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Contents1 Introdution 21.1 Plastiity and Cosserat models . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Outline of this ontribution . . . . . . . . . . . . . . . . . . . . . . . . . . 32 The in�nitesimal elasto-plasti Cosserat model 62.1 Time ontinuous in�nitesimal elasto-plasti Cosserat model . . . . . . . . . 62.2 Bakward Euler time disretization of the �ow rule . . . . . . . . . . . . . 72.3 The projetion onto the yield surfae . . . . . . . . . . . . . . . . . . . . . 92.4 Weak form of the redued update problem . . . . . . . . . . . . . . . . . . 102.5 Variational form of the update problem . . . . . . . . . . . . . . . . . . . . 133 Improved error estimates for Cosserat plastiity 144 Higher regularity for alternative regularized update potentials 145 The regularity theorem 165.1 Higher regularity for a quasilinear ellipti system . . . . . . . . . . . . . . 165.2 A model problem on a half ube . . . . . . . . . . . . . . . . . . . . . . . . 185.3 Proof of theorem 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 Disussion 241 Introdution1.1 Plastiity and Cosserat modelsThis artile addresses the regularity question for time-inremental formulations of geomet-rially linear elasto-plastiity. As a representative model problem we onsider generalizedontinua of Cosserat-miropolar type.The basi di�erene of a Cosserat model as ompared with lassial ontinuum modelsis the appearane of a nonsymmetri stress tensor whih is augmented by a generalizedbalane of angular momentum equation allowing to model interation of partiles not onlyby surfae fores (lassial Cauhy ontinuum) but also through surfae ouples (Cosseratontinuum). General ontinuum models involving independent rotations as additionaldegrees of freedom have been �rst introdued by the Cosserat brothers [15℄. For anintrodution to the theory of Cosserat and miropolar models we refer to the introdutionin [49, 43, 45, 44, 48℄, see also [22, 9℄.There are a great many proposals for extensions of the elasti Cosserat framework toin�nitesimal elasto-plastiity. We mention only [17, 19, 31, 55℄. Reently the �nite-strainformulation has been put into fous, see, e.g., [56, 62, 23℄ and referenes therein.The �rst author has also proposed an elasto-plasti Cosserat model [45, 44℄ in a �nitestrain framework. A geometrial linearization of this model has been investigated in [46,2



48℄ and is shown to be well-posed also in the rate-independent limit for both quasistatiand dynami proesses.When it omes to numerially solving problems in elasto-plastiity, then it is ommonpratie to disretize the time-evolution in the �ow-rule for the plasti variable with abakward Euler method and to onsider a sequene of disrete-in-time problems [50℄.Provided that the elasto-plasti model has ertain variational features (hyperelastiityof the elasti response, assoiative �ow rule) it is possible to reast the problem for onetime-step (alled the update problem in the following) itself into a variational framework:the updated displaement is obtained as a minimizer of some update funtional, see e.g.,[61, 60, 2, 66, 67℄. This line of thought an be niely extended to �nite-strain multipliativeplastiity, see [52, 37, 36, 38℄ and referenes therein. In the geometrially linear setting theresulting variational update problem usually has the form of a quasilinear ellipti systemwhose orresponding energy has only linear growth (in ase of perfet plastiity).For qualitative statements on the rate of onvergene of �nite element methods itis neessary to know preisely the regularity of the funtion to be approximated. Thisthen is the question on the regularity of the solution of the quasilinear ellipti systemonstituting the update problem.As far as lassial rate-independent (perfet) elasto-plastiity is onerned we remarkthat global existene for the displaement has been shown only in a very weak, measure-valued sense, while the stresses ould be shown to remain in L2(Ω), provided a safe-load ondition is assumed. For these results we refer for example to [3, 13, 64℄. Ifhardening or visosity is added, then global H1-displaement solutions are found see e.g.[1, 12, 11℄, already without safe-load assumption. A omplete theory for the lassialrate-independent ase remains, however, elusive, see also the remarks in [13℄.Sine lassial perfet plastiity is, therefore, notoriously ill-posed (the updated dis-plaements have derivatives only in a measure-valued sense) we fous in our investigationof higher regularity on ertain modi�ed update funtionals whih might allow for moreregular updates. The Cosserat elasto-plasti model in [46℄ is our basi andidate. Basedon this time-ontinuous model we investigate the time-inremental formulation and studythe global regularity of minimizers of the orresponding update funtional. In [49℄ thistime-inremental formulation is the basis of a �nite-element approximation.Our fous on Cosserat models is justi�ed by the fat that the Cosserat type modelsare today inreasingly advoated as a means to regularize the pathologial mesh sizedependene of loalization omputations where shear failure mehanisms [14, 40, 4℄ playa dominant role, for appliations in plastiity, see the non-exhaustive list [31, 19, 55, 17℄.1.2 Outline of this ontributionOur ontribution is organized as follows: �rst, we reall the time-ontinuous geometriallylinear elasto-plasti Cosserat model as introdued in [45, 44℄ and investigated mathemat-ially in [46, 48, 47℄.Referring to the development in [49℄ we provide in setion 2 the orresponding time-disretized formulation based on a fully impliit bakward Euler disretization of theplasti �ow rule in time. It is shown in [49℄ that at eah time step tn the updateddisplaement �eld un and the updated �Cosserat�mirorotation�matrix� An an equiva-3



lently be obtained from a onvex minimization problem whih involves only data fromthe previous time step. The plasti strain εn
p is then derived from An and un via a simpleupdate formula. Furthermore, in [49℄ it has been shown that the update problem ad-mits unique minimizers un ∈ H1(Ω, R3), An ∈ H1(Ω, so(3)) and εn

p ∈ L2(Ω, Sym(3))provided that the data oming from the previous time step are smooth enough. Inorder to quantify the rate of onvergene of orresponding �nite element methods forthe update problem we investigate the regularity of the displaements un by studyingthe orresponding weak Euler�Lagrange equations. These equations form a quasilin-ear ellipti system of partial di�erential equations. The main result of this paper isTheorem 5.2 in setion 5, where we formulate a global regularity result for weak so-lutions of a rather general lass of quasilinear ellipti systems of seond order. Thetime-inremental Cosserat plastiity formulation satis�es all the neessary assumptionsof the regularity result whih allows us to show higher regularity to the extent that
∀n ∈ N : un ∈ H2(Ω, R3) , An ∈ H2(Ω, so(3)), εn

p ∈ H1(Ω, Sym(3)) if pure Dirihletdata are assumed. Let us remark that it remains an open problem whether a similarregularity result is also valid for the time-ontinuous Cosserat model or other regularizedtime-ontinuous plastiity formulations.The general quasilinear ellipti systems, whih we study in setion 5, are of the fol-lowing type: Find u ∈ H1
0 (Ω) suh that for every v ∈ H1

0 (Ω)

∫

Ω

〈M(x,∇u(x), z(x)),∇v(x)〉 dx =

∫

Ω

〈f, v〉dx.Here, z ∈ L2(Ω, RN) and f ∈ L2(R3) are given data. For the Cosserat model, z is identi�edwith (εn
p , A

n), the expliit struture of M = MC is given in setion 2.4. It is shownthat MC is rank�one monotone in ∇u and Lipshitz ontinuous but not di�erentiable.Consequently, we assume in the general ase that the funtion M : Ω × Mm×d × RN →
Mm×d is Lipshitz ontinuous, rank�one monotone in∇u and indues a Gårding inequality.The preise onditions on M are formulated as R1�R3 in setion 5.1. Our main result istheorem 5.2, where we prove for smooth domains that u ∈ H2(Ω) provided that z ∈ H1(Ω)and f ∈ L2(Ω). We emphasize that we do not need the di�erentiability of M and thatwe require M to be rank-one monotone, only, instead of uniformly or strongly monotone.A further new aspet ompared to systems studied in the literature is the presene of thefuntion z in the de�nition of the di�erential operator.Let us give a short overview on global regularity results for quasilinear seond ordersystems. Systems with quadrati growth or, more general, with p�growth are studied byseveral authors. We mention here the books [42, 39, 6℄, and the paper [53℄ where globalregularity results for systems of the type

DivM(x,∇u(x)) + f(x) = 0, u
∣∣
∂Ω

= gD ,are shown for smooth domains assuming that M is di�erentiable and strongly monotone.Further results for Lipshitz domains were obtained in [21, 20, 57℄ again assuming that
M is strongly monotone (or uniformly monotone, if p 6= 2), di�erentiable and that thereis a funtion W suh that M = DW . These results are proved with a di�erene quotienttehnique whih relies on the standard �nite di�erenes δhu(x) := u(x + h) − u(x).4



