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Abstract

We show that symmetric Cauchy stresses do not imply symmetric Biot strains
in weak formulations of finite isotropic hyperelasticity with exact rotational degrees
of freedom. This is contrary to claims in the literature which are valid, however, in
the linear isotropic case.
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1 Introduction

This article is motivated by the numerous contributions which propose to introduce ro-
tational degrees of freedom in a classical finite elasticity context in order to improve the
numerical approximation of classical solutions [16, 5, 17, 20, 2, 3, 8, 19]. We refer to the
introductions in [2, 8] for the historical development of this specific approach to the numer-
ics of classical finite elasticity1 and the relevance it has, e.g. in the numerical simulation
of thin structures [6, 23]. The general idea underlying the approach, is to approximate the
classical formulation by a weak formulation in which rotational degrees of freedom (also
called drilling degrees of freedom) appear as a dedicated numerical intermediary device.
Hence, no physical meaning is ascribed to them, as opposed to e.g. in a Cosserat theory.

The introduction of rotational degrees of freedom gives, in general, rise to a possible
asymmetry of the relaxed Biot stretches. In an anisotropic setting, therefore, it is neces-
sary to augment the energetic formulation with a term penalizing this possible asymmetry
[3, Eq.(2.9)] in order to still approximate classical solutions with symmetric Biot stretch
tensor U =

√
F T F .

However, in [3, p.26] it is claimed that this penalization is unnecessary in the case
of finite isotropic hyperelasticity similar to the case of isotropic linear elasticity with in-
finitesimal rotations. The argument supporting this claim is based on the “observation”
that the isotropic formulation of the moment equilibrium equation enforces automati-
cally the symmetry of the relaxed Biot stretch. Furthermore, it is this automatism which
adds to the attractiveness of the numerical proposal [3, Rem.2].

In this note we clarify that, contrary to the above claim, penalization is neces-
sary even in the isotropic case, in order to compute approximately symmetric Biot
stretches, i.e., to recover the classical situation.

The paper is organized as follows. Firstly, we recall the isotropic hyperelastic formu-
lation of elasticity in the classical symmetric Biot stretch and derive the corresponding
Euler-Lagrange equations. Then, we introduce the formulation with rotational degrees of
freedom and establish various connections between solutions of the different models. More-
over, we exhibit the well-known relation of the relaxed model to a finite-strain Cosserat
model without curvature energy, see e.g., the pseudo-polar continuum in [8, p.158].

By way of a counterexample we show then that symmetry of relaxed Biot stretch may
not be obtained without sufficient penalization. It is noted that in a linearized, isotropic
setting the former cannot happen: satisfaction of moment equilibrium (symmetric Cauchy-
stresses) implies symmetric infinitesimal stretch in the presence of infinitesimal skew-
symmetric degrees of freedom for isotropy [5, 6].

1In the literature this approach is also commonly referred to as a relaxation of classical finite elasticity.
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2 The classical finite strain isotropic Biot model

2.1 The finite strain isotropic Biot model in variational form

For simplicity we restrict the exposition throughout to zero body forces. In a variational
framework, the task is to find a deformation ϕ : Ω ⊂ R3 7→ R3 minimizing the energy
functional I,

I(ϕ) =

∫
Ω

W (∇ϕ) dV 7→ min . w.r.t. ϕ , (2.1)

together with the Dirichlet boundary condition of place for the deformation ϕ on some
part Γ of the boundary ∂Ω: ϕ|Γ = gd. In the Biot approach, the special constitutive
assumptions are

W (F ) = W ](U) . (2.2)

The strain energy W depends on the deformation gradient F = ∇ϕ ∈ GL+(3) only through
the objective symmetric continuum Biot stretch tensor U = RT F =

√
F T F :

TxΩ 7→ TxΩ, where R = polar(F ) : TxΩ 7→ Tϕ(x)ϕ(Ω) is the orthogonal part of the polar
decomposition of F , i.e., the continuum rotation and U is positive definite symmetric. It
is well known that every objective free energy, i.e., ∀ Q ∈ SO(3) : W (Q F ) = W (F ), can
be expressed in this way by a function W ] defined on the classical stretch U alone, see
e.g.,[7].

