Local space-time regularity criteria for weak solutions of the Navier-Stokes equations beyond Serrin's condition

R. Farwig^{*}, H. Kozono[†], H. Sohr[‡]

Abstract

Consider a weak solution u of the Navier-Stokes equations for a general domain $\Omega \subseteq \mathbb{R}^3$ on the time interval $[0, \infty)$ and a parabolic cylinder $Q_r = Q_r(t_0, x_0) \subseteq (0, \infty) \times \Omega$ with r > 0, $t_0 \in (0, \infty)$, $x_0 \in \Omega$. Then we show that there exists an absolute constant $\varepsilon_* > 0$ such that the local condition $\|u\|_{L^q(Q_r)} \leq \varepsilon_* r^{\frac{2}{q} + \frac{3}{q} - 1}, \frac{2}{q} + \frac{3}{q} \leq 1 + \frac{1}{4}$, implies the regularity of u in the smaller cylinder $Q_{r/2}$. The special case $\frac{2}{q} + \frac{3}{q} = 1$ yields the well-known local Serrin condition $\|u\|_{L^q(Q_r)} \leq \varepsilon_*$. Thus our criterion extends Serrin's condition admitting smaller exponents q and replacing the barrier 1 by $1 + \frac{1}{4}$.

2000 Mathematics Subject Classification: 35Q30; 76D05; 35B65

Keywords: Instationary Navier-Stokes equations, local regularity, Serrin's condition

1 Main Result

In our main result, see Theorem 1.1 below, we consider a completely general domain $\Omega \subseteq \mathbb{R}^3$, i.e. a connected open subset of \mathbb{R}^3 with boundary $\partial\Omega$, and the Navier-Stokes system on $[0, \infty) \times \Omega$ in the usual form

$$u_t - \Delta u + u \cdot \nabla u + \nabla p = f, \quad \text{div } u = 0,$$

$$u_{|_{\partial\Omega}} = 0, \quad u_{|_{t=0}} = u_0$$
(1.1)

 ^{*}Department of Mathematics, Darmstadt University of Technology, D-64283 Darmstadt, Germany, farwig@mathematik.tu-darmstadt.de

[†]Mathematical Institute, Tôhoku University, Sendai, 980-8578 Japan, kozono@math.tohoku.ac.jp

 $[\]ddagger$ Faculty of Electrical Engineering, Informatics and Mathematics, University of Paderborn, D-33098 Paderborn, Germany, hsohr@math.uni-paderborn.de

with external force f and initial value u_0 . We are interested in regularity properties of a weak solution u in parabolic cylinders $Q_r \subseteq (0, \infty) \times \Omega$ defined by

$$Q_r = Q_r(t_0, x_0) := \{(t, x); t_0 - r^2 < t < t_0, |x - x_0| < r\} = (t_0 - r^2, t_0) \times B_r(x_0),$$
(1.2)

where $B_r(x_0) \subseteq \Omega$ means the open ball with radius r > 0 and center $x_0 \in \Omega$, and $t_0 \in (0, \infty)$. See Section 2 concerning further definitions.

Theorem 1.1 Let $\Omega \subseteq \mathbb{R}^3$ be a general domain, let u be a weak solution of the Navier-Stokes system (1.1) with data $f = \operatorname{div} F$, $F \in L^2(0, \infty; L^2(\Omega))$, $u_0 \in L^2_{\sigma}(\Omega)$, and let $Q_r = Q_r(t_0, x_0) \subseteq (0, \infty) \times \Omega$ be a parabolic cylinder with $t_0 \in (0, \infty)$, $x_0 \in \Omega$, r > 0.

Then there is an absolute constant $\varepsilon_* > 0$ with the following property: If

$$\|u\|_{L^{q}(Q_{r})} \leq \varepsilon_{*} r^{\frac{2}{q} + \frac{3}{q} - 1}, \quad 1 < q < \infty, \ \frac{2}{q} + \frac{3}{q} \leq 1 + \frac{1}{4}, \tag{1.3}$$

and

$$||F||_{L^4(t_0 - r^2, t_0; L^2(B_r(x_0)))} \le \varepsilon_*, \tag{1.4}$$

then u is regular in $Q_{r/2} = Q_{r/2}(t_0, x_0)$ in the sense that Serrin's condition

$$u \in L^4\left(t_0 - \left(\frac{r}{2}\right)^2, t_0; L^6\left(B_{r/2}(x_0)\right)\right), \quad \frac{2}{4} + \frac{3}{6} = 1,$$
 (1.5)

is satisfied in $Q_{r/2}$.

In (1.3) we wrote $\frac{2}{q} + \frac{3}{q}$ instead of $\frac{5}{q}$ in order to point out the analogy with the classical Serrin number $\frac{2}{s} + \frac{3}{q}$ where $s, q \in (1, \infty)$ denote possibly different exponents of integration with respect to time and space. For technical reasons we have to restrict ourselves to the case s = q in this paper.

A result similar to Theorem 1.1 holds when we replace the cylinder $Q_r(t_0, x_0)$ by the slightly modified parabolic cylinder of the form

$$Q_r^* = Q_r^*(t_0, x_0) = \left(t_0 - \frac{7}{8}r^2, t_0 + \frac{1}{8}r^2\right) \times B_r(x_0)$$
(1.6)

with $r > 0, t_0 \in (0, \infty), t_0 - \frac{7}{8}r^2 > 0, x_0 \in \Omega$. See [2] concerning these cylinders.

If for given $(t_0, x_0) \in (0, \infty) \times \Omega$ there is at least one $Q_r^*(t_0, x_0) \subseteq (0, \infty) \times \Omega$, r > 0, such that u is regular in $Q_r^*(t_0, x_0)$, then (t_0, x_0) is a regular point of u; see Remark 2.2 below. The next corollary yields a criterion for regular points.

Corollary 1.2 Let $\Omega \subseteq \mathbb{R}^3$ be a general domain, let u be a weak solution of the Navier-Stokes system (1.1) with data $f = \operatorname{div} F$, $F \in L^4(0, \infty; L^2(\Omega)) \cap$ $L^2(0, \infty; L^2(\Omega))$, $u_0 \in L^2_{\sigma}(\Omega)$, let $t_0 \in (0, \infty)$, $x_0 \in \Omega$, and consider the cylinders $Q_r^*(t_0, x_0)$ contained in $(0, \infty) \times \Omega$ for r > 0. Suppose

$$\liminf_{r \to 0} r^{1-5/q} \|u\|_{L^q(Q_r^*)} < \varepsilon_*, \quad 1 < q < \infty, \ \frac{2}{q} + \frac{3}{q} \le 1 + \frac{1}{4} \tag{1.7}$$

with $\varepsilon_* > 0$ as in Theorem 1.1. Then (t_0, x_0) is a regular point of u.

Remark 1.3 Note that $\frac{2}{q} + \frac{3}{q} \le 1 + \frac{1}{4}$, $1 < q < \infty$, is equivalent to $4 \le q < \infty$, whereas the case $5 \le q < \infty$ is well-known by Serrin's condition $\frac{2}{q} + \frac{3}{q} \le 1$. Thus within the region

$$4 \le q < 5 \tag{1.8}$$

we obtain a new local regularity condition beyond Serrin's condition $\frac{2}{q} + \frac{3}{q} \leq 1$, since $1 < \frac{2}{q} + \frac{3}{q} \leq 1 + \frac{1}{4}$ is equivalent to (1.8) with Serrin's barrier strictly larger than 1.

The weakest possible regularity condition in (1.3) is obtained for q = 4 in the form

$$\|u\|_{L^4(Q_r)} \le \varepsilon_* r^{\frac{1}{4}}.$$
(1.9)

Further we note that the condition for the regularity of (t_0, x_0) in Corollary 1.2 does not depend on the local behavior of the external force f.

