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Department of Mathematics, University of Technology Darmstadt
and

Warsaw University of Technology

March 19, 2007

Abstract

We propose a model of finite strain gradient plasticity including phenomenolog-
ical Prager type linear kinematical hardening and nonlocal kinematical hardening
due to dislocation interaction. Based on the multiplicative decomposition a ther-
modynamically admissible flow rule for Fp is described involving as plastic gradient
CurlFp. The formulation is covariant w.r.t. superposed rigid rotations of the refer-
ence, intermediate and spatial configuration but the model is not spin-free due to
the nonlocal dislocation interaction and cannot be reduced to a dependence on the
plastic metric Cp = F T

p Fp.
The linearization leads to a thermodynamically admissible model of infinites-

imal plasticity involving only the Curl of the non-symmetric plastic distortion p.
Linearized spatial and material covariance under constant infinitesimal rotations is
satisfied.

Uniqueness of strong solutions of the infinitesimal model is obtained if two non-
classical boundary conditions on the plastic distortion p are introduced: ṗ.τ = 0 on
the microscopically hard boundary ΓD ⊂ ∂Ω and [Curl p].τ = 0 on the microscop-
ically free boundary ∂Ω \ ΓD, where τ are the tangential vectors at the boundary
∂Ω. Moreover, we show that a weak reformulation of the infinitesimal model allows
for a global in-time solution of the corresponding rate-independent initial boundary
value problem. The method of choice are a formulation as a quasivariational inequal-
ity with symmetric and coercive bilinear form. Use is made of new Hilbert-space
suitable for dislocation density dependent plasticity.
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1 Introduction

This article addresses the modelling and mathematical analysis of a geometrically lin-
ear gradient plasticity model. There is an abundant literature on gradient plasticity
formulations, in most cases letting the yield-stress depend also on some higher deriva-
tive of a scalar measure of accumulated plastic distortion [36, 10, 13]. Experimentally,
the dependence of the yield stress on plastic gradients is well-documented [12]. Several
experimental facts testify to the length scale dependence of materials: the Hall-Petch
scaling1 relates the grain size in polycrystals to the yield stress: σy = σ0

y + k+
√

grainsize
.

The Taylor scaling relates the flow stress σy to the dislocation density: σy = σ0
y +

k+‖Curl Fp‖. It is also known that the thinner the grains, the stiffer the material gets. As
a rule one may say: the smaller the sample the stiffer it gets (while unbounded stiffness
can be excluded from atomistic calculations).

From a numerical point of view the incorporation of plastic gradients serves the purpose
of removing the mesh-sensitivity, either in the softening case, or, more difficult to observe
numerically, already in classical Prandtl-Reuss plasticity (shear bands and slip lines with
ill-defined band width).

The incorporation of a length scale, which is a natural by-product of gradient plasticity,
has the potential to remove the mesh sensitivity. The presence of the internal length
scale causes the localization zones to have finite width. It makes possible the analysis
of failure problems in which strain localization into shear bands occurs. However, the
actual length scale of a material is difficult to establish experimentally and theoretically
and remains basically an open question as is the determination of other additionally
appearing material constants. It is also not entirely clear, how the shear band width
depends on the characteristic length.

The finite strain model we propose is based on the multiplicative decomposition of
the deformation gradient and does not modify the yield stress directly but incorporates,
motivated by mechanism-based single crystal plasticity, the dislocation density into the
thermodynamic potential. The corresponding flow rule can be extracted in a non-standard
way, based on the development in Maugin [28]. Models, similar in spirit to our formu-
lation, may be found in [30, 25]. The necessary re-interpretation of the second law of
thermodynamics can be found, e.g., in [28, 27]. This development is based on ideas ini-
tially proposed in [37], cf. [49, 11]. In contrast to [30, 25] we evaluate the extended
dissipation principle in a more relaxed sense.

While gradient plasticity seems to be of high current interest [15, 18, 17] we have
not been able to locate any mathematical study of the time continuous higher gradient
plasticity problem, apart for Reddy [50] treating a geometrically linear model of Gurtin
[15], different from our proposel.2

Gurtin includes Fp in the free energy and takes free variations with respect to Fp,
leading to a model with additional balance equations for microforces, similar, e.g., to a
Cosserat or Toupin-Mindlin type model. In contrast, in our model Fp and thence Curl Fp

1There is also a reverse Hall-Petch scaling for very small grains in the nano-range.
2In Reddys analytical treatment of the corresponding infinitesimal model strong assumptions on the

presence of the full plastic gradient are introduced in the dependence of the yield stress on the plastic
gradients in order to show existence and uniqueness. His model features purely symmetric plastic strains.
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is treated as an inner variable included only in the thermodynamic potential, leading to
evolution equations for Fp of degenerate parabolic type.

In Mielke&Müller [34] the time-incremental finite-strain problem is investigated. It is
shown that once the update potential for one time step is established and known to be
properly coercive and polyconvex as a function of Fe in the multiplicative decomposition of
the deformation gradient, then, adding a regularizing term depending on Curl Fp is indeed
enough to show existence of minimizers in this update problem for the new deformation
and the new plastic variable.3 Adding a Curl Fp-related term to the time-incremental
problem has been suggested in [47] for the description of subgrain dislocation structures.
It seems therefore necessary to investigate the general structure of these class of gradient
plasticity models, mainly with respect to their regularizing power, also in conjunction
with large scale parallel implementations. Focussing therefore on localization limiters we
show well-posedness of a model which includes the dislocation energy density and local
linear Prager kinematic hardening. In the large scale (classical) limit the model turns into
classical Prandtl-Reuss plasticity with linear kinematic hardening.

As far as classical rate-independent elasto-plasticity is concerned we remark that global
existence for the displacement has been shown only in a very weak, measure-valued sense,
while the stresses could be shown to remain in L2(Ω). For this results we refer for example
to [3, 9, 52]. If hardening or viscosity is added, then global classical solution are found see
e.g. [1, 8, 7]. A complete theory for the classical rate-independent case remains elusive,
see also the remarks in [9]. It is therefore hoped, that including plastic gradients in the
formulation will regularize the problem and lead to a well-posed model. This is what we
will make rigourously.

Our contribution is organized as follows: first, we present a basic modelling of multi-
plicative gradient plasticity and show that the formulation is thermodynamically consis-
tent in an extended sense. We impose sufficient conditions for the insulation condition to
hold. No conditions inside the bulk between elastic and plastic parts are imposed. Then
we motivate full spatial, intermediate and referential covariance under constant rotations.
Thus our finite strain model is objective and isotropic w.r.t. both the reference configu-
ration and the intermediate configuration. Nevertheless, the model cannot be reduced to
depend on the plastic metric Cp = F T

p Fp only because of the presence of plastic gradients.
Subsequently, we repeat the derivation of the model in the geometrically linear context.

Strong solutions of the obtained model with general monotone, non-associative flow-rule
together with suitable boundary conditions on the non-symmetric infinitesimal plastic
distortion p can be shown to be unique. In the classical case with rate-independent flow
rule coming from the subdifferential of a convex domain in stress-space (Prandtl-Reuss)
we are able to reformulate the problem as a mixed variational inequality and to show
existence and uniqueness in a suitably defined non-standard Hilbert-space. The relevant
notation is found in the appendix.

3It is noteworthy that the update problem in [34] is a two-field minimization problem for (ϕ, Fp) in
the spirit of a micromorphic model [39] with a very special coupling between the different fields ϕ and
Fp. Polyconvexity in Fe alone is not sufficient to obtain existence by Ball’s method since Fe is not a
gradient, but the term CurlFp provides additional compactness in the spirit of Murat/Tartars method.
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2 Thermodynamics

2.1 Extended statement of the second law of thermodynamics

The following treatment is based on ideas apparently first proposed by I. Müller in 1967
[37] in an investigation of the form of the entropy inequality. Müller introduced an extra
entropy flux into the second law of thermodynamics (Clausius-Duhem inequality) which
only has to satisfy natural invariance conditions. Elaborating on these ideas, Maugin [28,
Eq.2.14] considered gradient dependent plasticity models within a general treatment of
thermodynamics with internal variables (T.I.V). There he introduced the idea of
this ”extra entropy flux” to account for the hardening/softening diffussion process.
This causes the Clausius-Duhem inequality to encompass an extra term restricted (only)
by the condition that the dissipation density takes a suitable bilinear format. A recent
account can be found in [27] which we adapt freely for our purpose.

Assume constant density % > 0 and constant temperature (Θ = const., isothermal
process) throughout. Let W be the Helmholtz free energy, depending on ∇ϕ and a set
of internal variables ζ. Then the classical non-localized statement of the second law of
thermodynamics reads: ∀V ⊆ Ω∫

V

〈S1(F (t), ζ(t)),∇ϕt〉 − %
d

dt
W (∇ϕ(t), ζ(t))︸ ︷︷ ︸

D

dV ≥ 0 ⇔ (2.1)

∫
V

d

dt
W (∇ϕ(t0), ζ(t))︸ ︷︷ ︸

≤0 reduced dissipation inequality

dV ≤ 0 at frozen t0 ∈ R ,

with D ≥ 0 the non-negative dissipation due to the evolution of the inner variables.
For sufficiently smooth integrands one obtains by localization the classical statement of
the local reduced dissipation inequality

∀x ∈ Ω ∀ t ∈ R :
d

dt
W (∇ϕ(x, t0), ζ(x, t)) ≤ 0 . (2.2)

Maugin [27] extends this classical definition to cover also models depending on gradients of
internal variables, i.e., models where also ∇xζ is involved. The extended nonlocal version
can be read as: ∀V ⊆ Ω∫
V
〈S1(F (t), ζ(t),∇ζ(t)),∇ϕt〉 − %

d

dt
W (∇ϕ(t), ζ(t),∇ζ(t)) + Div q(∇ϕ, ζ,∇ζ)︸ ︷︷ ︸
Dnloc

dV ≥ 0 ⇔

∫
V

d

dt
W (∇ϕ(t0), ζ(t),∇ζ(t))−Div q(∇ϕ, ζ,∇ζ) dV ≤ 0 at frozen t0 ∈ R , (2.3)

where the extra entropy flux q may be chosen suitably.4 Again, after localization
for smooth enough integrands, one is left with the extended reduced dissipation

4Maugin writes [p.99][27]: ”...used the trick to select k (the extra entropy flux) in such a form as to
eliminate any true divergence term in the dissipation inequality.

5



inequality ∀ x ∈ Ω ∀ t ∈ R:

d

dt
W (∇ϕ(x, t0), ζ(x, t),∇ζ(x, t))−Div q(∇ϕ(x, t), ζ(x, t),∇ζ(x, t)) ≤ 0 . (2.4)

A major advantage of the new condition (2.3) is its effciency in deriving evolution equa-
tions for the inner variables.

2.2 A priori energy inequality

The condition (2.4) does not make a statement as far as boundary conditions for the
internal variables ζ are concerned and indeed Maugin does not propose such conditions.
However, for materials which depend on gradients of internal variables this question needs
to be addressed. We propose as an additional condition the satisfaction of an energy
inequality over the bulk.5 We require that the rate of change of the free energy
is bounded by the power of external forces, i.e.,

d

dt

∫
Ω

W (∇ϕ(x, t), ζ(x, t),∇ζ(x, t)) dV ≤
∫

Ω

〈f(x, t), ϕt(x, t)〉 dV

+

∫
∂Ω

〈ϕt(x, t), S1(∇ϕ(x, t), ζ(x, t),∇ζ(x, t)).~n〉 dS . (2.6)

The condition (2.6) allows us to obtain the energy inequality∫
Ω

W (∇ϕ(x, t), ζ(x, t),∇ζ(x, t)) dV ≤
∫

Ω

W (∇ϕ(x, 0), ζ(x, 0),∇ζ(x, 0)) dV

+

∫ t

0

∫
Ω

〈f(x, t), ϕt(x, t)〉 dV dt

+

∫ t

0

∫
∂Ω

〈ϕt(x, t), S1(∇ϕ(x, t), ζ(x, t),∇ζ(x, t)).~n〉 dS dt . (2.7)

(The difference to equality in (2.7) is the time-integrated positive dissipation in Mielke
[32]) Since6

d

dt

∫
Ω

W (∇ϕ(x, t), ζ(x, t),∇ζ(x, t)) dV =

∫
Ω

〈f, ϕt〉 dV +

∫
∂Ω

〈ϕt, S1.~n〉 dS

+

∫
Ω

〈DζW −Div D∇ζW,
d

dt
ζ〉 dV +

∫
∂Ω

〈 d

dt
ζ, D∇ζW.~n〉 dS , (2.8)

inequality (2.7) will be satisfied if,∫
Ω

〈DζW −Div D∇ζW,
d

dt
ζ〉 dV +

∫
∂Ω

〈 d

dt
ζ, D∇ζW.~n〉 dS ≤ 0 . (2.9)

5This is the same as postulating the classical Clausius-Duhem inequality over the bulk, i.e.,∫
Ω

〈S1, Ft〉 − %
d
dt
W (F (x, t), ζ(x, t),∇ζ(x, t)) dV ≥ 0 , (2.5)

i.e., the global rate of change of internal energy is bounded by the power supplied by external forces.
6Use DivS1 = −f .
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This in turn is guaranteed if, e.g.,

d

dt
ζ = f

−[DζW −Div D∇ζW ]︸ ︷︷ ︸
Σ

 , 〈f(X), X〉 ≥ 0 , x ∈ Ω

D∇ζW.~n = 0 , x ∈ ∂Ω \ ΓD micro-free condition ,

ζ̇ = 0 , x ∈ ΓD micro-hard condition . (2.10)

Note that in the local model (absence of gradients) no possibility for boundary conditions
on ζ arises. Requiring simply∫

∂Ω

〈 d

dt
ζ, D∇ζW.~n〉 dS =

∫
Ω

Div

(
D∇ζW

T .
d

dt
ζ

)
dV = 0, insulation condition (2.11)

can be interpreted as energy insulation condition on the internal variable in the bulk to
the outer world which means that no nonlocal energy exchange across the external
boundary is possible. Note that (2.10) is stronger than the local insulation condition
contrary to (2.11) which itself is sufficient for (2.9) and thence (2.7). The choice between
the different boundary conditions which kill the appearing divergence term may be guided
by taking the weakest condition which still allows for uniqueness of classical solutions.
Such a motivation has been pursued in [18, 8.1]. The different boundary conditions leading
to the insulation condition can be subsumed, in the language of Gurtin, as microscopically
powerless boundary conditions. In [49], following [11], a much more restrictive set of
condition on the additional flux is required, needing boundary conditions also inside the
body Ω between plastified regions and elastic regions. The numerical implementation of
such conditions is cumbersome.

