), where W is the free energy used in (2.1).2The 
orresponding system of partial di�erential equations 
oupled with the �ow rule isgiven by (note that ‖A‖2
M3×3 = 2 ‖axl(A)‖2

R3 for A ∈ so(3, R))
Div σ = −f, x ∈ Ω , balan
e of for
es ,

σ = 2µ (ε − εp) + 2 µc (skew(∇u) − A) + λ tr [ε] · 11 , (2.2)1Observe that for µc = 0 or Lc = 0 one re
overs the 
lassi
al Prandtl-Reuss formulation for thedispla
ement u.2The spe
i�
ation χ = IK as indi
atorfun
tion of some elasti
 domain is not ne
essary at this point.6



−µ L2
c ∆ axl(A) = µc axl(skew(∇u) − A) , balan
e of angular momentum ,

ε̇p(t) ∈ ∂χ(TE), TE = 2µ (ε− εp) ,

u|ΓD
(t, x) = gD(t, x) − x , A|ΓD

= skew(∇gD(t, x))|ΓD
,

σ.~n|∂Ω\ΓD
(t, x) = 0 , µ L2

c∇ axl(A).~n|∂Ω\ΓD
(t, x) = 0 ,

εp(0) ∈ Sym(3) ∩ sl(3) .Note that in this model the for
e stresses σ need not be symmetri
 and that the Cosserate�e
ts, a
tive through the mi
rorotations A, only appear in the balan
e equations butnot in the plasti
 �ow rule sin
e TE does not depend on A. It is worth noting that thismodel is intrinsi
ally thermodynami
ally 
orre
t. If ΓD = ∂Ω then the model admitsglobal weak solutions with the regularity [46℄:
u ∈ L∞([0, T ], H1(Ω, R3)) , A ∈ L∞([0, T ], H1(Ω, so(3))) ,

εp ∈ L∞([0, T ], L2(Ω, Sym(3) ∩ sl(3))) . (2.3)2.2 Ba
kward Euler time dis
retization of the �ow ruleFor a numeri
al treatment we 
onsider the time dis
retization of the �ow rule with thefully impli
it ba
kward Euler s
heme. Let 0 = t0 < t1 < . . . < tN = T be a subdivisionof the time interval [0, T ] with tj − tj−1 = ∆t. Let fn(x) = f(x, tn) and assume that attime tn−1 a su�
iently regular plasti
 strain �eld εn−1
p ∈ Sym(3) ∩ sl(3) is given. Wewant to determine the updated displa
ement un ∈ H1(Ω, R3), the updated skew-symmetri
 mi
rorotation An ∈ H1(Ω, so(3)) and the updated symmetri
 plasti
strain εn

p ∈ L2(Ω, Sym(3) ∩ sl(3)) satisfying
Div σn = −fn, x ∈ Ω ,

σn = 2µ (εn − εn
p) + 2 µc (skew(∇un) − An) + λ tr [εn] · 11 ,

−µ L2
c ∆ axl(An) = µc axl(skew(∇un) − An) , (2.4)

εn
p − εn−1

p

∆t
∈ ∂χ(T n

E), T n
E = 2µ (εn − εn

p ) ,

un
|ΓD

(x) = gn
D(x) − x , An

|ΓD
= skew(∇gn

D(x)) ,

σn.~n|∂Ω\ΓD
(x) = 0 , µ L2

c∇ axl(A)n.~n|∂Ω\ΓD
(x) = 0 ,

εn−1
p ∈ L2(Ω, Sym(3) ∩ sl(3)) .It is possible to expli
itly solve the dis
retized �ow rule (2.4)4 for εn

p in terms of εn−1
p , εnand ∆t. To see this, 
onsider

εn
p − εn−1

p

∆t
∈ ∂χ(2µ (εn − εn

p)) ⇔ 0 ∈ ∂χ(2µ (εn − εn
p )) −

εn
p − εn−1

p

∆t
⇔ (2.5)7



0 ∈ ∂εn
p

(
µ

∥∥εn
p − εn−1

p

∥∥2
+ ∆tχ(2µ (εn − εn

p))
)

.Thus we 
an de�ne the lo
al potential for the lo
al �ow rule
V time(εn, εn

p , εn−1
p , ∆t) := µ

∥∥εn
p − εn−1

p

∥∥2
+ ∆tχ(2µ (εn − εn

p)) . (2.6)It is easy to see that V time is stri
tly 
onvex in εn
p , thus V time admits a unique minimizersatisfying (2.5)3. Moreover, we have

V time(εn, εn
p , ε

n−1
p , ∆t) = µ

∥∥εn
p − εn−1

p

∥∥2
+ ∆tχ(2µ (εn − εn

p))

=
1

4µ

∥∥2µ(εn
p − εn + εn − εn−1

p )
∥∥2

+ ∆tχ(2µ (εn − εn
p ))

=
1

4µ
‖Σn − Σn

trial‖2 + ∆tχ(Σn) = Ṽ (Σn, Σn
trial) , (2.7)where Σn = 2µ (εn−εn

p ) and the so-
alled trial stresses Σn
trial = 2µ (εn−εn−1

p ). Minimizing
V time w.r.t. εn

p is equivalent to minimizing Ṽ w.r.t. Σn. Pro
eeding further, we spe
ialize
χ. Let us de�ne the elasti
 domain in stress-spa
e

K := {Σ ∈ M
3×3 | ‖dev Σ‖ ≤ σy } , (2.8)with initial yield stress σy, [σy] = [MPa], and 
orresponding indi
ator fun
tion

IK(Σ) =

{
0 ‖dev Σ‖ ≤ σy

∞ ‖dev Σ‖ > σy ,
(2.9)and let χ = IK . We have therefore ∂χ = ∂IK in the sense of the subdi�erential. Withthis 
hoi
e, the unique minimizer of Ṽ is simply 
hara
terized by

inf
Σn∈K

‖Σn − Σn
trial‖2 , (2.10)independent of ∆t. The solution is the orthogonal proje
tion of Σn

trial onto the 
onvex set
K, denoted by

Σn = PK(Σn
trial) ⇒ 2µ (εn − εn

p )) = PK(2µ (εn − εn−1
p )) . (2.11)Reintrodu
ing the last result into the balan
e of for
es equation (2.4)1 delivers

Div σn = −fn, x ∈ Ω ,

σn = PK(2µ (εn − εn−1
p )) + 2 µc (skew(∇un) − An) + λ tr [εn] · 11 . (2.12)This step is 
alled return-mapping [61, 60℄ in an engineering 
ontext of 
lassi
al plas-ti
ity. At given plasti
 strain of the previous time step εn−1

p this equation is the strongform of the update problem for the for
e-balan
e equation.8



Gathering the previous development the formal problem for the update 
onsists indetermining un ∈ H1(Ω, R3), An ∈ H1(Ω, so(3)) and εn
p ∈ L2(Ω, Sym(3)∩sl(3)) satisfying