It is interesting to compare Theorem 1.1 with a local regularity result in [2], Proposition 1 and Corollary 1; for simplicity we will perform this comparison in a slightly different formulation and with f = 0. The authors of [2] need a special type of weak solutions, the so-called suitable weak solutions, see (2.6), (2.7) below, and their local regularity condition contains the associated pressure p. The existence of such a weak solution is non-trivial and was shown in [2] for \mathbb{R}^3 and for smooth bounded Ω ; see [5] for an existence proof for uniform C^2 -domains. On the other hand, the existence of a weak solution u in Theorem 1.1 in the sense of Definition 2.1 below is well-known for general domains.

Lemma 1.4 ([2]) Let $\Omega \subseteq \mathbb{R}^3$ be a general domain, let u be a suitable weak solution of the Navier-Stokes system (1.1) with data f = 0, $u_0 \in L^2_{\sigma}(\Omega)$, associated pressure term ∇p , and let $Q_r = Q_r(t_0, x_0) \subseteq (0, \infty) \times \Omega$ be a parabolic cylinder.

Then there is an absolute constant $\varepsilon_* > 0$ with the following property: If

$$||u||_{L^{3}(Q_{r})}^{3} + ||up||_{L^{1}(Q_{r})} + ||p||_{L^{5/4}(Q_{r})} \le \varepsilon_{*} r^{2}, \qquad (1.10)$$

then u is regular in $Q_{r/2} = Q_{r/2}(t_0, x_0)$ in the sense that $|u(t, x)| \leq C_1 r^{-1}$ holds for almost all $(t, x) \in Q_{r/2}$ and some absolute constant $C_1 > 0$.

Note that the regularity condition of Theorem 1.1 for f = 0, q = 4 can be written with ε_* as in (1.3) in the form

$$\|u\|_{L^4(Q_r)}^4 \le (\varepsilon_*)^4 r \tag{1.11}$$

which is completely independent of (1.10); the same holds for the corresponding proofs.

2 Notations and Preliminaries

In the first part of this section, where we look at usual weak solutions, $\Omega \subseteq \mathbb{R}^3$ means a general domain as in Theorem 1.1. In the second part we consider another type of weak solutions, investigated recently in [1], [4], the so-called very weak solutions with inhomogeneous boundary values, where $\Omega \subseteq \mathbb{R}^3$ is a smooth bounded domain in the sense that the boundary $\partial\Omega$ is of class $C^{2,1}$.

Definition 2.1 Let $\Omega \subseteq \mathbb{R}^3$ be a general domain, and let

$$f = \operatorname{div} F, \quad F = \left(F_{ij}\right)_{i,j=1,\dots,3} \in L^2(0,\infty;L^2(\Omega)), \quad u_0 \in L^2_{\sigma}(\Omega).$$
(2.1)

Then a function

$$u \in L^{\infty}(0,\infty; L^{2}_{\sigma}(\Omega)) \cap L^{2}_{\text{loc}}([0,\infty); W^{1,2}_{0}(\Omega)), \ \nabla u \in L^{2}(0,\infty; L^{2}(\Omega)), \quad (2.2)$$

is called a weak solution of the Navier-Stokes system (1.1) if

$$u: [0, \infty) \to L^2_{\sigma}(\Omega)$$
 is weakly continuous, (2.3)

and the condition

$$-\langle u, w_t \rangle_{\Omega,\infty} + \langle \nabla u, \nabla w \rangle_{\Omega,\infty} - \langle uu, \nabla w \rangle_{\Omega,\infty} = \langle u_0, w(0) \rangle_{\Omega} - \langle F, \nabla w \rangle_{\Omega,\infty}$$
(2.4)
is satisfied for all $w \in C_0^2([0,\infty); C_{0,\sigma}^2(\Omega)).$

Here we use the following standard notations: $\nabla = (\partial_1, \partial_2, \partial_3)$ where $\partial_j = \partial/\partial x_j$, j = 1, 2, 3, div $u = \partial_1 u_1 + \partial_2 u_2 + \partial_3 u_3$ for a vector field $u = (u_1, u_2, u_3)$ and div $F = (\partial_1 F_{1j} + \partial_2 F_{2j} + \partial_3 F_{3j})_{j=1,2,3}$ for a matrix field $F = (F_{ij})_{i,j=1,2,3}$. Moreover, $uu = (u_i u_j)_{i,j=1,2,3}$ and $u \cdot \nabla u = (u \cdot \nabla)u = \text{div}(uu)$ provided that div u = 0.

By $C^{j}(\Omega)$, $C^{j}(\overline{\Omega})$, $C_{0}^{j}(\Omega)$ and $C_{0}^{j}(\overline{\Omega})$, $j \in \mathbb{N}$ or $j = \infty$, we denote the usual spaces of smooth functions. In particular, a function $u \in C_{0}^{2}(\overline{\Omega})$ vanishes on $\partial\Omega$, but ∇u may be different from zero on $\partial\Omega$. Let

$$C_{0,\sigma}^{j}(\Omega) = \{ w \in C_{0}^{j}(\Omega); \operatorname{div} w = 0 \},\$$

 $C_{0,\sigma}^{j}(\overline{\Omega}) = \{w \in C_{0}^{j}(\overline{\Omega}); \operatorname{div} w = 0\}$ and $L_{\sigma}^{q} = L_{\sigma}^{q}(\Omega) = \overline{C_{0,\sigma}^{\infty}(\Omega)}^{\|\cdot\|_{q}}$. Furthermore, $C_{0}^{j}([0,T);X), j \in \mathbb{N}$, is the space of continuous functions $w : [0,T) \to X$ with compact support supp $w \subset [0,T)$ such that $w_{t} = dw/dt, \ldots, d^{j}w/dt^{j}$ are continuous. The usual Sobolev spaces are denoted by $W^{j,q} = W^{j,q}(\Omega), j \in \mathbb{N}$, and in particular $W_{0}^{1,2} = W_{0}^{1,2}(\Omega) = \overline{C_{0}^{\infty}(\Omega)}^{\|\cdot\|_{W^{1,2}}}$.

For a Banach space X with norm $\|\cdot\|_X$ we need for $1 \leq s \leq \infty$ the usual Bochner spaces $L^s(T_0, T_1; X), 0 \leq T_0 < T_1 \leq \infty$, with norm

$$\|u\|_{L^{s}(T_{0},T_{1};X)} = \begin{cases} \left(\int_{T_{0}}^{T_{1}} \|u\|_{X}^{s} dt\right)^{1/s}, & 1 \leq s < \infty \\ \underset{T_{0} \leq t \leq T_{1}}{\operatorname{ess sup}} \|u(t)\|_{X}, & s = \infty . \end{cases}$$

If $X = L^q = L^q(\Omega)$, $1 < q < \infty$, is the usual Lebesgue space we set $\|\cdot\|_X = \|\cdot\|_{L^q} = \|\cdot\|_{q,\Omega}$, and $\|u\|_{L^s(T_0,T_1;L^q(\Omega))} = \|u\|_{q,s}$ if T_0 , T_1 are known from the context. For 1 < q, $s < \infty$ and $0 < T \le \infty$ let $\langle u, v \rangle_{\Omega} = \int_{\Omega} u \cdot v \, dx$ denote the usual duality pairing of functions or vector fields $u \in L^q$, $v \in L^{q'}$, where $q' = \frac{q}{q-1}$. Further, for $u \in L^s(0,T;L^q)$, $v \in L^{s'}(0,T;L^{q'})$, $s' = \frac{s}{s-1}$,

$$\langle u, v \rangle_{\Omega,T} = \langle u, v \rangle_T = \int_0^T \langle u, v \rangle_\Omega \, d\tau$$

means the duality pairing in $[0, T) \times \Omega$. In (2.4) we used q = q' = 2, s = s' = 2and $T = \infty$. Moreover, $L^2_{loc}([0, T); W^{1,2}_0(\Omega))$, $0 < T \le \infty$, is the space of all $W^{1,2}_0(\Omega)$ -valued functions $w : t \mapsto w(t)$ such that $w \in L^2(0, T'; W^{1,2}_0(\Omega))$ for all $T' \in (0, T)$.

