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Abstract

In this work higher-order methods for integrating the three-dimensional incompressible
Navier-Stokes equations are proposed. The numerical solution is achieved by using linearly
implicit one-step methods up to third order in time coupled with up to third order stable
finite element discretizations in space. These orders of convergence are demonstrated by
comparing the numerical solution with exact Navier-Stokes solutions. Finally, we present
benchmark computations for flow around a cylinder.
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1 Introduction

Laminar incompressible flows play an important role in natural and industrial processes. For this
type of flows the governing equations are the well known Navier-Stokes equations. Let [0, T ]×Ω,
Ω ⊂ R3, be the computational domain, then the incompressible Navier-Stokes equations for
viscous flows are

∂tU + (U · ∇)U +∇P −∇ · (2ν S(U)) = f, in (0, T ]× Ω
∇ · U = 0, in (0, T ]× Ω

U = Ub, on (0, T ]× ∂Ω
U = U0, in {0} × Ω∫

Ω P dx = 0, in [0, T ]

(1)

where ν is the viscosity of the fluid, and U = (u, v, w)T , P , S = (∇U +∇UT )/2 represent the
velocity field, the pressure, and the stress tensor. The initial data U0 and boundary data Ub

have to be chosen such that system (1) describes a well posed problem.
Over the last years, there has been considerable development of numerical methods for solving

numerically this set of equations [1]. The challenge nowadays consists in combining accuracy of
the numerical solution and efficiency of the whole numerical algorithm.
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This report extends the numerical methods based on linearly implicit one-step methods cou-
pled with stabilized finite element discretizations in space presented in [6, 7] to three-dimensional
incompressible Navier-Stokes equations. All of these methods are implemented in the finite ele-
ment code KARDOS [5]. For this paper we will select two time integrators ROS2 and ROS3PL
already included in the above mentioned code. ROS2 is an L-stable Rosenbrock solver of order 2
which is second order consistent for any approximation of the Jacobian matrix, and ROS3PL is
an L-stable stiffly accurate Rosenbrock solver of order 3 which has no order reduction for PDEs
with complex boundary conditions. It improves ROS3P [9] which is only A-stable. For a compar-
ison of time-discretization and linearization approaches for the two-dimensional incompressible
Navier-Stokes equations we refer to [4].

The basic solution algorithm contained in the KARDOS code also serves as a good foundation
for developing new codes with other capabilities. For example, a scalar transport equation for the
density can be easily added to investigate buoyancy driven flows. Additionally, these approaches
can be improved using adaptive strategies based on a posteriori error estimates.

An outline of this paper is as follows. In Section 2 we recall the general discretization of
the incompressible Navier-Stokes equations (1) according to our setting. Section 3 contains
convergence studies and numerical results for a benchmark flow around a cylinder [11]. Finally,
conclusions are presented in Section 4.

2 Discretization of the equations

Firstly, system (1) is discretized in time employing linearly implicit one-step methods to achieve
higher-order temporal discretizations by working the Jacobian matrix directly into the integra-
tion formula [10, 2].

Let τn be a variable time step. Then an s-stage linearly implicit time integrator of Rosenbrock
type applied to (1) reads as follows:

Uni
γτn

+ (Un · ∇)Uni + (Uni · ∇)Un −∇ · (2νS(Uni)) +∇Pni

= f(ti)− (Ui · ∇)Ui +∇ · (2νS(Ui))−∇Pi

−∑i−1
j=1

cij

τn
Unj + τnγi∂tf(ti),

−∇ · Uni = ∇ · Ui,

(2)

with i = 1, ..., s and the internal values are given by

ti = tn + αiτn, Ui = Un +
i−1∑

j=1

aijUnj , Pi = Pn +
i−1∑

j=1

aijPnj .

The new solution (Un+1,Pn+1) at time tn+1 = tn + τn is computed by

Un+1 = Un +
s∑

j=1

mjUnj , Pn+1 = Pn +
s∑

j=1

mjPnj , (3)

where the coefficients aij , cij , γi, αi, and mj are chosen such that they satisfy certain consistency
conditions.
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To estimate the error in time we make use of an embedding strategy. By replacing the
coefficients mj in (3) with different coefficients m̂j , a new solution (Ûn+1, P̂n+1) of inferior
order, that is, order 1 for ROS2 and order 2 for ROS3PL. The difference

δn+1 := ||(Un+1, Pn+1)− (Ûn+1, P̂n+1)||,

can be used as a step size control. A new step size with respect to a desired user tolerance TOLt

is selected by

τn+1 = C
τn

τn−1

(
δn TOLt

δn+1 δn+1

)1/p

τn, (4)

where C represents a safety factor and is set to 0.95, and p denotes the order of the method
used. Further details are given in [6, 8].