Div σn = −fn, x ∈ Ω ,

σn = PK(2µ (εn − εn−1
p )) + 2 µc (skew(∇un) − An) + λ tr [εn] · 11 , (2.13)

−µ L2
c ∆ axl(An) = µc axl(skew(∇un) − An) .The updated plasti
 strain �eld is then given by

εn
p = εn − 1

2µ
PK(2µ (εn − εn−1

p )) . (2.14)For the pre
ise formulation of this system we need the proje
tion operator onto the yieldsurfa
e whi
h we re
all in the following.2.3 The proje
tion onto the yield surfa
eLet K be a 
onvex domain in stress spa
e de�ned as
K :=

{
Σ ∈ M

3×3 | ‖dev Σ‖ ≤ σy

}
. (2.15)The orthogonal proje
tion PK : M3×3 → K onto this set is uniquely given by (see,e.g.,[29, 30℄)

PK(Σ) =

{
Σ Σ ∈ K

Σ − (‖dev Σ‖ − σy)
dev Σ

‖dev Σ‖
Σ 6∈ K

=

{
Σ ‖dev Σ‖ ≤ σy

1
3
tr [Σ] 11 + σy

‖dev Σ‖
dev Σ ‖dev Σ‖ > σy .

(2.16)It is easy to see that PK is Lips
hitz 
ontinuous but not di�erentiable at Σ with ‖dev Σ‖ =
σy.3 From 
onvex analysis it is 
lear that PK represents a monotone operator whi
h isnon-expansive. Therefore, PK has Lips
hitz 
onstant 1. Observe also that

PK(Σ) =
1

3
tr [Σ] 11 + PK(dev Σ) . (2.18)For future referen
e we 
al
ulate also

Σ − PK(Σ) =

{
0 ‖dev Σ‖ ≤ σy

dev Σ
(
1 − σy

‖dev Σ‖

)
‖dev Σ‖ > σy

= [‖dev Σ‖ − σy]+
dev Σ

‖dev Σ‖ , (2.19)
‖Σ − PK(Σ)‖2 = [‖dev Σ‖ − σy]

2
+ ,where [x]+ := max{0, x}.3Consider the simple example p : R → R,

p(x) =

{
x |x| ≤ σy

σy
x
|x| |x| > σy

(2.17)9



2.4 Weak form of the redu
ed update problemFrom now onwards we take ΓD = ∂Ω and assume gD = x, i.e. the body is �xed everywhereon its boundary and subje
t only to body for
es. This assumption allows us to 
on�neattention to the simpler setting in H1
0 (Ω). We introdu
e the nonlinear mapping

MC : M
3×3 × Sym(3) × so(3) → M

3×3 ,

MC(X, εp, A) := PK(2µ(sym X − εp)) + λ tr [X] 11 + 2µc(skew(X) − A) . (2.20)The weak form of the update problem (2.13) now reads as follows: for given fn ∈ L2(Ω, R3)and εn−1
p ∈ L2(Ω, Sym(3) ∩ sl(3)) �nd (un, An) ∈ H1

0 (Ω, R3) × H1
0 (Ω, so(3)) solving

∫

Ω

〈MC(∇un, εn
p , A

n),∇v〉dx =

∫

Ω

〈fn, v〉dx ∀v ∈ H1
0 (Ω, R3) , (2.21)

µ L2
c

∫

Ω

〈DAn, DB〉dx = µc

∫

Ω

〈skew∇un − An, B〉dx , ∀B ∈ H1
0 (Ω, so(3)) .(2.22)The updated plasti
 strain �eld εn

p is then obtained by (2.14). It is shown in [49℄ thatfor every n the system (2.21)�(2.22) admits a unique weak solution un ∈ H1
0(Ω, R3)and An ∈ H1

0 (Ω, so(3)). Equation (2.21) represents the quasilinear ellipti
 system fordetermining un whi
h will be dis
ussed with respe
t to regularity. Together with εn−1
p , εn ∈

H1(Ω, Sym(3)), whi
h we will obtain from the regularity result to be proven below, using(2.14) we see that εn
p ∈ H1(Ω, Sym(3)).Lemma 2.1 (Strong Legendre-Hadamard ellipti
ity)Let µ > 0, 2µ+3λ > 0 and 0 < µc. Then the matrix valued fun
tionMC is strongly rank�one monotone, i.e., there exists a 
onstant c+

LH > 0 su
h that for every X ∈ M
3×3, εp ∈

Sym(3), A ∈ so(3) and for all ξ, η ∈ R3 we have
〈MC(X + ξ ⊗ η, εp, A) −MC(X, εp, A), ξ ⊗ η〉 ≥ c+

LH ‖ξ‖2 ‖η‖2 . (2.23)Proof. The proje
tion PK itself is monotone and for µ > 0 there is no sign-
hange. Thusthe map X → PK(2µ(sym X − εp)) is also monotone in X. Sin
e (2.18) holds we have
〈PK(2µ(sym X + ξ ⊗ η − εp)) − PK(2µ(sym X − εp)), ξ ⊗ η〉 ≥ 2µ

3
tr [ξ ⊗ η]2 .For the remaining linear 
ontribution we have

〈λ tr [X + ξ ⊗ η] 11 + 2µc skew(X + ξ ⊗ η − A) − [λ tr [X] 11 + 2µc skew(X − A)] , ξ ⊗ η〉
= λ tr [ξ ⊗ η]2 + 2µc ‖skew(ξ ⊗ η)‖2 . (2.24)

10



Thus
〈MC(X + ξ ⊗ η, εp, A) −MC(X, εp, A), ξ ⊗ η〉

≥ 2µ + 3λ

3
tr [ξ ⊗ η]2 + 2µc ‖skew(ξ ⊗ η)‖2 =

2µ + 3λ

3
〈ξ, η〉2 + µc

(
‖ξ‖2 ‖η‖2 − 〈ξ, η〉2

)split µ1
c + µ2

c = µc

=

(
2µ + 3λ

3
− µ1

c

)
〈ξ, η〉2 + µ1

c ‖ξ‖2 ‖η‖2 + µ2
c

(
‖ξ‖2 ‖η‖2 − 〈ξ, η〉2

)
︸ ︷︷ ︸

≥0

≥
(

2µ + 3λ

3
− µ1

c

)
〈ξ, η〉2 + µ1

c ‖ξ‖2 ‖η‖2 ≥ µ1
c ‖ξ‖2 ‖η‖2 , (2.25)if 0 < µ1

c < 3λ+2µ

3
. Thus MC generates a strongly Legendre-Hadamard ellipti
 operatorwith ellipti
ity 
onstant c+

LH = min(µc,
2µ+3λ

3
). �Obviously, M is Lips
hitz 
ontinuous: for every Xi ∈ M3×3, Pi ∈ Sym(3), Ai ∈ so(3) wehave

‖MC(X1, P1, A1) −MC(X2, P2, A2)‖ ≤ LMC
(‖X1 − X2‖ + ‖P1 − P2‖ + ‖A1 − A2‖) .(2.26)Lemma 2.2Let µ > 0, 2µ + 3λ > 0 and µc > 0. The operator MC generates a strongly monotoneoperator on H1

