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Abstract

Consider a weak solution u of the Navier-Stokes equations for a general
domain Ω ⊆ R3 on the time interval [0,∞) and a parabolic cylinder Qr =
Qr(t0, x0) ⊆ (0,∞) × Ω with r > 0, t0 ∈ (0,∞), x0 ∈ Ω. Then we show
that there exists an absolute constant ε∗ > 0 such that the local condition
‖u‖Lq(Qr) ≤ ε∗ r

2
q
+ 3

q
−1

, 2
q + 3

q ≤ 1 + 1
4 , implies the regularity of u in the

smaller cylinder Qr/2. The special case 2
q + 3

q = 1 yields the well-known
local Serrin condition ‖u‖Lq(Qr) ≤ ε∗. Thus our criterion extends Serrin’s
condition admitting smaller exponents q and replacing the barrier 1 by
1 + 1

4 .
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1 Main Result

In our main result, see Theorem 1.1 below, we consider a completely general
domain Ω ⊆ R3, i.e. a connected open subset of R3 with boundary ∂Ω, and the
Navier-Stokes system on [0,∞)× Ω in the usual form

ut −∆u + u · ∇u +∇p = f, div u = 0, (1.1)

u|∂Ω
= 0, u|t=0

= u0
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with external force f and initial value u0. We are interested in regularity prop-
erties of a weak solution u in parabolic cylinders Qr ⊆ (0,∞)× Ω defined by

Qr = Qr(t0, x0) := {(t, x); t0 − r2 < t < t0, |x− x0| < r} = (t0 − r2, t0)×Br(x0),
(1.2)

where Br(x0) ⊆ Ω means the open ball with radius r > 0 and center x0 ∈ Ω, and
t0 ∈ (0,∞). See Section 2 concerning further definitions.

Theorem 1.1 Let Ω ⊆ R3 be a general domain, let u be a weak solution of the
Navier-Stokes system (1.1) with data f = div F , F ∈ L2

(
0,∞; L2(Ω)

)
, u0 ∈

L2
σ(Ω), and let Qr = Qr(t0, x0) ⊆ (0,∞) × Ω be a parabolic cylinder with t0 ∈

(0,∞), x0 ∈ Ω, r > 0.
Then there is an absolute constant ε∗ > 0 with the following property: If

‖u‖Lq(Qr) ≤ ε∗ r
2
q
+ 3

q
−1, 1 < q < ∞,

2

q
+

3

q
≤ 1 +

1

4
, (1.3)

and
‖F‖L4(t0−r2,t0;L2(Br(x0))) ≤ ε∗, (1.4)

then u is regular in Qr/2 = Qr/2(t0, x0) in the sense that Serrin’s condition

u ∈ L4
(
t0 −

(r

2

)2
, t0; L

6
(
Br/2(x0)

))
,

2

4
+

3

6
= 1, (1.5)

is satisfied in Qr/2.

In (1.3) we wrote 2
q

+ 3
q

instead of 5
q

in order to point out the analogy with

the classical Serrin number 2
s

+ 3
q

where s, q ∈ (1,∞) denote possibly different
exponents of integration with respect to time and space. For technical reasons
we have to restrict ourselves to the case s = q in this paper.

A result similar to Theorem 1.1 holds when we replace the cylinder Qr(t0, x0)
by the slightly modified parabolic cylinder of the form

Q∗
r = Q∗

r(t0, x0) =
(
t0 −

7

8
r2, t0 +

1

8
r2

)
×Br(x0) (1.6)

with r > 0, t0 ∈ (0,∞), t0 − 7
8
r2 > 0, x0 ∈ Ω. See [2] concerning these cylinders.

If for given (t0, x0) ∈ (0,∞)×Ω there is at least one Q∗
r(t0, x0) ⊆ (0,∞)×Ω,

r > 0, such that u is regular in Q∗
r(t0, x0), then (t0, x0) is a regular point of u; see

Remark 2.2 below. The next corollary yields a criterion for regular points.

Corollary 1.2 Let Ω ⊆ R3 be a general domain, let u be a weak solution of
the Navier-Stokes system (1.1) with data f = div F , F ∈ L4

(
0,∞; L2(Ω)

)
∩

L2
(
0,∞; L2(Ω)

)
, u0 ∈ L2

σ(Ω), let t0 ∈ (0,∞), x0 ∈ Ω, and consider the cylinders
Q∗

r(t0, x0) contained in (0,∞)× Ω for r > 0.
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Suppose

lim inf
r→0

r1−5/q‖u‖Lq(Q∗
r) < ε∗, 1 < q < ∞,

2

q
+

3

q
≤ 1 +

1

4
(1.7)

with ε∗ > 0 as in Theorem 1.1. Then (t0, x0) is a regular point of u.

Remark 1.3 Note that 2
q

+ 3
q
≤ 1 + 1

4
, 1 < q < ∞, is equivalent to 4 ≤ q < ∞,

whereas the case 5 ≤ q < ∞ is well-known by Serrin’s condition 2
q
+ 3

q
≤ 1. Thus

within the region
4 ≤ q < 5 (1.8)

we obtain a new local regularity condition beyond Serrin’s condition 2
q

+ 3
q
≤ 1,

since 1 < 2
q

+ 3
q
≤ 1 + 1

4
is equivalent to (1.8) with Serrin’s barrier strictly larger

than 1.
The weakest possible regularity condition in (1.3) is obtained for q = 4 in the

form
‖u‖L4(Qr) ≤ ε∗ r

1
4 . (1.9)

Further we note that the condition for the regularity of (t0, x0) in Corollary 1.2
does not depend on the local behavior of the external force f .