We describe now the derivation of the discrete equations obtained by a finite element dis-
cretization. Let Th be an unstructured finite element mesh where the elements are tetrahedra,
and Sq

h be the associated finite dimensional space with q = 1, 2 consisting of all continuous
functions which are polynomials of order q on each tetrahedron T ∈ Th. In this way, the finite
element approximation Uh

ni ∈ Sq
h of the intermediate values Uni in (2) has to satisfy the following

equations
(

Uh
ni

γτn
, ϕ

)
+

(
(Uh

n · ∇)Uh
ni, ϕ

)
+

(
(Uh

ni · ∇)Uh
n , ϕ

)
+

(
∇P h

ni, ϕ
)
−

(
∇ ·

(
2νS(Uh

ni)
)

, ϕ
)

=
(
F h(ti, Uh

i , P h
i ), ϕ

)
,

−(∇ · Uh
ni, ϕ) = (∇ · Uh

i , ϕ), ∀ϕ ∈ Sq
h, i = 1, ..., s, (5)

where F h(ti, Uh
i , P h

i ) is the right hand side of the first equation in (2).
Equal-order finite element functions for all unknown components are used. However, in this

case the Babuska-Brezzi conditions is not satisfied, resulting in spurious pressure modes in the
discrete solution. A way to get a stable discretization is to relax the incompressibility constraint
in (5) as follows

−
(

δh∇ ·
(

Uh
ni

γτn
+ (Uh

n · ∇)Uh
ni + (Uh

ni · ∇)Uh
n −∇ ·

(
2νS(Uh

ni)
)

+∇P h
ni

)
, ϕ

)

−
(
∇ · Uh

ni, ϕ
)

=
(
∇ · Uh

i , ϕ
)
− (∇ · F h(ti, Uh

i , P h
i ), ϕ), ∀ϕ ∈ Sq

h, i = 1, ..., s,

with

δh = c
he

2|ue|
Ree√

1 + Re2
e

, Ree =
ρ0heue

ν
, c = 0.4,

where ue and he are a global reference velocity and the diameter of the n-dimensional ball which
is area-equivalent to an element T ∈ Th, respectively. Although, the incompressibility equation
looks now rather complicated, to the version in (5) just the divergence of the discrete equation
(2) times a local factor δh has been added.

For each unknown pair (Uh
ni, P

h
ni), i = 1, .., s, a linear system with one and the same stiffness

matrix has to be solved. Then, the new solution is updated using (3). ROS2 requires two internal
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Figure 1: Time errors for ROS2 and ROS3PL, where n corresponds to τ = 0.5 × 2−n.

stages for each time step, while ROS3PL requires four stages. Rosenbrock methods offer several
structural advantages. From an efficiency point of view, the most important advantage is that
no nonlinear systems have to be solved (which can be sometimes cumbersome). Moreover, there
is no problem to construct Rosenbrock methods with optimum linear stability properties and no
order reduction for stiff equations. Because of their one-step nature, they are easy to implement.

3 Numerical Results

In this section we first present convergence studies of our numerical methods using academic
three-dimensional test problems with known solutions. Two examples address the temporal and
spatial convergence properties of the proposed numerical methods. It will be shown that ROS2
and ROS3PL have second and third order accuracy in time, respectively. Next, convergence rates
for spatial discretizations are presented. The last example shows results for the benchmark flow
around a cylinder defined in [11].

3.1 An example to test the time discretization error

The first example allows us to check the order of the time discretization. On the integration
domain [0, T ]× Ω, T = 1, and Ω = (0, 1)3, we consider (1) with the exact solution

u = y2 exp(−t),
v = z2 exp(−t),
w = x2 exp(−t),
p = (x + y + z) exp(−t).

The right-hand side f , the initial condition U0 and the boundary condition Ub are chosen ac-
cordingly. The viscosity is set to 10−3. The simulations are performed with quadratic elements
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on a fixed uniform mesh with 70400 tetrahedra. In this way, for any time t the temporal error
will dominate the spatial error. The computations were done for fixed time steps τ = 0.5 × 2−n,
n = 0, 1, 2, 3.
We study the velocity and pressure errors in the norm L2(0, 1;L2(Ω)), i.e.,

||U − Uh||L2(0,1;L2(Ω)) =
(∫ 1

0
||(U − Uh)(t)||2L2(Ω)dt

)1/2

,

||P − P h||L2(0,1;L2(Ω)) =
(∫ 1

0
||(P − P h)(t)||2L2(Ω)dt

)1/2

.