0 (Ω, R3), that is, there exists a 
onstant cMC
> 0 su
h that for every

v1, v2 ∈ H1
0 (Ω, R3) and for all εp ∈ L2(Ω, Sym(3)) and A ∈ L2(Ω, so(3)) we have

∫

Ω

〈MC(∇v1, εp, A) −MC(∇v2, εp, A),∇v1 −∇v2〉dx ≥ cMC
‖v1 − v2‖2

H1
0 (Ω,R3) . (2.27)Proof. The same 
al
ulation as in the proof of Lemma 2.1 yields the estimate

〈MC(∇v1, εp, A) −MC(∇v2, εp, A),∇v1 −∇v2〉

≥ 2µ + 3λ

3
tr [∇v1 −∇v2]

2 + 2µc ‖skew(∇v1 −∇v2)‖2 . (2.28)Set u = v1 − v2 and 
onsider
2µ + 3λ

3
tr [∇u]2 + 2µc ‖skew∇u‖2 =

2µ + 3λ

3
|Div u|2 + µc ‖curl u‖2 . (2.29)The Curl/Div inequality on the spa
e H1

0 (Ω) guarantees that there exists C+ > 0 su
hthat
∀ u ∈ H1

0 (Ω, R3) :

∫

Ω

|Div u|2 + ‖curl u‖2 dx ≥ C+ ‖u‖2
H1

0 (Ω,R3) , (2.30)see for example [28℄. Applying this inequality to (2.29) implies �nally (2.27). �11



It is instru
tive to realize that although the quadrati
 form (2.29) is formally positive inthe sense of Ne£as [41℄ and strongly Legendre-Hadamard ellipti
 with 
onstant 
oe�
ientsit is impossible to extend the analysis to Diri
hlet boundary 
onditions given only on apart of the boundary ∂Ω.We observe that
∥∥∥∥∥
√

µc skew X +

√
λ

2 · 3tr [X] 11

∥∥∥∥∥

2

=
λ

2
tr [X]2 + µc ‖skew X‖2 . (2.31)Let Â be the 
onstant-
oe�
ients �rst order di�erential operator

Â.∇u =
√

µc skew(∇u) +

√
λ

2 · 3tr [∇u] 11 . (2.32)The 
orresponding Fourier-symbol is given as a linear operator A(ξ) : C3 → C3×3 with
A(ξ).û :=

√
µc skew(ξ ⊗ û) +

√
λ

2 · 3tr [ξ ⊗ û] 11 . (2.33)From (2.31) it follows
‖A(ξ).û‖2 =

λ

2
tr [ξ ⊗ û]2 + µc ‖skew ξ ⊗ û‖2 . (2.34)By algebrai
 
ompleteness of the symbol A(ξ) : C3 → C3×3 it is meant

∀ ξ ∈ C
3, ξ 6= 0 : A(ξ).û = 0C3×3 ⇒ û = 0C3 . (2.35)Re
all that the 
orresponding statement for real ξ, i.e.,

∀ ξ ∈ R
3, ξ 6= 0 : A(ξ).û = 0R3×3 ⇒ û = 0R3 , (2.36)is a 
onsequen
e of stri
t Legendre-Hadamard ellipti
ity of Â. If the symbol is alge-brai
ally 
omplete, then, using the result in Ne£as [41℄ the indu
ed quadrati
 form

∫

Ω

∥∥∥Â.∇u
∥∥∥

2

+ ‖u‖2 dx (2.37)is an equivalent norm on H1(Ω, R3). However, we pro
eed to show that A as de�ned in(2.33) 
orresponding to our quadrati
 form (2.29) is not algebrai
ally 
omplete.Proof. To this end we write
A(ξ).û = 0 ⇒ tr [ξ ⊗ û] = 0, and skew(ξ ⊗ û) = 0 ⇒ ξ = û , tr [ξ ⊗ ξ] = 0 . (2.38)Consider for simpli
ity the 2D-
ase:

ξ =

(
α1 + i β1

α2 + i β2

)
, ξ ⊗ ξ =

(
ξ1 ξ1 ξ1 ξ2

ξ2 ξ1 ξ2 ξ2

)
,

tr [ξ ⊗ ξ] = ξ1ξ1 + ξ2ξ2 = α2
1 + α2

2 − (β2
1 + β2

2) + 2i(α1β1 + α2β2) = 0 . (2.39)12



Choosing ξ = (i, 1)T shows that tr [ξ ⊗ ξ] = 0, whi
h proves the 
laim. �Then
e, the quadrati
 form is not algebrai
ally 
omplete and this ex
ludes the treat-ment of mixed boundary 
onditions on u in the following: we are for
ed to assume
ΓD = ∂Ω. However, inhomogeneous Diri
hlet 
onditions may be pres
ribed as far asthe use of the Div / Curl estimate is 
on
erned.2.5 Variational form of the update problemDue to the underlying variational formulation, the weak form (2.21) of the time-in
rementalCosserat problem still has a variational stru
ture. In [49℄ it is shown that solving (2.21)�(2.22) is equivalent to the following minimization problem: �nd (un, An) ∈ H1

0 (Ω, R3) ×
H1

0 (Ω, so(3)) whi
h minimize the fun
tional
In
incr(u, A) = Eincr(u, A, εn−1

p ) −
∫

Ω

〈fn, u〉dx (2.40)in H1
0 (Ω, R3)×H1

0 (Ω, so(3)). Here Eincr denotes the free energy of the in
remental problemde�ned by
Eincr(u, A, εp) =

1

2µ

∫

Ω

Ψ
(
2µ(sym(∇u) − εp)

)
dx +

λ

2

∫

Ω

tr [∇u]2 dx

+ µc

∫

Ω

‖skew(∇u) − A‖2 dx + µL2
c

∫

Ω

‖DA‖2 dx, (2.41)with a potential fun
tion Ψ : M
3×3 → R

+ of the form
Ψ(X) :=

{
1
2
‖X‖2 ‖dev X‖ ≤ σy

1
2

(
1
3
tr [X]2 + 2 σy ‖dev X‖ − σy

2
)

‖dev X‖ > σy

=
1

2
‖X‖2 − 1

2
[‖dev X‖ − σy]

2
+ . (2.42)Clearly, Ψ is 
onvex but not strongly 
onvex outside the yield surfa
e. Moreover, it hasonly linear growth outside the yield surfa
e. Note that for the �rst time step n = 1 and

ε0
p = 0, µc = 0, Lc = 0 the fun
tional I1

incr(u, 0) redu
es to the primal plasti
 fun
tional ofstati
 perfe
t plasti
ity (Hen
ky-plasti
ity) [35, 63, 24, 25, 6℄.Cal
ulating the subdi�erential of the 
onvex potential shows that
∂Ψ(Σ).H =

{
〈Σ, H〉 ‖dev Σ‖ ≤ σy

1
3
tr [Σ] tr [H ] + σy

‖dev Σ‖
〈dev Σ, dev H〉 ‖dev Σ‖ > σy

= 〈PK(Σ), H〉 . (2.43)Hen
e ∂Ψ(Σ) = PK(Σ) motivating the variational stru
ture.The following relationship between the potential Ψ and the proje
tion PK is also valid
Ψ(X) =

1

2
‖X‖2 − 1

2
‖X − PK(X)‖2 . (2.44)13



For future referen
e the se
ond di�erential of the potential Ψ 
an be 
al
ulated in thosepoints where the potential is di�erentiable. It holds
D2

XΨ(X).(H, H) =






‖H‖2 ‖dev X‖ < σydoes not exist ‖dev X‖ = σy

1
3
tr [H ]2 + σy

(
‖dev H‖2

‖dev X‖
− 〈dev X,H〉2

‖dev X‖3

)
‖dev X‖ > σy .