Note that the existence of a weak solution u as in Definition 2.1 is well-known for general domains, see, e.g., [10], V.3. Using (2.3) we see that

$$u(0) = u_{|_{t=0}} = u_0$$

in (1.1) is well-defined. Because of (2.2) the condition $u|_{\partial\Omega} = 0$ in (1.1) is welldefined in the sense that the trace $u(t)|_{\partial\Omega} = 0$ for almost all $t \in [0, \infty)$. Further we get from (2.2) that the condition div u = 0 is well-defined in the sense of distributions. Finally, we find a unique distribution of the form ∇p , the pressure term associated with u, such that

$$u_t - \Delta u + u \cdot \nabla u + \nabla p = f$$

holds in $(0, \infty) \times \Omega$ in the sense of distributions. Thus the system (1.1) is well-defined in a certain weak sense for each weak solution u.

Usually the notion of a weak solution u includes the energy inequality

$$\frac{1}{2} \|u(t)\|_{2}^{2} + \int_{0}^{t} \|\nabla u\|_{2}^{2} d\tau \leq \frac{1}{2} \|u_{0}\|_{2}^{2} - \int_{0}^{t} \langle F, \nabla u \rangle_{\Omega} d\tau, \quad 0 \leq t < \infty.$$
(2.5)

However, we do not need (2.5) in our method.

The more special notion of a suitable weak solution u plays an important role in the local regularity theory of weak solutions, see [2]. In this case the existence of u is non-trivial and has been shown for $\Omega = \mathbb{R}^3$, for bounded domains $\Omega \subseteq \mathbb{R}^3$ with smooth boundary $\partial\Omega$, see [2], p. 822, and for exterior domains $\Omega \subseteq \mathbb{R}^3$, see [7], [11]; recently, the existence has been proved for general domains $\Omega \subseteq \mathbb{R}^3$ with uniform C^2 -boundary $\partial\Omega$, see [5].

Let Ω , $f = \operatorname{div} F$, and u_0 be as in Definition 2.1, and assume additionally that $f \in L^2(0, \infty; L^2(\Omega))$. Then a weak solution u satisfying (2.2) – (2.4) is called a *suitable weak solution* of the system (1.1) with data f, u_0 , if the associated pressure term satisfies

$$\nabla p \in L^q_{\text{loc}}((0,\infty); L^q_{\text{loc}}(\overline{\Omega})) \text{ with } q = \frac{5}{4},$$
 (2.6)

and if the *local energy inequality*

$$\frac{1}{2} \|\varphi u(t)\|_{2}^{2} + \int_{t_{0}}^{t} \|\varphi \nabla u\|_{2}^{2} d\tau \leq \frac{1}{2} \|\varphi u(t_{0})\|_{2}^{2} + \int_{t_{0}}^{t} \langle\varphi f, \varphi u\rangle_{\Omega} d\tau \qquad (2.7)$$

$$- \frac{1}{2} \int_{t_{0}}^{t} \langle\nabla |u|^{2}, \nabla \varphi^{2}\rangle_{\Omega} d\tau + \int_{t_{0}}^{t} \langle\frac{1}{2} |u|^{2} + p, \, u \cdot \nabla \varphi^{2}\rangle_{\Omega} d\tau$$

is satisfied for almost all $t_0 \in [0, \infty)$, all $t \in [t_0, \infty)$, and all $\varphi \in C_0^{\infty}(\mathbb{R}^3)$.

Using a standard mollification, see e.g., [10], II, 1.7, we obtain from (2.7) in particular the inequality

$$\int_{(0,T)\times\Omega} |\nabla u|^2 \phi \, dt \, dx \le \frac{1}{2} \int_{(0,T)\times\Omega} \left(|u|^2 (\phi_t + \Delta \phi) + (|u|^2 + 2p) u \cdot \nabla \phi + 2(u \cdot f) \phi \right) dt \, dx \tag{2.8}$$

for all $\phi \in C_0^{\infty}((0,T) \times \Omega)$ with $\phi \ge 0$. This special formulation has been used in [2], (2.5), in the definition of suitable weak solutions.

Remark 2.2 (i) If a weak solution u satisfies a local Serrin condition as in (1.5) then we know higher regularity properties in space direction in each subdomain $D \subset Q_{r/2}$ with $\overline{D} \subseteq Q_{r/2}$, if f and Ω as in Theorem 1.1 are smooth in the sense that $f \in C_0^{\infty}((0, \infty) \times \Omega)$ and that Ω has a uniform C^2 -boundary $\partial\Omega$; see [2], p. 780, and [13], p. 453, concerning such properties. Indeed, first we obtain integrability properties of ∇p and u_t in some L^q -spaces, see [5]; then we use a standard localization procedure with a cut-off function to prove that each space derivative of u is essentially bounded in D. This justifies to say that u is regular in $Q_{r/2}$ if (1.5) is satisfied.

(ii) If instead of (1.5) the condition

$$u \in L^4\left(t_0 - \frac{7}{8}\left(\frac{r}{2}\right)^2, t_0 + \frac{1}{8}\left(\frac{r}{2}\right)^2; L^6\left(B_{r/2}(x_0)\right)\right)$$
(2.9)

is satisfied, where now $Q_{r/2}$ is replaced by $Q_{r/2}^*$, then the regularity properties above hold with $(t_0, x_0) \in D \subset Q_{r/2}^*$. Therefore, (t_0, x_0) is called a *regular point* in this case, cf. Corollary 1.2.

To prove Theorem 1.1 we use the theory of very weak solutions for smooth bounded domains, which has been introduced in [1] and generalized in [4], see Definition 2.3 below. For this purpose, we assume in the next part of this section that $\Omega \subseteq \mathbb{R}^3$ is a bounded domain with boundary of class $C^{2,1}$.

Let $P_q: L^q \to L^q_{\sigma}$, $1 < q < \infty$, be the Helmholtz projection, and let $A_q: \mathcal{D}(A_q) \to L^q_{\sigma}(\Omega)$ with domain $\mathcal{D}(A_q) = W^{2,q}(\Omega) \cap W^{1,q}_0(\Omega) \cap L^q_{\sigma}(\Omega)$ be the Stokes operator. It is well-known that $-A_q$ generates a bounded analytic semigroup e^{-tA_q} , $t \geq 0$, on L^q_{σ} , and that the fractional powers A^{α}_q , $-1 \leq \alpha \leq 1$, of A_q are

well-defined, see, e.g., [3], [4], [5], [6], [12]. In particular, we need the following embedding properties, see [4]:

$$||u||_q \le c ||A^{\alpha}_{\gamma}u||_{\gamma} \quad \text{for } u \in \mathcal{D}(A^{\alpha}_{\gamma}), \ 1 < \gamma \le q, \ 2\alpha + \frac{3}{q} = \frac{3}{\gamma}, \ (2.10)$$

$$\|A_{q}^{\alpha}e^{-tA_{q}}u\|_{q} \le ce^{-\delta t}t^{-\alpha}\|u\|_{q} \quad \text{for } u \in L_{\sigma}^{q}(\Omega), \ t > 0, \ 0 \le \alpha \le 1$$
(2.11)

for some $\delta = \delta(q, \Omega) > 0$ and constants $c = c(\alpha, q, \Omega) > 0$ and $c = c(\alpha, \delta, q, \Omega) > 0$, respectively.

Let $0 < T \leq \infty$, $1 < q, s < \infty$. Then the maximal regularity estimate

$$\|(v_t, A_q v)\|_{L^s(0,T;L^q)} \le c \big(\|A_q e^{-\cdot A_q} v_0\|_{L^s(0,T;L^q)} + \|f\|_{L^s(0,T;L^q)}\big),$$
(2.12)

 $c = c(q, \Omega) > 0$, holds for the unique solution v of the evolution system

$$v_t + A_q v = f, \quad v(0) = v_0$$

with data $f \in L^s(0,T;L^q_\sigma)$ and $v_0 \in L^q_\sigma$ such that $A_q e^{-A_q} v_0 \in L^s(0,T;L^q_\sigma)$.

