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Abstract

We investigate a geometrically exact membrane model with respect to its capabilities
in describing buckling and wrinkling. Contrary to more classical tension-field or relaxed
approaches, our model is able to capture the detailed geometry of wrinkling while the
balance of force equations remains elliptic throughout. This is achieved by introducing
artficial viscosity related to the movement of an adjusted orthonormal frame (rotations)
given by a local evolution equation. We discuss the consistent linearization of the model
and investigate the efficiency of the local update of rotations. Numerical examples are
presented that demonstrate the effectiveness of the new model for predicting wrinkles in
membranes undergoing large deformation.
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1 Introduction

Membrane-like structures are very diverse in nature but also in civil and mechanical engineer-
ing. In terms of structural mechanics membranes are gossamer, i.e., flexible and thin-walled
areal structures with a high load bearing capacity and negligible bending resistance. In conse-
quence, the equilibrium positions of membranes are characterized by a dominance of in-plane
stresses and strains. Out-of-plane deformations are, of course, also observed in practice but
they are usually understood as instabilities, e.g. folded, kinked or completely crashed (regions
of) membranes.

Membrane-like structures are employed in many fields, just think of airbags, balloons, ultra-
light planes, solar sails of satellites or air-beams and air-cushions. Because of this huge range
of applications there is a great request for a realistic description of the mechanical behavior
of membranes. This can, in principle, be provided by means of classical shell theory. The
different approaches toward elastic shell analysis are too numerous to list here, an illustrative
review of today’s state of the art provides [RW04], for a thorough mathematical analysis of the
infinitesimal-displacement shell theory see [Cia98] and references therein. However, because
shell theories are designed for thin but not gossamer structures the computation of membranes
with shell finite elements invokes all the theoretical and numerical difficulties which are encoun-
tered for the limit of characteristic thickness h → 0, [GDOC02].

Therefore, more suitable for such flexible applications is the membrane theory, see [Jen01] for an
overview. Whereas a shell theory accounts for bending effects of the thin structures in classical
membrane theory the bending stiffness is completely neglected. This a priori assumption renders
the theory relatively simple, no (local) rotation of the membrane’s mid-plane needs to be
mapped. To develop their full load bearing capacity a membrane requires a tensional state of
stress, this fact is considered by so called tension field theories [Ste90]. A traditional approach
which goes back to the early 20th century is the introduction of a modified constitutive law to
generate “no-compression material” models, [Wag29, Rei38]. In a similar manner relaxed strain
energy densities may avoid compressive stresses, [Pip94, DR96]. More kinematically oriented
approaches introduce a “corrected” deformation gradient, [Rod87, Rod91], what allows also to
include anisotropic and irreversible material laws. All these membrane theories have in common
that they determine the load bearing capacity of a membrane even in the presence of folds.
Nonetheless, the detailed geometry, i.e., the actual position and amplitude of the folds remains
undetermined.

However, instabilities like out-of-midplane deformation may also be of practical interest. An
elastic membrane with no flexural rigidity will become wrinkled as soon as one of the principal
stretches is non-positive. In general, three typical (local and in-plane) stress states may be
distinguished. A membrane is taut when both principal stresses are tensile, a membrane is
homogenously wrinkled when there is a uniaxial state of tensile stress, and, in the absence of
tensile stresses the membrane is slack.

In this contribution we present results of a visco-elastic membrane model which allows for the
computation of all three membrane states in a continuous way. It has been derived by dimen-
sional descent from a bulk model, [Nef05a]. provides a geometrically exact finite deformation
kinematic and is based on a modification of a visco-elastic strain energy density. Furthermore,
the local well-posedness of the suggested model has been shown which sets it apart from prac-
tically all other geometrically exact membrane models, [Nef05b]. Typically, membrane models
are either accompanied by a complete loss of ellipticity in a slack state [DR95a, Mia98, CSP95]
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or this loss of ellipticity is avoided by a quasiconvexification step making it impossible to de-
scribe the geometry of the wrinkles [DR95b, DR96]. We will show here by examples that such
a stress state may be captured by our (elliptic) model, too. Moreover, the model predicts the
detailed geometry of the deformation.

Remark on Notation: We work here in the context of nonlinear, finite visco-elasticity and
consider a time period t ∈ [0, T ]. In the following ω ⊂ R

2 denotes the flat referential domain of
the membrane with smooth (Lipschitz continuous) boundary ∂ω, the characteristic thickness
is h > 0.
For vectors a, b ∈ R

3 we denote with 〈a, b〉 the scalar product with associated vector norm
‖a‖ = 〈a, a〉. By M

n×m the set of linear mappings R
n 7→ R

m is identified. In particular, M
3×3

is the set of real 3×3 second order tensors, written with capital letters. The standard Euclidean
scalar product on M

3×3 is given by 〈X,Y 〉 = tr
[
XY T

]
, and thus the Frobenius tensor norm is

‖X‖2 = 〈X,X〉. The identity tensor on M
3×3 will be denoted by 11, so that tr [X] = 〈X, 11〉. For

w ∈ M
2×3 and X3 ∈ R

3 we employ the notation (w|X3) ∈ M
3×3 to write the matrix composed

of w and the (third) column vector of tensor X. Likewise (x|y|z) is the matrix composed of
the vectors x, y, z ∈ R

3.
Moreover, we adopt here the usual abbreviations of Lie-group theory, i.e., GL(3) := {X ∈
M

3×3 | det X 6= 0} is the general linear group and SO(3) := {X ∈ GL(3) |XT X = 11, det X =
1} is the subgroup of orthogonal tensors.

.

2 The finite-strain-viscoelastic membrane model

The spatial deformation of a thin-walled structure φs : ω × (−h
2
, h

2
) → R

3 can be viewed
as being composed of the motion of the midsurface m : ω ⊂ R

3 7→ R
2 and of the motion

of the director (initially) orthogonal to the midsurface. Presuming a plane initial state and
with the coordinates indicated in Figure 1 we write for the displacement of the midsurface
u : ω ⊂ R

2 7→ R
3, such that m(x, y) = (x, y, 0)T +u(x, y). The membrane model presented here

uses the polar decomposition of the deformation gradient into a continuum rotation R and a
symmetric stretch tensor U . Let us write the polar decomposition in the form R U = polar(F ) U
with R = polar(F ) being the orthogonal part of deformation gradient F , R ∈ SO(3). The out-of
plane component of this continuum rotation, R(x, y).e3, is the natural choice for the director of
midsurface m(x, y) consistent with small strains in the three-dimensional model. An additional
variable ̺m ∈ R accounts for a varying thickness. In consequence, the spacial motion of an
initially plane membrane can be written as