3 The finite strain gradient plasticity model

3.1 The multiplicative decomposition

It is appropriate to start with a geometrically exact development and to subsequently
linearize the kinematical relations in order to obtain our nonlinear gradient plasticity
model in the geometrically linear setting. Thus consider the well-known multiplicative
decomposition [21, 22, 24, 20] of the deformation gradient F = ∇ϕ into elastic and plastic
parts

F = Fe · Fp . (3.1)

Recall that while F = ∇ϕ is a gradient, neither Fe nor Fp need to be gradients themselves.
In this decomposition, usually adopted in single crystal plasticity, Fe represents elastic
lattice stretching and elastic lattice rotation while Fp represents local deformation
of the crystal due to plastic rearrangement by slip on glide planes. In the single
crystal case one usually assumes this split to be of the form

Fp : TxΩref 7→ TxΩref , Fe : TxΩref 7→ Tϕ(x)Ωact , F : TxΩref 7→ Tϕ(x)Ωact , (3.2)
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moreover, Fp is viewed as completely constitutively determined by the flow rule for slip
on preferred glide planes. In a more phenomenological, polycrystalline model such a
constitutive assumption is not mandatory. Here, we consider the split (3.1) rather as a
kinematical decomposition. See [4] for an altogether alternative axiomatic approach for
the definition of a plastic transformation for materials with isomorphic elastic ranges.

Remark 3.1 (Necessity for covariance requirements)
In all of the following the reader should bear in mind that we restrict our modelling
proposal to a fully isotropic setting. From an application oriented view this might seem
unrealistic. However, our point is that if anisotropies of whatever kind are to be included
they should appear explicitely through the appearance of additional structural tensors
reflecting the given symmetries of the material. If this is not done but the formulation is
not fully covariant then one introduces carelessly anisotropic behaviour which lacks any
real physical basis, cf. [26, p.220].

3.2 The plastic indifference of the elastic response

In all of the following we concentrate on the hyperelastic formulation of finite strain plas-
ticity, i.e., we are concerned with finding the appropriate energy storage terms governing
the elastic and plastic behaviour. In general, we assume that the total stored energy can
be expressed as

W (F, Fp, Curl Fp) = We(F, Fp)︸ ︷︷ ︸
elastic energy

+ Wph(Fp)︸ ︷︷ ︸
linear kinematical hardening

+ Wcurl(Fp, Curl Fp)︸ ︷︷ ︸
dislocation entangling

. (3.3)

Here, the local hardening potential Wph is a purely phenomenological energy storage
term formally consistent with a Prager type constant linear hardening behaviour. The
dislocation potential Wcurl instead is a microscopically motivated storage term due to
dislocation entangling which is the ultimate physical reason for any hardening behaviour.

A crucial requirement in finite strain plasticity is the plastic indifference7 condition
[32]. By this we mean that the elastic response of the material, governed by the elastic
strain energy part, is invariant w.r.t. arbitrary previous plastic deformation F 0

p . This
means that

∀ Fp ∈ GL+(3) : We(F, Fp) = We(FF 0
p , FpF

0
p ) . (3.4)

Using (3.4) it is easily seen, by specifying F 0
p = F−1

p , that

We(F, Fp) = We(FF−1
p , 11) = We(Fe) . (3.5)

Thus plastic indifference is a constitutive statement about the elastic response and not a
fundamental physical invariance law. Plastic indifference reduces the elastic dependence
of We on Fe alone. It is based on the experimental evidence that unloading and con-
secutive loading below the yield limit has the same elastic response as the initial virgin

7In [4] conceptually the same is expressed by postulating isomorphic elastic ranges.
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response.

Remaining in the context of finite strain plasticity, we propose, following Miehe [31] and
Bertam [4] a model based on evolution equations for Fp and not on a plastic metric
Cp. In order to adapt the micromechanically motivated multiplicative decomposition to a
phenomenological description, one usually includes an assumption on the plastic spin,
i.e. skew(Fp

d
dt

F−1
p ) = 0, a no-spin multiplicative plasticity model based on Fp results but

we will retain from imposing such a condition.
Many of the existing gradient plasticity theories do not involve plastic rotations either,

however, Gurtin/Anand [17] note: ”unless the plastic spin is (explicitly) constrained to
be zero, constitutive dependencies on the Burgers tensor necessarily involve dependencies
on the (infinitesimal) plastic rotation.”

Since rate-dependence of most metals at room temperature is very small, we limit
therefore our consideration to the rate-independent case.

3.3 Illustration of the kinematical multiplicative decomposition
based on the chain rule

For illustration purposes let us introduce symbolically the compatible reference con-
figuration Ωref , the fictitious compatible intermediate configuration Ωint and the
compatible deformed configuration Ωact together with mappings

Ψp : x ∈ Ωref ⊂ E3 7→ Ψp(Ωref) = Ωint ⊂ E3 , Ψe : η ∈ Ωint ⊂ E3 7→ Ωact ⊂ E3 ,

ϕ : x ∈ Ωref ⊂ E3 7→ Ωact ⊂ E3 ,

ϕ(x) = Ψe(Ψp(x)) , ∇xϕ(x) = ∇ηΨe(Ψp(x))∇xΨp(x) = Fe(x) Fp(x) . (3.6)

This means that we have simply realized the total deformation by two subsequent com-
patible deformations.

3.4 Referential isotropy of material response

Many polycrystalline materials, in particular many metals, can be considered, even after
plastically deforming (but before significant texture development occurs) to behave (at
least approximately) elastically isotropic. Restricting ourselves to such materials in this
work, we assume that the total stored energy W is isotropic with respect to the interme-
diate configuration, moreover, it will turn out that the Prager linear kinematic hardening
potential Wph must be an isotropic function of Cp = F T

p Fp. However, we need to clarify
in what sense a gradient plasticity model can be considered to be isotropic.

There is agreement in the literature as far as the meaning of elastic isotropy or isotropy
w.r.t. the intermediate configuration is concerned. In this case the elastically stored
energy function should be isotropic w.r.t. rotations of the intermediate configuration, i.e.,

We(Fe Q) = We(Fe) ∀ Q ∈ SO(3) . (3.7)
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Concerning the determination of the plastic distortion Fp, following Maugin [29, p. 110],
it should hold for referentially isotropic materials without plastic gradients, that, given
initial conditions

Fp(x, 0) versus Fp(x, 0) Q
T

, (3.8)

differing only by one constant proper rotation Q
T ∈ SO(3), that the respective solutions

of the model, at all later times t ∈ R are

Fp(x, t) versus Fp(x, t) Q
T

. (3.9)

Maugin [29, p. 110] calls this G-covariance. For full isotropy w.r.t. the reference config-
uration the material symmetry group is SO(3). We note that our ”plastic distortion rate”

Fp
d
dt

[F−1
p ] is form-invariant under Fp → Fp Q

T
. It remains then to show that our model

will satisfy a suitably extended version of (3.9), taking plastic gradients into account.

Let us refer to referential isotropy if the model is form invariant under (F, Fe, Fp) →
(FQ,Fe, FpQ) , i.e., if (F, Fe, Fp) is a solution, then (FQ, Fe, FpQ) is a solution to rotated
data. Since Fe is left unaltered we see that the referential isotropy condition does not
restrict the elastic response of the material but restricts our Prager hardening potential
to a functional dependence of the form

Wph(FpQ) = Wph(Fp) ∀ Q ∈ SO(3) ⇒ Wph(Fp) = Ŵsh(FpF
T
p ) . (3.10)

In order to motivate the restrictions of isotropy for the gradient plasticity model we have
to review the basic principles underlying the issue of isotropic response. Thus in classical
hyperelastic finite-strain elasticity isotropy is defined as the form-invariance of the free-
energy under a rigid rotation of the coordinate system. Consider the problem∫

Ω

W (∇ϕ(x)) dx 7→ min . ϕ , (3.11)

for ϕ : Ωref ⊂ R3 7→ R3. Consider a transformed coordinate system, the transformation
being given by a diffeomorphism

ζ : Ωref 7→ ζ(Ωref) = Ω∗ , ζ(x) = ξ . (3.12)

By the transformation formula for integrals the problem (3.11) can be transformed to this
new configuration. We define the same function ϕ expressed in new coordinates

ϕ∗(ζ(x)) := ϕ(x) ⇒ ∇ξϕ
∗(ζ(x))∇ζ(x) = ∇ϕ(x) (3.13)

and ∫
ξ∈Ω∗

W (∇ξϕ
∗(ξ)∇xζ(ζ−1(ξ))) det[∇xζ

−1]dξ 7→ min . ϕ∗ . (3.14)
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The transformed free energy W ∗ for functions defined on Ω∗ is, therefore, given as

W ∗(ξ,∇ξϕ
∗(ξ)) = W (∇ξϕ

∗(ξ)∇xζ(ζ−1(ξ))) det[∇xζ
−1] . (3.15)

In the case that the transformation is only a rigid rotation, i.e., ζ(x) = Q.x, the former
turns into

W ∗(∇ξϕ
∗(ξ)) = W (∇ξϕ

∗(ξ) Q) . (3.16)

Isotropy is form-invariance of W under such a transformation, thus

W ∗(X)
isotropy︷︸︸︷

= W (X) ⇒ ∀ Q ∈ SO(3) : W (XQ) = W (X) . (3.17)

In order to extent isotropy to the multiplicative decomposition, we make one prelimi-
nary assumption for illustration only: Fp is viewed formally as being a plastic gradient
∇Ψp with Ψp : Ωref ⊂ R3 7→ R3. Next, the transformation of Ψp to a rigidly rotated
configuration is obtained as

Ψ∗
p(Qx) := Ψp(x) ⇒ ∇x∗Ψ

∗
p(x∗) Q = ∇xΨp(x) . (3.18)

This motivates the transformation rule for Fp under a rigid transformation of
the reference configuration as

F ∗
p (x∗) = F ∗

p (Qx) = Fp(x) Q
T

. (3.19)

Using this definition we are in a position to subsequently extend the G-covariance con-
dition (3.9) also to include plastic gradients: for referential isotropy we postulate
the form-invariance of the energy storage terms under a rigid rotation of the
coordinates. From the transformation law, we have∫

ξ∈Ω∗
Wph(F ∗

p (ξ)Q) det[QT ]dξ , (3.20)

such that

W ∗
ph(F ∗

p (ξ)) := Wph(F ∗
p (ξ)Q) , (3.21)

and form-invariance demands that

W ∗
ph(X) = Wph(X) ⇒ ∀ Q ∈ SO(3) : Wph(XQ) = Wph(X) . (3.22)

Now we can apply the same consideration of form-invariance to the dislocation energy
storage. In this case, then, the transformed energy reads∫

ξ∈Ω∗
Wcurl(F

∗
p (ξ)Q, Curlx[F ∗

p (ξ)Q]) det[QT ]dξ , (3.23)

such that

W ∗
curl(F

∗
p (ξ), Curlξ[F

∗
p (ξ)]) := Wcurl(F

∗
p (ξ)Q, Curlx[F ∗

p (ξ)Q]) . (3.24)

11



From a lengthy calculation in indicial notation, it holds8

Curlx[F ∗
p (Qx) Q]) = [Curlξ F ∗

p (ξ)] Q , (3.25)

which leads to

W ∗
curl(F

∗
p (ξ), Curlξ[F

∗
p (ξ)]) := Wcurl(F

∗
p (ξ)Q, [Curlξ F ∗

p (ξ)] Q) . (3.26)