To deal with traces on the boundary $\partial\Omega$ let N = N(x) denote the exterior normal unit vector at $x \in \partial\Omega$. Let $L^q(\partial\Omega)$ be the usual L^q -space on $\partial\Omega$ with norm $\|\cdot\|_{L^q(\partial\Omega)} = \|\cdot\|_{q,\partial\Omega}$. Then

$$\langle g,h\rangle_{\partial\Omega} = \int_{\partial\Omega} g \cdot h \, dS, \quad g \in L^q(\partial\Omega), \ h \in L^{q'}(\partial\Omega),$$

means the duality pairing on $\partial\Omega$ where dS is the surface element. Analogously, we define the duality pairing $\langle g, h \rangle_{\partial\Omega,T} = \int_0^T \langle g, h \rangle_{\partial\Omega} d\tau$ for $g \in L^s(0,T; L^q(\partial\Omega))$, $h \in L^{s'}(0,T; L^{q'}(\partial\Omega))$, $s' = \frac{s}{s-1}$. Further we need the Sobolev spaces $W^{\alpha,q}(\partial\Omega)$, $-2 \leq \alpha \leq 2$, of fractional order α with norm $\|\cdot\|_{W^{\alpha,q}(\partial\Omega)} = \|\cdot\|_{\alpha;q,\partial\Omega}$. Here, the space of negative order is defined as the dual space

$$W^{-\alpha,q}(\partial\Omega) = \left(W^{\alpha,q'}(\partial\Omega)\right)', \quad 0 < \alpha \le 2, \tag{2.13}$$

of the space $W^{\alpha,q'}(\partial\Omega)$ of positive order. The corresponding duality pairing is again denoted by $\langle \cdot, \cdot \rangle_{\partial\Omega}$.

Next we mention the embedding estimate

$$\|g\|_{q,\partial\Omega} \le c \|g\|_{\alpha;\gamma,\partial\Omega}, \quad 1 < \gamma \le q, \ \alpha + \frac{2}{q} = \frac{2}{\gamma}, \ 0 \le \alpha \le 2,$$
(2.14)

for all $g \in W^{\alpha,\gamma}(\partial\Omega)$ where $c = c(\alpha, q, \partial\Omega) > 0$. By a standard duality argument we get form (2.14) the embedding estimate

$$\|g\|_{-\alpha;q,\partial\Omega} \le c \|g\|_{\gamma,\partial\Omega}, \quad 1 < \gamma \le q, \ \alpha + \frac{2}{q} = \frac{2}{\gamma}, \ 0 \le \alpha \le 2, \tag{2.15}$$

for all $g \in L^{\gamma}(\partial \Omega)$ where $c = c(\alpha, q, \partial \Omega) > 0$.

The following definition of very weak solutions, see Definition 2.3 below, is for simplicity a special version of a more general notion introduced in [4]. Here we are mainly interested in boundary values as weak as possible. Note that a very weak solution v need not have any differentiability property in space, besides of div v = 0. However, v satisfies a Serrin condition and is therefore uniquely determined and regular if the data and $\partial\Omega$ are smooth. On the other hand, the usual weak solution u of Definition 2.1 has a finite gradient in L^2 , but we do not know uniqueness and global regularity properties.

In the following the set

$$\mathcal{J}^{q,s} = \mathcal{J}^{q,s}(\Omega) := \left\{ v_0 \in L^2(\Omega); \, \|A_2^{-1}P_2v_0\|_q + \left(\int_0^\infty \|e^{-tA_2}P_2v_0\|_q^s \, dt\right)^{\frac{1}{s}} < \infty \right\}$$

where $||v_0||_{\mathcal{J}^{q,s}} := ||A_2^{-1}P_2v_0||_{q,\Omega} + \left(\int_0^\infty ||e^{-tA_2}P_2v_0||_q^s dt\right)^{\frac{1}{s}}, 1 < q, s < \infty$, plays the role as the space of initial values; for simplicity this space is not defined in the most general form as in [4], (2.18). Note that $||v_0||_{\mathcal{J}^{q,s}} = 0$ only means that $P_2u_0 = 0$, see [4]. Therefore, $||\cdot||_{\mathcal{J}^{q,s}}$ is the norm of the quotient space of $\mathcal{J}^{q,s}$ modulo v_0 with $P_2v_0 = 0$, i.e., modulo such gradients.

Definition 2.3 ([4]) Let $\Omega \subseteq \mathbb{R}^3$ be a bounded domain with boundary of class $C^{2,1}$, and let $0 < T \leq \infty$, $3 < q < \infty$, $2 < s < \infty$, $1 < \gamma < q$, such that $\frac{1}{3} + \frac{1}{q} = \frac{1}{\gamma}, \frac{2}{s} + \frac{3}{q} = 1.$

Then a function $v \in L^s(0,T;L^q(\Omega))$ is called a very weak solution of the Navier-Stokes system

$$v_t - \Delta v + v \cdot \nabla v + \nabla h = f, \text{ div } v = 0, \qquad (2.16)$$
$$v_{\mid_{\partial\Omega}} = g, v_{\mid_{t=0}} = v_0$$

on $[0,T) \times \Omega$ with data f, g, v_0 satisfying

$$f = \operatorname{div} F, \ F = (F_{ij})_{i,j=1,2,3} \in L^{s}(0,T; L^{\gamma}(\Omega)),$$

$$g \in L^{s}(0,T; W^{-\frac{1}{q},q}(\partial\Omega)),$$

$$\int_{\partial\Omega} N \cdot g \, dS = \langle N, g \rangle_{\partial\Omega} = 0,$$

$$v_{0} \in \mathcal{J}^{q,s}(\Omega),$$

$$(2.17)$$

if the relation

$$-\langle v, w_t \rangle_{\Omega,T} - \langle v, \Delta w \rangle_{\Omega,T} + \langle g, N \cdot \nabla w \rangle_{\partial\Omega,T} - \langle vv, \nabla w \rangle_{\Omega,T} = \langle v_0, w(0) \rangle_{\Omega} - \langle F, \nabla w \rangle_{\Omega,T}$$
(2.18)

is satisfied for all $w \in C_0^2([0,T); C_{0,\sigma}^2(\overline{\Omega}))$, and if the conditions

$$\operatorname{div} v = 0, \quad N \cdot v|_{\partial \Omega} = N \cdot g \tag{2.19}$$

are satisfied in $(0,T) \times \Omega$ and $(0,T) \times \partial \Omega$, respectively.

Note that the system (2.16) is well-defined in a weak sense. Using (2.18) with $w \in C_0^2((0,T); C_{0,\sigma}^2(\Omega))$ we conclude that there is a unique (associated) pressure term ∇h such that (2.16)₁ holds in the sense of distributions in $(0,T) \times \Omega$. Further we conclude from (2.18), (2.19) that the boundary condition $v|_{\partial\Omega} = g$ is well-defined, and that the initial condition $v|_{t=0} = v_0$ is well-defined up to a gradient, see [4]. Moreover, v is uniquely determined and arbitrarily smooth in $(0,T) \times \overline{\Omega}$ if $\partial\Omega$ and the data are sufficiently smooth.

The following lemma yields the existence of v under a smallness condition on the data, see [4], Theorem 1.

Lemma 2.4 ([4]) Let $\Omega \subseteq \mathbb{R}^3$ be a bounded domain of class $C^{2,1}$, let $0 < T \leq \infty$, and let f, g, v_0 be as in (2.17) with $3 < q < \infty$, $2 < s < \infty$, $1 < \gamma < q$, $\frac{1}{3} + \frac{1}{q} = \frac{1}{\gamma}$, $\frac{2}{s} + \frac{3}{q} = 1$. Then there is a constant $\varepsilon = \varepsilon(\Omega, q) > 0$ with the following property: If

$$\left(\int_{0}^{T} \|e^{-tA_{2}}P_{2}v_{0}\|_{q,\Omega}^{s} dt\right)^{1/s} + \left(\int_{0}^{T} \|F\|_{\gamma,\Omega}^{s} dt\right)^{1/s} + \left(\int_{0}^{T} \|g\|_{-\frac{1}{q};q,\partial\Omega}^{s} dt\right)^{1/s} \le \varepsilon,$$
(2.20)

then there exists a unique very weak solution $v \in L^s(0,T; L^q(\Omega))$ of the system (2.16).