φs(x, y, z) = m(x, y) + z̺m(x, y) R(x, y).e3 . (2.1)

The basic idea of our viscoelastic membrane model is the introduction of an additional field of
independently evolving viscoelastic rotations R ∈ SO(3). These rotations R are thought of as
being physical meaningful but not exact continuum rotations R. With R3 ≡ R(x, y).e3 denoting
the corresponding out-of plane component the dimensional reduction of a three-dimensional
continuum solid to a geometrically exact membrane model results in a deformation gradient of
the form

F = (∇m|̺m R3) with ̺m = 1 − λ

2µ + λ

[
〈(∇m|0), R〉 − 2

]
, (2.2)
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Figure 1: The three-dimensional membrane kinematics incorporating viscoelastic transverse
shear (R3 6= ~nm) and instantaneous thickness stretch (̺m 6= 1).

where λ and µ are the Lame moduli; ∇m ∈ M
3×3 is the deformation gradient of the midsurface

with mx = (m1,x,m2,x,m3,x)
T , my = (m1,y,m2,y,m3,y)

T . The function ̺m : M
3×2 × SO(3, R) 7→

R accounts for a thickness stretch of the membrane, i.e., the thickness is decreasing for increasing
membrane stretch, see remark below.

The membrane problem in a variational formulation then reads: find the deformation of the
midsurface m : [0, T ]×ω 7→ R

3 and the independent local viscoelastic rotation R : [0, T ]×ω 7→
SO(3, R) such that

∫

ω

h W (F,R) dω −
∫

ω

〈fb,m〉 dω −
∫

γs

〈fs,m〉 ds 7→ min . , (2.3)

w.r.t. m at fixed rotation R. The strain energy density W (F,R) in (2.3) is of the form

W (F,R) =
µ

4
‖F T R + R

T
F − 211‖2 +

λ

8
tr

[
F T R + R

T
F − 211

]2

. (2.4)

Moreover, let W ext(m) be the linear work of applied external forces with fb being the resultant
body forces and fs the resultant surface traction and let gd : ω 7→ R

3 denote the prescribed
Dirichlet boundary conditions for the membrane,

W ext(m) =

∫

ω

〈fb,m〉 dω −
∫

γs

〈fs,m〉 ds ,

m|γ0
(t, x, y) = gd(t, x, y) x, y ∈ γ0 ⊂ ∂ω . (2.5)

The field of local viscoelastic rotation follows an evolution equation

d

dt
R(t) = ν+ · skew (B) · R(t) with ν+ :=

1

η
ν+(F,R), and B = FR

T
. (2.6)
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Here ν+ ∈ R
+ represents a scalar valued function introducing an artificial viscosity and η

plays the role of an artificial relaxation time (with units [sec]). The evolution equation (2.6)
and parameter ν+ are introduced into the model to preserve ellipticity of the force balance.
Physically, one may imagine the viscoelastic rotation R as shadowing the exact continuum
rotation in a viscous sense.

The stresses generated in the membrane are known to be the derivative of the strain energy
density w.r.t the corresponding deformation tensor. Consequently, we obtain here for the first
Piola-Kirchhoff stress tensor

S(F,R) = DF W (F,R) = µ R
(
F T R + R

T
F − 2 · 11

)
+ λ 〈F T R − 11, 11〉 · R , (2.7)

where F is the reconstructed deformation gradient (2.2). Then the Cauchy stresses as well
as other stress tensors follow by the well known transformation rules, [Hol00]. Note that the
Cauchy stresses are in principal non-symmetric (due to the independent field of rotations R)
but turn out to be close to symmetry by our choice of a small artificial viscosity.

Before we proceed with a temporal and spatial discretisation of the presented model we add
here some remarks to associate our model with other approaches of dimensional reduction.

Remark 2.1: Note that for the reduced term F̂ = (∇m|R3) instead of (2.2) the elastic energy
can be written in fact as

W (F,R) = µ ‖ sym
(
F T R − 11

)
‖2 +

λ

2
tr

[
sym

(
F T R − 11

)]2

= µ ‖ sym
(
F̂ T R − 11

)
‖2 +

µλ

(2µ + λ)
tr

[
sym

(
F̂ T R − 11

)]2

, (2.8)

showing the characteristic apparent change of the Lamé moduli µ, λ for the two-dimensional
structure due to the plain stress state. Here µλ/(2µ + λ) is half of the harmonic mean of µ and

λ/2. Observe that it is not expedient to use F̂ in the condensed form (2.8) since in the coupled
evolution equation (2.6) it is F of equation (2.2) which appears.

Remark 2.2: The three-dimensional deformation (2.1) can be reconstructed through

φs(x, y, z) := m(x, y) + z̺m(x, y) R(x, y).e3 and ∇ϕs(x, y, 0) = (∇m|̺m R3) . (2.9)

Inserting the ansatz for the reconstructed deformation (2.9) into the underlying continuum
model and enforcing traction-free boundary conditions at the upper and lower face of the
membrane in an averaged sense determines the analytical expression for ̺m used in (2.2)2.
We note that it is not possible to prescribe boundary conditions for the rotations R in this
viscoelastic membrane formulation.

Remark 2.3: Due to the underlying isotropy the model (2.3) approaches in the vanishing
viscosity limit ν+ → ∞ (or zero relaxation time limit η → 0) formally the intrinsic two-
dimensional membrane-shell problem

∫

ω

h W∞(U((∇m|~nm)) dω − W ext(m) 7→ stat . w.r.t. m ,

W∞(U) = µ ‖U − 11‖2 +
µλ

2µ + λ
tr [U − 11]2 , (2.10)
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with ~nm being the unit normal on the parameterized membrane surface. Thus, U is the classical
symmetric elastic stretch and U − 11 is the elastic Biot strain tensor,

U = U((∇m|~nm)) =

(√
∇mT∇m 0

0 1

)
. (2.11)

Problem (2.10) is a geometrically exact equilibrium membrane model for small elastic strains
and finite deformations in the classical sense, i.e., with no extra internal process. The transition
from (2.3) to (2.10) in the formal relaxation limit η → 0, however, is not entirely trivial
since it is not just the replacement of the independent rotation R by the continuum rotation
R = (∇m|~nm)U−1. Moreover, note the subtle change from global minimization to a stationarity
requirement only. As well, it must be noted that the elastic equilibrium energy W∞(U) is non-
quasiconvex and non-elliptic w.r.t. ∇m ∈ M

3×2 but it is convex in the classical symmetric
stretch U . Currently there are no mathematical theorems available establishing the existence
of minimizers or equilibria solutions based directly on W∞. In this sense, the viscoelastic
formulation (2.3) provides a physical regularization of the occurring loss of ellipticity in the
more classical formulation (2.10).

