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Bernhard Mößner and Ulrich Reif

Abstract

We construct a uniformly stable family of bases for tensor product

spline approximation on bounded domains in R
d. These bases are

derived from the standard B-spline basis by normalization with respect

to the L
p-norm and a selection process relying on refined estimates for

the de Boor-Fix functionals.

1 Introduction

Uniform stability of tensor product B-spline bases on R
d is a well known

fact [2] and one of the many favorable properties of this class of functions.
However, when approximating functions on a bounded domain Ω ⊂ R

d,
stability is typically lost because of B-splines with only small parts of their
support lying inside the domain. This problem was observed in [5], and
probably also much earlier, and taken for granted ever since.

In [8, 6], an extension procedure is suggested to stabilize B-spline bases.
There, outer B-splines supported near the boundary of the domain are suit-
ably coupled with inner ones, and it can be shown that the resulting basis
combines stability with full approximation power, despite its reduced dimen-
sion.

In this paper, we revisit the stability problem and show that instability
of the standard B-spline basis is mostly due to bad scaling, and not to an
inherent closeness to linear dependence. For instance, B-splines with support
trimmed by a hyperplane can always be stabilized by scaling, no matter how
small their active part becomes.

In the next section, we briefly recall the standard estimates for stability on
R

d and explain possible sources of instability on bounded domains. Then, in
Section 3, we introduce the notion of (r, p)-stability of B-splines, normalized
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with respect to the Lp-norm, and show that the set of all such B-splines forms
a uniformly stable basis. While the basic Definition 3.1 and Theorem 3.2 are
geared to great generality, we also provide sufficient conditions which are easy
to verify in practice. Finally, in Section 4, we briefly show that the set of
(r, p)-stable B-splines is useful in the sense that it provides, for instance, full
approximation power with respect to the L2-norm if the domain is coordinate-
wise convex and sufficiently smooth.

At this place, we want to remark that approximation properties even of
complete spaces of B-splines on bounded domains are not sufficiently well
understood, today. The classical results in [5] are based on quite restrictive
conditions on the geometry of the domain. In particular, it is assumed that
the domain is coordinate-wise convex. The results in [6], which are based on
extending functions defined only on the domain to intervals, are limited by
the fact that the existence of such an extension may rely on the smoothness
of the boundary of the domain. Both results have in common that the
constants in the error estimates depend on the aspect ratio of the knot grid,
and thus can grow unboundedly if, for instance, the knot sequence in one
coordinate direction is repeatedly refined, while the other ones remain fixed.
Presumably, this contra-intuitive behavior is due to technical limitations in
the proofs, and not to the actual nature of spline approximation on grids
with largely differing knot spacings in the coordinate directions.

2 Preliminaries

For an open set Ω ⊂ R
d and 1 ≤ p ≤ ∞, let B = (bi)i∈I be a sequence of

functions bi ∈ Lp(Ω). The vector space of functions spanned by B is denoted

V p(B) := span{bi : i ∈ I},

where the closure is understood with respect to the Lp-norm ‖ · ‖p,Ω. For
functions f ∈ V p(B) we write briefly

f =
∑

i∈I

fibi =: FB, F = (fi)i∈I .

The space of coefficients with finite lp-norm is

lp(I) := {F ∈ R
I : ‖F‖p,I <∞}.
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If the underlying set is clear from the context, we also write ‖f‖p and ‖F‖p

instead of ‖f‖p,Ω and ‖F‖p,I, respectively. B is a Riesz basis of V p(B) with
respect to the given norms, if there exist constants c̃, C̃ > 0, such that
c̃‖F‖p ≤ ‖FB‖p ≤ C̃‖F‖p for all F ∈ lp(I). In this case, the optimal
constants are

c := inf{‖FB‖p : ‖F‖p = 1}, C := sup{‖FB‖p : ‖F‖p = 1}, (1)

and the ratio condpB := C/c is called the condition number of B with respect
to the p-norm.

Let T = {. . . ≤ τ−1 ≤ τ0 ≤ τ1 ≤ . . .}, τi ∈ R, be a bi-infinite knot-
sequence for a spline space of degree n. The corresponding order is denoted
n := n + 1. The B-splines (bi,n)i∈Z have support

Si,n := supp bi,n = [τi, τi+n], |Si,n| := τi+n − τi,

and satisfy the Marsden-identity

(t− τ)n =
∑

i∈Z

bi,n(t)ψi,n(τ), ψi,n(τ) :=
n
∏

j=1

(τi+j − τ) (2)

for all t, τ ∈ R. The function ψi,n is a polynomial of degree n with the inner
knots τi+1, . . . , τi+n of the B-spline bi,n as zeros. For 0 ≤ ν ≤ n, the νth
derivative of ψi,n can be written as

Dνψi,n(τ) = (−1)ν n!