Our method to prove Theorem 1.1 rests on the local identification of the given weak solution u with a certain very weak solution v, see Section 3.

Omitting the nonlinear term $v \cdot \nabla v$ in (2.16), we obtain the linear nonstationary Stokes system. The corresponding notion of a very weak solution is obtained by omitting the term $\langle vv, \nabla w \rangle_{\Omega,T}$ in (2.18), and the existence of a unique solution is obtained in this case without any smallness condition, see [4], Theorem 4.

Lemma 2.5 ([4]) Let Ω, T be as in Lemma 2.4, assume $1 < \gamma < q < \infty$, $\frac{1}{3} + \frac{1}{q} = \frac{1}{\gamma}$ and $1 < s < \infty$, and let f, g, v_0 be as in this lemma, but omit the condition $\frac{2}{s} + \frac{3}{q} = 1$. Then the linearized system (2.16) has a unique very weak solution $E \in L^s(0, T; L^q(\Omega))$, i.e., by definition,

$$-\langle E, w_t \rangle_{\Omega,T} - \langle E, \Delta w \rangle_{\Omega,T} + \langle g, N \cdot \nabla w \rangle_{\partial\Omega,T} = \langle v_0, w(0) \rangle_{\Omega} - \langle F, \nabla w \rangle_{\Omega,T} \quad (2.21)$$

for all $w \in C_0^2([0,T); C_{0,\sigma}^2(\overline{\Omega}))$, and the conditions

div
$$E = 0$$
, $N \cdot E_{\mid_{\partial\Omega}} = N \cdot g$, (2.22)

hold. Moreover, E satisfies the estimate

$$\|A_q^{-1}P_qE_t\|_{L^s(0,T;L^q(\Omega))} + \|E\|_{L^s(0,T;L^q(\Omega))}$$

$$\leq C(\|v_0\|_{\mathcal{J}^{q,s}} + \|F\|_{L^s(0,T;L^\gamma(\Omega))} + \|g\|_{L^s(0,T;W^{-\frac{1}{q},q}(\partial\Omega))})$$

with some constant $C = C(\Omega, q, \gamma, s) > 0$ independent of T.

Further we note, see [4], (4.19), that v from Lemma 2.4 and E from Lemma 2.5 satisfy the (well-defined) semigroup relation

$$v(t) - E(t) = -\int_0^t A_q e^{-(t-\tau)A_q} A_q^{-1} P_q \operatorname{div}(vv) d\tau, \ 0 \le t < T.$$
(2.23)

In the following we will also apply Lemma 2.4, Lemma 2.5, and formula (2.23) with [0,T) replaced by any other interval $[T_0,T_1), 0 \leq T_0 < T_1 \leq \infty$. Then $[0,T) \times \Omega$ is replaced by $[T_0,T_1) \times \Omega$, the initial condition $v|_{t=0} = v_0$ is replaced by $v_{|_{t=T_0}} = v_0$, and, instead of (2.23), we get the relation

$$v(t) - E(t) = -\int_{T_0}^t A_q e^{-(t-\tau)A_q} A_q^{-1} P_q \operatorname{div}(vv) d\tau, \quad T_0 \le t < T_1.$$
(2.24)

Next assume that $vv \in L^2(T_0, T_1; L^2(\Omega))$ is satisfied in (2.24). Then (2.24) is the well-known representation formula, see, e.g., [10], IV, (2.4.4), yielding the usual weak solution v - E of the linear Stokes system

$$\begin{aligned} (v - E)_t - \Delta(v - E) + \nabla h &= -\operatorname{div}(vv), \quad \operatorname{div}(v - E) = 0, \\ v - E_{|_{\partial\Omega}} &= 0, \ v - E_{|_{t=T_0}} &= 0 \end{aligned}$$
 (2.25)

in $[T_0, T_1) \times \Omega$, and satisfying the usual energy relation

$$\frac{1}{2} \|v(t) - E(t)\|_2^2 + \int_{T_0}^t \|\nabla(v - E)\|_2^2 d\tau = \int_{T_0}^t \langle vv, \nabla(v - E) \rangle_\Omega d\tau, \qquad (2.26)$$

 $T_0 \leq t \leq T_1$. An easy consequence is the energy estimate

$$\|v - E\|_{L^{\infty}(T_0, T_1; L^2(\Omega))}^2 + \|\nabla(v - E)\|_{L^2(T_0, T_1; L^2(\Omega))}^2 \le \|vv\|_{L^2(T_0, T_1; L^2(\Omega))}^2 < \infty, \quad (2.27)$$

and it follows that

$$v - E \in L^{\infty}(T_0, T_1; L^2(\Omega)), \quad \nabla(v - E) \in L^2(T_0, T_1; L^2(\Omega)),$$
 (2.28)

see [10], Theorem IV, 2.3.1.

Proof of Theorem 1.1 3

In the following let $Q_r(t_0, x_0) \subseteq (0, \infty) \times \Omega$, $r > 0, t_0 \in (0, \infty), x_0 \in \Omega$, be a parabolic cylinder and let u be a weak solution of (1.1) with data $f = \operatorname{div} F$, u_0 as in Theorem 1.1. Our aim is to prove the following result:

There exists an absolute constant $\varepsilon_* > 0$ such that if (3.1)

$$\|u\|_{L^{q}(Q_{r})} \leq \varepsilon_{*} r^{\frac{2}{q} + \frac{3}{q} - 1}, \ \frac{2}{q} + \frac{3}{q} \leq 1 + \frac{1}{4}, \ \|F\|_{L^{4}(t_{0} - r^{2}, t_{0}; L^{2}(B_{r}(x_{0})))} \leq \varepsilon_{*},$$

then $u \in L^{4}\left(t_{0} - (\frac{r}{2})^{2}, t_{0}; L^{6}\left(B_{r/2}(x_{0})\right)\right).$

To this end we need several steps.

a) Reduction to the special case $q = 4, r = 1, x_0 = 0$

Hölder's inequality leads to the estimate

$$\|u\|_{L^4(Q_r)} \le \left(\frac{4}{3}\pi r^5\right)^{\frac{1}{4}-\frac{1}{q}} \|u\|_{L^q(Q_r)} \le 2\pi r^{\frac{5}{4}-\frac{5}{q}} \|u\|_{L^q(Q_r)}$$

Therefore, if we know the result (3.1) with some ε_* for q = 4, then this result holds for the general case with ε_* replaced by $\frac{\varepsilon_*}{2\pi}$. Thus we may set q = 4 in the following.