3 Discretization of the model

3.1 Temporal discretization

Let us now consider a fully implizit time discretized version of model (2.3). In principle, the

simplest method for one time step is the following staggered scheme: let (mn−1, R
n−1

) be the
given solution for the deformation of the midsurface and the rotations at time tn−1. Now,
compute the new solution (mn, R

n
) ∈ V at time tn such that 1

∫

ω

h W (F n, R
n
) dω − W ext,n(mn) 7→ min . , (3.1)

w.r.t. mn at fixed R
n

and with strain energy density function (2.4). The current deformation
gradient F n = F (tn) is

F n = (∇mn|̺n
m R

n

3 ) with ̺n
m = 1 − λ

2µ + λ

[
〈(∇mn|0), R

n〉 − 2
]

,

and the current boundary conditions are

mn
|γ0

(tn, x, y) = gd(tn, x, y) , x, y ∈ γ0 ⊂ ∂ω . (3.2)

The evolution equation for the rotations is now mapped by a local exponential update. This
implies that R

n
= R

n
(∇mn) solves the following highly nonlinear problem

R
n

= exp
(

∆t ν+
n skew

(
F nR

n,T
))

· Rn−1
with ν+

n =
1

η

(
1 + ‖ skew F nR

n,T‖
)2

. (3.3)

1We abbreviate here V = H
1,2
◦ (ω, R3; γ0) × C0(ω,SO(3)), where the space H

1,2
◦ (ω, R3; γ0) is the set of all

functions m : ω ⊂ R
2 7→ R

3 which have square integrable weak derivatives and vanish on γ0 ⊂ ∂ω in the
sense of traces and C0(ω,SO(3)) is the set of all proper rotations R : ω 7→ SO that are continuous up to the
boundary of ω. We employ the standard notation of Sobolev spaces, i.e. L2(Ω),H1,2(Ω),H1,2

◦ (Ω), indifferently
for scalar-valued functions as well as for vector-valued and tensor-valued functions.
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By the properties of logarithmic and exponential mapping it can easily be shown that (3.3)
converges to (2.6) for the limit ∆t → 0. We will come back to this in Section 4.

Furthermore, for each load- and time step ∆t = [tn−1, tn] we compute the new solution mn, R
n

by an iteration mn,j, R
n,j

with the understanding that

lim
j→∞

mn,j = mn , lim
j→∞

R
n,j

= R
n
. (3.4)

Remark: The elastic trial solution. The iteration (we employ here a classical Newton
scheme) is very sensitive as far as proper startvalues for the current time step are concerned.
This is all the more the case since our nonlinear problem admits multiple stationary solutions,
e.g. uniform compression versus bulging out. In order to capture the ”interesting” minimizing
solution we proceed as follows: first we compute locally the orthogonal part of the reconstructed
deformation gradient in the previous time step,

R
n

−1 := polar((∇mn−1|̺n−1
m R

n−1

3 )) . (3.5)

Then we solve the following (modified) minimization problem for mn,0

∫

ω

h W (F n,0, R
n

−1) dω − W ext,n(mn,0) 7→ min . w.r.t. mn,0 at fixed R
n

−1 . (3.6)

We set now

R
n,0

= polar((∇mn,0|̺m(∇mn,0, R
n

−1)R
n

−1.e3) , (3.7)

and take the pair (mn,0, R
n,0

) as initial elastic trial solution for a subsequent global Newton
iteration.

3.2 Spatial discretization

The finite element discretization of problem (2.3) considers discrete subspaces of the continuous
solution spaces for the membrane’s deformation. Thus the discrete problem reads: find the
deformation of the midsurface of the membrane and the independent local viscoelastic rotation
(mh, Rh) : [0, T ] × Vh such that

∫

ω

h W (F (mh), Rh) dω − W ext(mh, Rh3) 7→ min . , (3.8)

w.r.t. mh at fixed rotation Rh.

The discrete space Vh is the space of T -piecewise polynomials based on a regular triangulation
T of ω in (closed) triangles or parallelograms. We assume that the triangulation matches the
domain exactly, i.e., ∪T = ω and two distinct elements T1 and T2 in T are either disjoint,
or T1 ∩ T2 is a complete edge or a common vertex of both (there are no hanging nodes). Let
Pk(T ) be the linear space of T -piecewise polynomials of degree ≤ k, and, let Po

k(T ) denote the
continuous discrete functions in Pk(T ) with homogeneous boundary values, i.e.,

Pk(T ) :=
{
uh ∈ L2(ω) : ∀T ∈ T , uh|T ∈ Pk(T )

}
and Po

k(T ) := Pk(T ) ∩ H1
0 (ω). (3.9)

If T ∈ T is a triangle, Pk(T ) denotes the space of polynomials of total degree ≤ k; while Pk(T )
denotes the space of polynomials of partial degree ≤ k if T is a parallelogram. Consequently,
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the discrete subspace of the deformation of the midsurface identifies with Po
k+1(T )3 for any non-

negative integer k. We apply here k = 0 but an extension of the subspace, i.e., an (adaptive)
mesh refinement, may raise computational efficiency, cf. [CW03, Wei01]. In every time step ∆t
the spatial discretization reads

Vh = Po
1 (T )3 × P0(T )3x3 . (3.10)

In the following we omit the subindex h for readability.