In the case of material isotropy, the free energy W should be right-invariant under the
group of special rotations SO(3), i.e.,

∀ Q ∈ SO(3) : W (F Q) = W (F ) ⇔
∀ Q ∈ SO(3) : W ](QT U Q) = W ](U) . (2.3)

For example, the most general isotropic quadratic energy in U with zero stresses in the
reference configuration is given by

W ](U) = µ ‖U − 11‖2 +
λ

2
tr [U − 11]2 , (2.4)

where the parameters µ, λ > 0 are the Lamé constants of classical isotropic elasticity.

2.2 The Euler-Lagrange equations of the finite Biot model

The following considerations are facilitated by using the representation U(F ) = R(F )T F =
polar(F )T F . Moreover, let v ∈ C∞

0 (Ω, R3). Taking free variations w.r.t. ϕ in the energy
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leads to

d

dt |t=0

I(ϕ + t v) =

∫
Ω

〈DF W (∇ϕ),∇v〉 dV =

∫
Ω

〈DF [W ](U(F ))],∇v〉 dV

=

∫
Ω

〈DUW ](U), DF U(F ).∇v〉 dV =

∫
Ω

〈DUW ](U), DF [R(F )T F ].∇v〉 dV

=

∫
Ω

〈DUW ](U), [DF R(F ).∇v]T F + R(F )T ∇v〉 dV (2.5)

=

∫
Ω

〈DUW ](U), [δR(F,∇v)]T R(F ) R(F )T F ] + R(F )T∇v〉 dV

=

∫
Ω

〈R(F ) DUW ](U),∇v〉+ 〈DUW ](U), [δR(F,∇v)]T R(F )R(F )T F ]〉 dV

=

∫
Ω

〈R(F ) DUW ](U),∇v〉+ 〈DUW ](U) UT , [δR(F,∇v)]T R(F )]〉 dV .

Now, we use that on the one hand DUW ](U) UT is symmetric for isotropic W ] and that
on the other hand [δR(F,∇v)]T R(F ) is always skew-symmetric. This implies that the
product between them vanishes. Therefore, we obtain

0 =
d

dt |t=0

I(ϕ + t v) =

∫
Ω

〈R(F ) DUW ](U),∇v〉 dV

=

∫
Ω

〈Div[R(F ) DUW ](U)], v〉 dV , ∀ v ∈ C∞
0 (Ω, R3) , (2.6)

where we have used the divergence theorem. Thus, the strong form of equlibrium for the
classical Biot model reads

Div S1(F ) = Div[R(F ) DUW ](U)] = 0 , (2.7)

with the first Piola-Kirchhoff tensor S1(F ) = R(F ) DUW ](U). Since the second Piola-
Kirchhoff tensor is defined as S2(F ) = F−1 S1(F ) it holds

S2(F ) = F−1 S1(F ) = F−1 R(F ) DUW ](U) = U−1 DUW ](U) ∈ Sym (2.8)

from the fact that for isotropic W ], the tensors DUW ] and U−1 commute and are each
symmetric. If we define the Biot stress tensor by T = DUW (U), then the following relation
between the Biot stresses (living on the reference configuration) and the Cauchy-stresses
in the actual configuration holds

σ =
1

det[F ]
R T F T =

1

det[F ]
F S2(F ) F T ∈ Sym . (2.9)

We note that the classical Biot model is not known to be well-posed when (2.4) is used.
In this case Legendre-Hadamard ellipticity is lost [1].