Next we use a well-known scaling procedure, introduced in principle in [2], in order to reduce the problem (3.1) with q = 4 to the case r = 1. For $\lambda > 0$ let $\tilde{\Omega} = \{y \in \mathbb{R}^3; \lambda y + x_0 \in \Omega\}$, and let $\tilde{u}, \tilde{p}, \tilde{f}, \tilde{F}, \tilde{u}_0$ be defined in the variables $\tau = \lambda^{-2}t \in [0, \infty), y = \lambda^{-1}(x - x_0) \in \tilde{\Omega}$ where $t \in (0, \infty), x \in \Omega$, by setting

$$\tilde{u}(\tau, y) = \lambda u(t, x), \quad \tilde{p}(\tau, y) = \lambda^2 p(t, x), \quad f(\tau, y) = \lambda^3 f(t, x), \quad (3.2)$$
$$\tilde{F}(\tau, y) = \lambda^2 F(t, x), \quad \tilde{u}_0(y) = \lambda u_0(x).$$

Then an elementary calculation shows that \tilde{u} is a weak solution in $[0, \infty) \times \hat{\Omega}$ of the system

$$\begin{aligned} \tilde{u}_{\tau} - \Delta \tilde{u} + \tilde{u} \cdot \nabla \tilde{u} + \nabla \tilde{p} &= \tilde{f}, & \operatorname{div} \tilde{u} &= 0, \\ \tilde{u}_{|\partial \tilde{\Omega}} &= 0, & \tilde{u}_{|\tau=0} &= \tilde{u}_{0} \end{aligned}$$
(3.3)

with data $\tilde{f} = \operatorname{div} \tilde{F}$, \tilde{u}_0 , if and only if u is a weak solution in $[0, \infty) \times \Omega$ of (1.1) with data $f = \operatorname{div} F, u_0$. It holds $(t, x) \in Q_r(t_0, x_0)$ if and only if $(\tau, y) \in Q_{r/\lambda}(\tau_0, y_0)$ where $\tau_0 = \lambda^{-2} t_0$, $y_0 = 0$. Moreover,

$$\begin{aligned} \|\tilde{u}\|_{L^{4}(Q_{r/\lambda})} &= \left(\int_{\tau_{0}-(\frac{r}{\lambda})^{2}}^{\tau_{0}} \int_{|y|<\frac{r}{\lambda}} |\tilde{u}(\tau,y)|^{4} \, dy \, d\tau\right)^{\frac{1}{4}} \\ &= \lambda^{-\frac{1}{4}} \left(\int_{t_{0}-r^{2}}^{t_{0}} \int_{|x-x_{0}|< r} |u(t,x)|^{4} \, dx \, dt\right)^{\frac{1}{4}} = \lambda^{-\frac{1}{4}} \|u\|_{L^{4}(Q_{r})} \end{aligned} \tag{3.4}$$

and, using the notation $B_r = B_r(0)$,

$$\|F\|_{L^{4}(\tau_{0}-(\frac{r}{\lambda})^{2},\tau_{0};L^{2}(B_{r/\lambda}))} = \|F\|_{L^{4}(t_{0}-r^{2},t_{0};L^{2}(B_{r}(x_{0})))},$$

$$\|\tilde{u}\|_{L^{4}(\tau_{0}-(\frac{r}{2\lambda})^{2},\tau_{0};L^{6}(B_{r/2\lambda}))} = \|u\|_{L^{4}(t_{0}-(\frac{r}{2})^{2},t_{0};L^{6}(B_{r/2}(x_{0})))}.$$

$$(3.5)$$

Therefore, setting $\lambda = r$, we see that $Q_{r/\lambda}(\tau_0, 0) = Q_1(\tau_0, 0)$, and that the condition (1.3) with q = 4 now has the form $\|\tilde{u}\|_{L^4(Q_1)} \leq \varepsilon_*$. Hence it suffices to assume that $x_0 = 0 \in \Omega$, and to solve the problem (3.1) for given $u, f = \operatorname{div} F$ and u_0 on $Q_1 = Q_1(t_0, 0) \subseteq (0, \infty) \times \Omega$ in the following reduced form.

There exists an absolute constant $\varepsilon_* > 0$ such that if (3.6)

$$\|u\|_{L^4(Q_1(t_0,0))} \le \varepsilon_*, \quad \|F\|_{L^4(t_0-1,t_0;L^2(B_1))} \le \varepsilon_*,$$

then $u \in L^4(t_0 - \frac{1}{2}, t_0; L^6(B_{1/2})).$

b) Construction of a local very weak solution v

In order to solve the problem (3.6) we first construct a very weak solution v on a cylinder $Q' = [t'_0, t_0) \times B_{r'}$ with appropriate values $t'_0 \in (t_0 - 1, t_0 - \frac{1}{2})$, $r' \in (\frac{1}{2}, 1)$, and appropriate boundary and initial conditions. Then in part c) below we will prove that u = v on Q' leading to the desired regularity of u in $B_{1/2}$.

For this purpose we choose t'_0 and r' in such a way that

$$u(t'_0) \in L^4(B_{r'}), \quad u|_{(t_0 - 1, t_0) \times \partial B_{r'}} \in L^4(t_0 - 1, t_0; L^4(\partial B_{r'}))$$
(3.7)

are well-defined and satisfy the estimates

$$\|u(t'_0)\|_{\mathcal{J}^{6,4}(B_{r'})} \le C_1 \|u(t'_0)\|_{L^4(B_{r'})} \le C_2 \|u\|_{L^4(Q_1)}$$
(3.8)

and

$$\|u\|_{L^{4}(t'_{0},t_{0};W^{-\frac{1}{6},6}(\partial B_{r'}))} \leq C_{3}\|u\|_{L^{4}(t'_{0},t_{0};L^{4}(\partial B_{r'}))} \leq C_{4}\|u\|_{L^{4}(Q_{1})}, \qquad (3.9)$$

where $C_j = C_j(r') > 0, \ j = 1, \dots, 4.$

To find such values t'_0, r' we argue as follows. Since we have to find a (sufficiently small) constant ε_* in (3.6) with the desired property, we assume that

$$||u||_{L^4(Q_1)} < \infty, \quad ||F||_{L^4(t_0 - 1, t_0; L^2(B_1))} < \infty.$$

Then $u(t'_0)|_{B_1} \in L^4(B_1)$ is well-defined for almost all $t'_0 \in (t_0 - 1, t_0 - \frac{1}{2})$. If there is no such value t'_0 satisfying additionally

$$\|u(t'_0)\|^4_{L^4(B_1)} \le 2\|u\|^4_{L^4(t_0-1,t_0-\frac{1}{2};L^4(B_1))}$$
(3.10)

we conclude that

$$\|u\|_{L^{4}(t_{0}-1,t_{0}-\frac{1}{2};L^{4}(B_{1}))}^{4} = \int_{t_{0}-1}^{t_{0}-\frac{1}{2}} \|u\|_{B_{1}}^{4} dt > \frac{1}{2} \cdot 2\|u\|_{L^{4}(t_{0}-1,t_{0}-\frac{1}{2};L^{4}(B_{1}))}^{4}$$
(3.11)

which is a contradiction. Using (2.10), (2.11) with $\alpha = \frac{1}{8}$, q = 6, $\delta = \delta(q, B_{r'}) > 0$, we thus obtain for some $t'_0 \in (t_0 - 1, t_0 - \frac{1}{2})$ and - first of all - for each $r' \in (\frac{1}{2}, 1)$ the estimate

$$\begin{aligned} \|u(t_{0}')\|_{\mathcal{J}^{6,4}(B_{r'})} & (3.12) \\ &= \|A_{2}^{-1}P_{2}u(t_{0}')\|_{6,B_{r'}} + \left(\int_{0}^{\infty} \|A_{2}^{1/8}e^{-tA_{2}}A_{2}^{-1/8}P_{2}u(t_{0}')\|_{6,B_{r'}}^{4} dt\right)^{1/4} \\ &\leq C_{1}\left(\|A_{2}^{-1/8}P_{2}u(t_{0}')\|_{6,B_{r'}} + \left(\int_{0}^{\infty} e^{-4\delta t}t^{-4/8}\|A_{2}^{-1/8}P_{2}u(t_{0}')\|_{6,B_{r'}}^{4} dt\right)^{1/4}\right) \\ &\leq C_{2}\|u(t_{0}')\|_{4,B_{r'}} \leq C_{2}\|u(t_{0}')\|_{4,B_{1}} \leq C_{2}2^{1/4}\|u\|_{L^{4}(Q_{1})}, \end{aligned}$$

 $C_j = C_j(r') > 0, j = 1, 2$, which yields (3.8). Concerning r' we argue in the same way as for (3.10), and find at least one $r' \in (\frac{1}{2}, 1)$ such that

$$\|u\|_{L^{4}(t_{0}-1,t_{0};L^{4}(\partial B_{r'}))}^{4} \leq 2\|u\|_{L^{4}(t_{0}-1,t_{0};L^{4}(B_{1}\setminus B_{1/2}))}^{4}.$$
(3.13)

Using (2.15) with $\alpha = \frac{1}{6}$, q = 6, $\gamma = 4$, we thus obtain the estimate

$$\begin{aligned} \|u\|_{L^{4}(t_{0}-1,t_{0};W^{-\frac{1}{6},6}(\partial B_{r'}))} &\leq C_{3}\|u\|_{L^{4}(t_{0}-1,t_{0};L^{4}(\partial B_{r'}))} \\ &\leq C_{3}2^{1/4}\|u\|_{L^{4}(t_{0}-1,t_{0};L^{4}(B_{1}\setminus B_{1/2}))} \leq C_{3}2^{1/4}\|u\|_{L^{4}(Q_{1})}, \end{aligned}$$

$$(3.14)$$

 $C_3 = C_3(r') > 0$, which yields (3.9).