(n− ν)!

n−ν
∏

j=1

(τ ν
i,j − τ). (3)

By Rolle’s theorem, the zeros τ ν
i,j are all real and lie in the interval Si,n.

Hence, for τ ∈ Si,n, we have

|Dνψi,n(τ)| ≤ n! |Si,n|
n−ν, 0 ≤ ν ≤ n. (4)

To prove stability properties of B-splines, we use the de Boor-Fix func-
tionals [3] given by

λi,n(u) :=
1

n!

n
∑

ν=0

(−1)n−νDn−νψi,n(ξi)D
νu(ξi), (5)
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where ξi is an arbitrary point with bi,n(ξi) > 0. The basic duality property is

λi,n(bj,n) = δij, i, j ∈ Z. (6)

Points p ∈ R
d are understood as row-vectors, and their components are

indexed by superscripts, p = (p1, . . . , pd). The component-wise product of
two points p, q ∈ R

d is denoted

p ∗ q := (p1q1, . . . , pdqd) ∈ R
d.

If, component-wise, p ≤ q, then the two points define the closed interval

P := [p, q] := [p1, q1] × · · · × [pd, qd] ⊂ R
d.

The vector of edge lengths, also called the size of P , is denoted

|P | := q − p ∈ R
d.

The univariate knot sequences T 1, . . . , T d define a multivariate knot grid T :=
T 1×· · ·×T d with knots τi := (τ 1

i1 , . . . , τ
d
id) and grid cells Ti := [τi, τi+1], i ∈ Z

d.
The basis functions of the tensor product spline space of coordinate degree
n ∈ N

d with knots T are just products of the univariate B-splines, i.e.,

bi,n(x) := bi1,n1(x1) · · · bid,nd(xd), i ∈ Z
d.

Denoting the order of the spline space again by n := n + (1, . . . , 1), their
support is the interval

Si,n := supp bi,n = [τi, τi+n].

With the usual multi-index notation, the multivariate de Boor-Fix function-
als are given by

λi,n(u) =
1

n!

∑

ν≤n

(−1)n−ν∂n−νψi,n(ξi)∂
νu(ξi), (7)

where ψi,n(ξi) := ψi1,n1(ξ1
i ) · · ·ψid,nd(ξd

i ) and ξi is chosen such that bi,n(ξi) > 0.
To simplify notation, we fix the degree n ∈ N

d
0 and drop the corresponding

subscript, throughout.
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In the following, we study stability properties of B-spline bases B span-
ning function spaces V p(B) on a domain Ω ⊂ R

d. For a given knot grid T , a
natural choice of B is to employ all B-splines which do not vanish on Ω, i.e.,

B = (bi|Ω)i∈I , I := {i ∈ Z
d : Si ∩ Ω 6= ∅}. (8)

Typically, the results to be derived later are invariant with respect to
axis-aligned affine maps (or briefly a3-maps) in R

d. Such maps have the
form

A : R
d 3 x 7→ (a0 ∗ x + a1)A ∈ R

d, (9)

where A ∈ {0, 1}d×d is a permutation matrix, a0 ∈ (R 6=0)
d is a scaling vector,

and a1 ∈ R
d is a shift vector. If, in particular a0 = (±1, . . . ,±1), then A is

called an axis-aligned isometric map. We write

x̃ = A(x), Ω̃ = A(Ω), T̃ = A(T ),

etc., and observe that the B-splines b̃i and the de Boor-Fix functionals λ̃i

with respect to T̃ are affine invariant in the sense that

b̃i(x̃) = bi(x), λ̃i(ũ) = λi(u), where ũ := u ◦ A−1.

For Ω = R
d, the classical result on the uniform stability of B-splines [2]

states that cond∞B is bounded by a constant M depending only on the
degree n (and the dimension d), but not on the choice of knots. A similar
result holds for p-norms, 1 ≤ p < ∞, if the B-splines are normalized in a
suitable way. Notably, cond∞B can be arbitrarily large for general Ω.