It is interesting to compare Theorem 1.1 with a local regularity result in [2],
Proposition 1 and Corollary 1; for simplicity we will perform this comparison
in a slightly different formulation and with f = 0. The authors of [2] need a
special type of weak solutions, the so-called suitable weak solutions, see (2.6),
(2.7) below, and their local regularity condition contains the associated pressure
p. The existence of such a weak solution is non-trivial and was shown in [2] for R3

and for smooth bounded Ω; see [5] for an existence proof for uniform C2-domains.
On the other hand, the existence of a weak solution u in Theorem 1.1 in the sense
of Definition 2.1 below is well-known for general domains.

Lemma 1.4 ([2]) Let Ω ⊆ R3 be a general domain, let u be a suitable weak
solution of the Navier-Stokes system (1.1) with data f = 0, u0 ∈ L2

σ(Ω), associated
pressure term ∇p, and let Qr = Qr(t0, x0) ⊆ (0,∞)× Ω be a parabolic cylinder.

Then there is an absolute constant ε∗ > 0 with the following property: If

‖u‖3
L3(Qr) + ‖up‖L1(Qr) + ‖p‖L5/4(Qr) ≤ ε∗ r2, (1.10)

then u is regular in Qr/2 = Qr/2(t0, x0) in the sense that |u(t, x)| ≤ C1r
−1 holds

for almost all (t, x) ∈ Qr/2 and some absolute constant C1 > 0.

Note that the regularity condition of Theorem 1.1 for f = 0, q = 4 can be written
with ε∗ as in (1.3) in the form

‖u‖4
L4(Qr) ≤ (ε∗)

4 r (1.11)

which is completely independent of (1.10); the same holds for the corresponding
proofs.
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2 Notations and Preliminaries

In the first part of this section, where we look at usual weak solutions, Ω ⊆ R3

means a general domain as in Theorem 1.1. In the second part we consider
another type of weak solutions, investigated recently in [1], [4], the so-called very
weak solutions with inhomogeneous boundary values, where Ω ⊆ R3 is a smooth
bounded domain in the sense that the boundary ∂Ω is of class C2,1.

Definition 2.1 Let Ω ⊆ R3 be a general domain, and let

f = div F, F =
(
Fij

)
i,j=1,...,3

∈ L2
(
0,∞; L2(Ω)

)
, u0 ∈ L2

σ(Ω). (2.1)

Then a function

u ∈ L∞(
0,∞; L2

σ(Ω)
)
∩ L2

loc

(
[0,∞); W 1,2

0 (Ω)
)
, ∇u ∈ L2

(
0,∞; L2(Ω)

)
, (2.2)

is called a weak solution of the Navier-Stokes system (1.1) if

u : [0,∞) → L2
σ(Ω) is weakly continuous, (2.3)

and the condition

−〈u, wt〉Ω,∞ + 〈∇u,∇w〉Ω,∞ − 〈uu,∇w〉Ω,∞ = 〈u0, w(0)〉Ω − 〈F,∇w〉Ω,∞ (2.4)

is satisfied for all w ∈ C2
0

(
[0,∞); C2

0,σ(Ω)
)
.

Here we use the following standard notations: ∇ = (∂1, ∂2, ∂3) where ∂j =
∂/∂xj, j = 1, 2, 3, div u = ∂1u1 + ∂2u2 + ∂3u3 for a vector field u = (u1, u2, u3)
and div F = (∂1F1j + ∂2F2j + ∂3F3j)j=1,2,3 for a matrix field F = (Fij)i,j=1,2,3.
Moreover, uu = (uiuj)i,j=1,2,3 and u · ∇u = (u · ∇)u = div (uu) provided that
div u = 0.

By Cj(Ω), Cj(Ω), Cj
0(Ω) and Cj

0(Ω), j ∈ N or j = ∞, we denote the usual
spaces of smooth functions. In particular, a function u ∈ C2

0(Ω) vanishes on ∂Ω,
but ∇u may be different from zero on ∂Ω. Let

Cj
0,σ(Ω) = {w ∈ Cj

0(Ω); div w = 0},

Cj
0,σ(Ω) = {w ∈ Cj

0(Ω); div w = 0} and Lq
σ = Lq

σ(Ω) = C∞
0,σ(Ω)

‖·‖q
. Furthermore,

Cj
0

(
[0, T ); X

)
, j ∈ N, is the space of continuous functions w : [0, T ) → X with

compact support supp w ⊂ [0, T ) such that wt = dw/dt, . . . , djw/dtj are contin-
uous. The usual Sobolev spaces are denoted by W j,q = W j,q(Ω), j ∈ N, and in

particular W 1,2
0 = W 1,2

0 (Ω) = C∞
0 (Ω)

‖·‖W1,2
.

For a Banach space X with norm ‖·‖X we need for 1 ≤ s ≤ ∞ the usual
Bochner spaces Ls(T0, T1; X), 0 ≤ T0 < T1 ≤ ∞, with norm

‖u‖Ls(T0,T1;X) =


( ∫ T1

T0

‖u‖s
X dt

)1/s

, 1 ≤ s < ∞

ess sup
T0≤t≤T1

‖u(t)‖X , s = ∞ .
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If X = Lq = Lq(Ω), 1 < q < ∞, is the usual Lebesgue space we set ‖·‖X =
‖·‖Lq = ‖·‖q = ‖·‖q,Ω, and ‖u‖Ls(T0,T1;Lq(Ω)) = ‖u‖q,s if T0, T1 are known from the
context. For 1 < q, s < ∞ and 0 < T ≤ ∞ let 〈u, v〉Ω =

∫
Ω

u · v dx denote the

usual duality pairing of functions or vector fields u ∈ Lq, v ∈ Lq′ , where q′ = q
q−1

.

