On the Stokes Operator in General Unbounded Domains

Reinhard Farwig* Hideo Kozono[†] Hermann Sohr[‡]

Abstract

It is known that the Stokes operator is not well-defined in L^q -spaces for certain unbounded smooth domains unless q=2. In this paper, we generalize a new approach to the Stokes resolvent problem and to maximal regularity in general unbounded smooth domains from the three-dimensional case, see [7], to the n-dimensional one, $n\geq 2$, replacing the space $L^q, 1< q<\infty$, by \tilde{L}^q where $\tilde{L}^q=L^q\cap L^2$ for $q\geq 2$ and $\tilde{L}^q=L^q+L^2$ for 1< q<2. In particular, we show that the Stokes operator is well-defined in \tilde{L}^q for every unbounded domain of uniform $C^{1,1}$ -type in $\mathbb{R}^n,\ n\geq 2$, satisfies the classical resolvent estimate, generates an analytic semigroup and has maximal regularity.

2000 Mathematics Subject Classification: Primary 76D05, Secondary 35Q30

Keywords: General unbounded domains; domains of uniform $C^{1,1}$ -type; Stokes operator; Stokes resolvent; Stokes semigroup; maximal regularity

1 Introduction

Let $\Omega \subseteq \mathbb{R}^n$, $n \geq 2$, denote a general unbounded domain with uniform $C^{1,1}$ -boundary $\partial \Omega \neq \emptyset$, see Definition 1.1 below. As is well-known, the analysis of the instationary Navier-Stokes equations requires L^q -estimates, $q \neq 2$, to prove the strong energy estimate, the localized energy estimate involving also the pressure function and Leray's Structure Theorem for weak solutions. Unfortunately, the standard approach to the Stokes equations in L^q -spaces, $1 < q < \infty$, cannot

^{*}Technische Universität Darmstadt, Fachbereich Mathematik, 64289 Darmstadt, Germany (farwig@mathematik.tu-darmstadt.de).

[†]Tôhoku University, Mathematical Institute, Sendai, 980-8578 Japan (kozono@math.tohoku.ac.jp).

[‡]Universität Paderborn, Fakultät für Elektrotechnik, Informatik und Mathematik, 33098 Paderborn, Germany (hsohr@math.uni-paderborn.de).

be extended to general unbounded domains unless q=2. On the one hand, the Helmholtz decomposition fails to exist for certain unbounded smooth domains on L^q , $q \neq 2$, see [4], [13]. On the other hand, in L^2 the Helmholtz projection and the Stokes operator are well-defined for every domain, it is self-adjoint, generates a bounded analytic semigroup and has maximal regularity.

In order to work locally in L^q -spaces, but globally, to be more precise, near space infinity, in L^2 , the authors introduced in [7] in the three-dimensional case the function space

$$\tilde{L}^{q}(\Omega) = \begin{cases} L^{q}(\Omega) \cap L^{2}(\Omega), & 2 \le q < \infty \\ L^{q}(\Omega) + L^{2}(\Omega), & 1 < q < 2 \end{cases}$$

to define the Helmholtz decomposition and the space

$$\tilde{L}_{\sigma}^{q}(\Omega) = \begin{cases} L_{\sigma}^{q}(\Omega) \cap L_{\sigma}^{2}(\Omega), & 2 \leq q < \infty \\ L_{\sigma}^{q}(\Omega) + L_{\sigma}^{2}(\Omega), & 1 < q < 2 \end{cases}$$

of solenoidal vector fields in $\tilde{L}^q(\Omega)$ to define and to analyze the Stokes operator. It was proved that for every unbounded domain $\Omega \subseteq \mathbb{R}^3$ of uniform C^2 -type the Stokes operator in $\tilde{L}^q_{\sigma}(\Omega)$ satisfies the usual resolvent estimate, generates an analytic semigroup and has maximal regularity. Moreover, for every dimension $n \geq 2$, the Helmholtz decomposition of $\tilde{L}^q(\Omega)$ exists for every unbounded domain $\Omega \subseteq \mathbb{R}^n$ of uniform C^1 -type, see [8].