Let us illustrate this phenomenon by a simple univariate example. For
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Figure 1: B-spline basis with large condition number.
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0 < ε < 1, we consider splines of degree n = 1 with knots τi = i − 2 + ε on
the domain Ω = (0, 1). Figure 1 shows the spline FB = b0 corresponding
to the coefficients fi = δi,0. From ‖b0‖∞,Ω = ε, we conclude that the lower
bound in (1) is c ≤ ε, while the upper bound is obviously C = 1. Hence,
cond∞B ≥ 1/ε is not uniformly bounded.

To understand the differences between this case and the well known uni-
form stability on R, let us briefly review the classical proof. For Ω = R and
B = (bi)i∈Z, consider the estimate

c‖F‖∞ ≤ ‖FB‖∞,R ≤ C‖F‖∞, F ∈ l∞(Z).

By partition of unity, the upper estimate holds with the optimal constant
C = 1. For the lower estimate, a single coefficient fi of the spline f = FB is
expressed with the help of the de Boor-Fix functional (5),

|fi| = |λi(f)| =
1

n!

∣

∣

∣

∣

∣

n
∑

ν=0

(−1)n−νDn−νψi(ξi)D
νf(ξi)

∣

∣

∣

∣

∣

≤
1

n!

n
max
ν=0

|Dνψi(ξi)|
n
∑

ν=0

|Dνf(ξi)|. (10)

Affine invariance admits to assume Si = [0, 1] without loss of generality. In
this case, by (4), |Dνψi(ξ)| ≤ n! for all ν. Further, there exists an interval
Q ⊂ Si = [0, 1] of length 1/n which does not contain a knot. Hence, f|Q ∈
Pn(Q), i.e., the restriction of f to Q is a polynomial of degree ≤ n. With ξi

the center of Q, the sum in the above estimate is a norm on the space Pn(Q).
By equivalence of norms on finite-dimensional vector spaces, this norm is
bounded from above by the L∞-norm on Q with a constant Cn depending
only on n. We obtain

|fi| ≤
n
∑

ν=0

|Dνf(ξi)| ≤ Cn‖f|Q‖∞,Q ≤ Cn‖f‖∞,R

for all i ∈ Z showing that C−1
n ‖F‖∞ ≤ ‖FB‖∞ for all F ∈ l∞(Z). Hence,

cond∞B ≤ M := Cn is bounded independent of the knot sequence.
For arbitrary domains Ω ⊂ R, the above argument can fail since it might

be impossible to find an interval Q of length 1/n in Si ∩ Ω, if this set is
small. The counterexample given above is based exactly on this observation.
Of course, that problem is readily removed by adapting the knot sequence
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appropriately, for instance by setting T = [0, 0, ε, 1, 1]. In this way, the insta-
bility is removed without changing the spline space on Ω. But unfortunately,
this method does not work in general for domains in higher dimensions.

3 Stability

As shown above, the basis B according to (8) is not necessarily stable. A
trivial way to circumvent this problem is to discard those B-splines for which
a suitable interval Q does not exist. For instance, if the knot sequence is
uniform, these are exactly those B-splines which do not have a complete grid
cell of their support in Ω. Although in this way only relatively few B-splines
near the boundary of Ω are ruled out, it is easily shown that the resulting
spline space reveals a substantial loss of approximation power. A much more
appropriate solution is based on the concept of extension as introduced in
[8]. Here, the unstable outer B-splines are suitably attached to inner ones so
that a uniformly stable basis with full approximation power is obtained.

In the following, we suggest an even simpler approach to the problem
which is based on a natural normalization process. It turns out that most
instabilities are not due to an inherent closeness to linear dependence, but
merely to bad scaling. Our main result is essentially based on the following
estimate for univariate B-splines:

Lemma 3.1 Let bi be a univariate B-spline of degree n with τi = 0, and let
P := [0, 1]. Then

‖bi‖∞,P ‖Dνψi‖∞,P ≤ n! (11)

for all ν = 0, . . . , n.

Proof: The proof is by induction on ν, proceeding backwards from ν = n.
For ν = n, the estimate follows immediately from ‖bi‖∞ ≤ 1 and (4). Now,
we assume that the estimate is true for ν + 1. If Dνψi has a zero in [0, 1],
then, by the mean value theorem, ‖Dνψi‖∞,P ≤ ‖Dν+1ψi‖∞,P . Otherwise, all
zeros are ≥ 1 implying that |Dνψi| is monotone decreasing on [0, 1]. Hence,

‖bi‖∞,P‖D
νψi‖∞,P ≤ ‖bi‖∞,P |D

νψi(0)|.