Further, for u ∈ Ls(0, T ; Lq), v ∈ Ls′(0, T ; Lq′), s′ = s
s−1

,

〈u, v〉Ω,T = 〈u, v〉T =

∫ T

0

〈u, v〉Ω dτ

means the duality pairing in [0, T ) × Ω. In (2.4) we used q = q′ = 2, s = s′ = 2
and T = ∞. Moreover, L2

loc

(
[0, T ); W 1,2

0 (Ω)
)
, 0 < T ≤ ∞, is the space of all

W 1,2
0 (Ω)-valued functions w : t 7→ w(t) such that w ∈ L2

(
0, T ′; W 1,2

0 (Ω)
)

for all
T ′ ∈ (0, T ).

Note that the existence of a weak solution u as in Definition 2.1 is well-known
for general domains, see, e.g., [10], V.3. Using (2.3) we see that

u(0) = u|t=0
= u0

in (1.1) is well-defined. Because of (2.2) the condition u|∂Ω
= 0 in (1.1) is well-

defined in the sense that the trace u(t)|∂Ω
= 0 for almost all t ∈ [0,∞). Further

we get from (2.2) that the condition div u = 0 is well-defined in the sense of
distributions. Finally, we find a unique distribution of the form ∇p, the pressure
term associated with u, such that

ut −∆u + u · ∇u +∇p = f

holds in (0,∞) × Ω in the sense of distributions. Thus the system (1.1) is well-
defined in a certain weak sense for each weak solution u.

Usually the notion of a weak solution u includes the energy inequality

1

2
‖u(t)‖2

2 +

∫ t

0

‖∇u‖2
2 dτ ≤ 1

2
‖u0‖2

2 −
∫ t

0

〈F,∇u〉Ω dτ, 0 ≤ t < ∞. (2.5)

However, we do not need (2.5) in our method.
The more special notion of a suitable weak solution u plays an important role

in the local regularity theory of weak solutions, see [2]. In this case the existence
of u is non-trivial and has been shown for Ω = R3, for bounded domains Ω ⊆ R3

with smooth boundary ∂Ω, see [2], p. 822, and for exterior domains Ω ⊆ R3, see
[7], [11]; recently, the existence has been proved for general domains Ω ⊆ R3 with
uniform C2-boundary ∂Ω, see [5].

Let Ω, f = div F , and u0 be as in Definition 2.1, and assume additionally that
f ∈ L2

(
0,∞; L2(Ω)

)
. Then a weak solution u satisfying (2.2) – (2.4) is called

a suitable weak solution of the system (1.1) with data f , u0, if the associated
pressure term satisfies

∇p ∈ Lq
loc

(
(0,∞); Lq

loc(Ω)
)

with q =
5

4
, (2.6)
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and if the local energy inequality

1

2
‖ϕu(t)‖2

2 +

∫ t

t0

‖ϕ∇u‖2
2 dτ ≤ 1

2
‖ϕu(t0)‖2

2 +

∫ t

t0

〈ϕf, ϕu〉Ω dτ (2.7)

− 1

2

∫ t

t0

〈∇|u|2,∇ϕ2〉Ω dτ +

∫ t

t0

〈1
2
|u|2 + p, u · ∇ϕ2〉Ω dτ

is satisfied for almost all t0 ∈ [0,∞), all t ∈ [t0,∞), and all ϕ ∈ C∞
0 (R3).

Using a standard mollification, see e.g., [10], II, 1.7, we obtain from (2.7) in
particular the inequality∫

(0,T )×Ω

|∇u|2φ dt dx ≤ 1

2

∫
(0,T )×Ω

(
|u|2(φt+∆φ)+(|u|2+2p)u·∇φ+2(u·f)φ

)
dt dx

(2.8)
for all φ ∈ C∞

0

(
(0, T ) × Ω

)
with φ ≥ 0. This special formulation has been used

in [2], (2.5), in the definition of suitable weak solutions.

Remark 2.2 (i) If a weak solution u satisfies a local Serrin condition as in (1.5)
then we know higher regularity properties in space direction in each subdomain
D ⊂ Qr/2 with D ⊆ Qr/2, if f and Ω as in Theorem 1.1 are smooth in the sense
that f ∈ C∞

0

(
(0,∞) × Ω

)
and that Ω has a uniform C2-boundary ∂Ω; see [2],

p. 780, and [13], p. 453, concerning such properties. Indeed, first we obtain
integrability properties of ∇p and ut in some Lq-spaces, see [5]; then we use a
standard localization procedure with a cut-off function to prove that each space
derivative of u is essentially bounded in D. This justifies to say that u is regular
in Qr/2 if (1.5) is satisfied.

(ii) If instead of (1.5) the condition

u ∈ L4
(
t0 −

7

8

(r

2

)2
, t0 +

1

8

(r

2

)2
; L6

(
Br/2(x0)

))
(2.9)

is satisfied, where now Qr/2 is replaced by Q∗
r/2, then the regularity properties

above hold with (t0, x0) ∈ D ⊂ Q∗
r/2. Therefore, (t0, x0) is called a regular point

in this case, cf. Corollary 1.2 .

To prove Theorem 1.1 we use the theory of very weak solutions for smooth
bounded domains, which has been introduced in [1] and generalized in [4], see
Definition 2.3 below. For this purpose, we assume in the next part of this section
that Ω ⊆ R3 is a bounded domain with boundary of class C2,1.

Let Pq : Lq → Lq
σ, 1 < q < ∞, be the Helmholtz projection, and let Aq :

D(Aq) → Lq
σ(Ω) with domain D(Aq) = W 2,q(Ω)∩W 1,q

0 (Ω)∩Lq
σ(Ω) be the Stokes

operator. It is well-known that −Aq generates a bounded analytic semigroup
e−tAq , t ≥ 0, on Lq

σ, and that the fractional powers Aα
q , −1 ≤ α ≤ 1, of Aq are
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well-defined, see, e.g., [3], [4], [5], [6], [12]. In particular, we need the following
embedding properties, see [4]:

‖u‖q ≤ c‖Aα
γu‖γ for u ∈ D(Aα

γ ), 1 < γ ≤ q, 2α +
3

q
=

3

γ
, (2.10)

‖Aα
q e−tAqu‖q ≤ ce−δt t−α‖u‖q for u ∈ Lq

σ(Ω), t > 0, 0 ≤ α ≤ 1 (2.11)

for some δ = δ(q, Ω) > 0 and constants c = c(α, q, Ω) > 0 and c = c(α, δ, q, Ω) >
0, respectively.