To describe this result, we introduce the space of gradients

$$\tilde{G}^q(\Omega) = \left\{ \begin{array}{ll} G^q(\Omega) \cap G^2(\Omega), & 2 \leq q < \infty \\ G^q(\Omega) + G^2(\Omega), & 1 < q < 2 \end{array} \right. \, ,$$

where $G^q(\Omega) = \{ \nabla p \in L^q(\Omega) : p \in L^q_{loc}(\Omega) \}$, and recall the notion of domains of uniform C^{k-} and $C^{k,1}$ -type.

Definition 1.1 A domain $\Omega \subseteq \mathbb{R}^n$, $n \geq 2$, is called a uniform C^k -domain of type (α, β, K) where $k \in \mathbb{N}$, $\alpha > 0$, $\beta > 0$, K > 0, if for each $x_0 \in \partial \Omega$ there exists a Cartesian coordinate system with origin at x_0 and coordinates $y = (y', y_n)$, $y' = (y_1, \ldots, y_{n-1})$, and a C^k -function h(y'), $|y'| \leq \alpha$, with C^k -norm $||h||_{C^k} \leq K$ such that the neighborhood

$$U_{\alpha,\beta,h}(x_0) := \{ y = (y', y_n) \in \mathbb{R}^n : |y_n - h(y')| < \beta, |y'| < \alpha \}$$

of x_0 implies $U_{\alpha,\beta,h}(x_0) \cap \partial\Omega = \{(y',h(y')): |y'| < \alpha\}$ and

$$U_{\alpha,\beta,h}^{-}(x_0) := \{ (y',y_n) : h(y') - \beta < y_n < h(y'), |y'| < \alpha \} = U_{\alpha,\beta,h}(x_0) \cap \Omega.$$

By analogy, a domain $\Omega \subseteq \mathbb{R}^n$, $n \geq 2$, is a uniform $C^{k,1}$ -domain of type (α, β, K) , $k \in \mathbb{N} \cup \{0\}$, if the functions h mentioned above may be chosen in $C^{k,1}$ such that the $C^{k,1}$ -norm satisfies $||h||_{C^{k,1}} \leq K$.

Theorem 1.2 [8] Let $\Omega \subseteq \mathbb{R}^n$, $n \geq 2$, be a uniform C^1 -domain of type (α, β, K) and let $q \in (1, \infty)$. Then each $u \in \tilde{L}^q(\Omega)$ has a unique decomposition

$$u = u_0 + \nabla p, \quad u_0 \in \tilde{L}^q_{\sigma}(\Omega), \ \nabla p \in \tilde{G}^q(\Omega),$$

satisfying the estimate

$$||u_0||_{\tilde{L}^q} + ||\nabla p||_{\tilde{L}^q} \le c||u||_{\tilde{L}^q}, \tag{1.1}$$

where $c = c(\alpha, \beta, K, q) > 0$. In particular, the Helmholtz projection \tilde{P}_q defined by $\tilde{P}_q u = u_0$ is a bounded linear projection on $\tilde{L}^q(\Omega)$ with range $\tilde{L}^q_{\sigma}(\Omega)$ and kernel $\tilde{G}^q(\Omega)$. Moreover, $\tilde{L}^q_{\sigma}(\Omega)$ is the closure in $\tilde{L}^q(\Omega)$ of the space $C_{0,\sigma}^{\infty}(\Omega) = \{u \in C_0^{\infty}(\Omega) : \text{div } u = 0\}$, and the duality relations

$$(\tilde{L}_{\sigma}^{q}(\Omega))' = \tilde{L}_{\sigma}^{q'}(\Omega), \quad (\tilde{P}_{q})' = \tilde{P}_{q'},$$

where $q' = \frac{q}{q-1}$, hold.