In Dan¥£ek [16℄ the authors study systems, whereM(x, u,∇u) = B(x)∇u+h(x, u,∇u).The main assumption in [16℄ is that B is uniformly positive de�nite, h is Hölder-ontinuouswith respet to ∇u and h(x, u, ·) is uniformly monotone in zero. They prove that the gra-dient of solutions belongs loally to ertain Campanato-Spanne spaes. With our mainresult we an treat the ase, where h does not depend on u, is Lipshitz ontinuousand monotone but not neessarily uniformly monotone and where B indues a rank-onepositive quadrati form. We obtain u ∈ H2(Ω) globally.In [58℄ a nonlinear ellipti system is studied whih is more related to our Cosserat-model. There, M is hosen as M(∇u) = h(|ε(u)|)
|ε(u)|

ε(u), where ε(u) is the linearized straintensor, and it is assumed that h is di�erentiable exept for a �nite number of pointsand that h is strongly monotone. It is shown for smooth domains that u ∈ H2(Ω) byinvestigating the regularity of funtions uδ with Div(δε(uδ) + M(ε(uδ))) + f = 0 for
δ ց 0. The results for uδ are obtained with standard �nite di�erenes. Further results forrelated models where obtained in [54, 7℄. Let us remark that the quasilinear system weare interested in ontains the above desribed systems as speial ases (if p = 2) and thatour main result is not overed by the above referenes. The loal and global regularity ofthe stress �elds of a lass of degenerated quasilinear ellipti systems is investigated in thepapers [10, 33℄.Note that higher regularity is not known to hold for the displaements of the lassiallimit of our formulation, whih is the lassial time-inremental Prandtl-Reuss model. Inthe �rst update step this model in turn is nothing else than the total deformation Henkyplastiity model. The Henky model does not allow for regular displaements. Here, itis known that the displaement u ∈ L

3
2 (Ω, R3) (see, e.g., [6, p.423℄) while the lassialsymmetri stresses satisfy σ ∈ H1

loc(Ω, Sym(3)) ∩ H
1
2
−δ(Ω) for every δ > 0 if the data aresu�iently regular and if Ω is a Lipshitz domain. See [59, 24, 5, 51, 18℄ for the loal and[32℄ for the global result.The proof of our own regularity result is split into the three lassial steps. In the�rst step we investigate the tangential regularity of weak solutions in the ase where Ωis a ube. Sine we assumed rank�one monotoniity, only, we annot apply the standarddi�erene quotient tehnique in this step. Instead, we use �nite di�erenes whih are basedon inner variations: △hu(x) = u(τh(x))− u(x), where τh(x) = x + ϕ2(x)h for h ∈ Rd anda ut�o� funtion ϕ. This will be explained in more detail in remark 5.5. Let us notethat these nonstandard di�erenes where reently applied by Nesenenko [51℄ in order toobtain higher loal regularity for models from elasto-plastiity with linear hardening. Inthe seond step we prove higher regularity in diretions normal to the boundary. Due tothe lak of di�erentiability of M we annot apply the usual arguments (i.e. solving theequation for the normal derivatives) to obtain the di�erentiability of ∇u in the normaldiretion. Instead, we exploit the rank�one monotoniity of M in order to get moreinformation on the missing derivative. In the �nal step we prove the result for arbitrarybounded C1,1-smooth domains by the usual loalization proedure. The notation is foundin the appendix.
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2 The in�nitesimal elasto-plasti Cosserat modelIn this setion we reall the spei� isotropi in�nitesimal elasto-plasti Cosserat modelwhih has been proposed in a �nite-strain setting in [44℄ and whih was analyzed in [46℄.Moreover, we derive a disrete formulation. This setion does not ontain new results;it serves for the lear de�nition of the problem and for the introdution of some of thenotation.2.1 Time ontinuous in�nitesimal elasto-plasti Cosserat modelThe geometrially linear time ontinuous system in variational form with non-dissipativeCosserat e�ets reads: for given body fores f(t) ∈ L2(Ω, R3) and given Dirihlet data�nd the displaement u(t) ∈ H1(Ω, R3), the skew-symmetri mirorotation A(t) ∈
H1(Ω, so(3)) and the symmetri plasti strain εp(t) ∈ L2(Ω, Sym(3)) with

∫

Ω

W (∇u, A, εp(t)) − 〈f(t), u〉 dx 7→ min . w.r.t. (u, A) at �xed εp(t) ,

W (∇u, A, εp) = µ ‖sym∇u − εp‖2

+ µc ‖skew(∇u − A)‖2 +
λ

2
tr [∇u]2 + 2µ L2

c ‖∇ axl(A)‖2 ,

ε̇p(t) ∈ ∂χ(TE(t)), TE = 2µ (ε − εp) , εp ∈ Sym(3) ∩ sl(3), εp(0) = ε0
p , (2.1)

u|ΓD
= gD(t, x) − x, A|ΓD

= skew(∇gD(t, x))|ΓD
.Here, Ω ⊂ R3 is a bounded smooth domain and ΓD ⊂ ∂Ω is that part of the boundarywhere Dirihlet data are presribed. The parameters µ, λ > 0 are the Lamé onstantsof isotropi linear elastiity, µc > 0 is the Cosserat ouple modulus and Lc > 0 is aninternal length parameter.1 The lassial symmetri elasti strain sym∇u is denoted by

ε. The linear operator axl : so(3) → R3 provides the anonial identi�ation between theLie-algebra so(3) of skew-symmetri matries and vetors in R3. The Lie-algebra of traefree matries is denoted by sl(3) and dev : M
3×3 → sl(3), dev X = X − 1

3
11 is the orthog-onal projetion onto sl(3). As regards the plasti �ow rule, ∂χ is the subdi�erential of aonvex �ow potential χ : M3×3 → R+ ating on the generalized onjugate fores, i.e., theEshelby-stress tensor TE = −∂εp

W (∇u, A, εp), where W is the free energy used in (2.1).2The orresponding system of partial di�erential equations oupled with the �ow rule isgiven by (note that ‖A‖2
M3×3 = 2 ‖axl(A)‖2

R3 for A ∈ so(3, R))
Div σ = −f, x ∈ Ω , balane of fores ,

σ = 2µ (ε − εp) + 2 µc (skew(∇u) − A) + λ tr [ε] · 11 , (2.2)1Observe that for µc = 0 or Lc = 0 one reovers the lassial Prandtl-Reuss formulation for thedisplaement u.2The spei�ation χ = IK as indiatorfuntion of some elasti domain is not neessary at this point.6



−µ L2
c ∆ axl(A) = µc axl(skew(∇u) − A) , balane of angular momentum ,

ε̇p(t) ∈ ∂χ(TE), TE = 2µ (ε− εp) ,

u|ΓD
(t, x) = gD(t, x) − x , A|ΓD

= skew(∇gD(t, x))|ΓD
,

σ.~n|∂Ω\ΓD
(t, x) = 0 , µ L2

c∇ axl(A).~n|∂Ω\ΓD
(t, x) = 0 ,

εp(0) ∈ Sym(3) ∩ sl(3) .Note that in this model the fore stresses σ need not be symmetri and that the Cosserate�ets, ative through the mirorotations A, only appear in the balane equations butnot in the plasti �ow rule sine TE does not depend on A. It is worth noting that thismodel is intrinsially thermodynamially orret. If ΓD = ∂Ω then the model admitsglobal weak solutions with the regularity [46℄:
u ∈ L∞([0, T ], H1(Ω, R3)) , A ∈ L∞([0, T ], H1(Ω, so(3))) ,

εp ∈ L∞([0, T ], L2(Ω, Sym(3) ∩ sl(3))) . (2.3)2.2 Bakward Euler time disretization of the �ow ruleFor a numerial treatment we onsider the time disretization of the �ow rule with thefully impliit bakward Euler sheme. Let 0 = t0 < t1 < . . . < tN = T be a subdivisionof the time interval [0, T ] with tj − tj−1 = ∆t. Let fn(x) = f(x, tn) and assume that attime tn−1 a su�iently regular plasti strain �eld εn−1
p ∈ Sym(3) ∩ sl(3) is given. Wewant to determine the updated displaement un ∈ H1(Ω, R3), the updated skew-symmetri mirorotation An ∈ H1(Ω, so(3)) and the updated symmetri plastistrain εn

p ∈ L2(Ω, Sym(3) ∩ sl(3)) satisfying
Div σn = −fn, x ∈ Ω ,

σn = 2µ (εn − εn
p) + 2 µc (skew(∇un) − An) + λ tr [εn] · 11 ,

−µ L2
c ∆ axl(An) = µc axl(skew(∇un) − An) , (2.4)