Let 0 < T ≤ ∞, 1 < q, s < ∞. Then the maximal regularity estimate

‖(vt, Aqv)‖Ls(0,T ;Lq) ≤ c
(
‖Aqe

− ·Aqv0‖Ls(0,T ;Lq) + ‖f‖Ls(0,T ;Lq)

)
, (2.12)

c = c(q, Ω) > 0, holds for the unique solution v of the evolution system

vt + Aqv = f, v(0) = v0

with data f ∈ Ls(0, T ; Lq
σ) and v0 ∈ Lq

σ such that Aqe
− ·Aq v0 ∈ Ls(0, T ; Lq

σ).
To deal with traces on the boundary ∂Ω let N = N(x) denote the exterior

normal unit vector at x ∈ ∂Ω. Let Lq(∂Ω) be the usual Lq-space on ∂Ω with
norm ‖·‖Lq(∂Ω) = ‖·‖q,∂Ω. Then

〈g, h〉∂Ω =

∫
∂Ω

g · h dS, g ∈ Lq(∂Ω), h ∈ Lq′(∂Ω),

means the duality pairing on ∂Ω where dS is the surface element. Analogously,
we define the duality pairing 〈g, h〉∂Ω,T =

∫ T

0
〈g, h〉∂Ω dτ for g ∈ Ls

(
0, T ; Lq(∂Ω)

)
,

h ∈ Ls′
(
0, T ; Lq′(∂Ω)

)
, s′ = s

s−1
. Further we need the Sobolev spaces Wα,q(∂Ω),

−2 ≤ α ≤ 2, of fractional order α with norm ‖·‖W α,q(∂Ω) = ‖·‖α;q,∂Ω. Here, the
space of negative order is defined as the dual space

W−α,q(∂Ω) =
(
W α,q′(∂Ω)

)′
, 0 < α ≤ 2, (2.13)

of the space Wα,q′(∂Ω) of positive order. The corresponding duality pairing is
again denoted by 〈·, ·〉∂Ω.

Next we mention the embedding estimate

‖g‖q,∂Ω ≤ c‖g‖α;γ,∂Ω, 1 < γ ≤ q, α +
2

q
=

2

γ
, 0 ≤ α ≤ 2, (2.14)

for all g ∈ W α,γ(∂Ω) where c = c(α, q, ∂Ω) > 0. By a standard duality argument
we get form (2.14) the embedding estimate

‖g‖−α;q,∂Ω ≤ c‖g‖γ,∂Ω, 1 < γ ≤ q, α +
2

q
=

2

γ
, 0 ≤ α ≤ 2, (2.15)

for all g ∈ Lγ(∂Ω) where c = c(α, q, ∂Ω) > 0.

7



The following definition of very weak solutions, see Definition 2.3 below, is for
simplicity a special version of a more general notion introduced in [4]. Here we
are mainly interested in boundary values as weak as possible. Note that a very
weak solution v need not have any differentiability property in space, besides
of div v = 0. However, v satisfies a Serrin condition and is therefore uniquely
determined and regular if the data and ∂Ω are smooth. On the other hand, the
usual weak solution u of Definition 2.1 has a finite gradient in L2, but we do not
know uniqueness and global regularity properties.

In the following the set

J q,s = J q,s(Ω) :=
{

v0 ∈ L2(Ω); ‖A−1
2 P2v0‖q +

( ∫ ∞

0

‖e−tA2P2v0‖s
q dt

) 1
s

< ∞
}

where ‖v0‖J q,s := ‖A−1
2 P2v0‖q,Ω +

( ∫ ∞
0
‖e−tA2P2v0‖s

q dt
) 1

s , 1 < q, s < ∞, plays
the role as the space of initial values; for simplicity this space is not defined in
the most general form as in [4], (2.18). Note that ‖v0‖J q,s = 0 only means that
P2u0 = 0, see [4]. Therefore, ‖ · ‖J q,s is the norm of the quotient space of J q,s

modulo v0 with P2v0 = 0, i.e., modulo such gradients.

Definition 2.3 ([4]) Let Ω ⊆ R3 be a bounded domain with boundary of class
C2,1, and let 0 < T ≤ ∞, 3 < q < ∞, 2 < s < ∞, 1 < γ < q, such that
1
3

+ 1
q

= 1
γ
, 2

s
+ 3

q
= 1.

Then a function v ∈ Ls
(
0, T ; Lq(Ω)

)
is called a very weak solution of the

Navier-Stokes system

vt −∆v + v · ∇v +∇h = f, div v = 0, (2.16)

v|∂Ω
= g, v|t=0

= v0

on [0, T )× Ω with data f, g, v0 satisfying

f = div F, F = (Fij)i,j=1,2,3 ∈ Ls
(
0, T ; Lγ(Ω)

)
,

g ∈ Ls
(
0, T ; W− 1

q
,q(∂Ω)

)
, (2.17)∫

∂Ω

N · g dS = 〈N, g〉∂Ω = 0,

v0 ∈ J q,s(Ω),

if the relation

−〈v, wt〉Ω,T − 〈v, ∆w〉Ω,T + 〈g,N · ∇w〉∂Ω,T − 〈vv,∇w〉Ω,T

= 〈v0, w(0)〉Ω − 〈F,∇w〉Ω,T

(2.18)

is satisfied for all w ∈ C2
0

(
[0, T ); C2

0,σ(Ω)
)
, and if the conditions

div v = 0, N · v|∂Ω
= N · g (2.19)

are satisfied in (0, T )× Ω and (0, T )× ∂Ω, respectively.
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Note that the system (2.16) is well-defined in a weak sense. Using (2.18) with
w ∈ C2

0

(
(0, T ); C2

0,σ(Ω)
)

we conclude that there is a unique (associated) pressure
term∇h such that (2.16)1 holds in the sense of distributions in (0, T )×Ω. Further
we conclude from (2.18), (2.19) that the boundary condition v|∂Ω

= g is well-

defined, and that the initial condition v|t=0
= v0 is well-defined up to a gradient,

see [4]. Moreover, v is uniquely determined and arbitrarily smooth in (0, T )× Ω
if ∂Ω and the data are sufficiently smooth.