Form-invariance for the dislocation energy storage demands therefore that

W ∗
curl(X, Y ) = Wcurl(X, Y ) ⇒ Wcurl(XQ, Y Q]) = Wcurl(X, Y ) ∀ Q ∈ SO(3) (3.27)

which is satisfied for Wcurl(X, Y ) = ‖X−1Y ‖2. 9

3.5 Rigid rotation of the material and spatial coordinates

Let the reference configuration Ωref be rigidly rotated through one constant rotation
Q2 ∈ SO(3). We let Ω∗

ref = Q2 · Ωref together with the rotated coordinates x∗ = Q2.x.
Assume also that the spatial coordinate system is rigidly rotated by Q1. The deformation
w.r.t. the rotated coordinate systems is denoted by ϕ∗(x∗). It holds

ϕ∗(x∗) = Q1 ϕ(x) i.e. ⇔ ϕ∗(Q2.x) = Q1.ϕ(x) , ∀x ∈ Ωref , (3.28)

whether or not the material response is isotropic.10 From (3.28) we obtain from
the chain rule

∇x[ϕ∗(x∗)] = ∇x[Q1 ϕ(x)] ⇔ ∇x[ϕ∗(Q2.x)] = Q1∇xϕ(x) ⇔ ∇x∗ [ϕ
∗(x∗)] Q2 = Q1∇xϕ(x)

QT
1 ∇x∗ [ϕ

∗(x∗)] Q2 = ∇xϕ(x) . (3.29)

The rotated free energy is denoted by W ∗(F ∗) with F ∗ = ∇x∗ [ϕ(x∗)]. It must be defined
such that the ”rotated” minimization problem based on W ∗(F ∗) furnishes the
rotated solution and that the energy of the materially and spatially rotated solution is
equal to the energy of the unrotated solution. Thus

W ∗(F ∗) = W ∗(∇x∗ϕ
∗(x∗)) = W ∗(Q1∇ϕ(x)QT

2 ) := W (∇ϕ(x)) ⇒
W ∗(F ∗) = W (QT

1 F ∗Q2) . (3.30)

8The (1, 1)-component in the matrix from the left hand side of (3.25) is equal to

∂

∂x2
(F ∗

p )1k(Qx)Q
k

3 −
∂

∂x3
(F ∗

p )1k(Qx)Q
k

2 =
∂

∂ξl
(F ∗

p )1k(ξ)[Q
l

2Q
k

3 −Q
l

3Q
k

2 ] .

By orthogonality of the matrix Q we obtain that the (1, 1)-component is equal to

[
∂

∂ξ2
(F ∗

p )13(ξ)− ∂

∂ξ3
(F ∗

p )12(ξ)]Q
1

1 + [
∂

∂ξ3
(F ∗

p )11(ξ)− ∂

∂ξ1
(F ∗

p )13(ξ)]Q
1

2 + [
∂

∂ξ1
(F ∗

p )12(ξ)− ∂

∂ξ2
(F ∗

p )11(ξ)]Q
1

3,

which is the (1, 1)-component of the matix from the right hand side of (3.25). The proof for the other
components is similar.

9Also satisfied for ‖Y XT ‖2 leading to a dislocation energy storage of the form ‖[CurlFp(x)]FT
p (x)‖2,

cf. (3.42).
10For isotropy, the reference configuration (the referential coordinate system) is rotated but the spatial

system is not; nevertheless, if the material is isotropic, the resulting response is the same.
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This identity is used to define the rotated energy. If W happens to be objective
and isotropic, i.e., form-invariant w.r.t. left and right multiplication by (not
nesessarily equal) constant rotation matrices (material and spatial covariance),
then W (QT

1 XQ2) = W (X) and from (3.30) follows

W ∗(X) = W (X) . (3.31)

We now repeat the rigid rotations for each function appearing in (3.6) seperately, i.e., it
follows

Ψ∗
p(Qp

2.x) = Qp
3Ψp(x) ⇒ Qp,T

3 ∇x∗ [Ψ
∗
p(x∗)] Qp

2 = ∇xΨp(x) ,

Ψ∗
e(Qe

3.η) = Qe
1Ψe(η) ⇒ Qe,T

1 ∇η∗ [Ψ
∗
e(η∗)] Qe

3 = ∇ηΨe(η) ,

ϕ∗(Q2.x) = Q1ϕ(x) ⇒ QT
1 ∇x∗ [ϕ

∗(x∗)] Q2 = ∇xϕ(x) . (3.32)

By choosing Q1 = Qe
1, Q2 = Qp

2, Q3 = Qp
3 we observe that the composition of mappings

carries over

ϕ∗(x∗) = Q1 ϕ(x) = Q1 Ψe(Ψp(x)) = Q1 Ψe(Q
T
3 Ψ∗

p(x∗))

= Q1

[
QT

1 Ψ∗
e(Q3

[
QT

3 Ψ∗
p(x∗)

]
)
]

= Ψ∗
e(Ψ∗

p(x∗)) , (3.33)

which implies

∇x∗ϕ
∗(x∗) = ∇η∗Ψ

∗
e(Ψ∗

p(x∗))∇x∗Ψ
∗
p(x∗) , F ∗(x∗) = F ∗

e (η∗) F ∗
p (x∗) . (3.34)

This lets us identify

F ∗
e (η∗) = ∇η∗Ψ

∗
e(Ψ∗

p(x∗)) , F ∗
p (x∗) = ∇x∗Ψ

∗
p(x∗) . (3.35)

However,

Q1∇ϕ(x) QT
2 = Q1∇ηΨe(Ψp(x))∇xΨp(x) QT

2 = Q1∇ηΨe(Ψp(x)) QT
3 Q3∇xΨp(x) QT

2

Q1 F (x) QT
2 = Q1 Fe(x) QT

3

(
Q3 Fp(x) QT

2

)
= Q1 Fe(x) Fp(x) QT

3 , (3.36)

but F (x) = Fe(x) Fp(x) implies

Q1 F (x) QT
2︸ ︷︷ ︸

=F ∗(x∗)

= Q1 Fe(x)QT
3 Q3 Fp(x) QT

2 = Q1 Fe(x) QT
3︸ ︷︷ ︸

=:F ∗
e (η∗)

(Q3 Fp(x) QT
2 )︸ ︷︷ ︸

=F ∗
p (x∗)

, (3.37)

which shows, how the rotated elastic deformation gradient F ∗
e must be related to the

unrotated elastic deformation gradient Fe under rotations of the reference, intermediate
and spatial coordinates. In fact the former equation is used as a definition of F ∗

e in terms
of Fe under rotation of the intermediate and spatial configuration.

Hence it is shown that under a rigid rotation of the reference configuration and simul-
tanuous rotation of the ntermediate and spatial coordinates the following obtains

F ∗(x∗) = Q2 F (x) QT
1 , F ∗

e (η∗) = Q1 Fe(η) QT
3 ,

F ∗
p (x∗) = Q3 Fp(x) QT

1 = Q3 Fp(QT
2 x∗) QT

1 . (3.38)
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Since such changes of coordinates leave the composition of mappings invariant
we require that our model be form-invariant under these transformations. We
refer to this as full elasto-plastic transformation covariance requirement.11 Note
that the postulated transformation law (3.38) for the multiplicative decomposition is not
meant to read:

F (x) = Fe(x)Fp(x) ⇒ Q1(x)F (x)Q2(x)T = Q1(x)Fe(x)QT
3 (x)Q3(x)Fp(x)Q2(x)T ⇒

F (x) = Fe(x)QT
3 (x)Q3(x)Fp(x) = F ∗

e (x) F ∗
p (x) , (3.39)

for all non-constant rotations Q1,2,3(x) ∈ SO(3). Requiring (3.39) would reduce the the-
ory necessarily to a model based only on the plastic metric Cp(x) = F T

p (x)Fp(x). The
much more restrictive condition (3.39) is sometimes motivated by the observation that
the multiplicative split is locally unique only up to a local rotation Q3(x) ∈ SO(3), which,
viewed without compatibility requirements, is self-evident. It has already been observed
by Casey/Naghdi [5, (13)] that full local objectivity-requirements on the multiplicative
decomposition (allow non-constant matrices in (3.38)) reduces the model to an isotropic
formulation in C = F T F and Cp = F T

p Fp. Our development shows that this conclusion
is strictly constraint to the local theory without pastic strain gradients.

For a fully rotationally covariant model the covariant transformation behaviour of the
elastic energy (3.31) under (3.38) will be postutaled for all contributions seperately, i.e.,
forall constant Q1,2,3 ∈ SO(3) it must be satisfied

W ∗
e (X) := We(Q

T
1 XQ3) = We(X) ,

W ∗
ph(X) := Wph(QT

3 XQ2) = Wph(X) , (3.40)

W ∗
curl(X, Curlx∗ X) := Wcurl(Q

T
3 XQ2, Curlx[QT

3 XQ2])

= Wcurl(Q
T
3 XQ2, Q

T
3 [Curlξ X]Q2]) = Wcurl(X, Curlξ X) ,

Wcurl(Q
T
3 XQ2, Q

T
3 Y Q2]) = Wcurl(X, Y ) .

Thus We and Wph must be isotropic and objective functions of their arguments which is
easily met whenever the functional dependence can be reduced to isotropic functions of
Ce = F T

e Fe and Cp = F T
p Fp.

3.6 The finite strain thermodynamic potential

Henceforth we postulate the invariance of the plasticity model according to (3.38) and
(3.31). Let us start with writing down a modified Saint-Venant Kirchhoff12 isotropic
quadratic energy We in the elastic stretches F T

e Fe, augmented with local self-hardening

11It should be noted that in the case of the parametrization of shells with a planar reference configu-
ration, the compatible Fp introduces nothing else than a stress free reference configuration.

12For our purpose, the Saint-Venant energy is sufficient although it is not Legendre-Hadamard elliptic
at given Fp. The Saint-Venant Kirchhoff is certainly useful for small elastic strains and large displacement
as is the case in finite-plasticity.
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Wph and a contribution accounting for plastic gradients Wcurl

W (Fe, Fp, Curl Fp) = We(Fe) + Wph(Fp) + Wcurl(Fp, Curl Fp) , (3.41)

We(Fe) =
µ

4
‖ F T

e Fe

det[Fe]
2/3

− 11‖2 +
λ

4

(
(det[Fe]− 1)2 + (

1

det[Fe]
− 1)2

)
,

Wph(Fp) =
µ h+

4
‖

F T
p Fp

det[Fp]2/3
− 11‖2 , Wcurl(F

−1
p , Curl Fp) =

µ L2
c

2
‖F−1

p Curl Fp‖2 .

Note that here Fp is not needed to be volume preserving. Here, µ, λ are the classical
isotropic Lamé-parameters, h+ is the dimensionless hardening modulus, Lc is the inter-
nal plastic length. This energy is materially and spatially covariant and satisfies the
plastic indifference condition. The elastic energy We is additively decoupled into a vol-
umetric and isochoric contribution, it is objective and isotropic w.r.t. the intermediate
configuration. The term Wph accounts for phenomenological local plastic hard-
ening in the spirit of Prager constant linear hardening, cf.(4.13). It is fully covariant
and indifferent to plastic volume changes. The term Wcurl represents energy storage due
to dislocations. The argument GR = F−1

p Curl Fp is the referential version of the ten-
sor G = 1

det[Fp]
(Curl Fp)F T

p , called the geometric dislocation density tensor in the

intermediate configuration. G represents the incompatibility of the intermediate configu-
ration Fp relative to the associated surface elements. The tensor G has the virtue to be
form-invariant under compatible changes in the reference configuration [48, 15, 6, 51].
It transforms as G(QFp) = QG(Fp)QT for all rigid rotations Q. This tensor intro-
duces the influence of geometrically (kinematically) necessary dislocations (GND’s). In
Gurtins notation this is GT , and he refers to this tensor as the local Burgers ten-
sor in the lattice configuration measured per unit surface area in this configuration.
As such it corresponds ”conceptually” to an objective tensor in the ”actual” configura-
tion, like the finite strain Cauchy stress tensor σ, which satisfies as well the invariances
∀ Q ∈ SO(3) : σ(QF ) = Qσ(F )QT . Note that our corresponding referential measure GR

[15, Eq.(6.1)] is given by

GR = F−1
p Curl Fp , G =

1

det[Fp]
(Curl Fp)F T

p =
1

det[Fp]
Fp GR F T

p . (3.42)

The referential measure GR is easily seen to be invariant under a compatibel (homoge-
neous) change of the intermediate configuration, i.e.,

F (x) = Fe(x)Fp(x) = Fe(x)B
−1

BFp(x) = F̃e(x) F̃p(x) ,

GR(BFp(x)) = GR(Fp(x)) , ∀B ∈ GL+(3) , (3.43)

while the local plastic self-hardening would be invariant under Fp 7→ R+ SO(3) · Fp only.