3.3 Weak form of the thin membrane model

To formulate the finite element equations the weak form of problem (2.3), i.e., the principle of
virtual work, is derived here. Let δm :∈ M

3×2 denote the virtual displacement of the midsurface
with δm ∈ H1,2

◦ (ω, R3; γ0). Then we obtain for fixed rotations R ≡ R
n

∫

ω

h 〈D∇m

[
W (F n, R)

]
,∇(δm)〉 dω − W ext,n(δm) = 0, (3.11)

where we used the linearity of W ext. Performing the differentiation w.r.t. ∇m this is equivalent
to

∫

ω

h 〈DF W (F n, R), (∇(δm)| − λ

2µ + λ
〈(∇(δm)|0), R〉R3)〉 dω − W ext,n(δm) = 0. (3.12)

For the strain energy density function (2.4) it holds that for an arbitrary three-dimensional
increment, H ∈ M

3×3, the differential is given by

〈DF W (F,R), H〉 = µ 〈F T R + R
T
F − 2 · 11, RT

H〉 + λ 〈F T R − 11, 11〉 · 〈RT
H, 11〉 . (3.13)

Therefore, taking as increment

H ≡ δF n = (∇(δm)|δ̺n
m R

n

3 ) with δ̺n
m = − λ

2µ + λ
〈(∇(δm)|0), R

n〉 , (3.14)

we infer that

δF n = (∇(δm)| − λ

2µ + λ
〈(∇(δm)|0), R

n〉R
n

3 ) , (3.15)

and we obtain for (3.12) the expression

∫

ω

h

[
µ 〈F T,nR + R

T
F n − 2 · 11, RT

(∇(δm)| − λ

2µ + λ
〈(∇(δm)|0), R

n〉R
n

3 )〉

+λ 〈F T,nR − 11, 11〉 · 〈RT
(∇(δm)| − λ

2µ + λ
〈(∇(δm)|0), R

n〉R
n

3 ), 11〉
]

dω

− W ext,n(δm) = 0 . (3.16)

To obtain the weak form consistent with the local exponential update the rotations R need to
be replaced with R

n
(∇mn) according to equation (3.3). Finally, the consistent weak form of

problem (2.3) reads with (3.15)

∫

ω

h
[
µ 〈F T,nR

n
(∇mn) + R

T,n
(∇mn)F n − 2 · 11, RT,n

(∇mn) · δF n〉

+λ 〈F T,nR
n
(∇mn) − 11, 11〉 · 〈RT,n

(∇mn) · δF n, 11〉
]

dω − W ext,n(δm) = 0, (3.17)
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where it should be emphazised again that F n is itself a nonlinear function of ∇mn,

F n = (∇mn|̺m(∇mn, R
n
(∇mn)) R

n
(∇mn).e3).

Let us remark that by our approach (3.8)-(3.10) the rotations are discontinuous along the
element edges. Therefore, the rotations jump over elemental interfaces and we expect and
observe kinks of the shell’s midsurface. The exact positions of these kinks in the numerical
solution depend, to a certain extend, on the triangulation.

4 The implicit local exponential update for the rotations

in three dimensions

This section is devoted to a detailed discussion of the key feature of our model, the local
exponential update of the rotations R(t). To this end let us first consider the following local,
nonlinear subproblem: given an arbitrary, fully three-dimensional deformation history F ∈
C1(R+, GL+(3)), determine a time-dependent rotation R ∈ C1(R+, SO(3)), such that

d

dt
R(t) = ν+ · skew

(
F (t)RT

)
· R(t) , R(0) = R0 ∈ SO(3) , (4.1)

with

ν+ =
1

η

(
1 + ‖ skew(F (t)RT (t))‖

)2
.

This problem is at first sight independent of (3.1). In [Nef03] it has been shown that for fixed
in time F the solution R(t) converges asymptotically to the continuum rotation R = polar(F ).
We first validate this general analytical result for our numerical algorithm.

In Section 3.1 we proposed to integrate the local evolution equation (4.1) numerically with an
implicit exponential update, i.e. we solve the time-discretized version (3.3). Set now for
readability

R ≡ R
n−1

, X ≡ R
n
, F ≡ F n , B ≡ FR

T
= F nR

n−1,T
, (4.2)

and let us define a function γ(s) with s = ‖ skew(FR
T
)‖ and

γ(s) =
1

η
(1 + s)2 , γ′(s) =

2(1 + s)

η
. (4.3)

Then the proposed implicit local update for the rotations consists of solving

X = exp
(

∆t γ(‖ skew
(
FXT

)
‖) skew(FXT )

)
· R , (4.4)

for X ∈ SO(3). If we set X = Q · R, we need to solve

Q = exp
(

∆t γ(‖ skew
(
FR

T
QT

)
‖) skew(FR

T
QT )

)
, (4.5)

where Q = R
n
R

n−1,T
is the time-incremental change of the rotations in one step. Set now

Q = exp(A) for some A ∈ so(3) by the surjectivity of the exponential function. This turns
(4.5) into

exp(A) = exp
(

∆t γ(‖ skew
(
FR

T
exp(A)T

)
‖) skew(FR

T
exp(A)T )

)
, (4.6)

10



for the new unknown A ∈ so(3). Since exp : so(3) 7→ SO(3) is bijective on a large ball around
zero we have equivalently and still exact

A = ∆t γ(‖ skew
(
B exp(A)T

)
‖) skew(B exp(A)T ) . (4.7)

The solution of (4.7) at given B will be denoted by Aex. The nonlinear equation (4.7) will here

be solved with a local Newton iteration. If Aex is determined, then R
n

= X = exp(Aex) R
n−1

.

Since we expect the incremental change in one time step to be small anyhow (equivalent to
small A) we may approximate exp(A)T ≈ 11 − A and introduce this approximation into (4.7).
This leads us to consider

A = ∆t γ(‖ skew (B(11 − A)) ‖) skew(B(11 − A)) (4.8)

⇒ A = ∆t γ skew(B) − ∆t γ skew(B A) .

Assuming for the moment that γ is already given this equation has a unique solution A whenever
A 7→ A + ∆t γ skew(B A) is strictly monotone, i.e., ∀A ∈ so(3) :

〈A + ∆t γ skew(B A), A〉 > 0 . (4.9)

Since

〈A + ∆t γ skew(B A), A〉 = ‖A‖2 + ∆t γ 〈B A,A〉
≥ ‖A‖2 − ∆t γ ‖A‖2 ‖B‖ = ‖A‖2 [1 − ∆t γ ‖B‖] , (4.10)

we obtain a useful bound on the size of time step ∆t

∆t γ < ‖B‖−1 , (4.11)

which ensures condition (4.9) and implies algorithmically that (4.7) has a unique solution. This
bound will be used in the implementation throughout. Concluding let us emphasize that the
actual computation of A is performed with equation (4.7), the linearized version (4.8)1 is only
applied to derive time step bound (4.11).