The following lemma yields the existence of v under a smallness condition on
the data, see [4], Theorem 1.

Lemma 2.4 ([4]) Let Ω ⊆ R3 be a bounded domain of class C2,1, let 0 < T ≤ ∞,
and let f, g, v0 be as in (2.17) with 3 < q < ∞, 2 < s < ∞, 1 < γ < q, 1

3
+ 1

q
= 1

γ
,

2
s

+ 3
q

= 1. Then there is a constant ε = ε(Ω, q) > 0 with the following property:
If( ∫ T

0

‖e−tA2P2v0‖s
q,Ω dt

)1/s

+
( ∫ T

0

‖F‖s
γ,Ω dt

)1/s

+
( ∫ T

0

‖g‖s
− 1

q
;q,∂Ω

dt
)1/s

≤ ε,

(2.20)
then there exists a unique very weak solution v ∈ Ls

(
0, T ; Lq(Ω)

)
of the system

(2.16).

Our method to prove Theorem 1.1 rests on the local identification of the given
weak solution u with a certain very weak solution v, see Section 3.

Omitting the nonlinear term v ·∇v in (2.16), we obtain the linear nonstation-
ary Stokes system. The corresponding notion of a very weak solution is obtained
by omitting the term 〈vv,∇w〉Ω,T in (2.18), and the existence of a unique solution
is obtained in this case without any smallness condition, see [4], Theorem 4.

Lemma 2.5 ([4]) Let Ω, T be as in Lemma 2.4, assume 1 < γ < q < ∞,
1
3

+ 1
q

= 1
γ

and 1 < s < ∞, and let f, g, v0 be as in this lemma, but omit the

condition 2
s

+ 3
q

= 1. Then the linearized system (2.16) has a unique very weak

solution E ∈ Ls
(
0, T ; Lq(Ω)

)
, i.e., by definition,

−〈E, wt〉Ω,T − 〈E, ∆w〉Ω,T + 〈g,N · ∇w〉∂Ω,T = 〈v0, w(0)〉Ω − 〈F,∇w〉Ω,T (2.21)

for all w ∈ C2
0

(
[0, T ); C2

0,σ(Ω)
)
, and the conditions

div E = 0, N · E|∂Ω
= N · g, (2.22)

hold. Moreover, E satisfies the estimate

‖A−1
q PqEt‖Ls(0,T ;Lq(Ω)) + ‖E‖Ls(0,T ;Lq(Ω))

≤ C
(
‖v0‖J q,s + ‖F‖Ls(0,T ;Lγ(Ω)) + ‖g‖

Ls(0,T ;W
− 1

q ,q
(∂Ω))

)
with some constant C = C(Ω, q, γ, s) > 0 independent of T .
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Further we note, see [4], (4.19), that v from Lemma 2.4 and E from Lemma
2.5 satisfy the (well-defined) semigroup relation

v(t)− E(t) = −
∫ t

0

Aqe
−(t−τ)AqA−1

q Pq div (vv) dτ, 0 ≤ t < T. (2.23)

In the following we will also apply Lemma 2.4, Lemma 2.5, and formula
(2.23) with [0, T ) replaced by any other interval [T0, T1), 0 ≤ T0 < T1 ≤ ∞. Then
[0, T )× Ω is replaced by [T0, T1)× Ω, the initial condition v|t=0

= v0 is replaced

by v|t=T0

= v0, and, instead of (2.23), we get the relation

v(t)− E(t) = −
∫ t

T0

Aqe
−(t−τ)AqA−1

q Pq div (vv) dτ, T0 ≤ t < T1. (2.24)

Next assume that vv ∈ L2
(
T0, T1; L

2(Ω)
)

is satisfied in (2.24). Then (2.24)
is the well-known representation formula, see, e.g., [10], IV, (2.4.4), yielding the
usual weak solution v − E of the linear Stokes system

(v − E)t −∆(v − E) +∇h = −div (vv), div (v − E) = 0,
v − E|∂Ω

= 0, v − E|t=T0

= 0 (2.25)

in [T0, T1)× Ω, and satisfying the usual energy relation

1

2
‖v(t)− E(t)‖2

2 +

∫ t

T0

‖∇(v − E)‖2
2 dτ =

∫ t

T0

〈vv,∇(v − E)〉Ω dτ, (2.26)

T0 ≤ t ≤ T1. An easy consequence is the energy estimate

‖v−E‖2
L∞(T0,T1;L2(Ω))+‖∇(v−E)‖2

L2(T0,T1;L2(Ω)) ≤ ‖vv‖2
L2(T0,T1;L2(Ω)) < ∞, (2.27)

and it follows that

v − E ∈ L∞(
T0, T1; L

2(Ω)
)
, ∇(v − E) ∈ L2

(
T0, T1; L

2(Ω)
)
, (2.28)

see [10], Theorem IV, 2.3.1.