Using the Helmholtz projection \tilde{P}_q we define the Stokes operator \tilde{A}_q as the linear operator with domain

$$\mathcal{D}(\tilde{A}^q) = \begin{cases} D^q(\Omega) \cap D^2(\Omega), & 2 \le q < \infty \\ D^q(\Omega) + D^2(\Omega), & 1 < q < 2 \end{cases},$$

where $D^q(\Omega) = W^{2,q}(\Omega) \cap W_0^{1,q}(\Omega) \cap L^q_\sigma(\Omega)$, by setting

$$\tilde{A}^q u = -\tilde{P}_q \Delta u, \quad u \in \mathcal{D}(\tilde{A}^q).$$

Let I be the identity and $S_{\varepsilon} = \{ \ell \neq \lambda \in \mathbb{C}; |\arg \lambda| < \frac{\pi}{\varepsilon} + \varepsilon \}, 0 < \varepsilon < \frac{\pi}{2}$. Then our first main result on the Stokes operator reads as follows:

Theorem 1.3 Let $\Omega \subseteq \mathbb{R}^n$ $n \geq 2$, be a uniform $C^{1,1}$ -domain of type (α, β, K) , and let $1 < q < \infty$, $\delta > 0$, $0 < \varepsilon < \frac{\pi}{2}$.

(i) The operator

$$\tilde{A}_q = -\tilde{P}_q \Delta : \mathcal{D}(\tilde{A}_q) \to \tilde{L}^q_{\sigma}(\Omega), \quad \mathcal{D}(\tilde{A}_q) \subset \tilde{L}^q_{\sigma}(\Omega),$$

is a densely defined closed operator.

(ii) For all $\lambda \in \mathcal{S}_{\varepsilon}$, its resolvent $(\lambda I + \tilde{A}_q)^{-1} : \tilde{L}_{\sigma}^q(\Omega) \to \tilde{L}_{\sigma}^q(\Omega)$ is well-defined. Moreover, for every $f \in \tilde{L}_{\sigma}^q(\Omega)$ the solution $u \in \tilde{L}_{\sigma}^q(\Omega)$ of the resolvent problem $(\lambda I + \tilde{A}_q)u = f$ satisfies the estimate

$$\|\lambda u\|_{\tilde{L}^{q}_{\sigma}} + \|\nabla^{2} u\|_{\tilde{L}^{q}} \le C\|f\|_{\tilde{L}^{q}_{\sigma}}, \quad |\lambda| \ge \delta, \tag{1.2}$$

where $C = C(q, \varepsilon, \delta, \alpha, \beta, K) > 0$.

(iii) Given $f \in \tilde{L}^q(\Omega)^n$, $\lambda \in \mathcal{S}_{\varepsilon}$, the Stokes resolvent equation

$$\lambda u - \Delta u + \nabla p = f$$
, div $u = 0$ in Ω , $u = 0$ on $\partial \Omega$

has a unique solution $(u, \nabla p) \in \mathcal{D}(\tilde{A}_q) \times \tilde{G}^q(\Omega)$ defined by $u = (\lambda I + \tilde{A}_q)^{-1}\tilde{P}_q f$ and $\nabla p = (I - \tilde{P}_q)(f + \Delta u)$ and satisfying

$$\|\lambda u\|_{\tilde{L}^q} + \|\nabla^2 u\|_{\tilde{L}^q} + \|\nabla p\|_{\tilde{L}^q} \le C\|f\|_{\tilde{L}^q}, \quad |\lambda| \ge \delta,$$
 (1.3)

with a constant $C = C(q, \varepsilon, \delta, \alpha, \beta, K) > 0$.