Let $Q' = [t'_0, t_0) \times B_{r'}$. Then we are able to apply Lemma 2.4 with $\Omega = B_{r'}$, $q = 6, s = 4, \gamma = 2$ and with [0, T) replaced by $[t'_0, t_0)$. Thus we obtain a constant $\varepsilon(r') > 0$ and a unique very weak solution $v \in L^4(t'_0, t_0; L^6(B_{r'}))$ in Q' of the system

$$v_t - \Delta v + v \cdot \nabla v + \nabla h = f, \quad \operatorname{div} v = 0,$$

$$v_{\partial B_{r'}} = g, \quad v_{|_{t=t'_0}} = v_0$$
(3.15)

with data

$$f = \operatorname{div} F, \ F \in L^4(t'_0, t_0; L^2(B_{r'})), \quad g = u|_{(t'_0, t_0) \times \partial B_{r'}}, \quad v_0 = u(t'_0)|_{B_{r'}}, \quad (3.16)$$

if

$$||u||_{L^4(Q_1)} + ||F||_{L^4(t_0 - 1, t_0; L^2(B_1))} \le \varepsilon(r').$$
(3.17)

Identifying u = v on $Q' \supset Q_{1/2}$, see Part c) below, we are led to the desired property $u \in L^4(t_0 - \frac{1}{2}, t_0; L^6(B_{1/2}(x_0)))$. However, in order to prove (3.6) we need that the constant in (3.17) does *not* depend on r'. To obtain an absolute constant in (3.17) we modify the system (3.15), using again the scaling procedure, as follows.

With $\lambda = r'$ let $\tau = \lambda^{-2}t$, $\tau'_0 = \lambda^{-2}t'_0$, $\tau_0 = \lambda^{-2}t_0$ for $t \in [t'_0, t_0)$, $\tau \in [\tau'_0, \tau_0)$, and let $y = \lambda^{-1}x \in B_1$, $x \in B_{r'}$, $y_0 = 0$. Then $\tilde{v}, \tilde{F}, \tilde{g}, \tilde{v}_0$ are defined by $\tilde{F}(\tau, y) = \lambda^2 F(t, x)$, $\tilde{g}(\tau, y) = \lambda g(t, x)$ and $\tilde{v}_0(y) = \lambda v_0(x)$. Obviously the scaling argument as in (3.3) shows that $\tilde{v} \in L^4(\tau'_0, \tau_0; L^6(B_1))$ is a very weak solution in $\tilde{Q}' = [\tau'_0, \tau_0] \times B_1$ of the system

$$\begin{aligned} & -\Delta \tilde{v} + \tilde{v} \cdot \nabla \tilde{v} + \nabla \tilde{h} &= \tilde{f}, \quad \operatorname{div} \tilde{v} &= 0, \\ & \tilde{v}_{|_{\partial B_1}} &= \tilde{g}, \quad \tilde{v}_{|_{\tau = \tau'_0}} &= \tilde{v}_0 \end{aligned}$$
(3.18)

with data

 \tilde{v}_{τ}

$$\tilde{f} = \operatorname{div} \tilde{F}, \quad \tilde{g} = \tilde{u}|_{(\tau'_0, \tau_0) \times \partial B_1}, \quad \tilde{v}_0 = \tilde{u}(\tau'_0)|_{B_1}, \quad (3.19)$$

if and only if $v \in L^4(t'_0, t_0; L^6(B_{r'}))$ is a very weak solution in Q' of the system (3.15) with data (3.16). The same calculation as for (3.8), (3.9), see (3.12) - (3.14), now yields the estimates

$$\|\tilde{u}(\tau_0')\|_{\mathcal{J}^{6,4}(B_1)} \le C_1 \|\tilde{u}(\tau_0')\|_{L^4(B_1)} \le C_2 \|u\|_{L^4(Q_1)}$$
(3.20)

and

$$\|\tilde{u}\|_{L^{4}(\tau_{0}',\tau_{0};W^{-\frac{1}{6},6}(\partial B_{1}))} \leq C_{3}\|\tilde{u}\|_{L^{4}(\tau_{0}',\tau_{0};L^{4}(\partial B_{1}))} \leq C_{4}\|u\|_{L^{4}(Q_{1})};$$
(3.21)

here, replacing B_r by B_1 , the constants C_1, \ldots, C_4 depend on B_1 and therefore are absolute constants. Hence the smallness condition (3.17) corresponding to the system (3.18) with data (3.19) is satisfied with some absolute constant $\varepsilon_* > 0$. Thus we can return to (3.15) and obtain by virtue of Lemma 2.4 the following result:

There exists an absolute constant $\varepsilon_* > 0$ such that if (3.22)

$$||u||_{L^4(Q_1)} + ||F||_{L^4(t_0 - 1, t_0; L^2(B_1))} \le \varepsilon_{*}$$

then the system (3.15) with data (3.16) has a unique very weak solution $v \in L^4(t'_0, t_0; L^6(B_{r'}))$.

c) Identification u = v on Q'

It remains to prove this identification. Assuming u = v on Q' we conclude, since $t'_0 < t_0 - \frac{1}{2}$, $\frac{1}{2} < r'$, that (3.6) is true, and we complete the proof. To this end we need several arguments as follows.

First we consider the very weak solution $E \in L^4(t'_0, t_0; L^6(B_{r'}))$ of the linearized system (3.15), omitting the term $v \cdot \nabla v$; see (2.21), (2.22) with s = 4, q = 6, $\Omega = B_{r'}$, [0, T) replaced by $[t'_0, t_0)$. Then formula (2.24) can be written in the form

$$v(t) - E(t) = -\int_{t'_0}^t e^{-(t-\tau)A_2} P_2 \operatorname{div}\left(v(\tau)v(\tau)\right) d\tau.$$
 (3.23)

Using Hölder's inequality in $L^2(Q') = L^2(t'_0, t_0; L^2(B_{r'}))$, we obtain that

$$\|vv\|_{L^2(Q')} \le C \|v\|_{L^4(Q')}^2 \le C \|v\|_{L^4(Q_1)}^2 < \infty$$

with an absolute constant C > 0, and thus that v - E in (3.23) has the properties (2.25) - (2.28) with $[T_0, T_1) \times \Omega$ replaced by $[t'_0, t_0) \times B_{r'}$.

Next we use that $uu \in L^2(t'_0, t_0; L^2(B_{r'}))$, and we argue for u - E in the same way as for v - E in (2.25) – (2.28). Indeed, using for u, E the relations (2.4), (2.18), we conclude that (2.25) – (2.28) is true if v is replaced by u, and $[T_0, T_1) \times \Omega$ is replaced by $[t'_0, t_0) \times B_{r'}$.