3 Proof of Theorem 1.1

In the following let Qr(t0, x0) ⊆ (0,∞) × Ω, r > 0, t0 ∈ (0,∞), x0 ∈ Ω, be a
parabolic cylinder and let u be a weak solution of (1.1) with data f = div F , u0

as in Theorem 1.1. Our aim is to prove the following result:

There exists an absolute constant ε∗ > 0 such that if (3.1)

‖u‖Lq(Qr) ≤ ε∗ r
2
q
+ 3

q
−1,

2

q
+

3

q
≤ 1 +

1

4
, ‖F‖L4(t0−r2,t0;L2(Br(x0))) ≤ ε∗ ,

then u ∈ L4
(
t0 − (

r

2
)2, t0; L

6
(
Br/2(x0)

))
.
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To this end we need several steps.
a) Reduction to the special case q = 4, r = 1, x0 = 0
Hölder’s inequality leads to the estimate

‖u‖L4(Qr) ≤
(4

3
πr5

) 1
4
− 1

q ‖u‖Lq(Qr) ≤ 2πr
5
4
− 5

q ‖u‖Lq(Qr).

Therefore, if we know the result (3.1) with some ε∗ for q = 4, then this result
holds for the general case with ε∗ replaced by ε∗

2π
. Thus we may set q = 4 in the

following.
Next we use a well-known scaling procedure, introduced in principle in [2],

in order to reduce the problem (3.1) with q = 4 to the case r = 1. For λ > 0
let Ω̃ = {y ∈ R3; λy + x0 ∈ Ω}, and let ũ, p̃, f̃ , F̃ , ũ0 be defined in the variables
τ = λ−2t ∈ [0,∞), y = λ−1(x− x0) ∈ Ω̃ where t ∈ (0,∞), x ∈ Ω, by setting

ũ(τ, y) = λu(t, x), p̃(τ, y) = λ2p(t, x), f̃(τ, y) = λ3f(t, x), (3.2)

F̃ (τ, y) = λ2F (t, x), ũ0(y) = λu0(x).

Then an elementary calculation shows that ũ is a weak solution in [0,∞)× Ω̃
of the system

ũτ −∆ũ + ũ · ∇ũ +∇p̃ = f̃ , div ũ = 0,

ũ|∂Ω̃
= 0, ũ|τ=0

= ũ0

(3.3)

with data f̃ = div F̃ , ũ0, if and only if u is a weak solution in [0,∞) × Ω of
(1.1) with data f = div F, u0. It holds (t, x) ∈ Qr(t0, x0) if and only if (τ, y) ∈
Qr/λ(τ0, y0) where τ0 = λ−2t0, y0 = 0. Moreover,

‖ũ‖L4(Qr/λ) =
( ∫ τ0

τ0−( r
λ
)2

∫
|y|< r

λ

|ũ(τ, y)|4 dy dτ
) 1

4
(3.4)

= λ−
1
4

( ∫ t0

t0−r2

∫
|x−x0|<r

|u(t, x)|4 dx dt
) 1

4
= λ−

1
4 ‖u‖L4(Qr)

and, using the notation Br = Br(0),

‖F̃‖L4(τ0−( r
λ
)2,τ0;L2(Br/λ)) = ‖F‖L4(t0−r2,t0;L2(Br(x0))), (3.5)

‖ũ‖L4(τ0−( r
2λ

)2,τ0;L6(Br/2λ)) = ‖u‖L4(t0−( r
2
)2,t0;L6(Br/2(x0))).

Therefore, setting λ = r, we see that Qr/λ(τ0, 0) = Q1(τ0, 0), and that the
condition (1.3) with q = 4 now has the form ‖ũ‖L4(Q1) ≤ ε∗. Hence it suffices to
assume that x0 = 0 ∈ Ω, and to solve the problem (3.1) for given u, f = div F
and u0 on Q1 = Q1(t0, 0) ⊆ (0,∞)× Ω in the following reduced form.

There exists an absolute constant ε∗ > 0 such that if (3.6)

‖u‖L4(Q1(t0,0)) ≤ ε∗, ‖F‖L4(t0−1,t0;L2(B1)) ≤ ε∗,

then u ∈ L4
(
t0 −

1

2
, t0; L

6(B1/2)
)
.
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b) Construction of a local very weak solution v
In order to solve the problem (3.6) we first construct a very weak solution

v on a cylinder Q′ = [t′0, t0) × Br′ with appropriate values t′0 ∈ (t0 − 1, t0 − 1
2
),

r′ ∈ (1
2
, 1), and appropriate boundary and initial conditions. Then in part c)

below we will prove that u = v on Q′ leading to the desired regularity of u in
B1/2.

For this purpose we choose t′0 and r′ in such a way that

u(t′0) ∈ L4(Br′), u|(t0−1,t0)×∂Br′
∈ L4

(
t0 − 1, t0; L

4(∂Br′)
)

(3.7)

are well-defined and satisfy the estimates

‖u(t′0)‖J 6,4(Br′ )
≤ C1‖u(t′0)‖L4(Br′ )

≤ C2‖u‖L4(Q1) (3.8)

and
‖u‖

L4(t′0,t0;W− 1
6 ,6(∂Br′ ))

≤ C3‖u‖L4(t′0,t0;L4(∂Br′ ))
≤ C4‖u‖L4(Q1), (3.9)

where Cj = Cj(r
′) > 0, j = 1, . . . , 4.

To find such values t′0, r
′ we argue as follows. Since we have to find a (suffi-

ciently small) constant ε∗ in (3.6) with the desired property, we assume that

‖u‖L4(Q1) < ∞, ‖F‖L4(t0−1,t0;L2(B1)) < ∞.