(iv) The Stokes operator \tilde{A}_q satisfies the duality relation $(\tilde{A}_q)' = \tilde{A}_{q'}$, in particular, $\langle \tilde{A}_q u, v \rangle = \langle u, \tilde{A}_{q'} v \rangle$ for all $u \in \mathcal{D}(\tilde{A}_q)$, $v \in \mathcal{D}(\tilde{A}_{q'})$ and generates an analytic semigroup $e^{-t\tilde{A}_q}$, $t \geq 0$, in $\tilde{L}_{\sigma}^q(\Omega)$ with bound

$$\|e^{-t\tilde{A}_q}f\|_{\tilde{L}^q_\sigma} \le Me^{\delta t} \|f\|_{\tilde{L}^q_\sigma}, \quad f \in \tilde{L}^q_\sigma, \ t \ge 0, \tag{1.4}$$

where $M = M(q, \delta, \alpha, \beta, K) > 0$.

Note that the bound $\delta > 0$ in Theorem 1.3 may be chosen arbitrarily small, but that it is not clear whether $\delta = 0$ is allowed for a general unbounded domain and whether the semigroup $e^{-t\tilde{A}_q}$ is uniformly bounded in $\tilde{L}^q_{\sigma}(\Omega)$ for $0 \leq t < \infty$.

Our second main result concerns the instationary Stokes system

$$u_t - \Delta u + \nabla p = f, \quad \text{div } u = 0 \text{ in } \Omega \times (0, T)$$

$$u(0) = u_0, \quad u_{|\partial\Omega} = 0.$$

$$(1.5)$$

Theorem 1.4 Let $\Omega \subseteq \mathbb{R}^n$, $n \geq 2$, be a uniform $C^{1,1}$ -domain of type (α, β, K) , and let $0 < T < \infty$, 1 < q, $s < \infty$.

Then for each $f \in L^s(0,T;\tilde{L}^q_{\sigma}(\Omega))$ and each $u_0 \in \mathcal{D}(\tilde{A}_q)$ there exists a unique solution $u \in L^s(0,T;\mathcal{D}(\tilde{A}_q))$ with $u_t \in L^s(0,T;\tilde{L}^q_{\sigma}(\Omega))$ of the system (1.5) satisfying the estimates

$$||u_{t}||_{L^{s}(0,T;\tilde{L}_{\sigma}^{q})} + ||u||_{L^{s}(0,T;\tilde{L}_{\sigma}^{q})} + ||\tilde{A}_{q}u||_{L^{s}(0,T;\tilde{L}_{\sigma}^{q})}$$

$$\leq C(||u_{0}||_{D(\tilde{A}_{q})} + ||f||_{L^{s}(0,T;\tilde{L}_{\sigma}^{q})})$$
(1.6)

and

$$||u_t||_{L^s(0,T;\tilde{L}^q_{\sigma})} + ||u||_{L^s(0,T;\tilde{W}^{2,q})} \le C(||u_0||_{D(\tilde{A}_q)} + ||f||_{L^s(0,T;\tilde{L}^q_{\sigma})})$$
with $C = C(q, s, T, \alpha, \beta, K) > 0$. (1.7)

Remark 1.5 (i) The assumption $u_0 \in \mathcal{D}(\tilde{A}_q)$ in Theorem 1.4 is used for simplicity and is not optimal. Actually, it may be replaced by the weaker properties $u_0 \in \tilde{L}_{\sigma}^q(\Omega)$ and $\int_0^T \|\tilde{A}_q e^{-t\tilde{A}_q} u_0\|_{\tilde{L}_{\sigma}^q}^s dt < \infty$. Then the term $\|u_0\|_{\mathcal{D}(\tilde{A}_q)}$ in (1.6), (1.7) can be substituted by the weaker norm

$$\left(\int_{0}^{T} \|\tilde{A}_{q}e^{-t\tilde{A}_{q}}u_{0}\|_{\tilde{L}_{\sigma}^{q}}^{s} dt\right)^{\frac{1}{s}}, \ 1 < q < \infty. \tag{1.8}$$