4.1 The startvalue for the local Newton-iteration

At given F,R we want to solve equation (4.4). In view of the local relaxation limit R = polar(F ),
a good startvalue X0 for X should be given by X0 = polar(F ). Since the final Newton method
will be based on equation (4.7) and since X = QR = exp(A)R we consider

polar(F ) = X0 = Q0 R = exp(A0) R ⇒
A0 = log

(
polar(F ) R

T
)

= log
(
polar(F n) R

n−1,T
)

. (4.12)

4.2 The local Newton-iteration for the rotational update

In this paragraph we derive the incremental linearisation of the local exponential update in
detail. According to (4.7) we have to solve the nonlinear matrix equation

A = ∆t ν+(B exp(A)T ) · skew(B exp(A)T ) (4.13)

11



with ν+(B exp(A)T ) = γ(‖ skew(B exp(A)T )‖) and function (4.3). A local Newton step corre-
sponding to the nonlinear equation (4.7) is obtained by inserting Ak + ∆A into (4.7) in lieu of
A and expanding it with respect to the increment ∆A up to first order. Set for the moment
A = Ak + ∆A. Then

Ak + ∆A = ∆t ν(B exp(Ak + ∆A)T )) · skew(B exp(Ak + ∆A)T ))

= ∆t
(
ν(B exp(Ak)T ) + DA[ν(B exp(Ak)T )].∆A + . . .

)
· (4.14)

(
skew(B exp(Ak)T ) + skew(B[D exp(Ak).∆A]T )

)
.

Let us first collect some facts from Lie-Group theory. We define the matrix exponential function

exp : so(3) 7→ SO(3) , exp(X) =
∞∑

i=1

1

i!
X i . (4.15)

This function is bijective on a large ball around 0 ∈ so(3), more precisely, for ‖X‖2 = −tr [X2] <
2π2, [HN91]. Let us also introduce the adjoint operator

ad : so(3) 7→ Lin(so(3), so(3)) , ad(X).Y = [X,Y ] = XY − Y X . (4.16)

The analytical form of the differential of the matrix exponential function can be written as

D exp(X).H = exp(X) ·
[

∞∑

i=1

1

i!
(− ad(X))i−1

]
.H , (4.17)

with the series expanded to

[
∞∑

i=1

1

i!
(− ad(X))i−1

]
.H =

[
11 − 1

2
ad(X) +

1

3!
ad(X)2 + . . .

]
.H (4.18)

= H − 1

2
ad(X).H +

1

3!
ad(X).(ad(X).H) + . . . .

For commutating pairs (X,H) ∈ so(3) × so(3) we have ad(X).H = 0 and we recover the
classical derivative formula D exp(X).H = exp(X) · H. For brevity let us define an operator
Pl(ad(X)).H ∈ so(3) with

Pl(ad(X)).H =

[
l∑

i=1

1

i!
(− ad(X))i−1

]
.H . (4.19)

The index refers to the order of approximation l ∈ N in (4.18). An approximation of the
differential is obtained by using

D·,l exp(X).H = exp(X) · Pl(ad(X)).H . (4.20)

Since exp(A)T · exp(A) = 11 for all A ∈ so(3)2 it holds that exp(A)T · D exp(A).H ∈ so(3) for
arbitrary H ∈ so(3). This feature is shared by the approximate formula, since

exp(A)T · D·,l exp(A).H = exp(A)T · exp(A) · Pl(ad(A)).H = Pl(ad(A)).H . (4.21)

2exp(A)T = exp(−A) and exp(−A) exp(A) = exp(−A + A) = exp(0) = 11 for all A ∈ so(3).
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With formulas (4.15 -4.20) we evaluate equation (4.14) to

Ak + ∆A

≈ ∆t ν(B exp(Ak)T ) skew(B exp(Ak)T ) + ∆t ν(B exp(Ak)T ) skew(B[D exp(Ak).∆A]T )

+ ∆t
(
DA[ν(B exp(Ak)T )].∆A

)
· skew(B exp(Ak)T ) (4.22)

= ∆t ν(B exp(Ak)T ) skew(B exp(Ak)T ) + ∆t ν(B exp(Ak)T ) skew(B[exp(Ak)Pl(ad(Ak)).∆A]T )

+ ∆t
(
DA[ν(B exp(Ak)T )].∆A

)
· skew(B exp(Ak)T )

= ∆t ν(B exp(Ak)T ) skew(B exp(Ak)T ) + ∆t ν(B exp(Ak)T ) skew(B[Pl(ad(Ak)).∆A]T exp(Ak)T )

+ ∆t
(
DA[ν(B exp(Ak)T )].∆A

)
· skew(B exp(Ak)T ) .

The linear approximation for the nonlinear viscosity term γ(‖ skew(B exp(Ak)T )‖) is given by

DA[γ(‖ skew(B exp(Ak)T )‖)].∆A

= γ′(‖ skew(B exp(Ak)T )‖) 〈 skew(B exp(Ak)T )

‖ skew(B exp(Ak)T )‖ , skew(B · [D exp(Ak).∆A]T )〉

= γ′(‖ skew(B exp(Ak)T )‖) 〈B
T skew(B exp(Ak)T )

‖ skew(B exp(Ak)T )‖ , [D exp(Ak).∆A]T 〉

≈ γ′(‖ skew(B exp(Ak)T )‖) 〈B
T skew(B exp(Ak)T )

‖ skew(B exp(Ak)T )‖ , [D♯,l exp(Ak).∆A]T 〉

= γ′(‖ skew(B exp(Ak)T )‖) 〈B
T skew(B exp(Ak)T )

‖ skew(B exp(Ak)T )‖ , [exp(Ak)Pl(ad(Ak)).∆A]T 〉

= γ′(‖ skew(B exp(Ak)T )‖) 〈B
T skew(B exp(Ak)T )

‖ skew(B exp(Ak)T )‖ , [Pl(ad(Ak)).∆A]T exp(Ak)T 〉

= γ′(‖ skew(B exp(Ak)T )‖) 〈B
T skew(B exp(Ak)T ) exp(Ak)

‖ skew(B exp(Ak)T )‖ , [Pl(ad(Ak)).∆A]T 〉 (4.23)

= −γ′(‖ skew(B exp(Ak)T )‖) 〈B
T skew(B exp(Ak)T ) exp(Ak)

‖ skew(B exp(Ak)T )‖ , Pl(ad(Ak)).∆A]〉 .

Combining this with the former computation, we obtain

Ak + ∆A

= ∆t γ(‖ skew(B exp(Ak)T )‖) skew(B exp(Ak)T )

− ∆t γ(‖ skew(B exp(Ak)T )‖) skew(B[Pl(ad(Ak)).∆A] exp(Ak)T ) (4.24)

− ∆t γ′(‖ skew(B exp(Ak)T )‖) 〈B
T skew(B exp(Ak)T ) exp(Ak)

‖ skew(B exp(Ak)T )‖ , Pl(ad(Ak)).∆A〉 · skew(B exp(Ak)T ) .