Since bi and ψi depend only on the knots τi, . . . , τi+n+1, we can assume τj =
τi = 0 for all j ≤ i without loss of generality. Differentiating (2) with respect
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to τ , we obtain for τ = 0

∑

j∈Z

bj(t)D
νψj(0) = (−1)ν n!

(n− ν)!
tn−ν.

By the special choice of knots, all zeros τ ν
j,l of Dνψj are non-negative. Thus,

(3) yields Dνψj(0) = (−1)ν|Dνψj(0)|, and we obtain

bi(t)|D
νψi(0)| ≤

∑

j∈Z

bj(t)|D
νψj(0)| =

n!

(n− ν)!
tn−ν

for all t ∈ P . Hence,

‖bi‖∞,P |D
νψi(0)| ≤

n!

(n− ν)!
≤ n!,

and the proof is complete. 2

For a given domain Ω ⊂ R
d and 1 ≤ p ≤ ∞, we define the normalized

B-splines

bpi :=
bi

‖bi‖p,Ω
, i ∈ I,

where I is the index set of relevant B-splines according to (8) so that the
denominator is positive. The following definition characterizes a large class
of normalized B-splines which lead to uniformly stable bases:

Definition 3.1 Let T be a knot grid for a tensor product spline-space of
degree n, and let r = (r1, r2) ≥ (1, 1) be a pair of real parameters. Then the
normalized B-spline bpi is called (r, p)-stable with respect to Ω and T , if there
exist intervals Pi, Qi ⊂ Si with the following properties:

a) Qi is contained in an interior grid cell, i.e., Qi ⊂ Tj ∩ Ω for some
j ∈ Z

d.

b) The center ξi of Qi is contained in Pi.

c) The sizes of Qi and Pi are related by r1
(

n ∗ |Qi|
)

= |Pi|.

d) The intervals Pi and Si have one corner in common.
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Figure 2: Illustration of Definition 3.1.

e) ‖bi‖p,Ω ≤ r2 ‖bi‖p,Pi
.

The sequence of (r, p)-stable normalized B-splines is denoted

Bp
r := (bpi )i∈Ip

r
, Ip

r := {i ∈ I : bpi is (r, p)-stable}.

Let us state some elementary facts about (r, p)-stability without proof.

• All B-splines with support completely contained in Ω admit the choice
Si = Pi so that they are (r, p)-stable for all r ≥ (1, 1) and 1 ≤ p ≤ ∞.

• (r, p)-stability implies (r′, p)-stability for r′ ≥ r.

• The notion of (r, p)-stability is affine invariant in the following sense:
If A is an a3-map according to (9) and bi is (r, p)-stable with respect
to Ω and T , then then b̃i is (r, p)-stable with respect to Ω̃ and T̃ .

Now, we will show that families of (r, p)-stable normalized B-splines form
bases with a uniformly bounded condition number. To this end, the latter
property will be used to map Pi to the unit interval, and to make the origin
the common corner of Pi and Si. The interval Qi is a subset of Ω of fixed
relative size on which splines are polynomial. The center ξi will be used for
the de Boor-Fix functional. Condition d) concerning the common corner and
the estimate e) are needed to satisfy the assumptions of Lemma 3.1.

Theorem 3.2 The condition number of the basis Bp
r is bounded by

condpB
p
r ≤M,

where the constant M depends on n, p, r, but neither on T nor on Ω.
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Proof: We determine constants c′, C ′ > 0 such that

c′‖F‖p ≤ ‖FBp
r‖p ≤ C ′‖F‖p

for all F ∈ lp(Ip
r ). The upper bound follows from locality of the B-splines.

On every grid cell Tj, there are N := n1 · · ·nd non-vanishing basis functions.
With ‖bpi ‖p,Tj∩Ω ≤ 1, standard arguments show that C ′ := N1/q is a valid
constant, where p and q are related by 1/p+ 1/q = 1.

To prove the lower estimate, let Pi, Qi be intervals according to Defi-
nition 3.1. Like the conditions specified in the definition, also the lower
estimate c′‖F‖p ≤ ‖FBp

r‖p is affine invariant, i.e.,

‖FBp
r‖p,Ω = ‖FB̃p

r‖p,Ω̃.

Hence, for fixed i ∈ Ip
r , we can assume without loss of generality that Pi =

[0, 1]d, and that the common corner of Pi and Si according to property d) is
the origin. Applying the de Boor-Fix functional (7) to the spline f = FBp

r ,
we obtain the estimate

|fi|

‖bi‖p,Ω

= |λi(f)| ≤
1

n!