Figure 1 presents convergence results for both velocity (left) and pressure (right) components.
ROS2 shows second order accuracy, while ROS3PL shows third order accuracy in all components.
The best velocity and pressure error in L2(0, 1;L2(Ω)) has been obtained by the ROS3PL scheme.
ROS2 induces for large time steps larger errors in both velocity and pressure components. For
long time computations ROS3PL is more efficient with respect to CPU time.

3.2 An example to test the spatial discretization error

The following exact three-dimensional test solution to the incompressible Navier-Stokes equa-
tions has been proposed in [13]:

u = sin(mx)cos(ly)cos(nz)exp(−tν),

v = −m + n

l
cos(mx)sin(ly)cos(nz)exp(−tν), (6)

w = cos(mx)cos(ly)sin(nz)exp(−tν),

where m, n, l define the wave numbers along all three directions. The pressure is determined
by assuming no force in the y- direction, that is,

p = −(m + n)ν
l2

cos(mx)cos(ly)cos(nz)exp(−tν)

+
m(m + n)

4l2
sin2(mx)cos(2ly)cos2(nz)exp(−2tν)

+
(m + n)2

4l2
cos2(mx)cos(2ly)cos2(nz)exp(−2tν)

+
m(m + n)

4l2
cos2(mx)cos(2ly)sin2(nz)exp(−2tν). (7)

The other forces are determined such that (6)-(7) form an exact solution to the Navier-Stokes
equations. For the sake of simplicity, the computational domain is the unit cube, and we set
m = n = l = 1, and viscosity ν = 1. To test the convergence error in space with linear elements
we apply the ROS2 time solver. The results for this combination are presented in Table 1.
As expected, this numerical scheme preserves second-order accuracy in space at the final time
T = 1.

The simulation was done with a fixed time step τ = 10−2. Indeed, time errors induced by
ROS2 were settled down. For the test with quadratic elements we have chosen ROS3PL time
solver. Table 2 shows results for this numerical scheme.
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Grid level L2-norm (OOC) Max-norm (OOC)
h = 1/4 u 3.38e-03 7.47e-03

v 5.78e-03 1.52e-02
w 2.78e-03 7.61e-03

h = 1/8 u 8.35e-04 (2.01) 2.05e-03 (1.86)
v 1.44e-03 (2.00) 4.06e-03 (1.90)
w 7.13e-04 (1.96) 1.99e-03 (1.93)

h = 1/16 u 2.06e-04 (2.01) 5.58e-04 (1.87)
v 3.57e-04 (2.01) 1.08e-03 (1.91)
w 1.78e-04 (1.99) 5.54e-04 (1.84)

Table 1. Error-norms and numerically observed order of convergence (OOC) for ROS2 with
linear elements at time T = 1.

Grid level L2-norm (OOC) Max-norm (OOC)
h = 1/4 u 5.85e-05 2.77e-04

v 1.22e-04 5.42e-04
w 6.28e-05 3.09e-04

h = 1/8 u 7.76e-06 (2.91) 3.96e-05 (2.80)
v 1.57e-05 (2.95) 7.95e-05 (2.76)
w 8.18e-06 (2.94) 4.18e-05 (2.88)

h = 1/16 u 1.01e-06 (2.94) 5.37e-06 (2.88)
v 2.04e-06 (2.94) 1.13e-05 (2.81)
w 1.07e-06 (2.93) 5.52e-06 (2.92)

Table 2. Error-norms and numerically observed order of convergence (OOC) for ROS3PL with
quadratic elements at T = 1.

The observed order of convergence in space is nearly three. Here the time step used was
τ = 10−1. In engineering computations it is very important to have robust solvers which allow
large time steps. In this sense ROS3PL behaves adequately and will be used in our further
turbulence research.

3.3 Flow around a cylinder

This benchmark problem has been defined within the DFG high priority research program ”Flow
simulation with high-performance computers”.