Further we conclude that u - v is the weak solution of the Stokes system

$$\begin{aligned} (u-v)_t - \Delta(u-v) + \nabla h &= -\text{div}\,(uu-vv), \quad \text{div}\,(u-v) = 0, \\ u-v|_{\partial B_{r'}} &= 0, \quad u-v|_{t=t'_0} = 0 \end{aligned}$$

in $[t'_0, t_0) \times B_{r'}$, and that the corresponding energy properties as in (2.26) – (2.28) hold for u - v.

Since $u(u-v) \in L^2(Q')$ and $\nabla(u-v) \in L^2(Q')$ we see by Hölder's inequality that $\int_{t'_0}^{t_0} \langle u(u-v), \nabla(u-v) \rangle_{B_{r'}} d\tau$ is well-defined, and that

$$\langle u(u-v), \nabla(u-v) \rangle_{B_{r'}} = \frac{1}{2} \langle u, \nabla | u-v |^2 \rangle_{B_{r'}} = 0.$$

Therefore, using (2.26) for u - v as explained above, we obtain that

$$\begin{aligned} \frac{1}{2} \|u(t) - v(t)\|_2^2 + \int_{t'_0}^{t_0} \|\nabla(u - v)\|_2^2 \, d\tau &= \int_{t'_0}^t \langle uu - vv, \, \nabla(u - v) \rangle_{B_{r'}} \, d\tau \\ &= \int_{t'_0}^t \langle u(u - v) + (u - v)v, \, \nabla(u - v) \rangle_{B_{r'}} \, d\tau = \int_{t'_0}^t \langle (u - v)v, \, \nabla(u - v) \rangle_{B_{r'}} \, d\tau. \end{aligned}$$

A consequence of this relation as in (2.27) is the energy estimate

$$\begin{aligned} |||u - v|||_{t'_{0},t_{0}}^{2} &:= \|u - v\|_{L^{\infty}(t'_{0},t_{0};L^{2}(B_{r'}))}^{2} + \|\nabla(u - v)\|_{L^{2}(t'_{0},t_{0};L^{2}(B_{r'}))}^{2} \\ &= \|u - v\|_{2,\infty}^{2} + \|\nabla(u - v)\|_{2,2}^{2} \\ &\leq C_{1}\|(u - v)v\|_{2,2}^{2}. \end{aligned}$$
(3.24)

Next we use the standard Sobolev estimate $||u-v||_3 \leq C_2 ||\nabla(u-v)||_2^{\frac{1}{2}} ||u-v||_2^{\frac{1}{2}}$, see e.g. [10], II, (1.3.2), and Hölder's inequality, and obtain that

$$\begin{aligned} \|(u-v)v\|_{2,2}^2 &\leq C_3 \|v\|_{6,4}^2 \|u-v\|_{3,4}^2 \\ &\leq C_4 \|v\|_{6,4}^2 \left(\|\nabla(u-v)\|_{2,2}^2 + \|u-v\|_{2,\infty}^2\right) \\ &= C_4 \|v\|_{6,4}^2 \||u-v|||_{t_0,t_0}^2. \end{aligned}$$

In these estimates $C_1, \ldots, C_4 > 0$ are absolute constants. Thus (3.24) leads to the estimate

$$|||u - v|||_{t'_0, t_0} \le C ||v||_{L^4(t'_0, t_0; L^6(B_{r'}))} |||u - v|||_{t'_0, t_0}$$
(3.25)

with some absolute constant C > 0.

Our purpose is to apply to (3.25) the well-known absorption principle as follows. Consider a decomposition $t'_0 = t_1 < t_2 < \ldots < t_{m-1} < t_m = t_0, m \in \mathbb{N}$, in such a way that

$$C \|v\|_{L^4(t_{j-1}, t_j; L^6(B_{r'}))} \le \frac{1}{2}$$
(3.26)

for j = 2, ..., m. The estimate (3.25) also holds with t_0 replaced by t_1 , and inserting (3.26) in (3.25) we get that

$$|||u - v|||_{t'_0, t_1} \le \frac{1}{2} |||u - v|||_{t'_0, t_2}$$

which means that u = v in $[t'_0, t_1)$. Repeating this argument with $[t'_0, t_1)$ replaced by $[t_1, t_2)$ yields u = v in $[t_1, t_2)$, and so on. In a finite number of such steps we conclude that u = v in Q'. This completes the proof of Theorem 1.1.

Proof of Corollary 1.2 The proof of Theorem 1.1 can be carried out in the same way with $Q_r(t_0, x_0)$ replaced by $Q_r^*(t_0, x_0)$, which means that (1.5) is replaced by $u \in L^4\left(t_0 - \frac{7}{8}\left(\frac{r}{2}\right)^2, t_0 + \frac{1}{8}\left(\frac{r}{2}\right)^2; L^6\left(B_{r/2}(x_0)\right)$, after the corresponding modifications in this theorem. This means in particular that (t_0, x_0) is a regular point of u. If the condition (1.7) is satisfied, we find a sequence $Q_{r_j}^*(t_0, x_0) \subseteq (0, \infty) \times \Omega$, $r_j > 0, j \in \mathbb{N}$, with $\lim_{j\to\infty} r_j = 0$, in such a way that

$$\lim_{j \to \infty} r_j^{q-5} \|u\|_{L^q(Q_{r_j}^*)}^q < (\varepsilon_*)^q.$$

Then there is at least one radius $r_0 > 0$ among the values r_1, r_2, \ldots , such that

$$\|u\|_{L^q(Q^*_{r_0})} \le \varepsilon_* r_0^{\frac{2}{q} + \frac{3}{q} - 1},$$

cf. (1.3), holds in Theorem 1.1 suitably modified. Furthermore, using $F \in L^4(0,\infty; L^2(\Omega))$, we can choose r_0 sufficiently small in such a way that (1.4) is satisfied after the corresponding modification. This shows that (t_0, x_0) is a regular point, and the proof is complete.

References

- Amann, H.: Nonhomogeneous Navier-Stokes equations with integrable lowregularity data, Int. Math. Ser., Kluwer Academic/Plenum Publishing, New York (2002), 1 – 26
- [2] Caffarelli, L., Kohn, R., and Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (1982), 771 – 831
- [3] Farwig, R., and Sohr, H.: Generalized resolvent estimates for the Stokes system in bounded and unbounded domains, J. Math. Soc. Japan 46 (1994), 607 – 643
- [4] Farwig, R., Galdi, G.P., and Sohr, H.: A new class of weak solutions of the Navier-Stokes equations with nonhomogeneous data, J. Math. Fluid Mech. 8 (2006), 423 – 444

- [5] Farwig, R., Kozono, H., and Sohr, H.: An L^q -approach to Stokes and Navier-Stokes equations in general domains, Acta Math. 195 (2005), 21 – 53
- [6] Giga, Y.: Analyticity of the semigroup generated by the Stokes operator in L_r -spaces, Math. Z. 178 (1981), 287 329
- [7] Miyakawa, T., Sohr, H.: On energy inequality, smoothness and large time behavior in L^2 for weak solutions of the Navier-Stokes equations in exterior domains, Math. Z. 199 (1988), 455 478
- [8] Nečas, J., and Neustupa, J.: New conditions for local regularity of a suitable weak solution to the Navier-Stokes equation, J. Math. Fluid Mech. 4 (2002), 237 – 256
- [9] Serrin, J.: The initial value problem for the Navier-Stokes equations, nonlinear problems, Proc. Sympos. Madison 1962, ed. R. E. Langer, (1963), 69 – 98
- [10] Sohr, H.: The Navier-Stokes Equations. An Elementary Functional Analytic Approach, Birkhäuser Advanced Texts, Birkhäuser Verlag, Basel 2001
- [11] Sohr, H., von Wahl, W., Wiegner, M.: Zur Asymptotik der Gleichungen von Navier-Stokes. Nachr. Akad. Wiss. Gött., II. Math.-Phys. Kl. 1986, 45-49
- [12] Solonnikov, V.A.: Estimates for solutions of nonstationary Navier-Stokes Equations, J. Soviet Math. 8 (1977), 467 – 528
- [13] Struwe, M.: On partial regularity results for the Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), 437 – 458