∑

ν≤n

|∂n−νψi(ξi)| |∂
νf(ξi)|

≤
1

n!

(

max
ν≤n

|∂νψi(ξi)|
)

∑

ν≤n

|∂νf(ξi)|, (12)

where ξi is the center of Qi. Property a) implies that f restricted to Qi is a
polynomial. The sum in (12) is a norm on the space P

n(Qi) of polynomials
of degree ≤ n. Therefore, by equivalence of norms on finite-dimensional
vector spaces, this norm is bounded from above by the p-norm on Qi times
a constant Cn,p,r which depends only on n, p, r because the size of Qi is fixed
by property c). Hence, since ξi ∈ Pi by property b),

|fi| ≤
Cn,p,r

n!
‖f‖p,Qi

‖bi‖p,Ω max
ν≤n

‖∂νψi‖∞,Pi
.

Now, by property e), ‖bi‖p,Ω ≤ r2 ‖bi‖p,Pi
≤ r2 ‖bi‖∞,Pi

. We apply Lemma 3.1
to all univariate factors of bi and ∂νψi and find

|fi| ≤
Cn,p,r

n!
‖f‖p,Qi

‖bi‖∞,Pi
max
ν≤n

‖∂νψi‖∞,Pi
≤ Cn,p,r‖f‖p,Qi

.
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Obeying the fact that at most N = n1 · · ·nd of the intervals Qi can overlap,
a standard argument finally yields

‖F‖p
p =

∑

i∈Ip
r

|fi|
p ≤ Cp

n,p,r

∑

i∈Ip
r

‖f‖p
p,Qi

≤ NCp
n,p,r‖f‖

p
p,Ω,

and thus, c′ = (N1/pCn,p,r)
−1 is a valid constant for the lower estimate.

Together, the condition number is bounded by

condpB
p
r ≤M :=

C ′

c′
= Cn,p,rN

1/p+1/q = Cn,p,rN.

2

Next, we are going to specify sufficient conditions for (r, p)-stability which
are easier to verify than those of Definition 3.1 but still yield sufficiently large
subsets of Bp

r .

Lemma 3.3 For all p ∈ [1,∞], the normalized B-spline bpi is (r, p)-stable
with r2 = 1 if there exist intervals Pi, Ri with the following properties:

a) Ri ⊂ Si ∩ Ω ⊂ Pi ⊂ Si

b) The sizes of Ri and Pi are related by r1 ∗ |Ri| = |Pi|.

c) The intervals Pi and Si have one corner in common.

Proof: Being a subset of Si, the interval Ri is partitioned into at most
n1 × · · · × nd segments by the knot grid T . Hence, there exists a subinterval
Qi of Ri with n ∗ |Qi| = |Ri| = |Pi|/r1 which is completely contained in a
grid cell. Also all other conditions of Definition 3.1 are obviously satisfied.2

With the help of this lemma, the univariate case d = 1 can be settled as
follows:

Theorem 3.4 Let T be a knot-sequence for an univariate spline-space of
degree n ≥ 1, and let Ω = (a, b) ⊂ R be an open interval. Then, for every
1 ≤ p ≤ ∞, the normalized B-spline basis (bpi )i∈I on Ω is ((1, 1), p)-stable if
the number of knots in Ω is at least n, i.e.,

∣

∣{i ∈ Z : a < τi < b}
∣

∣≥ n.
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Proof: We consider a B-spline bpi , i ∈ I, i.e., Si ∩ Ω 6= ∅. Since Ω contains
at least n knots, either τi or τi+n̄ must lie in Ω. Without loss of generality,
we assume τi ∈ Ω. Defining

Pi := Ri := [τi,min(τi+n̄, b)]

we have Ri = Si ∩ Ω = Pi ⊂ Si, |Pi| = |Ri|, and Pi and Si have the knot τi
in common. Thus, the conditions of Lemma 3.3 are satisfied with r1 = 1. 2

We note that the required factor r1 can become arbitrarily large if the
conditions of the theorem are not satisfied. For instance, consider uniform
knots T = Z and the domain Ω = (1/4 − δ, 1/4 + δ). Then, for sufficiently
small δ, the normalized B-spline bp0 is not (r, p)-stable for r1 < 1/(8nδ) and
r2 = 1. Indeed, the condition number of the normalized basis (bpi )i∈I is not
uniformly bounded. In Figure 3, the condition number cond2(b

2
i )i∈I is plotted

as a function of δ for degrees n = 1, . . . , 4. The dot always indicates the point
left of which the condition of the theorem is not satisfied.