Abbreviate now

Sn,k = skew(Bn exp(Ak)T ), N ex = ‖Sn,k‖ , (4.25)

and set for the local residuum (the defect of (4.7))

Res(B,Ak) = Ak − ∆t γ(‖ skew(B exp(Ak)T )‖) skew(B exp(Ak)T ) . (4.26)

The local Newton method consists in iterating Ak+1 := Ak + ∆A until ‖Resk ‖ ≤ tolerance. 3

Using these abbreviations yields the linear matrix equation for ∆A ∈ so(3)

Res(B,Ak) + ∆A = − ∆t γ(N ex) skew(B[Pl(ad(Ak)).∆A] exp(Ak)T )

− ∆t
γ′(N ex)

N ex
〈BT S exp(Ak), Pl(ad(Ak)).∆A〉 · S , (4.27)

3One may also use as criterion ∆A ≤ tolerance.
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or

∆A + ∆t γ(N ex) skew(B[Pl(ad(Ak)).∆A] exp(Ak)T )

+ ∆t
γ′(N ex)

N ex
〈BT S exp(Ak), Pl(ad(Ak)).∆A〉 · S = −Res(B,Ak) . (4.28)

Now we reduce this equation to a linear vector equation for ∆a = axl(∆A) applying on both
sides of the equation the operator

axl : so(3) 7→ R
3, axl




0 α β
−α 0 γ
−β −γ 0



 =




−γ
β
−α



 , (4.29)

with inverse anti : R
3 7→ so(3). This yields

axl(∆A) + ∆t γ(N ex) axl(skew(B[Pl(ad(Ak)).∆A] exp(Ak)T ))

+ ∆t
γ′(N ex)

N ex
〈BT S exp(Ak), Pl(ad(Ak)).∆A〉 · axl(S) = − axl(Res(B,Ak)) , (4.30)

or

∆a + ∆t γ(N ex) axl(skew(B[Pl(ad(Ak)). anti(∆a)] exp(Ak)T ))

+ ∆t
γ′(N ex)

N ex
〈BT S exp(Ak), Pl(ad(Ak)). anti(∆a)〉 · axl(S) = − axl(Res(B,Ak)) . (4.31)

The linear operators on the left hand side, which act on ∆a will be expressed with matrix-
operations applied to ∆a ∈ R

3. The corresponding matrix representation is easily obtained by
putting into the i.th column the image of the i.th base vector ei ∈ R

3 under the action of the
linear operator. Thus we obtain




∆a1

∆a2

∆a3



 + ∆t γ(N ex)




axl(skew(B[Pl(ad(Ak)). anti(e1)] exp(Ak)T ))
axl(skew(B[Pl(ad(Ak)). anti(e2)] exp(Ak)T ))
axl(skew(B[Pl(ad(Ak)). anti(e3)] exp(Ak)T ))




T 


∆a1

∆a2

∆a3





+ ∆t
γ′(N ex)

N ex




〈BT S exp(Ak), Pl(ad(Ak)). anti(e1)〉 · axl(S)
〈BT S exp(Ak), Pl(ad(Ak)). anti(e2)〉 · axl(S)
〈BT S exp(Ak), Pl(ad(Ak)). anti(e3)〉 · axl(S)




T 


∆a1

∆a2

∆a3



 (4.32)

= − axl(Res(B,Ak)) .

Then we compute the increment ∆A = anti(∆a) and the final local rotation X follows by
X = exp(Aex) · R with the converged local solution

Ak+1 := Ak + ∆A Aex = lim
k→∞

Ak . (4.33)

In view of S ∈ so(3) we have ‖S‖ =
√

2
√

S2
12 + S2

13 + S2
23.

4.3 Convergence of the local Newton-iteration

In the preceding section we proposed a numerically robust implicit exponential update as a
consistent discretization for the evolution equation for the rotations which preserves the Lie-
group structure of SO(3, R) on the discrete level. This scheme takes advantage of the underlying
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property that the quadratic minimization problem is uniquely solvable at given R
n
. In order

to validate this update numerically we now study carefully the convergence properties of the
evolution equation (4.1). Exemplarily we present here results choosing a deformation gradient
F̂ such that we know the exact rotation R̂ immediately.

F̂ (ϕ) = R̂(ϕ) · Û(ϕ),

R̂(ϕ) =




1 0 0
0 cos(ϕ) sin(ϕ)
0 − sin(ϕ) cos(ϕ)



 (4.34)

Û(ϕ) =





(
1 + 1

2
sin(ϕ)

)2
0 sin2(ϕ)

0 1
1+ 1

2
sin(ϕ)

0

sin2(ϕ) 0 1
1+ 1

2
sin(ϕ)





The computed rotation Rn is now compared to the exact rotation for different values of viscosity
η. To this end we monitor the error

e = ‖RnT R̂ − 11‖ . (4.35)

In Figure 2(a) error (4.35) is plotted versus the total time for ϕ = π/3 in equation (4.34). Here
and below the start value for the rotational update is R0 = 11. The error decreases rapidly for
all values of viscosity η, however, the larger the value of η the slower is the rate of convergence.
This result nicely reflects the special feature of our proposed membrane model (2.3).

Unfortunately, the numerical computation of exponential and logarithmic matrix mappings
(which require eigenvalue analyzes and transformations) has a relatively large inherent uncer-
tainty, i.e., for any A ∈ GL(3) we compute (instead of zero)

|| log(exp(A)) − A|| ≈ 10−15 . . . 10−13 . (4.36)

For that reason we stop all convergence studies if error (4.35) reaches values in that range. Let
us emphasize that we employ in the implementation of our model Matlab’s standard routines
for exponential and logarithmic mappings but the magnitude of the mapping error is the same

in the LAPack-based Fortran implementations of [ORR01].

Figure 2(b) illustrates the (in)dependence of the rotational update on time increment ∆t. Here,
the deformation gradient (4.34) is chosen time dependent by ϕ(t) = π · t/(3ttotal), ttotal = 1µs
and the time steps are varied, ∆t ∈ [0.0001, 0.1]µs. All time incrementations fulfil condition
(4.11) or, equivalently,

∆t ≤ η

‖FR
T‖

(
1 + ‖ skew(FR

T
)‖

)2
. (4.37)

The two curves in Figure 2(b) correspond to two different values of viscosity η with the slightly
bigger error for higher viscosity. For all time increments the computed curves lay on top of
each other, the actual size of step ∆t has no influence on the accuracy of solution. The small
increase of the rotational error corresponds to bigger rotations.