3.7 Derivation of the finite strain evolution equations

Having postulated as thermodynamic potential (3.41) it remains to motivate the flow rule.
thermodynamic driving forces. Relevant in this respect are the thermodynamical driving
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forces acting on the internal variable Fp. Therefore. locally in a space point x ∈ Ω

d

dt
We(F (t0), F

−1
p (t)) = 〈DWe(FF−1

p ), F
d

dt
F−1

p 〉 = 〈DWe(Fe), FF−1
p Fp

d

dt
F−1

p 〉

= 〈F T
e DWe(Fe), Fp

d

dt
F−1

p 〉 = 〈Σe, Fp
d

dt
F−1

p 〉 ,

〈DWph(Fp),
d

dt
Fp〉 = 〈DWph(Fp), [

d

dt
Fp]F−1

p Fp〉 = 〈DWph(Fp)F T
p ,

d

dt
FpF

−1
p 〉

= 〈−DWph(Fp), Fp
d

dt
F−1

p 〉 = 〈Σsh, Fp
d

dt
F−1

p 〉 . (3.44)

For the nonlocal term, the product 〈A, B〉 includes also integration over the domain Ω and
we will use the self-adjointness of the Curl-operator provided the boundary conditions are
suitably chosen, i.e., at least the appropriate insulation condition13 does hold. Then

〈DWcurl(F
−1
p Curl Fp), F−1

p Curl
d

dt
Fp +

d

dt
F−1

p Curl Fp〉

= 〈Curl(F−T
p DWcurl(F

−1
p Curl Fp),

d

dt
Fp〉+ 〈DWcurl(F

−1
p Curl Fp)(Curl Fp)T ,

d

dt
F−1

p 〉

= 〈Curl(F−T
p DWcurl(F

−1
p Curl Fp)F T

p ,−Fp
d

dt
F−1

p 〉

+ 〈F−T
p DWcurl(F

−1
p Curl Fp)(Curl Fp)T , Fp

d

dt
F−1

p 〉 = 〈Σcurl, Fp
d

dt
F−1

p 〉 . (3.46)

Let us also define the elastic domain in stress-space E := {Σ ∈ M3×3 | ‖ dev Σ‖ ≤ σy },
with yield stress σy, corresponding indicator function

χ(Σ) =

{
0 ‖ dev Σ‖ ≤ σy

∞ else ,
(3.47)

13In the finite-strain case the insulation condition reads∫
Ω

〈F−T
p DWcurl(F−1

p CurlFp)︸ ︷︷ ︸
Σ̂

,Curl[
d
dt
Fp]〉dV

=
∫

Ω

〈Curl[F−T
p DWcurl(F−1

p CurlFp)],
d
dt
Fp〉dV +

∫
∂Ω

〈Σ̂× d
dt
Fp, ~N〉dS︸ ︷︷ ︸

insulation condition =0

, (3.45)

and can be satisfied, if, e.g., Fp(x, t).τ = Fp(x, 0).τ on x ∈ ΓD (implies d
dtFp.τ = 0 there) and CurlFp.τ =

0 on ∂Ω \ ΓD.
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and subdifferential in the sense of convex analysis 14

∂χ(Σ) =


0 ‖ dev Σ‖ < σy

R+
0

dev Σ
‖ dev Σ‖ ‖ dev Σ‖ = σy

∅ ‖ dev Σ‖ > σy .

(3.50)

Note that choosing dev Σ instead of dev sym Σ in (3.47) allows for plastic spin.
Putting together the associative flow rule the finite strain model in a classical formulation
reads: find

ϕ ∈ C1([0, T ]; C1(Ω, R3)) , Fp ∈ C1([0, T ]; C(Ω, SL(3)) ,

Curl Fp(t) ∈ L2(Ω, M3×3) , Σcurl(t) ∈ L2(Ω, M3×3) , (3.51)

such that

Div S1(Fe) = −f , S1(Fe) = DF [We(FF−1
p )] = DWe(Fe) · F−T

p ,

Fp
d

dt
[F−1

p ] ∈ −∂χ(Σ) , Σ = Σe + Σsh + Σcurl , (3.52)

Σe = F T
e DWe(Fe) , Σsh = −DWph(Fp) F T

p ,

Σcurl = F−T
p DWcurl(F

−1
p Curl Fp) (Curl Fp)T − Curl

(
F−T

p DWcurl(F
−1
p Curl Fp)

)
F T

p ,

ϕ(x, t) = gd(x, t) , Fp(x, t).τ = Fp(x, 0).τ , x ∈ ΓD ,

0 = [Curl Fp(x, t)].τ , x ∈ ∂Ω \ ΓD , Fp(x, 0) = F 0
p (x) .

Note that the local contributions are fully rotationally invariant (isotropic and
objective) with respect to the transformation

∀Q1,2,3 ∈ SO(3) : (F, Fe, Fp) 7→ (Q1(x)FQ2(x)T , Q1(x)FeQ(x)T
3 , Q3(x)FpQ2(x)T ) ,

(3.53)

and the nonlocal dislocation potential is still invariant with respect to the corresponding
rigid transformation

∀Q1,2,3 ∈ SO(3) : (F, Fe, Fp) 7→ (Q1FQ
T

2 , Q1FeQ
T

3 , Q3FpQ
T

2 ) . (3.54)

14The subdifferential for a convex function χ : M3×3 7→ R+
is defined as ∂χ(Σ) = ∅ for Σ : χ(Σ) = ∞

and otherwise through

ζ ∈ ∂χ(Σ) ⇔ ∀H ∈ M3×3 : χ(Σ +H) ≥χ(Σ) + 〈ζ,H〉 . (3.48)

Note that whenever Σ +H 6∈ E then χ(X +H) = ∞ and the last inequality generates no constraint on
ζ. Therefore we have the equivalent characterization

ζ ∈ ∂χ(Σ) ⇔ ∀H ∈ sl(3) : χ(Σ +H) ≥χ(Σ) + 〈ζ,H〉 . (3.49)
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Since We and Wph satisfy We(Q(x)Fe)Q(x)T ) = We(Fe) and Wph(Q(x)FpQ(x)T ) = Wph(Fp)
the following statements are automatically true:

Σe(Q(x)FeQ(x)T ) = Q(x)Σe(Fe)Q(x)T , Σe ∈ Sym(3) ,

Σsh(Q(x)FpQ(x)T ) = Q(x)Σsh(Fp)Q(x)T , Σsh ∈ Sym(3) ,

Σcurl(QFp Curl[QFp]) = QΣcurl(Fp, Curl Fp)Q
T

, Q = const. ,

Σcurl(Q
T
XQ, Q

T
Y Q]) = Q

T
Σcurl(X, Y )Q , Q = const. , (3.55)

In general, Σcurl is not symmetric, thus, the plastic inhomogeneity is responsible for
the plastic spin contribution in this covariant formulation. Since ∂χ is monotone, the
formulation is thermodynamically admissible. This remains true if we replace ∂χ with a
general flow function f : M3×3 7→ M3×3 which is only pre-monotone.

3.8 Reformulation of the finite strain problem

Using the Legendre-transformation of the flow potential one can equivalently rewrite the
flow rule

Fp
d

dt
[F−1

p ] ∈ −∂χ(Σ) ⇔ Σ ∈ ∂χ∗
(−Fp

d

dt
[F−1

p ]) ⇔

χ∗
(q)−χ∗

(−Fp
d

dt
[F−1

p ]) ≥ 〈Σ, q − [−Fp
d

dt
[F−1

p ]]〉 ∀ q ∈ sl(3) . (3.56)

Inserting the constitutive relation for Σ, integrating over the domain Ω and partial in-
tegration (using the conditions leading to the insulation condition (3.45)), shows that it
must hold∫

Ω

χ∗
(q(t, x))−χ∗

(−Fp
d

dt
[F−1

p ]) dV ≥
∫

Ω

〈Σe + Σsh + Σ1
dis, q + Fp

d

dt
[F−1

p ]〉

− 〈Σ2
dis, Curl[q + Fp

d

dt
[F−1

p ]Fp]〉 dV ∀ q ∈ L2(0, T ; Hcurl(Ω, sl(3))) ,

Σcurl = Σ1
dis − (Curl Σ2

dis)F
T
p , Σ1

dis = F−T
p DWcurl(F

−1
p Curl Fp) (Curl Fp)T ,

Σ2
dis =

(
F−T

p DWcurl(F
−1
p Curl Fp)

)
. (3.57)

Hence, solutions of (3.52) satisfy as well

0 =

∫
Ω

〈S1(Fe),∇ξ〉 − 〈f, ξ〉 dV ∀ ξ ∈ H1(Ω, R3) ,

S1(Fe) = DF [We(FF−1
p )] = DWe(Fe) · F−T

p ,

0 ≤
∫

Ω

χ∗
(q(t, x))−χ∗

(−Fp
d

dt
[F−1

p ])− 〈Σe + Σsh + Σ1
dis, q + Fp

d

dt
[F−1

p ]〉

+ 〈Σ2
dis, Curl[q + Fp

d

dt
[F−1

p ]Fp]〉 dV ∀ q ∈ L2(0, T ; Hcurl(Ω, sl(3))) ,

ϕ(x, t) = gd(x, t) , Fp(x, t).τ = Fp(x, 0).τ , x ∈ ΓD , Fp(x, 0) = F 0
p (x) .

Adding (4.1)1 and (4.1)2 yields a mixed variational inequality which is automatically
satisfied by solutions of (3.52).
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4 The geometrically linear gradient plasticity model

The corresponding linearized model can either be obtained by linearizing all quantitities,
e.g., replacing Σe 7→ Lin(Σe) = σ or, more elegantly by writing down the corresponding
quadratic potential in linearized quantities. Thus we expand F = 11 +∇u, Fp = 11 + p +
. . . , Fe = 11 + e + . . . and the multiplicative decomposition (3.1) turns into

11 +∇u = (11 + e + . . .)(11 + p + . . .)  ∇u ≈ e + p + . . . ,

F T
e Fe − 11 = 11 + 2 sym e + eT e− 11  2 sym e = 2 sym(∇u− p) . (4.1)

Hence one obtains to highest order the additive decomposition [21, 23] of the dis-
placement gradient ∇u = e + p, with sym e = sym(∇u − p) the infinitesimal elastic
lattice strain, skew e = skew(∇u− p) the infinitesimal elastic lattice rotation and
κe = ∇ axl(skew e) the infinitesimal elastic lattice curvature [30] and p the infinites-
imal plastic distortion. The quadratic energy which corresponds to (3.41) is given by

W (∇u, p, Curl p) = W lin
e (∇u− p) + Wph(p) + W lin

curl(Curl p) ,

W lin
e (∇u− p) = µ‖ sym(∇u− p)‖2 +

λ

2
tr [∇u− p]2 , (4.2)

W lin
ph (p) = µ h+‖ dev sym p‖2 , W lin

curl(Curl p) =
µ L2

c

2
‖Curl p‖2 .

The used free energy coincides with that in [30, p. 1783] apart for our local kinematical
hardening contribution. Note that the infinitesimal plastic distortion p : Ω ⊂ R3 7→
M3×3 need not be symmetric, but that only its symmetric part, the infinitesimal plas-
tic strain15 sym p, contributes to the local elastic energy expression. The infinitesimal
plastic rotation skew p does not locally contribute to the elastic energy neither con-
tributes to the local plastic self-hardening but appears in the nonlocal hardening. The
resulting elastic energy is invariant under infinitesimal rigid rotations ∇u 7→ ∇u + A,
A ∈ so(3) of the body. The invariance of the curvature contribution needs the homogene-
ity of the rotations.16

Provided that the infinitesimal plastic distortion p is known, (4.2) defines a linear
elasticity problem with pre-stress for the displacement u. It remains to provide an evo-
lution law for p which is consistent with thermodynamics. To this end we use a nonlocal

15The notation εp ∈ Sym(3) is strictly reserved to the purely local theory.
16Note that it is the frame-indifference w.r.t. Fe that leaves us finally with the infinitesimal elastic

lattice strain measure sym(∇u − p). If we would consider instead a purely macroscopic formulation
based on an evolving symmetric plastic metric Cp = FT

p Fp (Casey/Naghdi [38]) with corresponding
elastic strain measure E = C − Cp, then, upon linearization, we would arrive as well at sym(∇u − p)
but the model would feature only a symmetric plastic strain εp := sym p (Cp = FT

p Fp is invariant
w.r.t. Fp 7→ QFp and sym p is invariant w.r.t. p 7→ p + A for A ∈ so(3)). Including a higher plastic
gradient based on Cp would require the introduction of a compatibility measure for Cp of the form
R(Cp) = 0 ⇒ ∃ψp : Ω 7→ R3 : Cp = ∇ΨT

p∇Ψp. The corresponding operator R is a second order
differential operator. Linearizing the relations leads to inc(εp) = 0 ⇒ ∃ up : Ω 7→ R3 : εp = sym∇up

for some displacement up. Here, the operator inc is the second order compatibility measure of de Saint-
Venant [14, p.40] with the property inc(sym∇u) = 0 and Div inc = 0. Remaining in such a theory would
lead to a fourth order evolution equation for εp, which is numerically preventive. In fact inc = curl curl
represents six second order conditions on εp.
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(integral) version of the second law of thermodynamics.