εn
p − εn−1

p

∆t
∈ ∂χ(T n

E), T n
E = 2µ (εn − εn

p ) ,

un
|ΓD

(x) = gn
D(x) − x , An

|ΓD
= skew(∇gn

D(x)) ,

σn.~n|∂Ω\ΓD
(x) = 0 , µ L2

c∇ axl(A)n.~n|∂Ω\ΓD
(x) = 0 ,

εn−1
p ∈ L2(Ω, Sym(3) ∩ sl(3)) .It is possible to expliitly solve the disretized �ow rule (2.4)4 for εn

p in terms of εn−1
p , εnand ∆t. To see this, onsider

εn
p − εn−1

p

∆t
∈ ∂χ(2µ (εn − εn

p)) ⇔ 0 ∈ ∂χ(2µ (εn − εn
p )) −

εn
p − εn−1

p

∆t
⇔ (2.5)7



0 ∈ ∂εn
p

(
µ

∥∥εn
p − εn−1

p

∥∥2
+ ∆tχ(2µ (εn − εn

p))
)

.Thus we an de�ne the loal potential for the loal �ow rule
V time(εn, εn

p , εn−1
p , ∆t) := µ

∥∥εn
p − εn−1

p

∥∥2
+ ∆tχ(2µ (εn − εn

p)) . (2.6)It is easy to see that V time is stritly onvex in εn
p , thus V time admits a unique minimizersatisfying (2.5)3. Moreover, we have

V time(εn, εn
p , ε

n−1
p , ∆t) = µ

∥∥εn
p − εn−1

p

∥∥2
+ ∆tχ(2µ (εn − εn

p))

=
1

4µ

∥∥2µ(εn
p − εn + εn − εn−1

p )
∥∥2

+ ∆tχ(2µ (εn − εn
p ))

=
1

4µ
‖Σn − Σn

trial‖2 + ∆tχ(Σn) = Ṽ (Σn, Σn
trial) , (2.7)where Σn = 2µ (εn−εn

p ) and the so-alled trial stresses Σn
trial = 2µ (εn−εn−1

p ). Minimizing
V time w.r.t. εn

p is equivalent to minimizing Ṽ w.r.t. Σn. Proeeding further, we speialize
χ. Let us de�ne the elasti domain in stress-spae

K := {Σ ∈ M
3×3 | ‖dev Σ‖ ≤ σy } , (2.8)with initial yield stress σy, [σy] = [MPa], and orresponding indiator funtion

IK(Σ) =

{
0 ‖dev Σ‖ ≤ σy

∞ ‖dev Σ‖ > σy ,
(2.9)and let χ = IK . We have therefore ∂χ = ∂IK in the sense of the subdi�erential. Withthis hoie, the unique minimizer of Ṽ is simply haraterized by

inf
Σn∈K

‖Σn − Σn
trial‖2 , (2.10)independent of ∆t. The solution is the orthogonal projetion of Σn

trial onto the onvex set
K, denoted by

Σn = PK(Σn
trial) ⇒ 2µ (εn − εn

p )) = PK(2µ (εn − εn−1
p )) . (2.11)Reintroduing the last result into the balane of fores equation (2.4)1 delivers

Div σn = −fn, x ∈ Ω ,

σn = PK(2µ (εn − εn−1
p )) + 2 µc (skew(∇un) − An) + λ tr [εn] · 11 . (2.12)This step is alled return-mapping [61, 60℄ in an engineering ontext of lassial plas-tiity. At given plasti strain of the previous time step εn−1

p this equation is the strongform of the update problem for the fore-balane equation.8



Gathering the previous development the formal problem for the update onsists indetermining un ∈ H1(Ω, R3), An ∈ H1(Ω, so(3)) and εn
p ∈ L2(Ω, Sym(3)∩sl(3)) satisfying

Div σn = −fn, x ∈ Ω ,

σn = PK(2µ (εn − εn−1
p )) + 2 µc (skew(∇un) − An) + λ tr [εn] · 11 , (2.13)

−µ L2
c ∆ axl(An) = µc axl(skew(∇un) − An) .The updated plasti strain �eld is then given by

εn
p = εn − 1

2µ
PK(2µ (εn − εn−1

p )) . (2.14)For the preise formulation of this system we need the projetion operator onto the yieldsurfae whih we reall in the following.2.3 The projetion onto the yield surfaeLet K be a onvex domain in stress spae de�ned as
K :=

{
Σ ∈ M

3×3 | ‖dev Σ‖ ≤ σy

}
. (2.15)The orthogonal projetion PK : M3×3 → K onto this set is uniquely given by (see,e.g.,[29, 30℄)

PK(Σ) =

{
Σ Σ ∈ K

Σ − (‖dev Σ‖ − σy)
dev Σ

‖dev Σ‖
Σ 6∈ K

=

{
Σ ‖dev Σ‖ ≤ σy

1
3
tr [Σ] 11 + σy

‖dev Σ‖
dev Σ ‖dev Σ‖ > σy .

(2.16)It is easy to see that PK is Lipshitz ontinuous but not di�erentiable at Σ with ‖dev Σ‖ =
σy.3 From onvex analysis it is lear that PK represents a monotone operator whih isnon-expansive. Therefore, PK has Lipshitz onstant 1. Observe also that

PK(Σ) =
1

3
tr [Σ] 11 + PK(dev Σ) . (2.18)For future referene we alulate also

Σ − PK(Σ) =

{
0 ‖dev Σ‖ ≤ σy

dev Σ
(
1 − σy

‖dev Σ‖

)
‖dev Σ‖ > σy

= [‖dev Σ‖ − σy]+
dev Σ

‖dev Σ‖ , (2.19)
‖Σ − PK(Σ)‖2 = [‖dev Σ‖ − σy]

2
+ ,where [x]+ := max{0, x}.3Consider the simple example p : R → R,

p(x) =

{
x |x| ≤ σy

σy
x
|x| |x| > σy

(2.17)9



2.4 Weak form of the redued update problemFrom now onwards we take ΓD = ∂Ω and assume gD = x, i.e. the body is �xed everywhereon its boundary and subjet only to body fores. This assumption allows us to on�neattention to the simpler setting in H1
0 (Ω). We introdue the nonlinear mapping

MC : M
3×3 × Sym(3) × so(3) → M

3×3 ,

MC(X, εp, A) := PK(2µ(sym X − εp)) + λ tr [X] 11 + 2µc(skew(X) − A) . (2.20)The weak form of the update problem (2.13) now reads as follows: for given fn ∈ L2(Ω, R3)and εn−1
p ∈ L2(Ω, Sym(3) ∩ sl(3)) �nd (un, An) ∈ H1

0 (Ω, R3) × H1
0 (Ω, so(3)) solving

∫

Ω

〈MC(∇un, εn
p , A

n),∇v〉dx =

∫

Ω

〈fn, v〉dx ∀v ∈ H1
0 (Ω, R3) , (2.21)

µ L2
c

∫

Ω

〈DAn, DB〉dx = µc

∫

Ω

〈skew∇un − An, B〉dx , ∀B ∈ H1
0 (Ω, so(3)) .(2.22)The updated plasti strain �eld εn

p is then obtained by (2.14). It is shown in [49℄ thatfor every n the system (2.21)�(2.22) admits a unique weak solution un ∈ H1
0(Ω, R3)and An ∈ H1

0 (Ω, so(3)). Equation (2.21) represents the quasilinear ellipti system fordetermining un whih will be disussed with respet to regularity. Together with εn−1
p , εn ∈

H1(Ω, Sym(3)), whih we will obtain from the regularity result to be proven below, using(2.14) we see that εn
p ∈ H1(Ω, Sym(3)).Lemma 2.1 (Strong Legendre-Hadamard elliptiity)Let µ > 0, 2µ+3λ > 0 and 0 < µc. Then the matrix valued funtionMC is strongly rank�one monotone, i.e., there exists a onstant c+