4.4 Local response tangent for Aex in three dimensions

We conclude this section with the differential of the local response of the material with respect

to the rotations. Let Aex(F nR
n−1,T

) solve (4.7). Then the exponential update is characterized
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Figure 2: Error of the rotational update ‖RnT R̂−I‖ versus time for different values of viscosity
η and a constant time step ∆t (left) and for different sizes of time step ∆t and two different
values of viscosity η (right).

by

R
n
(F n) = exp

(
Aex(F nR

n−1,T
)
)
· Rn−1

, (4.38)

The exact differential of this local response, which is needed in a subsequent global Newton
step, is given by

DF R(F ).H =
[
D exp

(
Aex(FR

n−1,T
)
)

.
[
DAex(FR

n−1,T
).(HR

n−1,T
)
]]

· Rn−1
, (4.39)

cf. (4.2) for the notation. Since Aex satisfies the equation (4.7)

A(B) = ∆t γ(‖ skew(B exp(A(B))T )‖) · skew(B exp(A(B))T ) , B := F nR
n−1,T

, (4.40)

we get, by differentiating w.r.t. B ∈ M
3×3 and for any increment H ∈ M

3×3

DA(B).H = ∆t DB

[
ν(B exp(A(B)T ) · skew(B exp(A(B))T )

]
.H

= ∆t Dν(B exp(A(B))T ).
[
H exp(A(B))T + B [D exp(A(B)).[DA(B).H]]T

]

· skew(B exp(A(B))T ) + ∆t ν(B exp(A(B))T )

· skew(
[
H exp(A(B))T + B [D exp(A(B)).[DA(B).H]]T

]
)

= ∆t Dν(B exp(A(B))T ).
[
H exp(A(B))T + B [exp(A(B))Pl(ad(A(B)).[DA(B).H]]T

]

· skew(B exp(A(B))T ) + ∆t ν(B exp(A(B))T )

· skew(
[
H exp(A(B))T + B [exp(A(B))Pl(ad(A(B)).[DA(B).H]]T

]
) (4.41)

= ∆t Dν(B exp(A(B))T ).
[
H exp(A(B))T + B [Pl(ad(A(B)).[DA(B).H]]T exp(A(B))T

]

· skew(B exp(A(B))T ) + ∆t ν(B exp(A(B))T )

· skew(
[
H exp(A(B))T + B [Pl(ad(A(B)).[DA(B).H]]T exp(A(B))T

]
) .

Set H = DAex(B).H where H ∈ so(3) and abbreviate

Sex = skew(B exp(A(B))T ), N ex = ‖Sex‖ . (4.42)
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This yields

H = ∆t
γ′(N ex)

N
〈Sex,

[
H exp(A(B))T + B [Pl(ad(A(B))).H]T exp(A(B))T

]
〉 · Sex+

∆t γ(N ex) · skew(
[
H exp(A(B))T + B [Pl(ad(A(B))).H]T exp(A(B))T

]
)

H = ∆t
γ′(N ex)

N
〈Sex,

[
H exp(A(B))T − B [Pl(ad(A(B))).H] exp(A(B))T

]
〉 · Sex+

∆t γ(N ex) · skew(
[
H exp(A(B))T − B [Pl(ad(A(B))).H] exp(A(B))T

]
) . (4.43)

Define as well

Resex(H,A(B)) = ∆t
γ′(N ex)

N
〈Sex,

[
H exp(A(B))T

]
〉 · Sex + ∆t γ(N ex) · skew(

[
H exp(A(B))T

]
) .

(4.44)

Thus (with A(B) = Aex)

H + ∆t
γ′(N ex)

N
〈Sex, B [Pl(ad(A(B))).H] exp(Aex)T 〉 · Sex

+ ∆t γ(N ex) · skew(B [Pl(ad(Aex)).H] exp(Aex)T )

= Resex(H,Aex) . (4.45)

As before, we transform this linear matrix equation into a corresponding vector format for
x = axl(H) ∈ R

3:

x + ∆t
γ′(N ex)

N
〈Sex, B [Pl(ad(Aex)). anti(x)] exp(Aex)T 〉 · axl(Sex)

+ ∆t γ(N ex) · axl(skew(B [Pl(ad(Aex)). anti(x)] exp(Aex)T )) = axl(Resex(H,Aex)) . (4.46)

Thus



x1

x2

x3



 + ∆t γ(N ex)




axl(skew(B[Pl(ad(Aex)). anti(e1)] exp(Aex)T ))
axl(skew(B[Pl(ad(Aex)). anti(e2)] exp(Aex)T ))
axl(skew(B[Pl(ad(Aex)). anti(e3)] exp(Aex)T ))




T 


x1

x2

x3





+ ∆t
γ′(N ex)

N ex




〈BT S exp(Aex), Pl(ad(Aex)). anti(e1)〉 · axl(S)
〈BT S exp(Aex), Pl(ad(Aex)). anti(e2)〉 · axl(S)
〈BT S exp(Aex), Pl(ad(Aex)). anti(e3)〉 · axl(S)




T 


x1

x2

x3



 (4.47)

= axl(Resex(H,Aex)) ,

similar to (4.32) apart from the modified right hand side. Whence the searched differential is
obtained as DAex(B).H = anti(x(H)).

This result is the basis for a fully algorithmically treatment of the consistent linearization of
the consistent weak form (3.17). However, the resulting algorithmic tangent is a cumbersome
expression and is, therefore, not listed here. Moreover, our numerical experience showed that
applying the consistent linearization has no pay off compared to a numerical tangent.

5 Numerical examples

In the remaining of this text we shall illustrate the special features of our model by some il-
lustrative examples. The material data of all models are summarized in Table 1. Furthermore
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µ λ ρ h

hard synthetic sheet (Sect.5.1) 26316 MPa 51084 MPa 2.7 kg/m3 0.1 mm
soft elastic foil (Sect.5.2) 1358 MPa 2036 MPa - 1 mm
elastic Kapton foil (Sect.5.3) 1358 MPa 2036 MPa 1.5 kg/m3 25 µm

Table 1: Material data and membrane thickness of the examples.

let us mention that the viscosity parameter η controls the convergence of the rotational up-
date (3.3) as shown in Section 4. It needs to fulfil the stability condition (4.11) but is arbitrarily
otherwise and has no actual influence on the material’s response. Therefore, we do not list η
as a material parameter but set it here and below to be η = 0.01 MPa·s.

5.1 Rectangular sheet
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Figure 3: Initial and deformed state of a hard sheet loaded by dead load and subjected to
in-plane displacement of one side after different time periods of relaxation.