Using the polar decomposition we may write equivalently

Div[R DUW ](RT F )] = 0 , R = polar(F ) . (2.10)
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A weaker formulation is obtained by replacing the constraint R = polar(F ) in (2.10) into

Div[R DUW ](RT F )] = 0 , RT F ∈ Sym . (2.11)

The difference between (2.11) and (2.10) is that in (2.10) the stretch U = RT F is not
only symmetric, but also positive definite symmetric. In fact it holds

∀ R ∈ SO(3) , F ∈ GL+(3) : RT F ∈ Sym ⇔ R = Qi polar(F ) , (2.12)

for

Q1 = 11 , Q2 = diag(1,−1,−1) , Q3 = diag(−1, 1,−1) , Q4 = diag(−1,−1, 1) .

Thus every solution to (2.10) is a solution to (2.11) but not vice versa. Despite the
difference between the formulations (2.10) and (2.11) it is (2.11) which is sought to be
approximated by a formulation with rotational degrees of freedom which we introduce
presently.

3 The Biot model with rotational degrees of freedom

The Biot model with rotational degrees of freedom is obtained by formally relaxing the
constraint on the rotations R in the previous approach to coincide either with the polar-
decomposition or to make U = RT F symmetric. Instead, one introduces an independent
rotation field R : Ω 7→ SO(3) and writes, cf. [3, 2.3]

Irel(ϕ, R) =

∫
Ω

W ](R
T∇ϕ) dV 7→ min . w.r.t. (ϕ, R) , (3.1)

taking free variations w.r.t ϕ and R. Let us abbreviate U = R
T

F , which is in general
non-symmetric. Repeating the same steps as before leads us to the balance of forces
equation

0 =
d

dt |t=0

Irel(ϕ + t v, R) =

∫
Ω

〈DF [W ](R
T∇ϕ)],∇v〉 dV =

∫
Ω

〈DUW ](R
T∇ϕ), R

T ∇v〉 dV

=

∫
Ω

〈R DUW ](U),∇v〉 dV =

∫
Ω

〈Div[R DUW ](U), v〉 dV , ∀ v ∈ C∞
0 (Ω, R3) . (3.2)

Free variation w.r.t. to the independent rotations R leads to an algebraic side condition.

Since R
T
R = 11 we have δR

T
R = A ∈ so(3) for some arbitrary skew-symmetric matrix

A. Thus for all variations δR

0 = 〈DR[W ](R
T

F ), δR〉 = 〈DW ](R
T
F ), δR

T
F 〉 = 〈DUW ](R

T
F ), δR

T
R︸ ︷︷ ︸

A

R
T

F 〉

= 〈DUW ](R
T
F ), AU〉 = 〈DUW ](U) U

T
, A〉 (3.3)

and balance of angular momentum follows as

∀ A ∈ so(3) : 0 = 〈DUW ](U) U
T
, A〉 ⇔ DUW ](U) U

T ∈ Sym . (3.4)
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Gathering the Euler-Lagrange equations we have for the model with rotational degrees of
freedom

0 = Div[R DUW ](U)] , DUW ](U) U
T ∈ Sym . (3.5)

This proposed relaxed Biot model with independent rotations is a special case of a nonlin-
ear Cosserat continuum. To see this let us continue by introducing a finite strain Cosserat
model.

4 The finite strain Cosserat model in variational form

In [12, 13] a finite-strain, fully frame-indifferent, three-dimensional Cosserat micropolar
model is introduced, cf. [22, 18]. The two-field problem has been posed in a variational
setting. The task is to find a pair (ϕ, R) : Ω ⊂ R3 7→ R3 × SO(3) of deformation ϕ and
independent microrotation2 R ∈ SO(3), minimizing the energy functional I,

I(ϕ, R) =

∫
Ω

Wmp(R
T∇ϕ) + Wcurv(R

T
DxR) dV 7→ min . w.r.t. (ϕ, R) , (4.1)

together with the Dirichlet boundary condition of place for the deformation ϕ on Γ:
ϕ|Γ = gd and Neumann conditions on the microrotations R everywhere on ∂Ω. The
constitutive assumptions are