For any ”nice” subdomain V ⊆ Ω consider for fixed t0 ∈ R
d

dt

∫
V

W (∇u(x, t0), p(x, t), Curl p(x, t)) dV =∫
V

2µ 〈sym(∇u− p),− d

dt
p〉+ λtr [sym(∇u− p)] tr

[
− d

dt
p

]
(4.3)

+ 2µ h+〈dev sym p, dev sym
d

dt
p〉+ µ L2

c〈Curl p, Curl
d

dt
p〉 dV

=

∫
V

2µ 〈sym(∇u− p),− d

dt
p〉+ λtr [sym(∇u− p)]〈11,− d

dt
p〉

− 2µ h+〈dev sym p,− d

dt
p〉+ µ L2

c〈Curl p, Curl
d

dt
p〉 dV

=

∫
V
〈2µ sym(∇u− p) + λtr [∇u− p]11− 2µ h+ dev sym p,− d

dt
p〉

+ µ L2
c〈Curl[Curl p],

d

dt
p〉+

3∑
i=1

Div µ L2
c

(
d

dt
pi × (curl p)i

)
︸ ︷︷ ︸
”extra entropy flux” q(pt,Curl p)

dV .

Choosing constitutively as extra entropy flux

qi = µ L2
c

(
d

dt
pi × (curl p)i

)
, i = 1, 2, 3 , (4.4)

shows that the extended form of the reduced dissipation inequality at constant tempera-
ture (2.4) may be evaluated as follows

0 ≥
∫

Ω

d

dt
W (∇u(x, t0), p(x, t), Curl p(x, t))−Div q(pt, Curl p) dV (4.5)

=

∫
Ω

〈2µ sym(∇u− p) + λtr [∇u− p]11− 2µh+ dev sym p,− d

dt
p〉

+ µ L2
c〈Curl[Curl p],

d

dt
p〉 dV

=

∫
Ω

〈2µ sym(∇u− p) + λtr [∇u− p]11− 2µ h+ dev sym p− µ L2
c Curl[Curl p]︸ ︷︷ ︸

=:Σ

,− d

dt
p〉 dV

=

∫
Ω

〈σ − 2µ h+ dev sym p− µ L2
c Curl[Curl p],− d

dt
p〉 dV ,

where Σ is the linearized Eshelby stress in disguise. Taking

d

dt
p = f(Σ) , (4.6)

where the function f : M3×3 7→ M3×3 with f(0) = 0 satisfies the monotonicity in zero
condition

〈f(Σ)− f(0), Σ− 0〉 = 〈f(Σ), Σ〉 ≥ 0 , (4.7)
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ensures the correct sign in (4.5) (positive dissipation) and the evolution (4.6) is thermo-
dynamically admissible. In the large scale limit Lc = 0 this is just the class of pre-
monotone type defined by Alber [1]. Note that the driving term Σ has the dimension
of stress. Note also that Div(pt × Curl p) = 0 for purely elastic processes pt ≡ 0.

The remaining divergence term which has to be evaluated in order for (2.9) to hold is
given by the linearized insulation condition∫

Ω

3∑
i=1

Div(
d

dt
pi × (curl p)i) dV =

∫
∂Ω

3∑
i=1

〈 d

dt
pi × (curl p)i), ~n〉 dS = 0 . (4.8)

The last condition is satisfied, e.g., if in each point of the boundary ∂Ω it holds

0 = 〈 d

dt
pi × (curl p)i), ~n〉 , x ∈ ∂Ω , i = 1, 2, 3 , (4.9)

which may be satisfied by postulating17

p(x, t).τ = p(x, 0).τ , x ∈ ΓD (⇒ d

dt
p(x, t).τ = 0) ,

Curl p(x, t).τ = 0 , x ∈ ∂Ω \ ΓD . (4.10)

For the case of associated plasticity, as in the finite strain setting, let us choose f(Σ) =
∂χ(Σ), where χ : M3×3, is the indicator function of the elastic domain which is
also the Legendre-transformation of the dissipation potential.

Following Gurtin and Anand [17] on gradient plasticity: ”Our goal is a theory that allows
for constitutive dependencies on (the dislocation density tensor) G, but that otherwise
does not depart drastically from the classical theory.” Therefore, our guiding principles
for the development of gradient plasticity are

• The large scale limit Lc → 0 with zero local hardening h+ = 0 should coincide
with the classical Prandtl-Reuss model with deviatoric von Mises flow rule.

• The large scale limit Lc → 0 should determine the plastic distortion to be irro-
tational, i.e., only εp := sym p appears (zero plastic spin).

• The model for Lc > 0 should be well-posed. Existence and uniqueness should be
obtained in suitable Hilbert-spaces.

• The model for Lc > 0 should contain maximally second order derivatives in
the evolution law.

• The model for Lc > 0 should be linearized materially and spatially covariant
and thermodynamically consistent (in the extended sense).

17It is not immediately obvious how a boundary condition on p at ΓD can be posed. In Gurtin [18,
2.17] it is shown that the microscopically hard condition ṗ.τ |ΓD

= 0 has a precise physical meaning:
there is no flow of the Burgers vector across the boundary ΓD.
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• The model for Lc > 0 should be isotropic with respect to both, the referential
and intermediate configuration.

• The model for Lc > 0 should contain first order boundary conditions on p only
at the hard Dirichlet boundary ΓD ⊂ ∂Ω for the deformation.

• The model for Lc > 0 may contain second order boundary conditions on p like
Curl p.τ = 0 at the total external boundary ∂Ω or ṗ.τ = 0, motivated, perhaps from
thermodynamics and insulation conditions.

• A long-term goal is to show well-posedness without local hardening, i.e., h+ → 0.

4.1 The strong formulation of geometrically linear gradient plas-
ticity

The infinitesimal strain gradient plasticity model reads: find

u ∈ H1([0, T ]; H1
0 (Ω, ΓD, R3)) , sym p ∈ H1([0, T ]; L2(Ω, sl(3)) ,

Curl p(t) ∈ L2(Ω, M3×3) , Curl Curl p(t) ∈ L2(Ω, M3×3) , (4.11)

such that

Div σ = −f , σ = 2µ sym(∇u− p) + λ tr [∇u− p] 11 ,

ṗ ∈ ∂χ(Σlin) , Σlin = Σlin
e + Σlin

sh + Σlin
curl ,

Σlin
e = 2µ sym(∇u− p) + λ tr [∇u− p]11 = σ , (4.12)

Σlin
sh = −2µ h+ dev sym p , Σlin

curl = −µ L2
c Curl(Curl p) ,

u(x, t) = ud(x) , p(x, t).τ = p(x, 0).τ , x ∈ ΓD ,

0 = [Curl p(x, t)].τ , x ∈ ∂Ω \ ΓD , p(x, 0) = p0(x) .

If p0 ∈ Sym(3), then Σlin
curl = −µ L2

c inc(εp), i.e., the plastic strain incompatibility drives
the nonlocal hardening; moreover Σlin

curl is symmetric provided p0 is symmetric, contrary
to the finite strain case. The mathematically suitable space for symmetric p is the classi-
cal space Hcurl(Ω) := {v ∈ L2(Ω) , Curl v ∈ L2(Ω)}.

If, on the contrary, p0(x) 6∈ Sym(3), then the linearized model will also have a non-zero
plastic spin. It is, therefore, the initial condition on the plastic variable p which determines
whether our model is spin-free or not. These statements can be compared to [16] where
a small-deformation isotropic gradient plasticity model is proposed with the feature that
in the absence of dislocations (Curl p = 0) no plastic spin occurs. The same behaviour is
obtained in our model.

Note that in the large scale limit Lc → 0 we recover a classical elasto-plasticity model
with local kinematic hardening. Observe that the term µ L2

c Curl(Curl p) acts as nonlocal
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kinematical backstress and constitutes a crystallographically motivated alternative to
merely phenomenologically motivated backstress tensors. The term −2µ h+ dev sym p is
a symmetric local kinematical backstress. The model is therefore able to represent
linear kinematic hardening18 and Bauschinger-like phenomena. Moreover, the driving
stress Σ is non-symmetric due to the presence of the second order gradients, while the
local contribution σ, due to elastic lattice strains, remains symmetric.

Observe that the infinitesimal local contributions are fully rotationally invariant (iso-
tropic and objective) with respect to the transformation (∇u, p) 7→ (∇u+A(x), p+A(x))
and the nonlocal dislocation potential is still invariant with respect to the infinitesimal
rigid transformation (∇u, p) 7→ (∇u + A, p + A).

5 Mathematical results

5.1 Uniqueness of strong solutions

Assume that strong solutions to the model (4.12) exist. Let us show that these solutions
are already unique. The aim of this paragraph is to study the influence of the different
boundary conditions on the possible uniqueness. In that way it is aimed at identifying the
weakest boundary condition which suffices for uniqueness. Possible boundary conditions
are

pure micro-free : Curl p.τ = 0 , x ∈ ∂Ω ,

micro-hard/free :

{
Curl p.τ = 0 , x ∈ ∂Ω \ ΓD micro-free

ṗ.τ = 0 , x ∈ ΓD micro-hard

pure micro-hard : ṗ.τ = 0 , x ∈ ∂Ω ,

pure insulation condition :

∫
∂Ω

3∑
i=1

〈ṗi × (curl p)i, ~n〉 dS = 0 . (5.1)

We note that the pure insulation condition is not additively stable, i.e., the differ-
ence of two solutions p1− p2 which satisfy each individually the insulation condition need
not satisfy the insulation condition. Thus the pure insulation condition is not a good
candidate for establishing uniqueness.19

18Purely phenomenological Prager linear kinematic hardening is usually written as the system

ε̇p ∈ ∂χ(σ − b) , ḃ = 2µh+ε̇p , (4.13)

with b the symmetric backstresss tensor and h+ > 0 the constant hardening modulus. Assuming b(x, 0) =
2µh+εp(x, 0) and integration yields the format given in (4.12).

19For Gurtin [17] the insulation condition is motivated by imposing boundary conditions that result in
a ”null expenditure of microscopic power” and he immediately strengthens this statement to mean that
the integrand in the insulation condition vanishes which is satisfied if, e.g.,

ṗ.τ = 0 , x ∈ ΓD microscopically hard ,
Curl p.τ = 0 , x ∈ ∂Ω \ ΓD microscopically free . (5.2)
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Here we follow closely the uniqueness proof given in [1, p.32], using the a priori energy
estimate and the monotonicity for the difference of two solutions. We allow in this part
the generality of a monotone flow function f instead of ∂χ. Assume that two strong
solutions (u1, p2) and (u2, p2) exist (satisfying the same boundary and initial conditions).
Insert the difference of the solutions into the total energy and consider the time derivative

d

dt

∫
Ω

W (∇(u1 − u2), p1 − p2, Curl(p1 − p2) dV

=

∫
Ω

〈DW lin
e (∇(u1 − u2), p1 − p2),∇u̇1 −∇u̇2〉 − 〈DW lin

e (∇(u1 − u2), p1 − p2), ṗ1 − ṗ2〉

〈DW lin
ph (p1 − p2), ṗ1 − ṗ2〉+ 〈DW lin

curl(Curl(p1 − p2)), Curl
d

dt
(p1 − p2)〉 dV

=

∫
Ω

〈σ(∇(u1 − u2), p1 − p2),∇u̇1 −∇u̇2〉 − 〈σ(∇(u1 − u2), p1 − p2), ṗ1 − ṗ2〉

+ 〈2µ h+ dev sym(p1 − p2), ṗ1 − ṗ2〉+ 〈µ L2
c Curl(p1 − p2)), Curl

d

dt
(p1 − p2)〉 dV

= −
∫

Ω

〈Div σ(∇(u1 − u2), p1 − p2), u̇1 − u̇2〉 dV +

∫
∂Ω

〈σ(∇(u1 − u2), p1 − p2).~n, (u1 − u2)t〉 dS

− 〈σ(∇(u1 − u2), p1 − p2), ṗ1 − ṗ2〉+

∫
Ω

〈2µ h+ dev sym(p1 − p2), ṗ1 − ṗ2〉

+ 〈µ L2
c Curl(p1 − p2)), Curl

d

dt
(p1 − p2)〉 dV

= −0 + 0 +

∫
Ω

〈2µ h+ dev sym(p1 − p2), ṗ1 − ṗ2〉 − 〈σ(∇(u1 − u2), p1 − p2),∇ṗ1 −∇ṗ2〉

+ 〈µ L2
c Curl Curl(p1 − p2)),

d

dt
(p1 − p2)〉 dV

=

∫
Ω

〈Σlin
2 − Σlin

1 , ṗ1 − ṗ2〉 dV = −
∫

Ω

〈Σlin
2 − Σlin

1 , ṗ1 − ṗ2〉 dV ≤ 0 . (5.3)

Hence, also for the difference of two solutions,∫
Ω

W (∇(u1 − u2)(t)), (p1 − p2)(t), Curl(p1 − p2)(t)) dV

≤
∫

Ω

W (∇(u1 − u2)(0)), (p1 − p2)(0), Curl(p1 − p2)(0)) dV = 0 . (5.4)