LH > 0 suh that for every X ∈ M
3×3, εp ∈

Sym(3), A ∈ so(3) and for all ξ, η ∈ R3 we have
〈MC(X + ξ ⊗ η, εp, A) −MC(X, εp, A), ξ ⊗ η〉 ≥ c+

LH ‖ξ‖2 ‖η‖2 . (2.23)Proof. The projetion PK itself is monotone and for µ > 0 there is no sign-hange. Thusthe map X → PK(2µ(sym X − εp)) is also monotone in X. Sine (2.18) holds we have
〈PK(2µ(sym X + ξ ⊗ η − εp)) − PK(2µ(sym X − εp)), ξ ⊗ η〉 ≥ 2µ

3
tr [ξ ⊗ η]2 .For the remaining linear ontribution we have

〈λ tr [X + ξ ⊗ η] 11 + 2µc skew(X + ξ ⊗ η − A) − [λ tr [X] 11 + 2µc skew(X − A)] , ξ ⊗ η〉
= λ tr [ξ ⊗ η]2 + 2µc ‖skew(ξ ⊗ η)‖2 . (2.24)

10



Thus
〈MC(X + ξ ⊗ η, εp, A) −MC(X, εp, A), ξ ⊗ η〉

≥ 2µ + 3λ

3
tr [ξ ⊗ η]2 + 2µc ‖skew(ξ ⊗ η)‖2 =

2µ + 3λ

3
〈ξ, η〉2 + µc

(
‖ξ‖2 ‖η‖2 − 〈ξ, η〉2

)split µ1
c + µ2

c = µc

=

(
2µ + 3λ

3
− µ1

c

)
〈ξ, η〉2 + µ1

c ‖ξ‖2 ‖η‖2 + µ2
c

(
‖ξ‖2 ‖η‖2 − 〈ξ, η〉2

)
︸ ︷︷ ︸

≥0

≥
(

2µ + 3λ

3
− µ1

c

)
〈ξ, η〉2 + µ1

c ‖ξ‖2 ‖η‖2 ≥ µ1
c ‖ξ‖2 ‖η‖2 , (2.25)if 0 < µ1

c < 3λ+2µ

3
. Thus MC generates a strongly Legendre-Hadamard ellipti operatorwith elliptiity onstant c+

LH = min(µc,
2µ+3λ

3
). �Obviously, M is Lipshitz ontinuous: for every Xi ∈ M3×3, Pi ∈ Sym(3), Ai ∈ so(3) wehave

‖MC(X1, P1, A1) −MC(X2, P2, A2)‖ ≤ LMC
(‖X1 − X2‖ + ‖P1 − P2‖ + ‖A1 − A2‖) .(2.26)Lemma 2.2Let µ > 0, 2µ + 3λ > 0 and µc > 0. The operator MC generates a strongly monotoneoperator on H1

0 (Ω, R3), that is, there exists a onstant cMC
> 0 suh that for every

v1, v2 ∈ H1
0 (Ω, R3) and for all εp ∈ L2(Ω, Sym(3)) and A ∈ L2(Ω, so(3)) we have

∫

Ω

〈MC(∇v1, εp, A) −MC(∇v2, εp, A),∇v1 −∇v2〉dx ≥ cMC
‖v1 − v2‖2

H1
0 (Ω,R3) . (2.27)Proof. The same alulation as in the proof of Lemma 2.1 yields the estimate

〈MC(∇v1, εp, A) −MC(∇v2, εp, A),∇v1 −∇v2〉

≥ 2µ + 3λ

3
tr [∇v1 −∇v2]

2 + 2µc ‖skew(∇v1 −∇v2)‖2 . (2.28)Set u = v1 − v2 and onsider
2µ + 3λ

3
tr [∇u]2 + 2µc ‖skew∇u‖2 =

2µ + 3λ

3
|Div u|2 + µc ‖curl u‖2 . (2.29)The Curl/Div inequality on the spae H1

0 (Ω) guarantees that there exists C+ > 0 suhthat
∀ u ∈ H1

0 (Ω, R3) :

∫

Ω

|Div u|2 + ‖curl u‖2 dx ≥ C+ ‖u‖2
H1

0 (Ω,R3) , (2.30)see for example [28℄. Applying this inequality to (2.29) implies �nally (2.27). �11



It is instrutive to realize that although the quadrati form (2.29) is formally positive inthe sense of Ne£as [41℄ and strongly Legendre-Hadamard ellipti with onstant oe�ientsit is impossible to extend the analysis to Dirihlet boundary onditions given only on apart of the boundary ∂Ω.We observe that
∥∥∥∥∥
√

µc skew X +

√
λ

2 · 3tr [X] 11

∥∥∥∥∥

2

=
λ

2
tr [X]2 + µc ‖skew X‖2 . (2.31)Let Â be the onstant-oe�ients �rst order di�erential operator

Â.∇u =
√

µc skew(∇u) +

√
λ

2 · 3tr [∇u] 11 . (2.32)The orresponding Fourier-symbol is given as a linear operator A(ξ) : C3 → C3×3 with
A(ξ).û :=

√
µc skew(ξ ⊗ û) +

√
λ

2 · 3tr [ξ ⊗ û] 11 . (2.33)From (2.31) it follows
‖A(ξ).û‖2 =

λ

2
tr [ξ ⊗ û]2 + µc ‖skew ξ ⊗ û‖2 . (2.34)By algebrai ompleteness of the symbol A(ξ) : C3 → C3×3 it is meant

∀ ξ ∈ C
3, ξ 6= 0 : A(ξ).û = 0C3×3 ⇒ û = 0C3 . (2.35)Reall that the orresponding statement for real ξ, i.e.,

∀ ξ ∈ R
3, ξ 6= 0 : A(ξ).û = 0R3×3 ⇒ û = 0R3 , (2.36)is a onsequene of strit Legendre-Hadamard elliptiity of Â. If the symbol is alge-braially omplete, then, using the result in Ne£as [41℄ the indued quadrati form

∫

Ω

∥∥∥Â.∇u
∥∥∥

2

+ ‖u‖2 dx (2.37)is an equivalent norm on H1(Ω, R3). However, we proeed to show that A as de�ned in(2.33) orresponding to our quadrati form (2.29) is not algebraially omplete.Proof. To this end we write
A(ξ).û = 0 ⇒ tr [ξ ⊗ û] = 0, and skew(ξ ⊗ û) = 0 ⇒ ξ = û , tr [ξ ⊗ ξ] = 0 . (2.38)Consider for simpliity the 2D-ase:

ξ =

(
α1 + i β1

α2 + i β2

)
, ξ ⊗ ξ =

(
ξ1 ξ1 ξ1 ξ2

ξ2 ξ1 ξ2 ξ2

)
,

tr [ξ ⊗ ξ] = ξ1ξ1 + ξ2ξ2 = α2
1 + α2

2 − (β2
1 + β2

2) + 2i(α1β1 + α2β2) = 0 . (2.39)12



Choosing ξ = (i, 1)T shows that tr [ξ ⊗ ξ] = 0, whih proves the laim. �Thene, the quadrati form is not algebraially omplete and this exludes the treat-ment of mixed boundary onditions on u in the following: we are fored to assume
ΓD = ∂Ω. However, inhomogeneous Dirihlet onditions may be presribed as far asthe use of the Div / Curl estimate is onerned.2.5 Variational form of the update problemDue to the underlying variational formulation, the weak form (2.21) of the time-inrementalCosserat problem still has a variational struture. In [49℄ it is shown that solving (2.21)�(2.22) is equivalent to the following minimization problem: �nd (un, An) ∈ H1

0 (Ω, R3) ×
H1

0 (Ω, so(3)) whih minimize the funtional
In
incr(u, A) = Eincr(u, A, εn−1

p ) −
∫

Ω

〈fn, u〉dx (2.40)in H1
0 (Ω, R3)×H1

0 (Ω, so(3)). Here Eincr denotes the free energy of the inremental problemde�ned by
Eincr(u, A, εp) =

1

2µ

∫

Ω

Ψ
(
2µ(sym(∇u) − εp)

)
dx +

λ

2

∫

Ω

tr [∇u]2 dx

+ µc

∫

Ω

‖skew(∇u) − A‖2 dx + µL2
c

∫

Ω

‖DA‖2 dx, (2.41)with a potential funtion Ψ : M
3×3 → R

+ of the form
Ψ(X) :=

{
1
2
‖X‖2 ‖dev X‖ ≤ σy

1
2

(
1
3
tr [X]2 + 2 σy ‖dev X‖ − σy

2
)