0 0.5 1 1.5 2

10
1
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10
3
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Figure 3: L2-condition number of univariate B-splines.
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Figure 4: Examples for choices of the intervals Pi and Ri in Lemma 3.3.

Now, we focus on the less trivial multivariate case, and assume d ≥ 2 for
the remainder of this section without further notice. Figure 4 shows some
typical cases in two dimensions:

• (left) Si∩Ω is convex, and bpi is (r, p) for r = (2, 1) and all p, independent
of the size of Si ∩Ω. If the intersection is not convex, then the required
r1 becomes larger, but typically remains bounded for small Si ∩ Ω.

• (middle) Si∩Ω is not connected. We choose Pi to cover the larger part
to find that bpi is (r, p) for r = (3, 2) and all p.

• (right) Because Pi must contain one corner of Si, the ratio between |Pi|
and |Ri| can become arbitrarily large if Si ∩ Ω is small. This case is
critical, but rare compared with the first one since it can occur only
near points of the boundary where the tangent is parallel to one of the
coordinate axes.

Already these three examples in 2 dimensions indicate that finding optimal
constants r1 and r2 may be a non-trivial task. In the following, we provide a
sufficient criterion which is easy to verify and applies to domains with smooth
boundary. To this end, we introduce the following notational convention.
The first (d− 1) components of a point p or an interval P = [p, q] in R

d are

13



denoted by a superscript star,

p = (p∗, pd), p∗ := (p1, . . . , pd−1),

P = P ∗ × P d, P ∗ = [p∗, q∗], P d = [pd, qd].

Definition 3.2 Let U := [0, u] ⊂ R
d be an interval, and ϕ : U ∗ → R a

continuous function. We set

vϕ := min
x∗∈U∗

ϕ(x∗), Vϕ := max
x∗∈U∗

ϕ(x∗)

and, if ϕ is C1,

gϕ := min
x∗∈U∗

∇ϕ(x∗), Gϕ := max
x∗∈U∗

∇ϕ(x∗),

where the extremal values of ∇ϕ are understood component-wise. We call

Uϕ := {x ∈ U : xd < ϕ(x∗)}

the restriction of U by ϕ. Further, an open set Ω ⊂ R
d, d ≥ 2, is called

a Ck,α-domain with resolution δ ∈ R
d, if for every interval S ⊂ R

d of size
|S| ≤ δ there exists a Ck,α-function ϕ, an axis-aligned isometry A, and an
interval U = [0, u] such that

S ∩ Ω = A(Uϕ).

The following theorem provides a sufficient condition for (r, p)-stability of a
single normalized B-spline near the boundary of a C1-domain.

Theorem 3.5 Given a C1-domain Ω ⊂ R
d with resolution δ, consider the

B-spline bpi , i ∈ I, with support S := Si of size |S| ≤ δ. Let S ∩ Ω = A(Uϕ)
according to the previous definition. Then, for all p ∈ [1,∞], the normalized
B-spline bpi is (r, p)-stable with r2 = 1 if either

r1vϕ ≥ ud or
r1 − d

d− 1
Vϕ ≥ U∗ ∗ (Gϕ − gϕ). (13)

Proof: The validity of both inequalities is invariant under application of an
a3-map. Hence, we can assume without loss of generality that S = U =
[0, 1]d, i.e., u∗ = (1, . . . , 1), ud = 1.
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Figure 5: Illustration of Definition 3.5: Typical cases for condition r1vϕ ≥ ud

(left) and (r1 − d)Vϕ/(d− 1) ≥ U ∗ ∗ (Gϕ − gϕ) (right).

To verify the first condition, we set P := S, R := vϕP and observe that
the height vϕ of R is bounded from above by the values of ϕ so that R ⊂ S∩Ω.
Hence, the intervals P = Pi and R = Ri satisfy all assumptions of Lemma 3.3.

To verify the second condition, let x∗ ∈ [0, 1]d−1 denote a point, where ϕ
attains its maximum,

Vϕ = ϕ(x∗).

We assume that the corner of S closest to x∗ is the origin, i.e., x∗ ∈ [0, 1/2]d−1.
Otherwise, S can be rotated in a suitable way by an axis-aligned isometry to
obtain the desired configuration. Consequently, ∇ϕ(x∗) ≤ 0 so that gϕ ≤ 0.
We define the interval P := [0, p] ⊂ S by

pk :=











1 if k < d and −Gk
ϕ ≤ Vϕ

−Vϕ/G
k
ϕ if k < d and −Gk

ϕ > Vϕ

min{1, Vϕ} if k = d,

and the interval

R := (x∗, 0) + P/r1 = [x∗, x∗ + p∗/r1] × [0, pd/r1].