(2.45)The potential Ψ is not stri
tly rank-one 
onvex in X, sin
e, taking H = ξ ⊗ η with
〈ξ, η〉 = 0 yields

D2
XΨ(X).(ξ ⊗ η, ξ ⊗ η) =

{
‖ξ‖2 ‖η‖2 ‖dev X‖ ≤ σy

σy

(
‖dev ξ⊗η‖2

‖dev X‖
− 〈dev X,ξ⊗η〉2

‖dev X‖3

)
‖dev X‖ > σy

(2.46)Taking X = ξ ⊗ η shows �nally
D2

XΨ(X).(ξ ⊗ η, ξ ⊗ η) =

{
‖ξ‖2 ‖η‖2 ‖dev X‖ ≤ σy

0 ‖dev X‖ > σy .
(2.47)3 Improved error estimates for Cosserat plasti
ityLet h > 0 be the mesh-size of a �nite element method and let Vh ⊂ H1

0 (Ω, R3) bea 
orresponding dis
rete �nite-element spa
e. Let us 
on
entrate on the displa
ementapproximation only. In [49, Th.8℄ the following error estimate for the dis
rete solution
uµc,n

h ∈ Vh of the Galerkin-approximation of (2.41) in Vh has been shown:
‖uµc,n − uµc,n

h ‖
H1

0 (Ω) ≤
C1

µc

inf
vh∈Vh

‖uµc,n − vh‖H1
0 (Ω) , (3.1)with a 
onstant C1 > 0. Here, uµc,n = un is the exa
t solution of (2.21).Using our regularity result from se
tion 5, i.e., uµc,n ∈ H2(Ω, R3), the right hand side
an be estimated qualitatively. If Vh is 
hosen to be the spa
e of pie
ewise linear �niteelements, then it holds [8, p.107℄

‖uµc,n − uµc,n
h ‖

H1
0 (Ω) ≤

C2

µc

h ‖uµc,n‖H2(Ω) . (3.2)In [49℄ it has also been shown that for µc → 0 the 
lassi
al Prandtl-Reuss symmet-ri
 Cau
hy stresses σ0 are approximated by the sequen
e of non-symmetri
 stresses σµcwhenever a safe load 
ondition is satis�ed. The estimate (3.2) strongly suggests thereforeto balan
e h against µc to obtain optimal rates of 
onvergen
e to the 
lassi
al solution asin [54℄, where hardening type approximations have been 
onsidered.4 Higher regularity for alternative regularized updatepotentialsOur regularity result 
an also be applied to many other problems arising in the 
ontextof in�nitesimal plasti
ity. There exist several other possibilities to regularize the 
lassi
al14



update problem for the Prandtl�Reuss model. We re
all the 
lassi
al update problem:�nd a minimizer un ∈ BD(Ω, R3) of the fun
tional
Iclass
incr (u) = E class

incr (u, εn−1
p ) −

∫

Ω

〈fn, u〉dx , (4.1)where Eclass
incr denotes the free energy of the 
lassi
al in
remental problem de�ned by

Eclass
incr (u, εp) =

1

2µ

∫

Ω

Ψ
(
2µ(sym(∇u) − εp)

)
dx +

∫

Ω

λ

2
tr [∇u]2 dx , (4.2)with the potential Ψ as in (2.42). There is a vast literature on this Prandtl-Reuss updateproblem, mostly for the �rst time step n = 1, in whi
h 
ase it is the 
lassi
al Hen
ky-problem of total deformation plasti
ity [63, 54, 24, 25℄. In this 
ase, the plasti
 strain�eld εp is a symmetri
 bounded measure [63, 6℄. The 
lassi
al symmetri
 Cau
hy stresses

σ = 2µ (sym∇u − εp) + λ tr [∇u] 11 satisfy σ ∈ L2(Ω, Sym(3)), indeed higher regularityfor the stresses 
an be shown in the sense that σ ∈ H1
loc(Ω, Sym(3)) ∩ H

1
2
−δ(Ω).For regularization purposes the following proposals are usually made:

E reg
incr(u, εp) =

1

2µ

∫

Ω

Ψ
(
2µ(sym(∇u) − εp)

)
dx +

∫

Ω

λ

2
tr [∇u]2 + Reg(∇u, εp) dx , (4.3)with the fun
tion Reg in the form

Reg(∇u, εp) =
µ δ

2
‖dev sym∇u − εp‖2 , Fu
hs/Seregin [24, p.60℄ ,

Reg(∇u, εp) =
1

2 µ (1 + ∆t
η

)
[‖µ(dev sym∇u − εp)‖ − σy]

2
+ , linear vis
osity η ,

Reg(∇u, εp) =
µ δ

2
‖∇u − εp‖2 , lo
ally stri
tly 
onvex in ∇u . (4.4)In ea
h 
ase, for δ > 0 the density of the update problem is then uniformly 
onvex inthe symmetri
 strain ε = sym∇u. Moreover,
Reg(∇u, εp) +

λ

2
tr [∇u]2 ≥ c+ ‖ε − εp‖2 , (4.5)and Korn's �rst inequality establishes quadrati
 growth and we have uniform 
onvexityfor the regularized problem. Our main regularity result applies therefore also to thesemodels.In the 
ase with linear hardening it is simpler to write the update potential dire
tly.We 
onsider as an example isotropi
 hardening with the hardening variable α ≥ 0 (ameasure for the a

umulated plasti
 strain in the previous time step). Here, the energy

Ein
r 
an be expressed as (
f. [60, p.124℄)
Ehard

incr (u, εp, α) =
1

2µ

∫

Ω

Ψhard

(
2µ(sym(∇u) − εp), α

)
dx +

∫

Ω

λ

2
tr [∇u]2 dx , (4.6)15



with (
f. (2.42))
Ψhard(X, α) =






1
2
‖X‖2 ‖dev X‖ ≤ σy +H α

1
2 (1+ H

1[MPa]
)

(
H

1[MPa]
‖X‖2 + 1

3
tr [X]2

+2 (σy +H α) ‖dev X‖ − (σy +H α)2
)