Figure 2 shows the considered computational domain where L = 2.25 m, H = 0.41 m, and
the diameter of the cylinder is D = 0.1 m. The purpose of this benchmark is to numerically
evaluate

- the drag force, i.e., CD =
∫
S

(
ρν ∂Ut

∂n ny − Pnx

)
dS

- the lift force, i.e., CL = − ∫
S

(
ρν ∂Ut

∂n nx + Pny

)
dS

- the pressure difference ∆P (t) = P (0.45, 0.20, 0.205)− P (0.55, 0.20, 0.205)
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Figure 2: The computational geometry.

where S, n = (nx, ny, 0)T , Ut, t = (ny,−nx, 0) represent the cylinder surface, the normal vector
on S, the tangential velocity on S, and the tangent vector respectively. Further, the viscosity of
the fluid is ν = 0.001 m2/s, and the density is ρ = 1 kg/m3. Then the drag and lift coefficients
are defined to be

cD =
2CD

ρu2DH
, cL =

2CL

ρu2DH
,

where u = 4u(0,H/2, H/2, t) represents the characteristic velocity. Next, for our computations
we take the following two benchmark cases from [11]:

- Case 1 (steady): The inflow boundary condition is

u(0, y, z) = 16umyz(H − y)(H − z)/H4, v = w = 0

with um = 0.45m/s. The corresponding Reynolds number is 20 based on um, D, and ν.

- Case 2 (unsteady): The inflow boundary condition is

u(0, y, z) = 16umyz(H − y)(H − z)sin(πt/8)/H4, v = w = 0

with um = 2.25m/s. The simulation time is 0 ≤ t ≤ 8 s. The corresponding Reynolds
number is 100 based on um, D, and ν.

A complete description of these cases can be found in [11].
The mesh used for these tests consists of 14148 points and is presented in Figure 3. Using less
grid points we were unable to obtain the drag and lift coefficient values even for the first test
case. The discretization near the cylinder has a crucial importance. Two boundary layers around
the cylinder have been used to ensure a proper resolution. The minimum grid spacing between
the cylinder and the first layer was set to 0.005, while the grid spacing between the second layer
and the cylinder was set to 0.01. Moreover, each cross-section of the cylinder in z- direction has
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Figure 3: The mesh used

been resolved with 32 points. We will restrict ourselves to linear elements. A comparison of the
drag and lift coefficients and pressure difference at steady state with benchmark results from
[11] and [3] is shown in Table 3. Both ROS2 and ROS3PL time schemes produce good results.

ROS2 ROS3PL Ref. [3] Benchmark [11]
cD 6.1199 6.1199 6.1853 6.0500 - 6.2500
cL 0.0195 0.0195 0.009400 0.0080 - 0.0100
∆p 0.1725 0.1725 0.1707 0.1650 - 0.1750

Table 3. Comparison of drag and lift coefficient and pressure difference for Case 1.

ROS2 ROS3PL Benchmark [11]
cD 3.1617 3.1558 3.2000 - 3.3000
cL 0.0120 0.0110 0.0020 - 0.0040
∆p -0.1191 -0.1183 -0.0900 - -0.1100

Table 4. Comparison of drag and lift coefficient and pressure difference for Case 2.

In Table 4 we present results for the second test case. Here, using less grid points as the authors
in [11] we obtain similar coefficients with small variations. For all these cases the simulation
was run with adaptive time steps according to equation (4). Although the drag coefficient is
relatively simple to obtain, the lift coefficient is very sensitive to the mesh near the cylinder.
For more accurate results one need to construct meshes with a better resolution of the cylinder
region.
The linear systems arising from every time-stage are solved with the BiCGStab algorithm [12]
with ILU as a preconditioner.

4 Conclusions

In this paper we have presented numerical methods based on linearly implicit time schemes
of Rosenbrock type and stabilized finite elements in space to numerically solve laminar flow
problems described through the three-dimensional incompressible Navier-Stokes equations. All
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these methods have been included in our adaptive finite element code KARDOS. The numerical
examples studied in Section 3 clearly reveal second and third order of accuracy in space and
time for our schemes. More specifically, applied to laminar flow problems with known smooth
solutions, ROS2 and ROS3PL show their theoretical time order two and three, respectively. In
these cases, ROS3PL performs more efficiently with respect to computing time. Our stabiliza-
tion technique in space allows us to use equal-order finite elements for velocity and pressure
components. We have found that combined with a Rosenbrock solver of suitable order, linear
and quadratic Lagrange elements yield second and third order of spatial accuracy measured
in the L2- and maximum norm. From further practical experiences, our approach appears to
provide a promising starting point for the development of efficient numerical solvers for more
complex, turbulent flows. In our future work we are extending our code KARDOS to study
and validate subgrid-scale models in the context of large eddy simulations for various physical
applications.
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