Thus we have∫
Ω

‖ sym(∇(u1 − u2)(t)− (p1 − p2)(t)‖2 dV = 0 ,

∫
Ω

‖ dev sym(p1 − p2)(t)‖2 dV = 0 ,∫
Ω

‖Curl(p1 − p2)(t)‖2 dV = 0 . (5.5)

Since p1, p2 ∈ sl(3) it follows that sym(p1 − p2) = 0 almost everywhere, i.e., p1 − p2 ∈
so(3). Moreover, from the micro-hard boundary condition ṗ1.τ = ṗ2.τ = 0 we obtain
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p1(x, t).τ = p2(x, t).τ = p(x, 0).τ which implies that (p1 − p2).τ = 0 on ΓD. But then
p1 − p2 = 0 on ΓD due to the skew-symmetry of the difference. However Curl controls
all first partial derivatives on skew-symmetric matrices [45], therefore p1 − p2 = 0. Thus
from Korn’s first inequality we obtain uniqueness also for u. As a result: apart for the
pure insulation condition all mentioned boundary conditions in (5.1) (and (5.2) ensure
uniqueness of classical solutions exept for the pure micro-free condition, in which case
the skew-symmetric part of the difference of two solutions remains indetermined up to a
constant skew-symmetric matrix. �

5.2 Reformulation of the problem

The meaning of the flow rule is, recalling the definition of the subdifferential (3.48),

ṗ ∈ ∂χ(Σlin) ⇔ χ(Σ̃) ≥ χ(Σlin) + 〈ṗ, Σ̃− Σlin〉 ∀ Σ̃ ∈ E . (5.6)

The Legendre transformation of χ is given, as is well known, by

R(ξ) = χ∗
(ξ) =

{
σy ‖ξ‖ ξ ∈ sl(3)

∞ ξ 6∈ sl(3) ,
(5.7)

where R is also called the dissipation potential (notation: j in [19]). Here, for rate-
independent processes, R is convex and homogeneous of grade one. It holds that

sign(ξ) = ∂R(ξ)

= ∂χ∗
(ξ) = [∂χ]−1(ξ) =


σy

ξ
‖ξ‖ ξ 6= 0 , ξ ∈ sl(3)

{ζ | ‖ dev ζ‖ ≤ σy} ξ = 0

∅ ξ 6∈ sl(3) ,

(5.8)

and for a ”gauge” g : X 7→ R , g(x) ≥ 0, g(0) = 0 with g convex and homogeneous of
degree one it holds [19, p.77]: ξ ∈ ∂g(x) ⇔ x ∈ ∂g∗(ξ). Hence, the flow rule can be
formulated equivalently by writing (note that Σlin is not necessarily deviatoric)

ṗ ∈ ∂χ(Σlin) ⇔ Σlin ∈ [∂χ]−1(ṗ) ⇔ Σlin ∈ ∂R(ṗ) ⇔

R(q̃) ≥ R(ṗ) + 〈Σlin, q̃ − ṗ〉 ∀ q̃ ∈ L2([0, T ], sl(3)) . (5.9)

Integrating the former in space we note that∫
Ω

R(q̃) dV ≥
∫

Ω

R(ṗ) + 〈Σlin, q̃ − ṗ〉 dV (5.10)

is good defined forall q̃ − ṗ ∈ L2(0, T ; L1(Ω, sl(3)) (p as a solution is already smoother),
since we have that

〈Σlin, q̃ − ṗ〉 = 〈dev Σlin, q̃ − ṗ〉 ≤ σy ‖q̃ − ṗ‖ , (5.11)
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from the flow rule. From (5.9)2 it is easy to still recover the pointwise constraint on the
deviatoric stresses. Since q̃, ṗ ∈ sl(3) it holds

〈dev Σlin, q̃ − ṗ〉 = 〈Σlin, q̃ − ṗ〉 ≤ R(q̃)−R(ṗ) ≤ ‖R(q̃)−R(ṗ)‖ ≤ σy ‖q̃ − ṗ‖ . (5.12)

Choosing q̃ ∈ sl(3) such that q̃ − ṗ = dev Σlin shows ‖ dev Σlin‖ ≤ σy. We have included
this reverse calculation because this pointwise stress bound will be lost in our following
weak reformulation due to the Curl-terms. This shows that the relation between the
strong and weak formulation deserves detailed attention.

5.3 Strenghtening of the boundary conditions for the plastic
distortion

In order for us to be able to show existence and uniqueness of a subsequent weak for-
mulation we need to strengthen the boundary and initial conditions. More precisely, we
assume p(x, 0).τ = 0 , x ∈ ΓD and, moreover, for all t ∈ (0, T )

sym p(x, t).τ = 0 , x ∈ ΓD ,

skew p(x, t).τ = 0 , x ∈ ΓD ⇒ skew p(x, t) = 0 ,

[Curl sym p(x, t)].τ = 0 [Curl skew p(x, t)].τ = 0 , x ∈ ∂Ω . (5.13)

Remark 5.1 (Boundary conditions on the plastic distortion)
The boundary conditions imposed by the insulation condition in the geometrically exact
case are not necessarily the same as those imposed by the need to show uniqueness in
the geometrically linear setting. We could as well dispose of the condition Fp(x, t).τ =
Fp(x, 0).τ for x ∈ ΓD and assume then Curl Fp.τ = 0 on ∂Ω. In this case, linearized
uniqueness will be lost.

As an example consider the case of elastic energy minimization for Q ∈ SO(3) with
energy

∫
Ω
‖DxQ‖2 +‖DxQ‖4 dV together with natural boundary conditions. Since ‖Q‖4 =

9 for exact rotations we obtain boundedness of minimizing sequences Qk ∈ W 1,4(Ω, SO(3))
and establish the existence of a minimizer Q ∈ C(Ω, SO(3)), without Dirichlet boundary
conditions on Q! Now consider the geometrical linearization Q = 11 + A + . . . , A ∈ so(3).
The linearized energy contribution reads

∫
Ω
‖DxA‖2 dV. Consider minimizing sequences

Ak. But Ak ∈ so(3) can still be unbounded-only if we prescribe Dirichlet boundary
conditions somewhere on ∂Ω can we conclude the boundedness of minimizing sequences
and the existence of minimizers. We observe that the linearized model does need Dirichlet-
boundary conditions in order to obtain existence where the nonlinear model does not.

5.4 The weak formulation of the problem

Let us re-formulate problem (4.12) with (5.10) in a weak sense. We set V = H1
0 (Ω, ΓD, R3),

the space of displacements with incorporated Dirichlet boundary conditions at ΓD ⊂ ∂Ω.
Assume that solutions (u, p) to (4.12) exist with the regularity assumed in (4.11) so that
all terms in (4.12) concerning the plastic variable p have a meaning in the strong sense,
notably Curl p.τ can be defined.
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Multiply the first equation in (4.12) with test functions (v−u̇) ∈ L2([0, T ], H1
0 (Ω, ΓD, R3)),

integrate in space and use the boundary condition (v − u̇)|ΓD
= 0 and the traction free

condition on ∂Ω \ ΓD in the sense of traces to obtain

0 =

∫
Ω

〈σ(x, t),∇v −∇u̇〉 − 〈f(x, t), v − u̇〉 dV ∀ v − u̇ ∈ L2([0, T ], V ) ,

σ = 2µ sym(∇u− p) + λ tr [∇u− p] 11 . (5.14)

Take (5.10) with

q̃ = q ∈ H := H1([0, T ]; C∞(Ω; sl(3), p|ΓD
.τ = 0)) , (5.15)

to obtain

0 ≤
∫

Ω

R(q)−R(ṗ)− 〈Σlin, q − ṗ〉 dV ∀ q ∈ H , (5.16)

insert the constitutive relation (4.12)2 for Σlin and perform the (possible) partial integra-
tion on the Curl Curl-term using the boundary conditions of (4.12) for p, i.e., Curl p.τ = 0
on ∂Ω \ ΓD and p.τ = 0 on ΓD (for this step the satisfaction of the insulation condition
suffices) to get20

0 ≤
∫

Ω

R(q)−R(ṗ)− 〈σ − 2µ h+ dev sym p, q − ṗ〉 ,

+ µ L2
c 〈Curl p, Curl[q − ṗ]〉 dV ∀ q ∈ H . (5.17)

Adding (5.14) and (5.17) we obtain the variational inequality: for almost all t ∈ (0, T )∫
Ω

〈f(x, t), v − u̇〉 dV ≤
∫

Ω

〈σ(x, t),∇v −∇u̇〉 dV

+

∫
Ω

R(q)−R(ṗ)− 〈σ − 2µ h+ dev sym p, q − ṗ〉 (5.18)

+ µ L2
c〈Curl p, Curl[q − ṗ]〉 dV ∀ (v, q) ∈ H1([0, T ]; V )× H .

On the space Z := H1([0, T ]; V ) × H we may define a bilinear form a : Z × Z 7→ R for
w = (u1, p1), z = (u2, p2)

a(w, z) =

∫
Ω

2µ 〈sym(∇u1 − p1), sym(∇u2 − p2)〉+ λ tr [∇u1 − p1] tr [∇u2 − p2]

+ 2µ h+ 〈dev sym p1, dev sym p2〉+ µ L2
c 〈Curl p1, Curl p2〉 dV

=

∫
Ω

2µ 〈sym(∇u1 − p1), sym∇u2〉+ λ tr [∇u1 − p1] tr [∇u2]− 〈σ, p2〉

+ 2µ h+ 〈dev sym p1, dev sym p2〉+ µ L2
c 〈Curl p1, Curl p2〉 dV . (5.19)

Let us also abbreviate j(p) :=
∫

Ω
R(p) dV =

∫
Ω
χ∗

(p) dV. Thus any strong solution
(u, p) of (4.12) having the regularity (4.11) will satisfy the preliminary weak primal
problem of our gradient-plasticity formulation, defined now.

20It seems to be impossible to infer from (5.17) a pointwise bound on dev Σlin, see Lemma 5.6. This is
the prize to be paid to work with the weak formulation.
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Definition 5.2 (weak primal problem of gradient plasticity I)
We call

w(t) = (u(t), p(t)) ∈H1([0, T ]; H1
0 (Ω, ΓD, R3)) (5.20)

×H1([0, T ]; {sym p ∈ L2(Ω, sl(3)) , Curl p ∈ L2(Ω) , p|ΓD
.τ = 0}) ,

weak solution of the infinitesimal gradient plasticity model (4.12), if for almost all t ∈
(0, T ) it holds∫

Ω

〈f(x, t), v − u̇〉 dV ≤ a

((
u
p

)
,

(
v − u̇
q − ṗ

))
+ j(q)− j(ṗ) ∀ (v, q) ∈ Z . �

The approach towards defining weak solutions taken in Definition 5.2 seems to be nat-
ural at first sight. However, while the set {C∞(Ω; sl(3), p|ΓD

.τ = 0} can be closed to

a Hilbert-space under the norm ‖p‖2
curl,sym := ‖ sym p‖2

L2(Ω) + ‖Curl p‖2
L2(Ω), the ensuing

Hilbert space might not be continuously embedded in L2(Ω) and the continuous definition
of traces giving p|ΓD

.τ = 0 a precise meaning seems impossible.21

Therefore we propose to modify the weak formulation by incorporating the stronger
boundary conditions in the formal derivation of the weak problem. Going back to
inequality (5.18) we analyze the dislocations-density dependent term in more detail, in-
voking now the stronger boundary conditions (5.13) for p. Abbreviate momentarily
ζ = q− ṗ, let the smooth testfunction q satisfy sym q.τ = skew q.τ = 0 on ΓD and consider∫

Ω

〈Curl p, Curl ζ〉 dV =

∫
Ω

〈Curl[sym p + skew p], Curl[sym ζ + skew ζ]〉 dV (5.21)

=

∫
Ω

〈Curl sym p, Curl sym ζ〉+ 〈Curl skew p, Curl skew ζ〉

+ 〈Curl sym p, Curl skew ζ〉+ 〈Curl skew p, Curl sym ζ〉 dV .

Since p satisfies the boundary conditions (5.13) and ζ satisfies sym ζ.τ = skew ζ.τ = 0 on
ΓD it follows that the two mixed sym / skew-terms vanish seperately, cf. (5.40). Thus we
may define accordingly a modified bilinear form a] : Z × Z 7→ R for w = (u1, p1), z =
(u2, p2)

a](w, z) =

∫
Ω

2µ 〈sym(∇u1 − p1), sym(∇u2 − p2)〉+ λ tr [∇u1 − p1] tr [∇u2 − p2]

+ 2µ h+ 〈dev sym p1, dev sym p2〉 (5.22)

+ µ L2
c (〈Curl sym p1, Curl sym p2〉+ 〈Curl skew p1, Curl skew p2〉) dV .