‖dev X‖ > σy +H α

=
1

2
‖X‖2 − 1

2 (1 + H
1[MPa]

)

[
‖dev X‖ − (σy +H α)

]2

+
, (4.7)whose se
ond derivative 
oin
ides with the 
onsistent tangent method introdu
ed alreadyin [61℄. The 
onstant H > 0 is the hardening modulus with dimension [MPa]. In this formit is easy to see that for positive hardening modulus H > 0 the isotropi
 hardening updatepotential is uniformly 
onvex in sym∇u with quadrati
 growth and has a Lips
hitz 
on-tinuous derivative. Therefore, our main regularity result applies also to this fun
tional.4The relative merits of ea
h individual regularization s
heme depend on their ability tobalan
e regularization and approximation. Linear vis
osity and hardening 
an be justi�edon physi
al grounds, but the (small) vis
osity parameter η > 0 is di�
ult to estimate, asis the linear hardening modulus H > 0. The physi
ally motivated regularization termshave the property to only 
ontrol the symmetri
 part of the displa
ement gradient. Theregularization (4.4)3, however, does not satisfy the linearized frame-indi�eren
e 
ondition.All alternative regularization pro
edures thus establish lo
al 
oer
ivity in the strains.In 
ontrast, the Cosserat regularization is weaker in the sense that only strong Legendre-Hadamard ellipti
ity is reestablished, whi
h, provided displa
ement boundary data arepres
ribed, su�
e for existen
e, uniqueness and higher regularity. Thus the Cosseratapproa
h appears as the weakest regularization among the 
onsidered ones.5 The regularity theoremWe know already that (2.41) has solutions un ∈ H1(Ω, R3). Looking at the system for themi
rorotations An at given ∇un ∈ L2(Ω, M3×3) we realize at on
e that the linearity in Antogether with the Lapla
ian stru
ture allows to use standard ellipti
 regularity results forlinear systems whi
h yields higher regularity for the mi
rorotations: An ∈ H2(Ω, so(3)).In this se
tion we study the regularity of the displa
ement �eld un, whi
h is determinedthrough equation (2.21).5.1 Higher regularity for a quasilinear ellipti
 systemThe quasilinear ellipti
 system introdu
ed in se
tion 2.4 is a spe
ial 
ase of the systemswhi
h we de�ne here below. For d, m, N ≥ 1 and Ω ⊂ R

d letM : Ω×M
m×d×R

N → M
m×dbe a matrix valued fun
tion with the following properties:4Repin [54, eq.(2.3)℄ 
alls (4.4)2 linear hardening and shows the regularity uδ ∈ H2

loc(Ω, R3) while forthe planar 
ase n = 2 he obtains uδ ∈ H2(Ω, R2) if Γ = ∂Ω is smooth.16



R1 The mapping M : Ω × Mm×d × RN → Mm×d is a Carathéodory fun
tion whi
h isLips
hitz 
ontinuous in the following sense: there exist 
onstants L1, L2 > 0 su
hthat for every x, xi ∈ Ω, a, ai ∈ Mm×d and z, zi ∈ RN we have
‖M(x1, a, z) −M(x2, a, z)‖ ≤ L1(‖a‖ + ‖z‖) ‖x1 − x2‖ , (5.1)

‖M(x, a1, z1) −M(x, a2, z2)‖ ≤ L2(‖a1 − a2‖ + ‖z1 − z2‖), (5.2)
M(x, 0, 0) = 0. (5.3)Assumption R1 implies the useful estimate

‖M(x1, a1, z1) −M(x2, a2, z2)‖
≤ L1(‖a1‖ + ‖z1‖) ‖x1 − x2‖ + L2(‖a1 − a2‖ + ‖z1 − z2‖). (5.4)R2 The mapping M is strongly rank�one monotone. That means that there exists a
onstant cLH > 0 su
h that for every x ∈ Ω, a ∈ Mm×d, z ∈ RN , ξ ∈ Rm and η ∈ Rdwe have
〈M(x, a + ξ ⊗ η, z) −M(x, a, z), ξ ⊗ η〉 ≥ cLH ‖ξ‖2 ‖η‖2 . (5.5)R3 The Gårding inequality shall be satis�ed: there exist 
onstants CG > 0, cG ∈ R su
hthat for every u1, u2 ∈ H1(Ω) with u1 − u2 ∈ H1

0 (Ω) and for every z ∈ L2(Ω) thefollowing inequality is valid:
∫

Ω

〈M(x,∇u1, z) −M(x,∇u2, z),∇(u1 − u2)〉 dx

≥ CG ‖∇(u1 − u2)‖2
L2(Ω) − cG ‖u1 − u2‖2

L2(Ω) .Remark 5.1If M is di�erentiable, then the Gårding inequality already implies that M is rank�onemonotone, see for example [65, Th.6.1℄.We investigate the regularity properties of weak solutions to the following quasilinear el-lipti
 boundary value problem. For given g ∈ H
1
2 (∂Ω), z ∈ L2(Ω, RN) and f ∈ L2(Ω, Rm)�nd u ∈ H1(Ω, Rm) with u

∣∣
∂Ω

= g su
h that for every v ∈ H1
0 (Ω, Rm) we have:

∫

Ω

〈M(x,∇u(x), z(x)),∇v(x)〉dx =

∫

Ω

〈f, v〉 dx . (5.6)Theorem 5.2Let Ω ⊂ Rd be a bounded C1,1�smooth domain, m ≥ 1, N ≥ 1, and assume that
M : Ω×Mm×d×RN → Mm×d satis�es R1�R3. Let furthermore g ∈ H

3
2 (∂Ω), z ∈ H1(Ω)and f ∈ L2(Ω). Every weak solution u ∈ H1(Ω) of (5.6) with u

∣∣
∂Ω

= g is an element of
H2(Ω) and satis�es

‖u‖H2(Ω) ≤ c
(
‖g‖

H
3
2 (∂Ω)

+ ‖z‖H1(Ω) + ‖f‖L2(Ω) + ‖u‖H1(Ω)

)
.17



Before we prove theorem 5.2, we apply it to the situation des
ribed in se
tion 2.4. There,
m = d = 3 and RN is identi�ed with Sym(3) × so(3) so that z = (εp, A). Moreover,

M(x,∇u, z) = MC(∇u, εp, A)