At first we compute the bending of a dead-loaded sheet made of a relatively hard synthetic
polymer. The midsurface m(x, y) of the 40× 5 mm sheet is discretized with a regular triangu-
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lation of 1600 elements, uh ∈ P1(T ). The membrane is completely fixed at the left boundary
(where x = 0, see Figure 3a), constrained in y-direction along its sides parallel to the x-axes
and constrained in vertical z-direction at the right boundary. Clearly, by nature of the model
only the displacement can be constrained along the boundaries, cf. Remark 2.3.

A volumetric load (corresponding to a dead load) is applied on the sheet within tload = 100 s.
Then, within 1000 s the right boundary is moved to the left, i.e., a displacement ux(t) =
−ū · (t − tload) is prescribed with maximal displacement ū = 8 mm. After that period of time
load and displacement are kept constant and the material starts to relax. In Figure 3(b-d) the
initial and the deformed state of the sheet are displayed for different times of relaxation. At
the beginning we clearly observe a bent sheet. Due to energy minimization the rotations relax
and finally run into one (central) kink.

The specific feature of the model to result in kinks of the membrane’s mid-surface is a direct con-
sequence of the completely neglected bending stiffness in the presented model. Discontinuities
of rotations R along the finite element edges are a valid solution of the discrete problem (3.8).
As outlined previously, this is not a shell-like theory of thin continua but the model is capa-
ble of representing the essential features of gossamer structures undergoing large deformations!
Furthermore, results computed in that way are to a certain extend mesh dependent since the
model is able to kink only along the finite element boundaries. The regular triangulation in
Figure 3 obviously allows for a central kink but variations of the mesh gave, provided that they
were sufficiently fine, basically the same result.

5.2 Wrinkling of a thin foil

Let us now apply our model to the problem of an elastic foil under pressure load. The square
foil has a side length of 2 m and a thickness of 1 mm; we think of a gossamer material like
Kapton foil. The foil lays on a 1.2 × 1.2 m square obstacle (think of a cloths on a table) and
only the unsupported part of it can deform. The foil is loaded from above with a pressure of
p0 = 0.75 MPa. The initial situation displays Figure 4a. For reason of symmetry only one
quarter of the unsupported part is meshed with 6144 triangular elements. The displacements
are constraint along the obstacles’s edge and, moreover, symmetry conditions apply.

The computation started with a plane initial placement, the pressure is applied within 100
time steps of 10s. Two intermediate states as well as the final deformation are displayed in
Figure 4b-d. The computed results are reflected on a symmetry axis and pictured for all models
from the same point of view. Starting with the initial situation we observe a downwards folding
of the model. Because the membrane cannot handle a significant compressive stress it starts
to folds at the corner sides of the foil under further rising of the pressure. Relaxing this state
(and keeping the pressure constant) results in kinks along these sides.

Thinking of a typical wrapping foil, the observed pattern of wrinkles and folds seem realistic
and the example nicely illustrates that a common limitation of many finite element analysis
programs, namely, the inability to handle tensionless states of a membrane-like structure is not
encountered here.
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(a) computed model (b) p(t) = 0.5p0

(c) p(t) = p0, no relaxation (d) p(t) = p0, relaxed state

Figure 4: Wrinkling of a foil blown over a square obstacle.

5.3 Twisting a band of elastic foil

Finally we analyze the membrane’s stress state turning a band of Kapton foil upside down. To
this end a 100 × 400 mm strip of thin foil (with material data from [YP03], see Table 1) is
discretized. Within a time period of one hour the band is stretched of 25% in axial direction and
both ends are turned against each other by 180 degrees. The deformed membrane is shown in
Figure 5, the black lines mark the controlled boundaries. (The finite element triangulation has
16384 elements and is to dense to be displayed.) Along the marked edges the band is hold tight
and the displacements are prescribed resulting in a twisted stretch of the band. The deformation
is computed in 30 time steps, the final (relaxed) state is reached within 10 additional time steps.
The averaged band thickness reduces from initially 0.25 mm to 0.0241 mm in the final state.

Figure 5: Twisted and stretched band of Kapton foil.
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(c) nominal stress component S22
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(d) nominal stress component S33

Figure 6: Axial stress, in-plane shear stress and in-plane and out-of-plane nominal stress com-
ponents in the twisted foil strip.

As Figure 5 shows, the presented membrane model is capable of exactly capturing such large
deformation states. The only drawback to mention here is the relatively slow convergence of
the equilibrium iteration; depending on the criteria to stop the iteration several numbers of
Newton steps may be necessary. One reason for that may be the previously mentioned error
of logarithmic and exponential mapping routines but more significant seems the fact that the
linearization of the discretized weak form with respect to the deformation (which is performed
here numerically) gives not the precise consistent tangent. Since by linearization w.r.t. the full
gradient F n the evolution of rotations, precisely, the increment of ̺mR3 is not fully taken into
account, the resulting tangent may deviate from an exact (but unknown) linearization. This,
in turn, slows down convergence to the equilibrium solution in particular for large rotations.

Figure 6 illustrate the resulting stress state in the twisted band. Here, for purpose of illustration,
only one half of the band is computed and twisted by 90 degrees, displayed are the components
of the first Piola-Kirchhoff stress tensor (2.7). Evidently, the dominating stress component is
the nominal stress in axial direction S11 with average values of 450 MPa and maxima along the
boundaries. Shear stress S12 and the nominal out of plane stresses S33 are close to zero, only
as a result of the clamped edges we observe such stress components.
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6 Summary

In this paper we proposed a geometrically exact model for gossamer structures undergoing large
deformations. Contrary to many other formulations the underlying theory of a thin membrane
with viscoelastic transverse shear resistance is well-posed even in a tensionless membrane state.
A key feature of the model is an evolution equation for an independent field of rotations. These
rotations adjust viscoelastically to the actual continuum rotations. A time-discretization of
the model is performed whereby the evolution equation for the rotations is locally integrated
with an exponential update algorithm. By means of numerical studies the convergence of the
proposed scheme is validated.

Numerical examples illustrate that in our model a common limitation of standard solution
procedures, namely the inability to handle a locally slack membrane state is not encountered.
The membrane model incorporates full geometric nonlinear capabilities, only for simplicity we
presume it to be initially plane. Note that the model is not restricted to such a plane initial
state, an extension to curved structures is straightforward and, together with an extension to
irreversible material behavior, subject of ongoing work. Typical applications of the model we
have in mind are very thin sheets with negligible bending stiffness, e.g., synthetic foil, thin
fabric or tissue.
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Structures (E. Onate and B. Kröplin, eds.), CIMNE, Barcelona, 2003.

23