Then u(t′0)|B1

∈ L4(B1) is well-defined for almost all t′0 ∈
(
t0− 1, t0− 1

2

)
. If there

is no such value t′0 satisfying additionally

‖u(t′0)‖4
L4(B1) ≤ 2‖u‖4

L4(t0−1,t0− 1
2
;L4(B1))

(3.10)

we conclude that

‖u‖4
L4(t0−1,t0− 1

2
;L4(B1))

=

∫ t0− 1
2

t0−1

‖u‖4
B1

dt >
1

2
· 2‖u‖4

L4(t0−1,t0− 1
2
;L4(B1))

(3.11)

which is a contradiction. Using (2.10), (2.11) with α = 1
8
, q = 6, δ = δ(q, Br′) > 0,

we thus obtain for some t′0 ∈ (t0 − 1, t0 − 1
2
) and - first of all - for each r′ ∈ (1

2
, 1)

the estimate

‖u(t′0)‖J 6,4(Br′ )
(3.12)

= ‖A−1
2 P2u(t′0)‖6,Br′

+

(∫ ∞

0

‖A1/8
2 e−tA2A

−1/8
2 P2u(t′0)‖4

6,Br′
dt

)1/4

≤ C1

(
‖A−1/8

2 P2u(t′0)‖6,Br′
+

( ∫ ∞

0

e−4δtt−4/8‖A−1/8
2 P2u(t′0)‖4

6,Br′
dt

)1/4
)

≤ C2‖u(t′0)‖4,Br′
≤ C2‖u(t′0)‖4,B1 ≤ C22

1/4‖u‖L4(Q1),
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Cj = Cj(r
′) > 0, j = 1, 2, which yields (3.8). Concerning r′ we argue in the same

way as for (3.10), and find at least one r′ ∈ (1
2
, 1) such that

‖u‖4
L4(t0−1,t0;L4(∂Br′ ))

≤ 2‖u‖4
L4(t0−1,t0;L4(B1\B1/2)). (3.13)

Using (2.15) with α = 1
6
, q = 6, γ = 4, we thus obtain the estimate

‖u‖
L4(t0−1,t0;W− 1

6 ,6(∂Br′ ))
≤ C3‖u‖L4(t0−1,t0;L4(∂Br′ ))

≤ C32
1/4‖u‖L4(t0−1,t0;L4(B1\B1/2)) ≤ C32

1/4‖u‖L4(Q1),
(3.14)

C3 = C3(r
′) > 0, which yields (3.9).

Let Q′ = [t′0, t0) × Br′ . Then we are able to apply Lemma 2.4 with Ω = Br′ ,
q = 6, s = 4, γ = 2 and with [0, T ) replaced by [t′0, t0). Thus we obtain a
constant ε(r′) > 0 and a unique very weak solution v ∈ L4(t′0, t0; L

6(Br′)) in Q′

of the system

vt −∆v + v · ∇v +∇h = f, div v = 0,

v|∂Br′
= g, v|t=t′0

= v0
(3.15)

with data

f = div F, F ∈ L4(t′0, t0; L
2(Br′)), g = u|(t′0,t0)×∂Br′

, v0 = u(t′0)|Br′
, (3.16)

if
‖u‖L4(Q1) + ‖F‖L4(t0−1,t0;L2(B1)) ≤ ε(r′). (3.17)

Identifying u = v on Q′ ⊃ Q1/2, see Part c) below, we are led to the desired
property u ∈ L4(t0 − 1

2
, t0; L

6(B1/2(x0))). However, in order to prove (3.6) we
need that the constant in (3.17) does not depend on r′. To obtain an absolute
constant in (3.17) we modify the system (3.15), using again the scaling procedure,
as follows.

With λ = r′ let τ = λ−2t, τ ′0 = λ−2t′0, τ0 = λ−2t0 for t ∈ [t′0, t0), τ ∈
[τ ′0, τ0), and let y = λ−1x ∈ B1, x ∈ Br′ , y0 = 0. Then ṽ, F̃ , g̃, ṽ0 are defined by
F̃ (τ, y) = λ2F (t, x), g̃(τ, y) = λg(t, x) and ṽ0(y) = λv0(x). Obviously the scaling
argument as in (3.3) shows that ṽ ∈ L4

(
τ ′0, τ0; L

6(B1)
)

is a very weak solution in

Q̃′ = [τ ′0, τ0]×B1 of the system

ṽτ −∆ṽ + ṽ · ∇ṽ +∇h̃ = f̃ , div ṽ = 0,

ṽ|∂B1

= g̃, ṽ|τ=τ ′0
= ṽ0

(3.18)

with data
f̃ = div F̃ , g̃ = ũ|(τ ′0,τ0)×∂B1

, ṽ0 = ũ(τ ′0)|B1

, (3.19)
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if and only if v ∈ L4
(
t′0, t0; L

6(Br′)
)

is a very weak solution in Q′ of the system
(3.15) with data (3.16). The same calculation as for (3.8), (3.9), see (3.12) -
(3.14), now yields the estimates

‖ũ(τ ′0)‖J 6,4(B1) ≤ C1‖ũ(τ ′0)‖L4(B1) ≤ C2‖u‖L4(Q1) (3.20)

and

‖ũ‖
L4(τ ′0,τ0;W− 1

6 ,6(∂B1))
≤ C3‖ũ‖L4(τ ′0,τ0;L4(∂B1)) ≤ C4‖u‖L4(Q1) ; (3.21)

here, replacing Br by B1, the constants C1, . . . , C4 depend on B1 and therefore
are absolute constants. Hence the smallness condition (3.17) corresponding to the
system (3.18) with data (3.19) is satisfied with some absolute constant ε∗ > 0.
Thus we can return to (3.15) and obtain by virtue of Lemma 2.4 the following
result:

There exists an absolute constant ε∗ > 0 such that if (3.22)

‖u‖L4(Q1) + ‖F‖L4(t0−1,t0;L2(B1)) ≤ ε∗,

then the system (3.15) with data (3.16) has a unique very weak

solution v ∈ L4
(
t′0, t0; L

6(Br′)
)
.

c) Identification u = v on Q′

It remains to prove this identification. Assuming u = v on Q′ we conclude,
since t′0 < t0 − 1

2
, 1

2
< r′, that (3.6) is true, and we complete the proof. To this

end we need several arguments as follows.
First we consider the very weak solution E ∈ L4