= PK(2µ(sym∇u − εp)) + λ(tr [∇u])11 + 2µc(skew(∇u) − A).Sin
e PK is a Lips
hitz 
ontinuous mapping, we see immediately, that assumption R1 issatis�ed. R2 is proved in lemma 2.1 and the Gårding inequality is satis�ed sin
e MCgenerates a strongly monotone operator on H1
0 (Ω), see lemma 2.2. Therefore, we have thefollowing result for the redu
ed update problem (2.13):Theorem 5.3Let Ω be C1,1�smooth, fn ∈ L2(Ω) and εn−1

p ∈ H1(Ω). Then un ∈ H2(Ω), An ∈ H2(Ω)and εn
p ∈ H1(Ω).The proof of theorem 5.2 is 
arried out with a di�eren
e quotient te
hnique. We 
overthe boundary of Ω with a �nite number of domains and map ea
h of these domains witha C1,1�di�eomorphism onto the unit 
ube in su
h a way that the image of the boundaryof Ω lies on the midplane of the unit 
ube. We �rst prove higher regularity in dire
tionstangential to the midplane by estimating di�eren
e quotients. The regularity in normaldire
tion is then obtained on the basis of the tangential regularity and by using thedi�erential equation together with the rank�one monotoni
ity of M.Sin
e M is nonlinear and sin
e we assumed rank�one monotoni
ity in stead of strongmonotoni
ity, we 
annot use as test fun
tions the usual �nite di�eren
es of the type

h−1ϕ2(x)(u(x + h) − u(x)), where ϕ is a 
ut�o� fun
tion. Instead, we use di�eren
eswhi
h are based on inner variations. We begin the proof of theorem 5.2 by studying amodel problem on a half 
ube.5.2 A model problem on a half 
ubeLet Cr = { x ∈ Rd ; |xi| < r, 1 ≤ i ≤ d } be a 
ube with side length 2r, C±
r the upper andlower half�
ube, respe
tively, and Mr = { x ∈ Cr ; xd = 0 } the mid plane.Lemma 5.4Let Ω = C−

1 , f ∈ L2(C−
1 ), z ∈ H1(C−

1 ) and assume that u ∈ H1(C−
1 ) with u

∣∣
M1

= 0satis�es (5.6). Then for every r ∈ (0, 1) and for 1 ≤ i ≤ d − 1 we have ∂iu ∈ H1(C−
r ).Moreover, there is a 
onstant cr > 0 su
h that

‖∂iu‖H1(C−

r ) ≤ cr

(
‖u‖H1(C−

1 ) + ‖z‖H1(C−

1 ) + ‖f‖L2(C−

1 )

)
. (5.7)Proof. Let r ∈ (0, 1) and ϕ ∈ C∞

0 (C1) with ϕ(x) = 1 on Cr. For h ∈ Rd we introdu
e themapping
τh : C1 → R

d : x → τh(x) = x + ϕ(x)h.Let h0 = ‖ϕ‖−1
W 1,∞(C1) min

{
1, dist(supp ϕ, ∂C1)

}. For every h ∈ Rd with |h| < h0 and hparallel to the plane M1, the mapping τh is a di�eomorphism from C1 onto itself with18



τh(C
±
1 ) = C±

1 , τh(M1) = M1 and τh(x) = x for every x ∈ ∂C1, see e.g. [26℄. Moreover, τhhas the following properties (if |h| < h0):
∇τh(x) =

(
11 + h ⊗∇ϕ(x)

)
, det[∇τh(x)] = 1 + 〈h,∇ϕ(x)〉,

∇yτ
−1
h (y) =

(
11 + h ⊗∇ϕ

)−1∣∣
τ−1
h

(y)
= 11 −

(
(1 + 〈h,∇ϕ〉)−1h ⊗∇ϕ

)∣∣
τ−1
h

(y)
.For a fun
tion v : C−

1 → Rs we introdu
e
△hv = v◦τh − v, △hv = v − v◦τ−1

h .For f, g ∈ L2(C−
1 ), |h| < h0 and h ‖ M1 the following produ
t rule is valid:
∫

C−

1

f △hg dx = −
∫

C−

1

g△hf dx −
∫

C−

1

(f ◦τh g) 〈h,∇ϕ〉dx. (5.8)This identity 
an be shown by a transformation of 
oordinates y = τh(x) in the term
(g ◦τ−1

h )f . Let u ∈ H1
0 (C−

1 ) be a solution of (5.6). We de�ne for h ∈ Rd with |h| < h0and h ‖ M1

vh(x) = △h(△hu(x)).In view of the assumptions on ϕ, h0 and h it follows that vh ∈ H1
0 (C−

1 ). Inserting vh into(5.6) yields
∫

C−

1

〈M(x,∇u, z),∇vh〉dx =

∫

C−

1

〈f, vh〉dx. (5.9)Note that ∇vh = △h∇(△hu) + [(det[∇τh])
−1(∇△hu) h⊗∇ϕ]◦τ−1

h and therefore, (5.9) isequivalent to
∫

C−

1

〈M(x,∇u, z),△h∇(△hu)〉 dx

= −
∫

C−

1

〈M(x,∇u, z),
(
det[∇τh]

−1(∇△hu) h ⊗∇ϕ
)
◦τ−1

h 〉dx

+

∫

C−

1

〈f,△h△hu〉dx.Furthermore, the produ
t rule (5.8) entails
∫

C−

1

〈△hM(x,∇u, z) , ∇△hu〉 dx

= −
∫

C−

1

〈M(x,∇u, z)◦τh,∇△hu〉〈h,∇ϕ〉dx

+

∫

C−

1

〈M(x,∇u, z),
(
(det[∇τh])

−1(∇△hu) h ⊗∇ϕ
)
◦τ−1

h 〉dx

+

∫

C−

1

〈f,△h△hu〉dx

=: S1 + S2 + S3 (5.10)19



Finally we have
∫

C−

1

〈M(x,∇(u◦τh), z) −M(x,∇u, z) , ∇△hu〉 dx

=

∫

C−

1

〈△hM(x,∇u, z),∇△hu〉dx

+

∫

C−

1

〈M(x,∇(u◦τh), z) −M(x,∇u, z)◦τh

)
,∇△hu〉dx(5.10)

= S1 + S2 + S3

+

∫

C−

1

〈M(x,∇(u◦τh), z) −M(x,∇u, z)◦τh,∇△hu〉dx

= S1 + . . . + S4. (5.11)The next task is to show that there is a 
onstant c > 0, whi
h does not depend on h, su
hthat
|S1 + . . . + S4| ≤ c |h|

(
‖u‖H1(C−

1 ) + ‖z‖H1(C−

1 ) + ‖f‖L2(C−

1 )

)
‖△hu‖H1(C−

1 ) . (5.12)Due to the Lips
hitz assumptions on M we have
|S1| + |S2| ≤ c |h| ‖M(·,∇u, z)‖L2(C−

1 ) ‖△hu‖H1(C−

1 )

≤ c |h|
(
‖u‖H1(C−

1 ) + ‖z‖L2(C−

1 )

)
‖△hu‖H1(C−

1 ) .Moreover, sin
e f ∈ L2(C−
1 ), the term S3 
an be estimated as
|S3| ≤ c |h| ‖f‖L2(C−

1 ) ‖△hu‖H1(C−

1 ) .By inequality (5.4) we see that
|S4| ≤ cL1 |h|

(
‖u‖H1(C−

1 ) + ‖z‖H1(C−

1 )

)
‖△hu‖H1(C−

1 )

+ cL2

(
‖∇(u ◦ τh) − (∇u) ◦ τh‖L2(C−

1 ) + c |h| ‖z‖H1(C−

1 )