Now, we show that P = Pi and R = Ri satisfy the assumptions of Lemma 3.3.
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First, we have r1|R| = |P | by definition, and the origin is the common
corner of S and P .

Second, we prove that R ⊂ S ∩Ω. To this end, let x = (x∗, xd) ∈ R. The
first component can be written in the form

x∗ = x∗ + η ∗ p∗/r1, η ∈ [0, 1]d−1.

We have 0 ≤ x∗ ≤ 1/2 and, by (13), r1 ≥ d ≥ 2. Hence, p∗/r1 ≤ 1/2 and
x∗ ∈ [0, 1]d−1 so that it remains to show that

pd/r1 ≤ ϕ(x∗ + η ∗ p∗/r1) for all η ∈ [0, 1]d−1,

i.e., that the upper face of R is bounded from above by the graph of ϕ.
Obeying gϕ ≤ 0, we estimate the function value at x∗ by

ϕ(x∗) ≥ ϕ(x∗) +

d−1
∑

k=1

gk
ϕη

kpk/r1 ≥ Vϕ +
1

r1

d−1
∑

k=1

gk
ϕp

k. (14)

To estimate gk
ϕp

k we have to distinguish to following two cases: For −Gk
ϕ ≤ Vϕ

we have pk = 1 and get from (13)

r1 − d

d− 1
Vϕ ≥ Gk

ϕ − gk
ϕ ≥ −Vϕ − gk

ϕ,

hence

gk
ϕp

k = gk
ϕ ≥

(

−
r1 − d

d− 1
− 1

)

Vϕ =
1 − r1
d− 1

Vϕ.

Conversely, if −Gk
ϕ > Vϕ, we have pk = −Vϕ/G

k
ϕ and get from (13)

−gk
ϕ ≤

r1 − d

d− 1
Vϕ −Gk

ϕ ≤ −
r1 − d

d− 1
Gk

ϕ −Gk
ϕ =

1 − r1
d− 1

Gk
ϕ.

Finally, using Gk
ϕ ≤ −Vϕ ≤ 0, we find

gk
ϕp

k = −gk
ϕ

Vϕ

Gk
ϕ

≥
1 − r1
d− 1

Vϕ,
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as in the first case. Applying this estimate to (14) we obtain

ϕ(x∗) ≥ Vϕ

(

1 +
(1 − r1)(d− 1)

r1(d− 1)

)

=
Vϕ

r1
≥
pd

r1
.

Third, we prove that S ∩Ω ⊂ P ⊂ S. The second inclusion is trivial. To
verify the first one, let (x∗, xd) ∈ S ∩ Ω. Then the last coordinate satisfies
0 ≤ xd ≤ min{1, Vϕ} = pd, i.e.,

xd ∈ [0, pd].

It remains to show that xk ∈ [0, pk] for all indices k < d. If pk = 1, nothing
has to be shown. Otherwise, if −Gk

ϕ > Vϕ, we denote by ek the kth unit
vector to obtain

0 ≤ ϕ(x∗) ≤ ϕ(x∗ − xkek) +Gk
ϕx

k ≤ Vϕ +Gk
ϕx

k.

With Gk
ϕ < 0, we finally obtain the desired estimate

xk ≤ −Vϕ/G
k
ϕ = pk.

2

It follows immediately

Corollary 3.6 Let Ω be a C1-domain with resolution δ, and let T be a knot
sequence with |Si| ≤ δ for all i ∈ I. Define

B∗
r := (bpi )i∈I∗r , I∗r :=

{

i ∈ I : bpi satisfies (13)
}

,

then I∗r ⊂ Ip
r for all p ∈ [1,∞], and in particular

condpB
∗
r ≤M,

where the constant M depends on n, p, r, but neither on Ω nor on T .

4 Approximation

Although the focus of this paper is on stability issues, let us briefly discuss
some aspects of approximation. More precisely, we want to estimate the
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additional Lp-error introduced by skipping parts of the full basis B with the
goal to show that forming B-splines bases via ”scale and skip” is a reasonable
concept.