R(x) : TxΩ 7→ Tϕ(x)ϕ(Ω) , U(x) := R
T
(x)F (x) : TxΩ 7→ TxΩ ,

Wmp(U) = µ ‖ sym(U − 11)‖2 + µc ‖ skew(U − 11)‖2

+
λ

4

(
(det[U ]− 1)2 + (

1

det[U ]
− 1)2

)
, F = ∇ϕ ,

Wcurv(DxR) = µ Lq
c ‖Curl R‖q , (4.2)

under the minimal requirement q ≥ 2. The total elastically stored energy W = Wmp +
Wcurv depends on the generalized stretch U and on the curvature measure Curl R [15]
which describe the interaction of the microstructure on the macroscale. The strain energy
Wmp depends on the deformation gradient F = ∇ϕ and the microrotations R ∈ SO(3),
which do not necessarily coincide with the continuum rotations R = polar(F ) : TxΩ 7→
Tϕ(x)ϕ(Ω).3 In general, the micropolar stretch tensor U is not symmetric and does

not coincide with the symmetric continuum stretch tensor U = RT F =
√

F T F :
TxΩ 7→ TxΩ.

Here Γ ⊂ ∂Ω is that part of the boundary, where Dirichlet conditions gd for deforma-
tions are prescribed. The parameters µ, λ > 0 are again the Lamé constants of classical
isotropic elasticity, the additional parameter µc ≥ 0 is called the Cosserat couple mod-
ulus. For µc > 0 the elastic strain energy density Wmp(U) is uniformly convex in U

2The microrotation R ”lives” on the macroscale.
3The continuum rotation and the microrotation rotate infinitesimal volumina and move base points.
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and satisfies the standard growth assumption

∀F ∈ GL+(3) : Wmp(U) = Wmp(R
T
F ) ≥ min(µ, µc) ‖R

T
F − 11‖2 = min(µ, µc) ‖F −R‖2

≥ min(µ, µc) inf
R∈O(3)

‖F −R‖2 = min(µ, µc) dist2(F, O(3))

= min(µ, µc) dist2(F, SO(3)) = min(µ, µc) ‖F − polar(F )‖2

= min(µ, µc) ‖U − 11‖2 , (4.3)

where dist : M3×3 7→ R is the euclidian distance function on second order tensors. In
contrast, for the case µc = 0 the strain energy density is only convex w.r.t. F and does
not satisfy (4.3).4

The parameter Lc > 0 (with dimension length) introduces an internal length which
is characteristic for the material, e.g., related to the grain size in a polycrystal. The
internal length Lc > 0 is responsible for size effects in the sense that smaller samples
are relatively stiffer than larger samples.

In the Cosserat model it is still possible to compute a tensor, formally taking on the
role of the Cauchy-stresses:

σ =
1

det[F ]
S1(F, R) F T =

1

det[F ]
DF W (F, R) F T

=
1

det[F ]
R DUW (U) F T =

1

det[F ]
R T (U) F T . (4.4)

It is of prime importance to realize that a linearization of this isotropic Cosserat bulk
model with µc = 0 for small displacement and small microrotations completely decouples
the two fields of deformation ϕ and microrotations R and leads to the classical linear
elasticity problem for the deformation. In [10] it is nevertheless shown that µc = 0 is a
reasonable choice.5 For more details on the modelling of the three-dimensional Cosserat
model we refer the reader to [12]. Extensions to a micromorphic model have been given
in [14]. The Cosserat model is well-posed in the sense that the existence of minimizers
is obtained for various combinations of constitutive parameters [9, 11], including µc = 0,
provided that Lc is strictly positive.

The Biot model with independent rotations is obtained from the Cosserat model by
neglecting the curvature, i.e., setting Lc = 0. By a scaling argument it is easy to see
that Lc = 0 corresponds to the limit of arbitrarily large samples. Therefore, the proposed
Cosserat model can be seen as a regularization of the Biot model with independent rota-
tions. For Lc = 0, balance of angular momentum is equivalently expressed as σ ∈ Sym.