Any strong solution (u, p) of (4.12) having the regularity (4.11) and satisfying in addition
the stronger boundary conditions (5.13) will satisfy the modified weak primal problem
of our gradient-plasticity formulation:

21Since p is not symmetric, this is not the space Hcurl which would allow to specify tangential traces
for p.
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Definition 5.3 (weak primal problem of gradient plasticity II)
We call

w(t) = (u(t), p(t)) ∈ H1([0, T ]; H1
0 (Ω, ΓD, R3))×H1([0, T ];H]) ,

sym p.τ = skew p.τ = 0 on ΓD , (5.23)

weak solution of the infinitesimal gradient plasticity model (4.12), if for almost all t ∈
(0, T ) it holds∫

Ω

〈f(x, t), v − u̇〉 dV ≤ a]

((
u
p

)
,

(
v − u̇
q − ṗ

))
+ j(q)− j(ṗ) ∀ (v, q) ∈ Z ,

where the Hilbert-space H] is defined in section (5.5). �

Let us now see in what respect solutions in the sense of Definition 5.2 (for simplicity only)
are related to the original strong formulation and what other type of relations they satisfy.

Corollary 5.4
Assume that a smooth solution (u, p) in the sense of Definition 5.2 satisfies additionally
the insulation condition∫

Ω

3∑
i=1

Div(
d

dt
pi × (curl p)i) dV =

∫
∂Ω

3∑
i=1

〈 d

dt
pi × (curl p)i), ~n〉 dS ≡ 0 . (5.24)

Then (u, p) is a strong solution of (4.12) in the interior of the domain. If the boundary
conditions of (4.12) are satisfied then this solution is a strong solution up to the boundary.

Proof. Obvious. �

Corollary 5.5
Assume that (u, p) satisfy Definition 5.2. Then the weak form of balance of forces and
the global energy inequality are sastisfied.

Proof. Assume that w = (u, p) is a solution of Definition 5.2. Test the variational in-
equality Definition 5.2 with both (v, q) = (ξ + u̇, p) and (v, q) = (−ξ + u̇, p). This shows∫

Ω

〈f(x, t), ξ〉 dV ≤ a(w, (ξ, 0)) ,

∫
Ω

〈f(x, t),−ξ〉 dV ≤ a(w, (−ξ, 0)) . (5.25)

Hence from bilinearity, forall ξ ∈ H1([0, T ]; V )∫
Ω

〈f(x, t), ξ〉 dV = a(w, (ξ, 0)) (5.26)

=

∫
Ω

2µ〈sym(∇u− p), sym(∇ξ)〉+ λtr [∇u− p] tr [∇ξ] dV =

∫
Ω

〈σ,∇ξ〉 dV ,

i.e., the weak form of balance of forces.
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Assume again that w = (u, p) is a solution of Definition 5.2 and test the variational
inequality Definition 5.2 with both (v, q) = (ξ + u̇, ṗ) and (v, q) = (ξ + u̇,−ṗ). This shows∫

Ω

〈f(x, t), ξ〉 dV ≤ a(w, (ξ, 0)) , no new information∫
Ω

〈f(x, t), ξ〉 dV ≤ a(w, (ξ,−2ṗ)) . (5.27)

Hence we obtain∫
Ω

〈f(x, t), ξ〉 dV ≤ a(w, (ξ, ṗ))

=

∫
Ω

2µ 〈sym(∇u− p), sym∇ξ〉+ λ tr [∇u− p] tr [∇ξ]− 〈σ, ṗ〉

+ 2µ h+ 〈dev sym p, dev sym ṗ〉+ µ L2
c 〈Curl p, Curl ṗ〉 dV (5.28)

and further ∫
Ω

〈f(x, t), ξ〉 dV ≤ a(w, (ξ,−2ṗ))

=

∫
Ω

2µ 〈sym(∇u− p), sym∇ξ〉+ λ tr [∇u− p] tr [∇ξ] + 2〈σ, ṗ〉

− 4µ h+ 〈dev sym p, dev sym ṗ〉 − 2µ L2
c 〈Curl p, Curl ṗ〉 dV (5.29)

which shows, using balance of forces

0 ≤
∫

Ω

〈σ, ṗ〉 − 2µ h+ 〈dev sym p, dev sym ṗ〉 − µ L2
c 〈Curl p, Curl ṗ〉 dV

0 ≥
∫

Ω

〈σ,−ṗ〉+ 2µ h+ 〈dev sym p, dev sym ṗ〉+ µ L2
c 〈Curl p, Curl ṗ〉 dV ⇒

0 ≥
∫

Ω

d

dt
W (∇u(x, t0), p(t), Curl p(t)) dV . (5.30)

Thus we get the global a priori energy inequality back although we might not be able to
speak about boundary values for Curl p.τ = 0. �
The next statement is included in order to understand better the difference between
smooth weak and strong solutions of Definition 5.2.

Lemma 5.6
Assume that (u, p) is a smooth weak solution in the sense of Definition 5.2. Then for all
q ∈ C∞(Ω, sl(3)), q|ΓD

.τ = 0 it holds∫
Ω

R(2ṗ)−R(q) dV ≤
∫

Ω

〈σ − 2µ h+ dev sym p, q − ṗ〉+ µ L2
c〈Curl Curl p, q − ṗ〉 dV

+

∫
∂Ω\ΓD

〈Curl p× (q − ṗ), N〉 dS ≤
∫

Ω

R(2ṗ− q) dV . (5.31)
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Proof. Since balance of forces is satisfied for a solution (u, p) of Definition 5.2 we have
from (5.18) that

0 ≤
∫

Ω

R(q)−R(ṗ)− 〈σ − 2µ h+ dev sym p, q − ṗ〉+ µ L2
c〈Curl p, Curl[q − ṗ]〉 dV (5.32)

for all q ∈ C∞(Ω, sl(3)). Since p is smooth and p.τ = q.τ = 0 on ΓD we may integrate
partially to obtain

0 ≤
∫

Ω

R(q)−R(ṗ)− 〈σ − 2µ h+ dev sym p, q − ṗ〉+ µ L2
c〈Curl Curl p, q − ṗ〉 dV

+

∫
∂Ω\ΓD

〈Curl p× (q − ṗ), N〉 dS . (5.33)

Now we test with q = q1 and q = q2 = 2ṗ − q1 such that q1 − ṗ = −(q2 − ṗ). Thus we
obtain∫

Ω

R(ṗ)−R(q1) dV ≤
∫

Ω

〈σ − 2µ h+ dev sym p, q − ṗ〉+ µ L2
c〈Curl Curl p, q − ṗ〉 dV

+

∫
∂Ω\ΓD

〈Curl p× (q − ṗ), N〉 dS ≤
∫

Ω

R(2ṗ− q1)−R(ṗ) dV .

Rearranging and using the one-homogeneity of R yields∫
Ω

R(2ṗ)−R(q1) dV ≤
∫

Ω

〈σ − 2µ h+ dev sym p, q − ṗ〉+ µ L2
c〈Curl Curl p, q − ṗ〉 dV

+

∫
∂Ω\ΓD

〈Curl p× (q − ṗ), N〉 dS ≤
∫

Ω

R(2ṗ− q1) dV . �

Remark 5.7
It is not obvious how to strengthen the statement in Lemma 5.6 by judiciously choosing the
boundary values of the test-functions in order to conclude that a smooth weak solution p
will assume the boundary conditions Curl p.τ = 0 on ∂Ω\ΓD required for a strong solution.
This is usually done (following the method connecting smooth weak and strong solutions
of the Neumann-problem for the Laplace-operator) by showing that the second derivatives
in the bulk must vanish which allows one to conclude that the boundary term must also
vanish and that, necessarily, the smooth weak solution satisfies the Neumann condition
strongly. The same recipe would work here, provided that the R-related dissipation terms
where absent.

Remark 5.8
Altogether, the weak solution satisfies the a priori energy inequality which was one of the
motivations for the insulation condition. At this moment, no statement can be made,
whether the insulation condition does hold for the weak solution found (if we pose ṗ = 0
on ∂Ω then it does hold trivially, and this condition is possible to formulate within the
weak framework).

If Definition 5.2 admits a unique solution then it satisfies automatically the global
energy inequality. For such a solution it is, however, not possible to speak of boundary
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conditions giving Curl p.τ = 0 any meaning. In this respect we may speculate that the
solution of Definition 5.2 is an ”interior approximation” of the original problem. This gap
between solutions of Definition 5.2 and solutions of the original problem (4.12) usually does
not occur in classical plasticity with linear kinematical hardening but without gradient
dependence. Thus we see that the gradient-plasticity model differentiates profoundly
between the local and the nonlocal different formulations.

Open problem: does a smooth solution in the sense of Definition 5.2 necessarily satisfy
the insulation condition?

5.5 Existence of weak solutions

In the following we denote the linear functional of applied loads by ` and abbreviate `(w) =∫
Ω
〈f(x, t), w〉 dV. In order to prove the existence of weak solutions in the sharpened sense

of Definition 5.3, we use the following abstract result for variational inequalities.

Theorem 5.9 (Existence and uniqueness for variational inequality)
Let H(Ω) be a Hilbert space and let W be a closed convex subset of the Hilbert space
Z = H1([0, T ]; H(Ω)) and consider the problem of finding w ∈ W such that

∀ z ∈ W : a(w, z − ẇ) + j(z)− j(ẇ)− `(z − ẇ) ≥ 0 . (5.34)

Assume that the following hold:

1. the bilinear form a(·, ·) is symmetric, continuous on Z, and coercive on W , i.e.,

a(w, z) ≤ C+ ‖w‖W ‖z‖W ∀w, z ∈ Z ,

a(z, z) ≥ C+ ‖z‖2
W ∀ z ∈ W . (5.35)

2. the linear form of external loads ` is bounded, i.e., ‖`(z)‖ ≤ C+ ‖z‖W .

3. the functional j is non-negative, convex, positively homogeneous of grade one and
Lipschitz-continuous, i.e.,

∀ s ∈ R : j(sw) = |s| j(w) , |j(z)− j(w)| ≤ L ‖z − w‖W . (5.36)

Then the problem (5.34) has a unique solution w(t) ∈ W .

Proof. The proof is given in Theorem 7.3 in [19, p.166] by a time-discretization of the
variational inequality and passage to the limit using the coercivity of the bilinear form
and the very special properties of j. It is complementing ideas given in [35]. �

Remark 5.10
The method of proof cannot easily be extended to evolution problems with non-associative

f instead of associative ∂χ. Mielkes inventive new energetic formulation [33] of the rate-
independent finite-strain case can be seen as a generalization of this method.
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To show that the bilinear form a] satisfies the assumptions of this theorem, we need to
introduce a new Hilbert-space H], which we define and investigate first. To this end define
the sets

X 0
] := {p ∈ C∞(Ω, M3×3) | skew p(x).τ = 0 , x ∈ ΓD , Curl sym p.τ = 0 , x ∈ ∂Ω \ ΓD} ,

X] := {p ∈ C∞(Ω, M3×3) | skew p(x).τ = 0 , x ∈ ΓD } , (5.37)

where ∂Ω is assumed to have C1-boundary. Clearly X 0
] ⊂ X]. On X 0

] we have the
orthogonality relation (this boundary condition suffices! and partial integration)

‖Curl p‖2
L2(Ω) = ‖Curl sym p‖2

L2(Ω) + ‖Curl skew p‖2
L2(Ω) . (5.38)

To see this we compute for ζ ∈ X 0
]

‖Curl(sym ζ + skew ζ)‖2 = ‖Curl sym ζ‖2 + 2〈Curl sym ζ, Curl skew ζ〉
+ ‖Curl skew ζ‖2 . (5.39)

For the middle term we obtain∫
Ω

〈Curl sym ζ, Curl skew ζ〉 dV =

∫
Ω

〈Curl Curl sym ζ, skew ζ〉 dV

+

∫
∂Ω\ΓD

〈Curl sym ζ × skew ζ, ~N〉 dS +

∫
ΓD

〈Curl sym ζ × skew ζ, ~N〉 dS

=

∫
Ω

〈Curl Curl sym ζ︸ ︷︷ ︸
∈Sym(3) [14, p.12]

, skew ζ〉 dV = 0 . (5.40)

Thus we may define a quadratic form

‖p‖2
] := ‖ sym p‖2

L2(Ω) + ‖Curl sym p‖2
L2(Ω) + ‖Curl skew p‖2

L2(Ω)

= ‖ sym p‖2
L2(Ω) + ‖Curl p‖2

L2(Ω) = ‖p‖2
curl,sym on X 0

] . (5.41)

Let us show that this defines a norm on X].

Lemma 5.11
‖p‖] is a norm on X].