(ii) Let $f \in L^s(0,T;\tilde{L}^q_{\sigma}(\Omega))$ in Theorem 1.4 be replaced by $f \in L^s(0,T;\tilde{L}^q(\Omega))$. Then $u \in L^s(0,T;\mathcal{D}(\tilde{A}_q))$, defined by $u_t + \tilde{A}_q u = \tilde{P}_q f$, $u(0) = u_0$, and ∇p , defined by $\nabla p(t) = (I - \tilde{P}_q)(f + \Delta u)(t)$, is a unique solution pair of the system

$$u_t - \Delta u + \nabla p = f$$
, $u(0) = u_0$,

satisfying

$$||u_t||_{L^s(0,T;\tilde{L}_{\sigma}^q)} + ||u||_{L^s(0,T;\tilde{W}^{2,q})} + ||\nabla p||_{L^s(0,T;\tilde{L}^q)}$$

$$\leq C(||u_0||_{D(\tilde{A}_{\sigma})} + ||f||_{L^s(0,T;\tilde{L}^q)})$$
(1.9)

with $C = C(q, s, T, \alpha, \beta, K) > 0$.

Using (2.1) below we see that in the case 1 < q < 2 the solution pair $u, \nabla p$ possesses a decomposition $u = u^{(1)} + u^{(2)}, \nabla p = \nabla p^{(1)} + \nabla p^{(2)}$ such that

$$u^{(1)} \in L^{s}(0, T; W^{2,2}(\Omega)), \ u_{t}^{(1)} \in L^{s}(0, T; L_{\sigma}^{2}(\Omega)),$$

$$u^{(2)} \in L^{s}(0, T; W^{2,q}(\Omega)), \ u_{t}^{(2)} \in L^{s}(0, T; L_{\sigma}^{q}(\Omega)),$$

$$\nabla p^{(1)} \in L^{s}(0, T; L^{2}(\Omega)), \ \nabla p^{(2)} \in L^{s}(0, T; L^{q}(\Omega)),$$

$$(1.10)$$

and

$$||u_t||_{L^s(0,T;\tilde{L}^q_{\sigma})} + ||u||_{L^s(0,T;\tilde{L}^q_{\sigma})} + ||\nabla^2 u||_{L^s(0,T;\tilde{L}^q)} + ||\nabla p||_{L^s(0,T;\tilde{L}^q)}$$

$$= ||u_t^{(1)}||_{L^{s,2}} + ||u^{(1)}||_{L^{s,2}} + ||\nabla^2 u^{(1)}||_{L^{s,2}} + ||\nabla p^{(1)}||_{L^{s,2}} + ||u_t^{(2)}||_{L^{s,q}} + ||\nabla^2 u^{(2)}||_{L^{s,q}} + ||\nabla p^{(2)}||_{L^{s,q}}$$

where $L^{s,2} = L^s(0,T;L^2(\Omega)), L^{s,q} = L^s(0,T;L^q(\Omega)).$

(iii) Note that the constant C in (1.6), (1.7), (1.9) could depend on the given interval (0, T]. We do not know whether C can be chosen independently of T as in the usual L^q -theory in bounded and exterior domains, see [12].

2 Preliminaries

Let us recall some properties of sum and intersection spaces known from interpolation theory, cf. [3], [17].

Consider two (complex) Banach spaces X_1, X_2 with norms $\|\cdot\|_{X_1}$, $\|\cdot\|_{X_2}$, respectively, and assume that both X_1 and X_2 are subspaces of a topological vector space V with continuous embeddings. Further, we assume that $X_1 \cap X_2$ is a dense subspace of both X_1 and X_2 . Then the intersection space $X_1 \cap X_2$ is a Banach space with norm

$$||u||_{X_1 \cap X_2} = \max(||u||_{X_1}, ||u||_{X_2}).$$

The sum space

$$X_1 + X_2 := \{u_1 + u_2; u_1 \in X_1, u_2 \in X_2\} \subseteq V$$

is a well-defined Banach space with the norm

$$||u||_{X_1+X_2} := \inf\{||u_1||_{X_1} + ||u_2||_{X_2}; \ u = u_1 + u_2, \ u_1 \in X_1, \ u_2 \in X_2\}.$$