‖dev X‖ > σy

=
1

2
‖X‖2 − 1

2
[‖dev X‖ − σy]

2
+ . (2.42)Clearly, Ψ is onvex but not strongly onvex outside the yield surfae. Moreover, it hasonly linear growth outside the yield surfae. Note that for the �rst time step n = 1 and

ε0
p = 0, µc = 0, Lc = 0 the funtional I1

incr(u, 0) redues to the primal plasti funtional ofstati perfet plastiity (Henky-plastiity) [35, 63, 24, 25, 6℄.Calulating the subdi�erential of the onvex potential shows that
∂Ψ(Σ).H =

{
〈Σ, H〉 ‖dev Σ‖ ≤ σy

1
3
tr [Σ] tr [H ] + σy

‖dev Σ‖
〈dev Σ, dev H〉 ‖dev Σ‖ > σy

= 〈PK(Σ), H〉 . (2.43)Hene ∂Ψ(Σ) = PK(Σ) motivating the variational struture.The following relationship between the potential Ψ and the projetion PK is also valid
Ψ(X) =

1

2
‖X‖2 − 1

2
‖X − PK(X)‖2 . (2.44)13



For future referene the seond di�erential of the potential Ψ an be alulated in thosepoints where the potential is di�erentiable. It holds
D2

XΨ(X).(H, H) =






‖H‖2 ‖dev X‖ < σydoes not exist ‖dev X‖ = σy

1
3
tr [H ]2 + σy

(
‖dev H‖2

‖dev X‖
− 〈dev X,H〉2

‖dev X‖3

)
‖dev X‖ > σy .

(2.45)The potential Ψ is not stritly rank-one onvex in X, sine, taking H = ξ ⊗ η with
〈ξ, η〉 = 0 yields

D2
XΨ(X).(ξ ⊗ η, ξ ⊗ η) =

{
‖ξ‖2 ‖η‖2 ‖dev X‖ ≤ σy

σy

(
‖dev ξ⊗η‖2

‖dev X‖
− 〈dev X,ξ⊗η〉2

‖dev X‖3

)
‖dev X‖ > σy

(2.46)Taking X = ξ ⊗ η shows �nally
D2

XΨ(X).(ξ ⊗ η, ξ ⊗ η) =

{
‖ξ‖2 ‖η‖2 ‖dev X‖ ≤ σy

0 ‖dev X‖ > σy .
(2.47)3 Improved error estimates for Cosserat plastiityLet h > 0 be the mesh-size of a �nite element method and let Vh ⊂ H1

0 (Ω, R3) bea orresponding disrete �nite-element spae. Let us onentrate on the displaementapproximation only. In [49, Th.8℄ the following error estimate for the disrete solution
uµc,n

h ∈ Vh of the Galerkin-approximation of (2.41) in Vh has been shown:
‖uµc,n − uµc,n

h ‖
H1

0 (Ω) ≤
C1

µc

inf
vh∈Vh

‖uµc,n − vh‖H1
0 (Ω) , (3.1)with a onstant C1 > 0. Here, uµc,n = un is the exat solution of (2.21).Using our regularity result from setion 5, i.e., uµc,n ∈ H2(Ω, R3), the right hand sidean be estimated qualitatively. If Vh is hosen to be the spae of pieewise linear �niteelements, then it holds [8, p.107℄

‖uµc,n − uµc,n
h ‖

H1
0 (Ω) ≤

C2

µc

h ‖uµc,n‖H2(Ω) . (3.2)In [49℄ it has also been shown that for µc → 0 the lassial Prandtl-Reuss symmet-ri Cauhy stresses σ0 are approximated by the sequene of non-symmetri stresses σµcwhenever a safe load ondition is satis�ed. The estimate (3.2) strongly suggests thereforeto balane h against µc to obtain optimal rates of onvergene to the lassial solution asin [54℄, where hardening type approximations have been onsidered.4 Higher regularity for alternative regularized updatepotentialsOur regularity result an also be applied to many other problems arising in the ontextof in�nitesimal plastiity. There exist several other possibilities to regularize the lassial14



update problem for the Prandtl�Reuss model. We reall the lassial update problem:�nd a minimizer un ∈ BD(Ω, R3) of the funtional
Iclass
incr (u) = E class

incr (u, εn−1
p ) −

∫

Ω

〈fn, u〉dx , (4.1)where Eclass
incr denotes the free energy of the lassial inremental problem de�ned by

Eclass
incr (u, εp) =

1

2µ

∫

Ω

Ψ
(
2µ(sym(∇u) − εp)

)
dx +

∫

Ω

λ

2
tr [∇u]2 dx , (4.2)with the potential Ψ as in (2.42). There is a vast literature on this Prandtl-Reuss updateproblem, mostly for the �rst time step n = 1, in whih ase it is the lassial Henky-problem of total deformation plastiity [63, 54, 24, 25℄. In this ase, the plasti strain�eld εp is a symmetri bounded measure [63, 6℄. The lassial symmetri Cauhy stresses

σ = 2µ (sym∇u − εp) + λ tr [∇u] 11 satisfy σ ∈ L2(Ω, Sym(3)), indeed higher regularityfor the stresses an be shown in the sense that σ ∈ H1
loc(Ω, Sym(3)) ∩ H

1
2
−δ(Ω).For regularization purposes the following proposals are usually made:

E reg
incr(u, εp) =

1

2µ

∫

Ω

Ψ
(
2µ(sym(∇u) − εp)

)
dx +

∫

Ω

λ

2
tr [∇u]2 + Reg(∇u, εp) dx , (4.3)with the funtion Reg in the form

Reg(∇u, εp) =
µ δ

2
‖dev sym∇u − εp‖2 , Fuhs/Seregin [24, p.60℄ ,

Reg(∇u, εp) =
1

2 µ (1 + ∆t
η

)
[‖µ(dev sym∇u − εp)‖ − σy]

2
+ , linear visosity η ,

Reg(∇u, εp) =
µ δ

2
‖∇u − εp‖2 , loally stritly onvex in ∇u . (4.4)In eah ase, for δ > 0 the density of the update problem is then uniformly onvex inthe symmetri strain ε = sym∇u. Moreover,
Reg(∇u, εp) +

λ

2
tr [∇u]2 ≥ c+ ‖ε − εp‖2 , (4.5)and Korn's �rst inequality establishes quadrati growth and we have uniform onvexityfor the regularized problem. Our main regularity result applies therefore also to thesemodels.In the ase with linear hardening it is simpler to write the update potential diretly.We onsider as an example isotropi hardening with the hardening variable α ≥ 0 (ameasure for the aumulated plasti strain in the previous time step). Here, the energy

Einr an be expressed as (f. [60, p.124℄)
Ehard

incr (u, εp, α) =
1

2µ

∫

Ω

Ψhard

(
2µ(sym(∇u) − εp), α

)
dx +

∫

Ω

λ

2
tr [∇u]2 dx , (4.6)15



with (f. (2.42))
Ψhard(X, α) =






1
2
‖X‖2 ‖dev X‖ ≤ σy +H α

1
2 (1+ H

1[MPa]
)

(
H

1[MPa]
‖X‖2 + 1

3
tr [X]2

+2 (σy +H α) ‖dev X‖ − (σy +H α)2
)

‖dev X‖ > σy +H α

=
1

2
‖X‖2 − 1

2 (1 + H
1[MPa]

)

[
‖dev X‖ − (σy +H α)