)
‖△hu‖H1(C−

1 ) .The identity ∇(u◦τh) − (∇u)◦τh = (∇u)◦τh (h ⊗∇ϕ) leads to
|S4| ≤ c |h|

(
‖u‖H1(C−

1 ) + ‖z‖H1(C−

1 )

)
‖△hu‖H1(C−

1 ) .Colle
ting all the above estimates we �nally arrive at inequality (5.12). Gårding's in-equality (see R3) and Poin
aré's inequality imply that
∫

C−

1

〈M(x,∇(u ◦ τh),z) −M(x,∇u, z) , ∇△hu〉 dx

≥ CG ‖∇△hu‖2
L2(C−

1 ) − cG ‖△hu‖2
L2(C−

1 )

≥ c
(
‖△hu‖2

H1(C−

1 ) − |h|2 ‖u‖2
H1(C−

1 )

)
.20



Combining the above estimates with (5.11) and (5.12) results �nally in
‖△hu‖2

H1(C−

1 ) ≤ c |h|
(
‖u‖H1(C−

1 ) + ‖z‖H1(C−

1 ) + ‖f‖L2(C−

1 )

)
‖△hu‖H1(C−

1 )

+ c |h|2 ‖u‖2
H1(C−

1 )and the 
onstant c is independent of h. From Young's inequality we obtain
|h|−1 ‖△hu‖H1(C−

1 ) ≤ c
(
‖u‖H1(C−

1 ) + ‖z‖H1(C−

1 ) + ‖f‖L2(C−

1 )

)
. (5.13)It follows from this inequality that ∂iu ∈ H1(C−

r ) for 1 ≤ i ≤ d − 1 and that ‖∂iu‖H1(C−

r )is bounded by the right hand side in (5.13), see e.g. [34℄. �Remark 5.5If we 
hoose the usual �nite di�eren
es as test fun
tions, i.e. ṽh(x) = δ−h(ϕ
2δhu), where

δhu = u(x + h) − u(x), then similar 
al
ulations as those for vh lead to the estimate
∫

C−

1

ϕ2(x)〈M(x,∇u(x + h), z(x)) −M(x,∇u(x), z(x)), δh∇u〉dx ≤ c |h|
∥∥ϕ2δhu

∥∥
H1(C−

1 )
,(5.14)
ompare also (5.11) and (5.12). But now neither R2 nor R3 help us to �nd a lower boundfor the left hand side of (5.14) in terms of ‖ϕ2δh∇u‖2

L2(C−

1 ), sin
e in general δh∇u is nota rank�one matrix, and sin
e we 
annot inter
hange ϕ and M due to the nonlinearity of
M.Lemma 5.6 (Regularity in normal dire
tion)With the same assumptions as in lemma 5.4 it follows for every r ∈ (0, 1) that ∂du ∈
H1(C−

r ). Furthermore, there exists a 
onstant cr > 0 su
h that
‖u‖H2(C−

r ) ≤ cr

(
‖z‖H1(C−

1 ) + ‖f‖L2(C−

1 ) + ‖u‖H1(C−

1 )

)
. (5.15)Proof. Let r ∈ (0, 1). Equation (5.6) implies that

DivM(x,∇u(x), z(x)) + f(x) = 0 (5.16)for almost every x ∈ C−
1 . Let Mi denote the 
olumns of the matrix valued fun
tion M,i.e. Mi(x, a, z) = (Mα

i (x, a, z))1≤α≤m ∈ Rm for 1 ≤ i ≤ d. The Lips
hitz 
ontinuity of Mand the tangential regularity proved in lemma 5.4 guarantee that ∂iMi(·,∇u, z) ∈ L2(C−
r )for 1 ≤ i ≤ d− 1 and is bounded by the right hand side in (5.7). Together with (5.16) weobtain therefore

∂dMd(·,∇u, z) = −f −
d−1∑

i=1

∂iMi(·,∇u, z) ∈ L2(C−
r ).By Lemma 7.23 in [27℄ the derivative ∂d 
an be repla
ed with a �nite di�eren
e in thefollowing way: For every Ω′ ⊂⊂ C−

r and every h ∈ Rd with |h| < dist(Ω′, ∂C−
r ) and h⊥M121



we have
‖δhMd(·,∇u, z)‖L2(Ω′) ≤

(
‖f‖L2(C−

r ) +
d−1∑

i=1

‖∂iMi(·,∇u, z)‖L2(C−

r )

)
|h|

=: c0 |h| . (5.17)Here, δhv(x) := v(x+h)−v(x) for h ∈ Rd. Thus, for every h⊥M1 with |h| < dist(Ω′, ∂C−
r )we have

∫

Ω′

〈δhMd(x,∇u, z), δh∂du〉dx ≤ c0 |h| ‖δh∂du‖L2(Ω′) , (5.18)where c0 is the 
onstant from (5.17). We split now the left hand side into a termwhi
h 
an be estimated from below due to the rank-one monotoni
ity of M and intoterms whi
h may be estimated from above using the Lips
hitz 
ontinuity of M and theregularity results from lemma 5.4. For fun
tions v : C−
1 → Rm we de�ne ∇̃v(x) =

(∂1v(x), . . . , ∂d−1v(x), 0) ∈ Mm×d. Furthermore, vh(x) := v(x+h) and ed = (0, . . . , 0, 1)⊤ ∈
Rd. With these notations we have

∫

Ω′

〈Md(x, ∇̃u + ∂duh ⊗ ed, z) −Md(x,∇u, z), δh∂du〉dx

=

∫

Ω′

〈δhMd(x,∇u, z), δh∂du〉dx

+

∫

Ω′

〈Md(x, ∇̃u + ∂duh ⊗ ed, z) −Md(x + h,∇uh, zh), δh∂du〉dx

= S1 + S2. (5.19)The term S1 is already estimated in (5.18). From the Lips
hitz 
ontinuity of M (see(5.4)) and the regularity results of lemma 5.4 we obtain by straightforward 
al
ulations
|S2| ≤ c ‖δh∂du‖L2(Ω′)

(
(
∥∥∇̃u + ∂duh ⊗ ed

∥∥
L2(Ω′)

+ ‖z‖H1(C−

1 )) |h| +
∥∥δh∇̃u

∥∥
L2(Ω′)

)

≤ c |h|
(
‖u‖H1(C−

1 ) + ‖z‖H1(C−

1 ) +
∥∥∂d∇̃u

∥∥
L2(C−

r )

)
‖δh∂du‖L2(Ω′) (5.20)and the 
onstant c is independent of Ω′ and h. Moreover, 
hoosing ξ = ∂duh and η = edin (5.5), we obtain for the left hand side in (5.19) from the rank-one monotoni
ity of Mthat