Proof. Positivity, homogeneity and the triangle inequality are clear. We need only to
show that

p ∈ X], ‖p‖] = 0 ⇒ p ≡ 0 . (5.42)

Since p is smooth we have

‖p‖] = 0 ⇒ ‖ sym p‖L2(Ω) = 0, and ‖Curl p‖L2(Ω) = 0 ,

⇒ sym p(x) = 0 ⇒ p(x) = A(x) ∈ so(3) , Curl p(x) = Curl A(x) = 0 . (5.43)
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However, Curl is isomorphic to ∇ on C∞(Ω, so(3)) [45], thus the former implies that
A(x) = const.. Moreover

[skew p(x)].τ1(x) = [skew p(x)].τ2(x) = 0 ⇒ A.τ1 = A.τ2 = 0 ⇒ rank(A) ≤ 1 . (5.44)

Since a skew-symmetric matrix A in R3 has either rank two or rank zero (in which case
it is zero) we conclude that A ≡ 0. Thus p = A = 0. �

Corollary 5.12
‖p‖curl,sym is also a norm on X]. �

Finally, we take the completion of the encompassing space X] with respect to the norm
‖ · ‖] and define

H] := X]
‖·‖]

, (5.45)

making H] into a Hilbert-space. Thus we have shown that H](Ω, M3×3) is a Hilbert-space
with scalar product

〈p1, p2〉] =

∫
Ω

〈sym p1, sym p2〉+ 〈Curl sym p1, Curl sym p2〉

+ 〈Curl skew p1, Curl skew p2〉 dV . (5.46)

The space H] is continuously embedded in L2(Ω, M3×3).

Lemma 5.13 (Continuous embedding of H] in L2(Ω))
The space H] is continuously embedded in L2(Ω, M3×3), i.e.,

∃C+ : ∀ ζ ∈ H] ‖ζ‖L2(Ω) ≤ C+ ‖ζ‖] . (5.47)

Proof. We show the inequality for functions in X] and pass then to the limit by density.
Decomposing ζ = sym ζ + skew ζ and using that (pointwise and integrated)

‖ζ‖2 = ‖ sym ζ‖2 + ‖ skew ζ‖2 ⇒ ‖ζ‖2
L2(Ω) ≤ ‖ζ‖2

] + ‖ skew ζ‖2
L2(Ω) , (5.48)

it remains to bound ‖ skew ζ‖2
L2(Ω) in terms of ‖ζ‖2

] . However,

‖ skew ζ‖2
L2(Ω) ≤ ‖ skew ζ‖2

H1(Ω) ≤ C+‖∇ skew ζ‖L2(Ω)

≤ C+ ‖Curl skew ζ‖2
L2(Ω) ≤ C+ ‖ζ‖2

] , (5.49)

where we have used in the first line Poincare’s-inequality for functions ζ ∈ X] that satisfy
automatically skew ζ|ΓD

= 0 and in the second line that Curl bounds ∇ (pointwise) on
so(3). �

Lemma 5.14
The linear space H1(Ω, M3×3) ∩ {skew p(x) = 0 , x ∈ ΓD} (boundary term in the sense of
traces) is contained in H].
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Proof. Note first that C∞(Ω, M3×3) ∩ {skew p(x) = 0 , x ∈ ΓD} ⊂ X] and that

∀ p ∈ X] : ‖p‖] ≤ C+ ‖p‖H1(Ω) . (5.50)

Choose φ ∈ H1(Ω, M3×3) ∩ {skew p(x) = 0 , x ∈ ΓD}. Then there is a sequence φn ∈
C∞(Ω, M3×3) ∩ {skew p(x) = 0 , x ∈ ΓD} such that φn → φ strongly in H1. Since

‖φ− φn‖] ≤ ‖φ− φn‖H1(Ω) , (5.51)

this implies ‖φ− φn‖] → 0. Hence φ is contained in the closure of X] w.r.t. to the norm
‖ · ‖]. �

Remark 5.15
The new space H] is not compactly embedded in L2(Ω, M3×3). To see this consider a
sequence pk = ∇uk, bounded in H]. Because of the gradient structure Curl pk ≡ 0 but
pk = ∇uk need not converge.

Lemma 5.16 (H] and boundary values)
The space H] admits continous traces in the sense that for tangential vectors τ the
following terms can be defined on ∂Ω

sym p(x, t).τ ∈ L2(∂Ω) , skew p(x, t).τ ∈ L2(∂Ω) . (5.52)

Proof. Since sym p ∈ L2(Ω) and Curl sym p ∈ L2(Ω) the tangential trace sym p.τ can
be defined. Similarly, for skew p ∈ L2(Ω) and Curl skew p ∈ L2(Ω) the tangential trace
skew p.τ can be defined. �
Therefore, in this space, the boundary condition p.τ = 0 on ΓD is well defined in the sense
of traces. Moreover, we have the characterization

H] = {sym p ∈ Hcurl(Ω), skew p ∈ H1
0 (Ω, ΓD, so(3)) } . (5.53)

Having presented our Hilbert-space we are now ready to announce our final result.

Theorem 5.17 (Existence and uniqueness of weak solutions)
The mixed variational inequality (5.3) together with the strengthend boundary condition
(5.13) has a unique weak solution in Z = H1(0, T ; H(Ω)) with

H(Ω) := H1
0 (Ω, ΓD, R3)×H] . (5.54)

Proof. In order to apply the abstract framework Theorem 5.34, we define the closed,
convex subset of the Hilbert-space H]

K = {p ∈ H] , tr [p] = 0 , sym p(x, t).τ = 0 , skew p(x, t).τ = 0 , x ∈ ΓD} ,

and define

H(Ω) := H1
0 (Ω, ΓD, R3)×H] , W := H1

0 (Ω, ΓD, R3)×K , Z := H1([0, T ]; H(Ω)) .
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It is easy to see that the bilinear form a], defined in (5.19) is symmetric and continuous
on Z. Moreover, for z = (u, p) ∈ W we have

a](z, z) =

∫
Ω

2µ 〈sym(∇u− p), sym(∇u− p)〉+ λ tr [∇u− p] tr [∇u− p]

+ 2µ h+ 〈dev sym p, dev sym p〉
+ µ L2

c (〈Curl sym p, Curl sym p〉+ 〈Curl skew p, Curl skew p〉) dV

≥
∫

Ω

2µ ‖ sym(∇u− p)‖2 + 2µ h+ ‖ dev sym p‖2

+ µ L2
c

(
‖Curl sym p‖2 + ‖Curl skew p‖2

)
dV

=

∫
Ω

2µ
(
‖ sym∇u‖2 − 2〈sym∇u, sym p〉+ ‖ sym p‖2

)
+ 2µ h+ ‖ dev sym p‖2

+ µ L2
c

(
‖Curl p‖2 + ‖Curl skew p‖2

)
dV

≥
∫

Ω

2µ
(
‖ sym∇u‖2 − 2 ‖ sym∇u‖ ‖ sym p‖+ ‖ sym p‖2

)
+ 2µ h+ ‖ dev sym p‖2

+ µ L2
c

(
‖Curl sym p‖2 + ‖Curl skew p‖2

)
dV

Cauchy-Schwarz and Young’s inequality

≥
∫

Ω

2µ

(
‖ sym∇u‖2 − ε ‖ sym∇u‖2 − 1

ε
‖ sym p‖2 + ‖ sym p‖2

)
+ 2µ h+ ‖ dev sym p‖2

+ µ L2
c

(
‖Curl sym p‖2 + ‖Curl skew p‖2

)
dV

=

∫
Ω

2µ (1− ε)‖ sym∇u‖2 + 2µ (1 + h+ − 1

ε
) ‖ dev sym p‖2

+ µ L2
c

(
‖Curl sym p‖2 + ‖Curl skew p‖2

)
dV

choose ε = (1 +
h+

2
)−1

≥
∫

Ω

µ h+ ‖ sym∇u‖2 + µ h+ ‖ dev sym p‖2

+ µ L2
c

(
‖Curl sym p‖2 + ‖Curl skew p‖2

)
dV

since p ∈ sl(3) it follows

=

∫
Ω

µ h+ ‖ sym∇u‖2 + µ h+ ‖ sym p‖2 + µ L2
c

(
‖Curl sym p‖2 + ‖Curl skew p‖2

)
dV

≥ µ
(
h+ ‖ sym∇u‖2

L2(Ω) + min(h+, L2
c) ‖p‖2

]

)
using Korn’s inequality for the displacement u ∈ H1

0 (Ω, ΓD, R3)

≥ µ
(
h+ CK ‖u‖2

H1(Ω) + min(h+, L2
c) ‖p‖2

]

)
.

Thus a] is positive definite on W . Moreover, j(q) =
∫

Ω
R(q) dV is one homogeneous and

Lipschitz, due to (5.7). We have shown that within these spaces the problem (5.3) admits
a unique weak solution. �
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Remark 5.18
Since we needed stronger boundary conditions for the existence of weak solutions than
were needed for uniqueness of strong solutions the relation between smooth weak solutions
and strong solutions is not entirely clear: even if strong solutions exist for the weaker
boundary condition the unique weak solution need not coincide with it.

6 Discussion

The classical elasto-perfectly plastic Prandtl-Reuss model with kinematic hardening has
been extended to include a weak nonlocal interaction of the plastic distortion by intro-
ducing the dislocation density in the Helmholtz free energy. The evolution equation for
plasticity follows by an application of the secod law of thermodynamics in the efficient
formulation proposed by Maugin [27] together with a sufficient condition guaranteeing
the insulation condition. This is done in a finite-strain setting based on the multiplicative
decomposition. We apply a strict principal of referential, intermediate and spatial covari-
ance. Referential covariance severly restricts the choice of the hardening contribution.
However, full covariance w.r.t. constant rotations does not reduce the gradient plasticity
model to a dependence on the plastic metric Cp = F T

p Fp, in contrast to the classical case
without gradients. In this context the gradient plasticity model allows to differentiate in
more detail between form-invariance under all rotations (covariance for local model) and
form-invariance under constant rotations (covariance for non-local model). The question
of the correct invariance requirements to be satisified in the multiplicative decomposition
has been raised many times in the literature. Our development shows that this ques-
tion has a new answer in the non-local setting: for full covariance with respect to rigid
rotations of the reference, intermediate and spatial configuration in the multiplicative de-
composition the model should satisfy the condition (3.38).

A geometrically linear version of the model is also derived. The proposed gradient plastic-
ity model approximates formally the classical model in the large scale limit Lc = 0. For the
rate-independent infinitesimal strain model the following has been obtained: uniqueness
of strong solutions with micro-free/hard boundary conditions and that a weak formula-
tion can be recast into a mixed variational inequality whose well-posedness can be shown
in a suitable Hilbert-space. In the future we would like to extend our analysis to cover
more general flow rules: rate-dependent viscoplasticity and non-associative formulations.
In this respect it seems possible to use similar ideas as in [2]. Moreover, one should
show stability as Lc → 0. From a physical point of view it would be tempting to cou-
ple isotropic local hardening (covering effects of statistically stored dislocations) with the
nonlocal kinematical hardening (due to geometrically necessary dislocations) and to omit
the local Prager kinematical hardening term altogether.

It is remarked that in the above framework it seems that the rate-independent models
are simpler to treat with than the rate dependent models. A shortcoming of the analysis is
its inability to show that a smooth weak solution satisfies the boundary conditions which
have been used in the derivation of the weak problem. This is object of ongoing research.

It remains also to be seen whether this formulation of gradient plasticity is not only
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weakly well-posed but also amenable to an efficient numerical implementation. The in-
troduction of a plastic length scale Lc > 0, which acts as a localization limiter should be
compared to the Cosserat elasto-plasticity model [41, 43, 40, 44, 42] which also has the
ability to remove the mesh-sensitivity. For the Cosserat model it is already shown that
this can be implemented in a “cheap” way. Currently, the dislocation based plasticity
model is being implemented, however, directly in the finite strain setting [46].

7 Acknowledgements

P. N. is grateful for stimulating discussions with B. Svendsen and B.D. Reddy on models
of gradient plasticity and to C. Miehe, A. Bertram and A. Mielke for discussions about
invariance requirements on the plastic variable. We are grateful to B.D. Reddy for sharing
with us the paper [50] prior to publication and to K. Hutter for pointing out reference
[37].

References

[1] H.D. Alber. Materials with Memory. Initial-Boundary Value Problems for Constitutive Equations
with Internal Variables., volume 1682 of Lecture Notes in Mathematics. Springer, Berlin, 1998.
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8 Notation

Let Ω ⊂ R3 be a bounded domain with Lipschitz boundary ∂Ω and let Γ be a smooth subset of ∂Ω
with non-vanishing 2-dimensional Hausdorff measure. We denote by M3×3 the set of real 3 × 3 second
order tensors, written with capital letters. The standard Euclidean scalar product on M3×3 is given
by 〈X,Y 〉M3×3 = tr

[
XY T

]
, and thus the Frobenius tensor norm is ‖X‖2 = 〈X,X〉M3×3 (we use these

symbols indifferently for tensors and vectors). The identity tensor on M3×3 will be denoted by 11, so that
tr [X] = 〈X, 11〉. We let Sym and PSym denote the symmetric and positive definite symmetric tensors
respectively. We adopt the usual abbreviations of Lie-algebra theory, i.e. so(3) := {X ∈ M3×3 |XT =
−X} are skew symmetric second order tensors and sl(3) := {X ∈ M3×3 |tr [X] = 0} are traceless tensors.
We set sym(X) = 1

2 (XT + X) and skew(X) = 1
2 (X − XT ) such that X = sym(X) + skew(X). For

X ∈ M3×3 we set for the deviatoric part devX = X − 1
3 tr [X] 11 ∈ sl(3). For a second order tensor X

we let X.ei be the application of the tensor X to the column vector ei.
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