]2

+
, (4.7)whose seond derivative oinides with the onsistent tangent method introdued alreadyin [61℄. The onstant H > 0 is the hardening modulus with dimension [MPa]. In this formit is easy to see that for positive hardening modulus H > 0 the isotropi hardening updatepotential is uniformly onvex in sym∇u with quadrati growth and has a Lipshitz on-tinuous derivative. Therefore, our main regularity result applies also to this funtional.4The relative merits of eah individual regularization sheme depend on their ability tobalane regularization and approximation. Linear visosity and hardening an be justi�edon physial grounds, but the (small) visosity parameter η > 0 is di�ult to estimate, asis the linear hardening modulus H > 0. The physially motivated regularization termshave the property to only ontrol the symmetri part of the displaement gradient. Theregularization (4.4)3, however, does not satisfy the linearized frame-indi�erene ondition.All alternative regularization proedures thus establish loal oerivity in the strains.In ontrast, the Cosserat regularization is weaker in the sense that only strong Legendre-Hadamard elliptiity is reestablished, whih, provided displaement boundary data arepresribed, su�e for existene, uniqueness and higher regularity. Thus the Cosseratapproah appears as the weakest regularization among the onsidered ones.5 The regularity theoremWe know already that (2.41) has solutions un ∈ H1(Ω, R3). Looking at the system for themirorotations An at given ∇un ∈ L2(Ω, M3×3) we realize at one that the linearity in Antogether with the Laplaian struture allows to use standard ellipti regularity results forlinear systems whih yields higher regularity for the mirorotations: An ∈ H2(Ω, so(3)).In this setion we study the regularity of the displaement �eld un, whih is determinedthrough equation (2.21).5.1 Higher regularity for a quasilinear ellipti systemThe quasilinear ellipti system introdued in setion 2.4 is a speial ase of the systemswhih we de�ne here below. For d, m, N ≥ 1 and Ω ⊂ R

d letM : Ω×M
m×d×R

N → M
m×dbe a matrix valued funtion with the following properties:4Repin [54, eq.(2.3)℄ alls (4.4)2 linear hardening and shows the regularity uδ ∈ H2

loc(Ω, R3) while forthe planar ase n = 2 he obtains uδ ∈ H2(Ω, R2) if Γ = ∂Ω is smooth.16



R1 The mapping M : Ω × Mm×d × RN → Mm×d is a Carathéodory funtion whih isLipshitz ontinuous in the following sense: there exist onstants L1, L2 > 0 suhthat for every x, xi ∈ Ω, a, ai ∈ Mm×d and z, zi ∈ RN we have
‖M(x1, a, z) −M(x2, a, z)‖ ≤ L1(‖a‖ + ‖z‖) ‖x1 − x2‖ , (5.1)

‖M(x, a1, z1) −M(x, a2, z2)‖ ≤ L2(‖a1 − a2‖ + ‖z1 − z2‖), (5.2)
M(x, 0, 0) = 0. (5.3)Assumption R1 implies the useful estimate

‖M(x1, a1, z1) −M(x2, a2, z2)‖
≤ L1(‖a1‖ + ‖z1‖) ‖x1 − x2‖ + L2(‖a1 − a2‖ + ‖z1 − z2‖). (5.4)R2 The mapping M is strongly rank�one monotone. That means that there exists aonstant cLH > 0 suh that for every x ∈ Ω, a ∈ Mm×d, z ∈ RN , ξ ∈ Rm and η ∈ Rdwe have
〈M(x, a + ξ ⊗ η, z) −M(x, a, z), ξ ⊗ η〉 ≥ cLH ‖ξ‖2 ‖η‖2 . (5.5)R3 The Gårding inequality shall be satis�ed: there exist onstants CG > 0, cG ∈ R suhthat for every u1, u2 ∈ H1(Ω) with u1 − u2 ∈ H1

0 (Ω) and for every z ∈ L2(Ω) thefollowing inequality is valid:
∫

Ω

〈M(x,∇u1, z) −M(x,∇u2, z),∇(u1 − u2)〉 dx

≥ CG ‖∇(u1 − u2)‖2
L2(Ω) − cG ‖u1 − u2‖2

L2(Ω) .Remark 5.1If M is di�erentiable, then the Gårding inequality already implies that M is rank�onemonotone, see for example [65, Th.6.1℄.We investigate the regularity properties of weak solutions to the following quasilinear el-lipti boundary value problem. For given g ∈ H
1
2 (∂Ω), z ∈ L2(Ω, RN) and f ∈ L2(Ω, Rm)�nd u ∈ H1(Ω, Rm) with u

∣∣
∂Ω

= g suh that for every v ∈ H1
0 (Ω, Rm) we have:

∫

Ω

〈M(x,∇u(x), z(x)),∇v(x)〉dx =

∫

Ω

〈f, v〉 dx . (5.6)Theorem 5.2Let Ω ⊂ Rd be a bounded C1,1�smooth domain, m ≥ 1, N ≥ 1, and assume that
M : Ω×Mm×d×RN → Mm×d satis�es R1�R3. Let furthermore g ∈ H

3
2 (∂Ω), z ∈ H1(Ω)and f ∈ L2(Ω). Every weak solution u ∈ H1(Ω) of (5.6) with u

∣∣
∂Ω

= g is an element of
H2(Ω) and satis�es

‖u‖H2(Ω) ≤ c
(
‖g‖

H
3
2 (∂Ω)

+ ‖z‖H1(Ω) + ‖f‖L2(Ω) + ‖u‖H1(Ω)

)
.17



Before we prove theorem 5.2, we apply it to the situation desribed in setion 2.4. There,
m = d = 3 and RN is identi�ed with Sym(3) × so(3) so that z = (εp, A). Moreover,

M(x,∇u, z) = MC(∇u, εp, A)

= PK(2µ(sym∇u − εp)) + λ(tr [∇u])11 + 2µc(skew(∇u) − A).Sine PK is a Lipshitz ontinuous mapping, we see immediately, that assumption R1 issatis�ed. R2 is proved in lemma 2.1 and the Gårding inequality is satis�ed sine MCgenerates a strongly monotone operator on H1
0 (Ω), see lemma 2.2. Therefore, we have thefollowing result for the redued update problem (2.13):Theorem 5.3Let Ω be C1,1�smooth, fn ∈ L2(Ω) and εn−1

p ∈ H1(Ω). Then un ∈ H2(Ω), An ∈ H2(Ω)and εn
p ∈ H1(Ω).The proof of theorem 5.2 is arried out with a di�erene quotient tehnique. We overthe boundary of Ω with a �nite number of domains and map eah of these domains witha C1,1�di�eomorphism onto the unit ube in suh a way that the image of the boundaryof Ω lies on the midplane of the unit ube. We �rst prove higher regularity in diretionstangential to the midplane by estimating di�erene quotients. The regularity in normaldiretion is then obtained on the basis of the tangential regularity and by using thedi�erential equation together with the rank�one monotoniity of M.Sine M is nonlinear and sine we assumed rank�one monotoniity in stead of strongmonotoniity, we annot use as test funtions the usual �nite di�erenes of the type

h−1ϕ2(x)(u(x + h) − u(x)), where ϕ is a ut�o� funtion. Instead, we use di�ereneswhih are based on inner variations. We begin the proof of theorem 5.2 by studying amodel problem on a half ube.5.2 A model problem on a half ubeLet Cr = { x ∈ Rd ; |xi| < r, 1 ≤ i ≤ d } be a ube with side length 2r, C±
r the upper andlower half�ube, respetively, and Mr = { x ∈ Cr ; xd = 0 } the mid plane.Lemma 5.4Let Ω = C−

1 , f ∈ L2(C−
1 ), z ∈ H1(C−

1 ) and assume that u ∈ H1(C−
1 ) with u

∣∣
M1

= 0satis�es (5.6). Then for every r ∈ (0, 1) and for 1 ≤ i ≤ d − 1 we have ∂iu ∈ H1(C−
r ).Moreover, there is a onstant cr > 0 suh that

‖∂iu‖H1(C−

r ) ≤ cr

(
‖u‖H1(C−

1 ) + ‖z‖H1(C−

1 ) + ‖f‖L2(C−

1 )

)
. (5.7)Proof. Let r ∈ (0, 1) and ϕ ∈ C∞

0 (C1) with ϕ(x) = 1 on Cr. For h ∈ Rd we introdue themapping
τh : C1 → R

d : x → τh(x) = x + ϕ(x)h.Let h0 = ‖ϕ‖−1
W 1,∞(C1) min

{
1, dist(supp ϕ, ∂C1)

}. For every h ∈ Rd with |h| < h0 and hparallel to the plane M1, the mapping τh is a di�eomorphism from C1 onto itself with18



τh(C
±
1 ) = C±

1 , τh(M1) = M1 and τh(x) = x for every x ∈ ∂C1, see e.g. [26℄. Moreover, τhhas the following properties (if |h| < h0):
∇τh(x) =

(
11 + h ⊗∇ϕ(x)

)
, det[∇τh(x)] = 1 + 〈h,∇ϕ(x)〉,

∇yτ
−1
h (y) =

(
11 + h ⊗∇ϕ

)−1∣∣
τ−1
h

(y)
= 11 −

(
(1 + 〈h,∇ϕ〉)−1h ⊗∇ϕ

)∣∣
τ−1
h

(y)
.For a funtion v : C−

1 → Rs we introdue
△hv = v◦τh − v, △hv = v − v◦τ−1

h .For f, g ∈ L2(C−
1 ), |h| < h0 and h ‖ M1 the following produt rule is valid:
∫