∫

Ω′

〈Md(x, ∇̃u + ∂duh ⊗ ed, z) −Md(x,∇u, z), δh∂du〉 dx ≥ cLH ‖δh∂du‖2
L2(Ω′) . (5.21)Estimates (5.18)�(5.21) together with Young's inequality �nally imply that

|h|−1 ‖δh∂du‖L2(Ω′) ≤ c
(
‖u‖H1(C−

1 ) + ‖z‖H1(C−

1 ) +
∥∥∂d∇̃u

∥∥
L2(C−

r )

) (5.22)for every h⊥M1 and the 
onstant c is independent of h and Ω′ ⋐ C−
r . This implies that

∂2
du ∈ L2(C−

r ) and ‖∂2
du‖L2(c−r ) is bounded by the right hand side in (5.22). Estimate(5.15) is a 
ombination of (5.22) and (5.7). �22



5.3 Proof of theorem 5.2Let the assumptions of theorem 5.2 be valid and assume that g = 0. Choose x0 ∈ ∂Ωand let Ux0 be a neighborhood of x0 su
h that there exists a C1,1-di�eomorphism Φx0 :
Ux0 → C1, where C1 is the unit 
ube in Rd, with the following properties (we omit theindex x0): Φ(U) = C1, Φ(U ∩ Ω) = C−

1 , Φ(U\Ω) = C+
1 , Φ(U ∩ ∂Ω) = M1 and Φ(x0) = 0.Let u ∈ H1

0 (Ω) be a solution for (5.6) with the data f ∈ L2(Ω) and z ∈ H1(Ω). It followsthat
∫

U∩Ω

〈M(x,∇u, z),∇v〉dx =

∫

U∩Ω

〈f, v〉dxfor every v ∈ H1
0 (Ω ∩ U). After a transformation of 
oordinates with y = Φ(x) and

Ψ := Φ−1, the previous equation 
an be written as follows: Let ũ(y) = u(Ψ(y)). For every
v ∈ H1

0 (C−
1 ) we have

∫

C−

1

〈M̃(y,∇ũ, z̃),∇v〉dy =

∫

C−

1

〈f̃ , v〉dy.Here, we use the abbreviations
M̃(y, a, ζ) = |det[∇Ψ(y)]| M(Ψ(y), a(∇Ψ(y))−1, ζ)(∇Ψ(y))−⊤, (5.23)

f̃(y) = |det[∇Ψ(y)]| f(Ψ(y)), (5.24)
z̃(y) = z(Ψ(y)) (5.25)for y ∈ C−

1 , a ∈ Mm×d and ζ ∈ RN . It follows immediately from the properties of thedi�eomorphism Φ and from those of M that M̃ satis�es R1�R3 with respe
t to C−
1 .Furthermore, f̃ and z̃ have the smoothness required in lemma 5.4. Thus, lemmata 5.4and 5.6 guarantee that ũ ∈ H2(C−

r ) for every r < 1 and that estimate (5.15) is valid. Afterapplying the inverse transformation Ψ : C−
1 → U ∩Ω, we have �nally shown the following:For every x0 ∈ Ω exists an open neighborhood Ũx0 su
h that u

∣∣
Ũx0∩Ω

∈ H2(Ũx0 ∩ Ω) andestimate (5.15) is valid with respe
t to Ũx0 ∩ Ω. The 
onstants may depend on x0. Sin
e
Ω is assumed to be bounded, we 
an 
over Ω by a �nite number of the domains Ũx0 andobtain �nally that u ∈ H2(Ω) with

‖u‖H2(Ω) ≤ c
(
‖z‖H1(Ω) + ‖f‖L2(Ω) + ‖u‖H1(Ω)). (5.26)This proves theorem 5.2 for the 
ase of vanishing Diri
hlet 
onditions. The general 
ase
an be seen as follows. There exists a linear and 
ontinuous extension operator F :

H
3
2 (∂Ω) → H2(Ω) with (F (g))

∣∣
∂Ω

= g for every g ∈ H
3
2 (Ω), see for example [68℄. Then

u ∈ H1(Ω) with u
∣∣
∂Ω

= g for some g ∈ H
3
2 (∂Ω) is a solution to (5.6) if and only if thereexists an element ũ ∈ H1

0 (Ω) with u = ũ + F (g) and for every v ∈ H1
0 (Ω), ũ satis�es

∫

Ω

〈M̂(x,∇ũ, z̃),∇v〉dx =

∫

Ω

〈f, v〉dx,where z̃ = (F (g), z) and M̂(x, a, z̃) = M(x, a + F (g)(x), z). Clearly, M̂ satis�es R1�R3as well and by the �rst part of this proof it follows that ũ ∈ H2(Ω). This �nishes theproof of theorem 5.2. 23



6 Dis
ussionWe have shown that the time-in
remental Cosserat elasto-plasti
ity problem admitsH1(Ω)-regular updates of the symmetri
 plasti
 strain εn
p provided that the previous plasti
 strain

εn−1
p is in H1(Ω) and the domain and data are suitably regular. Altogether, the time-in
remental problem allows the regularity ∀n ∈ N : un ∈ H2(Ω, R3), εn

p ∈ H1(Ω, Sym(3))and An ∈ H2(Ω, so(3)). Uniform bounds in time are missing and it is an open questionwhether a similar result holds for the time 
ontinuous problem.The presented method of proof for higher regularity uses a di�eren
e quotient methodwhi
h is based on inner variations and 
an be extended to more general problems. Thiswill be the subje
t of further investigations.A
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NotationWe denote by M3×3 the set of real 3× 3 se
ond order tensors, written with 
apital letters. The standardEu
lidean s
alar produ
t on M3×3 is given by 〈X, Y 〉
M3×3 = tr

[
XY T

], and thus the Frobenius tensor normis ‖X‖2 = 〈X, X〉
M3×3 (we use these symbols indi�erently for tensors and ve
tors). The identity tensoron M3×3 will be denoted by 11, so that tr [X ] = 〈X, 11〉. We let Sym and PSym denote the symmetri
and positive de�nite symmetri
 tensors respe
tively. We adopt the usual abbreviations of Lie-algebratheory, i.e. so(3) := {X ∈ M3×3 |XT = −X} are skew symmetri
 se
ond order tensors and sl(3) := {X ∈

M3×3 |tr [X ] = 0} are tra
eless tensors. We set sym(X) = 1
2
(XT + X) and skew(X) = 1

2
(X − XT ) su
hthat X = sym(X)+skew(X). For X ∈ M

3×3 we set for the deviatori
 part dev X = X− 1
3

tr [X ] 11 ∈ sl(3).For a se
ond order tensor X we let X.ei be the appli
ation of the tensor X to the 
olumn ve
tor
ei. The �rst and se
ond di�erential of a s
alar valued fun
tion W (F ) are written DF W (F ).H and
D2

F W (F ).(H, H), respe
tively. Sometimes we use also ∂XW (X) to denote the �rst derivative of W withrespe
t to X . We employ the standard notation of Sobolev spa
es, i.e. L2(Ω), H1,2(Ω), H1,2
◦ (Ω), whi
hwe use indi�erently for s
alar-valued fun
tions as well as for ve
tor-valued and tensor-valued fun
tions.
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