To keep things as simple as possible, let us assume that the degree of the
spline space is constant, i.e., n := n1 = · · · = nd. Further, we define the
global fineness and the global mesh-ratio of the knot sequence T by

h :=
d

max
j=1

max
i

(

τ j
id+1

− τ j
id

)

, % := h−1
d

min
j=1

min
i

(

τ j
id+1

− τ j
id

)

,

respectively. To exclude multiple knots, we assume % > 0.
The standard reference on approximation properties of full spline spaces

on domains is [5]. Specializing the results of this remarkable paper to our
setting, we recall the following: If the bounded domain Ω is coordinate-
wise convex and satisfies several other technical conditions, then there exist
uniformly bounded Hahn-Banach extensions

Λi : Lp(Ω) → R, ‖Λi‖p,Ω ≤ Cn,p,%,Ω,

of the suitably modified de Boor-Fix functionals, where here and in the fol-
lowing

C = Cn,p,%,Ω

is a generic constant depending on n, p, %,Ω, which may attain different values
at each occurrence, even at the same line. The error of the spline

Λf :=
∑

i∈I

Λi(f)bi

is bounded by

‖f − Λf‖p,Ω ≤ Chn
d
∑

k=1

‖∂n
k f‖p,Ω. (15)

Notably, only pure partial derivatives appear on the right hand side. How-
ever, we conjecture that the dependence of the constant C on the global mesh
ratio % is merely due to technical limitations of the known proofs, and does
not indicate real problems when approximating with B-splines on grids with
a bad aspect ratio.
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Now, we consider approximation in the reduced space V (B∗
r ) on a C1,1-

domain Ω,

Λ∗
rf :=

∑

i∈I∗r

Λi(f)bi.

The additional error, introduced by skipping parts of the full basis, is bounded
by

‖(Λ − Λ∗
r)f‖

p
p,Ω ≤ C

∑

i∈I\I∗r

‖Λi(f)bi‖
p
p,Ω ≤ C |I\I∗r | max

i∈I\I∗r
‖bi‖

p
p,Ω, (16)

where the first estimate follows from the fact that at most nd B-splines cover
a given grid cell. The number of skipped B-splines is bounded by nd times
the number of grid cells intersecting the boundary. Hence, by smoothness
and compactness of the boundary of Ω,

|I\I∗r | ≤ Ch1−d. (17)

It remains to estimate the norm of a B-spline bi which does not satisfy (13).
In particular, using the notation of Theorem 3.5, we have

r1 − d

d− 1
Vϕ < U∗ ∗ (Gϕ − gϕ).

By Lipschitz-continuity of ∇ϕ and compactness of the boundary, the maxi-
mal difference of gradients on U ∗ ⊂ [0, h]n−1 is bounded by Gϕ − gϕ ≤ Ch.
Hence, Vϕ < Ch2, where the constant C depends now also on r. Assum-
ing without loss of generality that the axis-aligned isometry A according to
Definition 3.2 is the identity, we obtain the inclusion

Si ∩ Ω ⊂ [0, nh]d−1 × [0, Ch2]

for the support of bi. Hence,

‖bi‖
p
p,Ω ≤ Chd−1

∫ Ch2

0

(

bid(t)
)p
dt.

For τ = 0, the univariate Marsden identity (2) for the dth coordinate yields

ψid(0)bid(t) ≤
∑

j≥id

ψj(0)bj(t) = tn, t ≥ 0,
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because ψj(0) is non-negative for j ≥ id. Since the mesh-ratio % is assumed
to be positive, we have ψid(0) =

∏n
j=1

τid+j ≥ n!(%h)n and obtain bid(t) ≤
C (t/h)n. Hence,

‖bi‖
p
p,Ω ≤ C hd−1

∫ Ch2

0

(t/h)np dt ≤ C hnp+d+1.

Substituting this estimate and (17) into (16), we obtain

‖(Λ − Λ∗
r)f‖p,Ω ≤ Chn+2/p,

and finally

‖f − Λ∗
rf‖p,Ω ≤ Chn

(

h2/p−1 +
d
∑

k=1

‖∂n
k f‖p,Ω

)

,

where the constant C depends on n, p, r, %, and Ω. That is, the Lp-approxima-
tion order is optimal for p ≤ 2, and reduced at most by 1 for p > 2.

We note that, typically, the number of omitted B-splines is substantially
smaller than estimated here. For instance, if the boundary of Ω has a positive
Gaussian curvature everywhere, one can show that |I\I∗r | ≤ Ch2−d. This
leads to a similar error estimate as above, but with the term h2/p−1 being
replaced by h3/p−1.
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