C−

1

f △hg dx = −
∫

C−

1

g△hf dx −
∫

C−

1

(f ◦τh g) 〈h,∇ϕ〉dx. (5.8)This identity an be shown by a transformation of oordinates y = τh(x) in the term
(g ◦τ−1

h )f . Let u ∈ H1
0 (C−

1 ) be a solution of (5.6). We de�ne for h ∈ Rd with |h| < h0and h ‖ M1

vh(x) = △h(△hu(x)).In view of the assumptions on ϕ, h0 and h it follows that vh ∈ H1
0 (C−

1 ). Inserting vh into(5.6) yields
∫

C−

1

〈M(x,∇u, z),∇vh〉dx =

∫

C−

1

〈f, vh〉dx. (5.9)Note that ∇vh = △h∇(△hu) + [(det[∇τh])
−1(∇△hu) h⊗∇ϕ]◦τ−1

h and therefore, (5.9) isequivalent to
∫

C−

1

〈M(x,∇u, z),△h∇(△hu)〉 dx

= −
∫

C−

1

〈M(x,∇u, z),
(
det[∇τh]

−1(∇△hu) h ⊗∇ϕ
)
◦τ−1

h 〉dx

+

∫

C−

1

〈f,△h△hu〉dx.Furthermore, the produt rule (5.8) entails
∫

C−

1

〈△hM(x,∇u, z) , ∇△hu〉 dx

= −
∫

C−

1

〈M(x,∇u, z)◦τh,∇△hu〉〈h,∇ϕ〉dx

+

∫

C−

1

〈M(x,∇u, z),
(
(det[∇τh])

−1(∇△hu) h ⊗∇ϕ
)
◦τ−1

h 〉dx

+

∫

C−

1

〈f,△h△hu〉dx

=: S1 + S2 + S3 (5.10)19



Finally we have
∫

C−

1

〈M(x,∇(u◦τh), z) −M(x,∇u, z) , ∇△hu〉 dx

=

∫

C−

1

〈△hM(x,∇u, z),∇△hu〉dx

+

∫

C−

1

〈M(x,∇(u◦τh), z) −M(x,∇u, z)◦τh

)
,∇△hu〉dx(5.10)

= S1 + S2 + S3

+

∫

C−

1

〈M(x,∇(u◦τh), z) −M(x,∇u, z)◦τh,∇△hu〉dx

= S1 + . . . + S4. (5.11)The next task is to show that there is a onstant c > 0, whih does not depend on h, suhthat
|S1 + . . . + S4| ≤ c |h|

(
‖u‖H1(C−

1 ) + ‖z‖H1(C−

1 ) + ‖f‖L2(C−

1 )

)
‖△hu‖H1(C−

1 ) . (5.12)Due to the Lipshitz assumptions on M we have
|S1| + |S2| ≤ c |h| ‖M(·,∇u, z)‖L2(C−

1 ) ‖△hu‖H1(C−

1 )

≤ c |h|
(
‖u‖H1(C−

1 ) + ‖z‖L2(C−

1 )

)
‖△hu‖H1(C−

1 ) .Moreover, sine f ∈ L2(C−
1 ), the term S3 an be estimated as
|S3| ≤ c |h| ‖f‖L2(C−

1 ) ‖△hu‖H1(C−

1 ) .By inequality (5.4) we see that
|S4| ≤ cL1 |h|

(
‖u‖H1(C−

1 ) + ‖z‖H1(C−

1 )

)
‖△hu‖H1(C−

1 )

+ cL2

(
‖∇(u ◦ τh) − (∇u) ◦ τh‖L2(C−

1 ) + c |h| ‖z‖H1(C−

1 )

)
‖△hu‖H1(C−

1 ) .The identity ∇(u◦τh) − (∇u)◦τh = (∇u)◦τh (h ⊗∇ϕ) leads to
|S4| ≤ c |h|

(
‖u‖H1(C−

1 ) + ‖z‖H1(C−

1 )

)
‖△hu‖H1(C−

1 ) .Colleting all the above estimates we �nally arrive at inequality (5.12). Gårding's in-equality (see R3) and Poinaré's inequality imply that
∫

C−

1

〈M(x,∇(u ◦ τh),z) −M(x,∇u, z) , ∇△hu〉 dx

≥ CG ‖∇△hu‖2
L2(C−

1 ) − cG ‖△hu‖2
L2(C−

1 )

≥ c
(
‖△hu‖2

H1(C−

1 ) − |h|2 ‖u‖2
H1(C−

1 )

)
.20



Combining the above estimates with (5.11) and (5.12) results �nally in
‖△hu‖2

H1(C−

1 ) ≤ c |h|
(
‖u‖H1(C−

1 ) + ‖z‖H1(C−

1 ) + ‖f‖L2(C−

1 )

)
‖△hu‖H1(C−

1 )

+ c |h|2 ‖u‖2
H1(C−

1 )and the onstant c is independent of h. From Young's inequality we obtain
|h|−1 ‖△hu‖H1(C−

1 ) ≤ c
(
‖u‖H1(C−

1 ) + ‖z‖H1(C−

1 ) + ‖f‖L2(C−

1 )

)
. (5.13)It follows from this inequality that ∂iu ∈ H1(C−

r ) for 1 ≤ i ≤ d − 1 and that ‖∂iu‖H1(C−

r )is bounded by the right hand side in (5.13), see e.g. [34℄. �Remark 5.5If we hoose the usual �nite di�erenes as test funtions, i.e. ṽh(x) = δ−h(ϕ
2δhu), where

δhu = u(x + h) − u(x), then similar alulations as those for vh lead to the estimate
∫

C−

1

ϕ2(x)〈M(x,∇u(x + h), z(x)) −M(x,∇u(x), z(x)), δh∇u〉dx ≤ c |h|
∥∥ϕ2δhu

∥∥
H1(C−

1 )
,(5.14)ompare also (5.11) and (5.12). But now neither R2 nor R3 help us to �nd a lower boundfor the left hand side of (5.14) in terms of ‖ϕ2δh∇u‖2

L2(C−

1 ), sine in general δh∇u is nota rank�one matrix, and sine we annot interhange ϕ and M due to the nonlinearity of
M.Lemma 5.6 (Regularity in normal diretion)With the same assumptions as in lemma 5.4 it follows for every r ∈ (0, 1) that ∂du ∈
H1(C−

r ). Furthermore, there exists a onstant cr > 0 suh that
‖u‖H2(C−

r ) ≤ cr

(
‖z‖H1(C−

1 ) + ‖f‖L2(C−

1 ) + ‖u‖H1(C−

1 )

)
. (5.15)Proof. Let r ∈ (0, 1). Equation (5.6) implies that

DivM(x,∇u(x), z(x)) + f(x) = 0 (5.16)for almost every x ∈ C−
1 . Let Mi denote the olumns of the matrix valued funtion M,i.e. Mi(x, a, z) = (Mα

i (x, a, z))1≤α≤m ∈ Rm for 1 ≤ i ≤ d. The Lipshitz ontinuity of Mand the tangential regularity proved in lemma 5.4 guarantee that ∂iMi(·,∇u, z) ∈ L2(C−
r )for 1 ≤ i ≤ d− 1 and is bounded by the right hand side in (5.7). Together with (5.16) weobtain therefore

∂dMd(·,∇u, z) = −f −
d−1∑

i=1

∂iMi(·,∇u, z) ∈ L2(C−
r ).By Lemma 7.23 in [27℄ the derivative ∂d an be replaed with a �nite di�erene in thefollowing way: For every Ω′ ⊂⊂ C−

r and every h ∈ Rd with |h| < dist(Ω′, ∂C−
r ) and h⊥M121



we have
‖δhMd(·,∇u, z)‖L2(Ω′) ≤

(
‖f‖L2(C−

r ) +
d−1∑

i=1

‖∂iMi(·,∇u, z)‖L2(C−

r )

)
|h|

=: c0 |h| . (5.17)Here, δhv(x) := v(x+h)−v(x) for h ∈ Rd. Thus, for every h⊥M1 with |h| < dist(Ω′, ∂C−
r )we have