4The condition F ∈ GL+(3) is necessary, otherwise ‖F − polar(F )‖2 = dist2(F,O(3)) <
dist2(F,SO(3)), as can be easily seen for the reflection F = diag(1,−1, 1).

5Thinking in the context of an infinitesimal-displacement Cosserat theory one might believe that
µc > 0 is necessary also for a ”true” finite-strain Cosserat theory.
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5 Symmetry of stresses versus symmetry of stretches

Let us now return to the Euler-Lagrange equations for the Biot model with rotational
degrees of freedom (3.5)

0 = Div[R DUW ](U)] , DUW ](U) U
T ∈ Sym . (5.1)

Using the representation theorems for isotropic functions of non-symmetric tensor argu-
ments [21] it is easy to see that for isotropic W ] and for symmetric U the balance of
angular momentum (3.4) is automatically satisfied, see e.g., [19]. We observe with [3]
that a (not necessarily unique) solution (ϕ, R) of (3.5) cannot solve (2.11) unless U is
symmetric.

However, in [3] the author proceeds and arrives correctly at

γ1 (U − U
T
) + γ2 (U

2 − U
T,2

) + γ3 (U
3 − U

T,3
) = 0 , ([3] Eq.(2.25))

for some scalar functions γi = γi(U). He concludes: “The moment equilibrium ... leads

to the symmetry condition U = U
T
. This result, ..., can be explained as follows: For

an isotropic material the stretch U and the stress r (= DUW ](U) our addition) are
coaxial; consequently the moment equilibrium in (2.19) is satisfied identically for every
symmetrical U . Vice versa the moment equilibrium condition enforces this symmetry
under the assumption of an isotropic material as demonstrated in (2.25).”

This statement is only partially true: symmetric U satisfies, for isotropic W ], always
moment equilibrium (3.4). The converse, is, however, not necessarily the case. To see
this, choose e.g.

W ](U) = µ ‖ sym(U − 11)‖2 + µc ‖ skew(U − 11)‖2

+
λ

4

(
(det[U ]− 1)2 + (

1

det[U ]
− 1)2

)
, (5.2)

as in the Cosserat model (4.2). Clearly, W ] is an isotropic scalar valued function of the
non-symmetric tensor argument U . Since the volumetric term is independent of R we can
concentrate for balance of angular momentum on

Wµ,µc(F, R) := µ ‖ sym(U − 11)‖2 + µc ‖ skew(U − 11)‖2 . (5.3)

Balance of angular momentum reads now

DUW ](U) U
T ∈ Sym ⇔ DUWµ,µc(U) U

T ∈ Sym ⇔[
2µ (sym(U − 11)) + 2µc skew U

]
U

T ∈ Sym ⇔[
µ (U + U

T − 2 11) + µc(U − U
T
)
]

U
T ∈ Sym ⇔

(µ− µc) U U − 2µ U ∈ Sym ⇔

(µ− µc) [U
2 − U

T,2
]− 2µ [U − U

T
] = 0 . (5.4)
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Obviously, for µc = µ the symmetric solution is unique. Therefore, assume presently that
0 ≤ µc < µ but we note that the choice µc = 0 is not necessary. Define ρ := 2 µ

µ−µc
and set

F =

λ1 0 0
0 λ2 0
0 0 1

 , λ1 + λ2 > ρ ,

R =

cos α − sin α 0
sin α cos α 0

0 0 1

 , α = arccos

(
ρ

λ1 + λ2

)
∈

[
0,

π

2

]
. (5.5)

This yields the explicit forms

R =


ρ

λ1+λ2
−

√
1− ρ2

(λ1+λ2)2
0√

1− ρ2

(λ1+λ2)2
ρ

λ1+λ2
0

0 0 1

 ,

U = R
T
F =


ρ λ1

λ1+λ2
λ2

√
1− ρ2

(λ1+λ2)2
0

−λ1

√
1− ρ2

(λ1+λ2)2
ρ λ2

λ1+λ2
0

0 0 1

 , (5.6)

as can be easily seen from a straight forward calculation. It is obvious, that U is in
general not symmetric. On the other hand, we obtain