(
t′0, t0; L

6(Br′)
)

of the lin-
earized system (3.15), omitting the term v · ∇v; see (2.21), (2.22) with s = 4,
q = 6, Ω = Br′ , [0, T ) replaced by [t′0, t0). Then formula (2.24) can be written in
the form

v(t)− E(t) = −
∫ t

t′0

e−(t−τ)A2 P2div
(
v(τ)v(τ)

)
dτ. (3.23)

Using Hölder’s inequality in L2(Q′) = L2
(
t′0, t0; L

2(Br′)
)
, we obtain that

‖vv‖L2(Q′) ≤ C‖v‖2
L4(Q′) ≤ C‖v‖2

L4(Q1) < ∞

with an absolute constant C > 0, and thus that v−E in (3.23) has the properties
(2.25) – (2.28) with [T0, T1)× Ω replaced by [t′0, t0)×Br′ .

Next we use that uu ∈ L2
(
t′0, t0; L

2(Br′)
)
, and we argue for u − E in the

same way as for v − E in (2.25) – (2.28). Indeed, using for u, E the relations
(2.4), (2.18), we conclude that (2.25) – (2.28) is true if v is replaced by u, and
[T0, T1)× Ω is replaced by [t′0, t0)×Br′ .
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Further we conclude that u− v is the weak solution of the Stokes system

(u− v)t −∆(u− v) +∇h = −div (uu− vv), div (u− v) = 0,

u− v|∂Br′
= 0, u− v|t=t′0

= 0

in [t′0, t0)×Br′ , and that the corresponding energy properties as in (2.26) – (2.28)
hold for u− v.

Since u(u− v) ∈ L2(Q′) and ∇(u− v) ∈ L2(Q′) we see by Hölder’s inequality
that

∫ t0
t′0
〈u(u− v), ∇(u− v)〉Br′

dτ is well-defined, and that

〈u(u− v), ∇(u− v)〉Br′
=

1

2
〈u,∇|u− v|2〉Br′

= 0.

Therefore, using (2.26) for u− v as explained above, we obtain that

1

2
‖u(t)− v(t)‖2

2 +

∫ t0

t′0

‖∇(u− v)‖2
2 dτ =

∫ t

t′0

〈uu− vv, ∇(u− v)〉Br′
dτ

=

∫ t

t′0

〈u(u− v) + (u− v)v, ∇(u− v)〉Br′
dτ =

∫ t

t′0

〈(u− v)v, ∇(u− v)〉Br′
dτ.

A consequence of this relation as in (2.27) is the energy estimate

|||u− v|||2t′0,t0
:= ‖u− v‖2

L∞(t′0,t0;L2(Br′ ))
+ ‖∇(u− v)‖2

L2(t′0,t0;L2(Br′ ))

= ‖u− v‖2
2,∞ + ‖∇(u− v)‖2

2,2 (3.24)

≤ C1‖(u− v)v‖2
2,2 .

Next we use the standard Sobolev estimate ‖u−v‖3 ≤ C2‖∇(u−v)‖
1
2
2 ‖u−v‖

1
2
2 ,

see e.g. [10], II, (1.3.2), and Hölder’s inequality, and obtain that

‖(u− v)v‖2
2,2 ≤ C3‖v‖2

6,4 ‖u− v‖2
3,4

≤ C4‖v‖2
6,4

(
‖∇(u− v)‖2

2,2 + ‖u− v‖2
2,∞

)
= C4‖v‖2

6,4 |||u− v|||2t′0,t0
.

In these estimates C1, . . . , C4 > 0 are absolute constants. Thus (3.24) leads to
the estimate

|||u− v|||t′0,t0 ≤ C‖v‖L4(t′0,t0;L6(Br′ ))
|||u− v|||t′0,t0 (3.25)

with some absolute constant C > 0.
Our purpose is to apply to (3.25) the well-known absorption principle as

follows. Consider a decomposition t′0 = t1 < t2 < . . . < tm−1 < tm = t0, m ∈ N,
in such a way that

C‖v‖L4(tj−1,tj ;L6(Br′ ))
≤ 1

2
(3.26)
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for j = 2, . . . ,m. The estimate (3.25) also holds with t0 replaced by t1, and
inserting (3.26) in (3.25) we get that

|||u− v|||t′0,t1 ≤
1

2
|||u− v|||t′0,t1

which means that u = v in [t′0, t1). Repeating this argument with [t′0, t1) replaced
by [t1, t2) yields u = v in [t1, t2), and so on. In a finite number of such steps we
conclude that u = v in Q′. This completes the proof of Theorem 1.1.

Proof of Corollary 1.2 The proof of Theorem 1.1 can be carried out in the same
way with Qr(t0, x0) replaced by Q∗

r(t0, x0), which means that (1.5) is replaced by

u ∈ L4
(
t0− 7

8

(
r
2

)2
, t0+ 1

8

(
r
2

)2
; L6

(
Br/2(x0)

)
, after the corresponding modifications

in this theorem. This means in particular that (t0, x0) is a regular point of u.
If the condition (1.7) is satisfied, we find a sequence Q∗

rj
(t0, x0) ⊆ (0,∞) × Ω,

rj > 0, j ∈ N, with limj→∞ rj = 0 , in such a way that

lim
j→∞

rq−5
j ‖u‖q

Lq(Q∗
rj

) < (ε∗)
q.

Then there is at least one radius r0 > 0 among the values r1, r2, . . . , such that

‖u‖Lq(Q∗
r0

) ≤ ε∗ r
2
q
+ 3

q
−1

0 ,

cf. (1.3), holds in Theorem 1.1 suitably modified. Furthermore, using F ∈
L4

(
0,∞; L2(Ω)

)
, we can choose r0 sufficiently small in such a way that (1.4) is

satisfied after the corresponding modification. This shows that (t0, x0) is a regular
point, and the proof is complete.
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