∫

Ω′

〈δhMd(x,∇u, z), δh∂du〉dx ≤ c0 |h| ‖δh∂du‖L2(Ω′) , (5.18)where c0 is the onstant from (5.17). We split now the left hand side into a termwhih an be estimated from below due to the rank-one monotoniity of M and intoterms whih may be estimated from above using the Lipshitz ontinuity of M and theregularity results from lemma 5.4. For funtions v : C−
1 → Rm we de�ne ∇̃v(x) =

(∂1v(x), . . . , ∂d−1v(x), 0) ∈ Mm×d. Furthermore, vh(x) := v(x+h) and ed = (0, . . . , 0, 1)⊤ ∈
Rd. With these notations we have

∫

Ω′

〈Md(x, ∇̃u + ∂duh ⊗ ed, z) −Md(x,∇u, z), δh∂du〉dx

=

∫

Ω′

〈δhMd(x,∇u, z), δh∂du〉dx

+

∫

Ω′

〈Md(x, ∇̃u + ∂duh ⊗ ed, z) −Md(x + h,∇uh, zh), δh∂du〉dx

= S1 + S2. (5.19)The term S1 is already estimated in (5.18). From the Lipshitz ontinuity of M (see(5.4)) and the regularity results of lemma 5.4 we obtain by straightforward alulations
|S2| ≤ c ‖δh∂du‖L2(Ω′)

(
(
∥∥∇̃u + ∂duh ⊗ ed

∥∥
L2(Ω′)

+ ‖z‖H1(C−

1 )) |h| +
∥∥δh∇̃u

∥∥
L2(Ω′)

)

≤ c |h|
(
‖u‖H1(C−

1 ) + ‖z‖H1(C−

1 ) +
∥∥∂d∇̃u

∥∥
L2(C−

r )

)
‖δh∂du‖L2(Ω′) (5.20)and the onstant c is independent of Ω′ and h. Moreover, hoosing ξ = ∂duh and η = edin (5.5), we obtain for the left hand side in (5.19) from the rank-one monotoniity of Mthat

∫

Ω′

〈Md(x, ∇̃u + ∂duh ⊗ ed, z) −Md(x,∇u, z), δh∂du〉 dx ≥ cLH ‖δh∂du‖2
L2(Ω′) . (5.21)Estimates (5.18)�(5.21) together with Young's inequality �nally imply that

|h|−1 ‖δh∂du‖L2(Ω′) ≤ c
(
‖u‖H1(C−

1 ) + ‖z‖H1(C−

1 ) +
∥∥∂d∇̃u

∥∥
L2(C−

r )

) (5.22)for every h⊥M1 and the onstant c is independent of h and Ω′ ⋐ C−
r . This implies that

∂2
du ∈ L2(C−

r ) and ‖∂2
du‖L2(c−r ) is bounded by the right hand side in (5.22). Estimate(5.15) is a ombination of (5.22) and (5.7). �22



5.3 Proof of theorem 5.2Let the assumptions of theorem 5.2 be valid and assume that g = 0. Choose x0 ∈ ∂Ωand let Ux0 be a neighborhood of x0 suh that there exists a C1,1-di�eomorphism Φx0 :
Ux0 → C1, where C1 is the unit ube in Rd, with the following properties (we omit theindex x0): Φ(U) = C1, Φ(U ∩ Ω) = C−

1 , Φ(U\Ω) = C+
1 , Φ(U ∩ ∂Ω) = M1 and Φ(x0) = 0.Let u ∈ H1

0 (Ω) be a solution for (5.6) with the data f ∈ L2(Ω) and z ∈ H1(Ω). It followsthat
∫

U∩Ω

〈M(x,∇u, z),∇v〉dx =

∫

U∩Ω

〈f, v〉dxfor every v ∈ H1
0 (Ω ∩ U). After a transformation of oordinates with y = Φ(x) and

Ψ := Φ−1, the previous equation an be written as follows: Let ũ(y) = u(Ψ(y)). For every
v ∈ H1

0 (C−
1 ) we have

∫

C−

1

〈M̃(y,∇ũ, z̃),∇v〉dy =

∫

C−

1

〈f̃ , v〉dy.Here, we use the abbreviations
M̃(y, a, ζ) = |det[∇Ψ(y)]| M(Ψ(y), a(∇Ψ(y))−1, ζ)(∇Ψ(y))−⊤, (5.23)

f̃(y) = |det[∇Ψ(y)]| f(Ψ(y)), (5.24)
z̃(y) = z(Ψ(y)) (5.25)for y ∈ C−

1 , a ∈ Mm×d and ζ ∈ RN . It follows immediately from the properties of thedi�eomorphism Φ and from those of M that M̃ satis�es R1�R3 with respet to C−
1 .Furthermore, f̃ and z̃ have the smoothness required in lemma 5.4. Thus, lemmata 5.4and 5.6 guarantee that ũ ∈ H2(C−

r ) for every r < 1 and that estimate (5.15) is valid. Afterapplying the inverse transformation Ψ : C−
1 → U ∩Ω, we have �nally shown the following:For every x0 ∈ Ω exists an open neighborhood Ũx0 suh that u

∣∣
Ũx0∩Ω

∈ H2(Ũx0 ∩ Ω) andestimate (5.15) is valid with respet to Ũx0 ∩ Ω. The onstants may depend on x0. Sine
Ω is assumed to be bounded, we an over Ω by a �nite number of the domains Ũx0 andobtain �nally that u ∈ H2(Ω) with

‖u‖H2(Ω) ≤ c
(
‖z‖H1(Ω) + ‖f‖L2(Ω) + ‖u‖H1(Ω)). (5.26)This proves theorem 5.2 for the ase of vanishing Dirihlet onditions. The general asean be seen as follows. There exists a linear and ontinuous extension operator F :

H
3
2 (∂Ω) → H2(Ω) with (F (g))

∣∣
∂Ω

= g for every g ∈ H
3
2 (Ω), see for example [68℄. Then

u ∈ H1(Ω) with u
∣∣
∂Ω

= g for some g ∈ H
3
2 (∂Ω) is a solution to (5.6) if and only if thereexists an element ũ ∈ H1

0 (Ω) with u = ũ + F (g) and for every v ∈ H1
0 (Ω), ũ satis�es

∫

Ω

〈M̂(x,∇ũ, z̃),∇v〉dx =

∫

Ω

〈f, v〉dx,where z̃ = (F (g), z) and M̂(x, a, z̃) = M(x, a + F (g)(x), z). Clearly, M̂ satis�es R1�R3as well and by the �rst part of this proof it follows that ũ ∈ H2(Ω). This �nishes theproof of theorem 5.2. 23



6 DisussionWe have shown that the time-inremental Cosserat elasto-plastiity problem admitsH1(Ω)-regular updates of the symmetri plasti strain εn
p provided that the previous plasti strain

εn−1
p is in H1(Ω) and the domain and data are suitably regular. Altogether, the time-inremental problem allows the regularity ∀n ∈ N : un ∈ H2(Ω, R3), εn
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NotationWe denote by M3×3 the set of real 3× 3 seond order tensors, written with apital letters. The standardEulidean salar produt on M3×3 is given by 〈X, Y 〉
M3×3 = tr

[
XY T

], and thus the Frobenius tensor normis ‖X‖2 = 〈X, X〉
M3×3 (we use these symbols indi�erently for tensors and vetors). The identity tensoron M3×3 will be denoted by 11, so that tr [X ] = 〈X, 11〉. We let Sym and PSym denote the symmetriand positive de�nite symmetri tensors respetively. We adopt the usual abbreviations of Lie-algebratheory, i.e. so(3) := {X ∈ M3×3 |XT = −X} are skew symmetri seond order tensors and sl(3) := {X ∈

M3×3 |tr [X ] = 0} are traeless tensors. We set sym(X) = 1
2
(XT + X) and skew(X) = 1

2
(X − XT ) suhthat X = sym(X)+skew(X). For X ∈ M

3×3 we set for the deviatori part dev X = X− 1
3

tr [X ] 11 ∈ sl(3).For a seond order tensor X we let X.ei be the appliation of the tensor X to the olumn vetor
ei. The �rst and seond di�erential of a salar valued funtion W (F ) are written DF W (F ).H and
D2

F W (F ).(H, H), respetively. Sometimes we use also ∂XW (X) to denote the �rst derivative of W withrespet to X . We employ the standard notation of Sobolev spaes, i.e. L2(Ω), H1,2(Ω), H1,2
◦ (Ω), whihwe use indi�erently for salar-valued funtions as well as for vetor-valued and tensor-valued funtions.
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