U − U
T

=


0 (λ1 + λ2)

√
1− ρ2

(λ1+λ2)2
0

−(λ1 + λ2)
√

1− ρ2

(λ1+λ2)2
0 0

0 0 0

 ,

U
2 − U

T,2
=


0 ρ (λ1 + λ2)

√
1− ρ2

(λ1+λ2)2
0

−ρ (λ1 + λ2)
√

1− ρ2

(λ1+λ2)2
0 0

0 0 0

 . (5.7)

Thus, U
2 − U

T,2
= 2µ

µ−µc
(U − U

T
) from which we readily infer

(µ− µc) [U
2 − U

T,2
]− 2µ [U − U

T
] = 0 .

Hence, U = R
T

F 6∈ Sym, but satisfies the equilibrium equation of angular momentum.
Furthermore, it can be shown, that the given rotation R is not only a solution of

the balance of momentum equation DUW ](U) U
T ∈ Sym but realizes indeed the global

minimum w.r.t. R of the energy W ] at given deformation gradient F . Moreover, if
|λ1 − λ2| < ρ, then 〈ξ, U.ξ〉R3 defines a positive definite quadratic form. This is shown in
the Diploma-Thesis of A. Fischle [4]. There, an exhaustive discussion of the structure of
optimal rotations for the energy (5.2) is povided. It should also be noted that the always
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possible symmetric solution R = polar(F ) need not even be a local minimizer. Stability
considerations do not speak in favour of the polar rotation!

Interesting enough, if in the former, we choose µc ≥ µ (a specific kind of penalty) then
the only solution of balance of momentum is indeed a symmetric U [4]. Here, the penalty
term enforces exactly the symmetry and not only approximately.

6 Conclusion

Summarizing the situation, we can say: the Cosserat model turns into a Biot model with
independent rotations whenever the internal length scale is absent, i.e., Lc = 0. Even in
the case of isotropy the equilibrium solutions of the model (3.5) are not necessarily equi-
librium solutions of the weak Biot model (2.11). If it is intended to approximate classical
solutions by the model with independent rotations, then a sufficiently large penalty term
µc ‖ skew U‖2 needs to be added. In the investigated isotropic case (5.2), a finite penalty
parameter µc ≥ µ is sufficient to enforce symmetry of the relaxed Biot stretches exactly.
If the penalty parameter µc is small or absent the relation of the relaxed Biot model with
independent rotations to the classical isotropic Biot model is lost. Since in the classical
Biot model, the stretches are not only symmetric but positive definite, the solutions of
the relaxed Biot model with penalty need to be checked w.r.t. positive definiteness in
order to maintain their physical relevance.

It remains to find a sufficiently large class of isotropic free energies such that moment
equlibrium in the relaxed formulation implies automatically the symmetry of the relaxed
Biot stretch U .
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Notation

Let Ω ⊂ R3 be a bounded domain with Lipschitz boundary ∂Ω and let Γ be a smooth subset of ∂Ω
with non-vanishing 2-dimensional Hausdorff measure. We denote by M3×3 the set of real 3 × 3 second
order tensors, written in capital letters. The standard Euclidean scalar product on M3×3 is given by
〈X, Y 〉M3×3 = tr

[
XY T

]
, and thus the Frobenius tensor norm is ‖X‖2 = 〈X, X〉M3×3 (we use these

symbols indifferently for tensors and vectors). The identity tensor on M3×3 will be denoted by 11, so that
tr [X] = 〈X, 11〉. We let Sym and PSym denote the symmetric and positive definite symmetric tensors
respectively. We adopt the usual abbreviations of Lie-theory, i.e. so(3) := {X ∈ M3×3 |XT = −X} are
skew symmetric second order tensors and sl(3) := {X ∈ M3×3 |tr [X] = 0} are traceless tensors. We set
sym(X) = 1

2 (XT + X) and skew(X) = 1
2 (X −XT ) such that X = sym(X) + skew(X).
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