If X_1 and X_2 are reflexive Banach spaces, an argument using weakly convergent subsequences yields the following property:

$$u \in X_1 + X_2 \implies \exists u_1 \in X_1, u_2 \in X_2 : \|u\|_{X_1 + X_2} = \|u_1\|_{X_1} + \|u_2\|_{X_2}.$$
 (2.1)

Concerning dual spaces we have

$$(X_1 \cap X_2)' = X_1' + X_2'$$

with the natural pairing $\langle u, f_1 + f_2 \rangle = \langle u, f_1 \rangle + \langle u, f_2 \rangle$ for $u \in X_1 \cap X_2$ and $f = f_1 + f_2 \in X_1' + X_2'$, and

$$(X_1 + X_2)' = X_1' \cap X_2'$$

with the natural pairing $\langle u, f \rangle = \langle u_1, f \rangle + \langle u_2, f \rangle$ for all $u = u_1 + u_2 \in X_1 + X_2$, $f \in X'_1 \cap X'_2$. Thus it holds

$$||u||_{X_1+X_2} = \sup\left\{\frac{|\langle u_1, f \rangle + \langle u_2, f \rangle|}{||f||_{X_1' \cap X_2'}}; \ 0 \neq f \in X_1' \cap X_2'\right\}$$

and

$$||f||_{X_1' \cap X_2'} = \sup \left\{ \frac{|\langle u_1, f \rangle + \langle u_2, f \rangle|}{||u||_{X_1 + X_2}}; \ 0 \neq u = u_1 + u_2 \in X_1 + X_2 \right\};$$

see [3], [17].

Consider closed subspaces $L_1 \subseteq X_1$, $L_2 \subseteq X$ with norms $\|\cdot\|_{L_1} = \|\cdot\|_{X_1}$, $\|\cdot\|_{L_2} = \|\cdot\|_{X_2}$ and assume that $L_1 \cap L_2$ is dense in both L_1 and L_2 . Then $\|u\|_{L_1 \cap L_2} = \|u\|_{X_1 \cap X_2}$, $u \in L_1 \cap L_2$, and an elementary argument using the Hahn-Banach theorem shows that also

$$||u||_{L_1+L_2} = ||u||_{X_1+X_2}, \quad u \in L_1 + L_2.$$
 (2.2)

In particular, we need the following special case. Let $B_1: \mathcal{D}(B_1) \to X_1$, $B_2: \mathcal{D}(B_2) \to X_2$ be closed linear operators with dense domains $\mathcal{D}(B_1) \subseteq X_1$, $\mathcal{D}(B_2) \subseteq X_2$ equipped with graph norms

$$||u||_{\mathcal{D}(B_1)} = ||u||_{X_1} + ||B_1 u||_{X_1}, \quad ||u||_{\mathcal{D}(B_2)} = ||u||_{X_2} + ||B_2 u||_{X_2},$$

respectively. We assume that $\mathcal{D}(B_1) \cap \mathcal{D}(B_2)$ is dense in both $\mathcal{D}(B_1)$ and $\mathcal{D}(B_2)$ in the corresponding graph norms. Each functional $F \in \mathcal{D}(B_i)'$, i = 1, 2, is given by some pair $f, g \in X_i'$ in the form $\langle u, F \rangle = \langle u, f \rangle + \langle B_i u, g \rangle$. Using (2.2) with $L_i = \{(u, B_i u); u \in \mathcal{D}(B_i)\} \subseteq X_i \times X_i$, i = 1, 2, and the equality of

norms $\|\cdot\|_{(X_1\times X_1)+(X_2\times X_2)}$ and $\|\cdot\|_{(X_1+X_2)\times(X_1+X_2)}$ on $(X_1\times X_1)+(X_2\times X_2)$, we conclude that for each $u\in\mathcal{D}(B_1)+\mathcal{D}(B_2)$ with decomposition $u=u_1+u_2,\ u_1\in\mathcal{D}(B_1),\ u_2\in\mathcal{D}(B_2)$,

$$||u||_{\mathcal{D}(B_1)+\mathcal{D}(B_2)} = ||u_1 + u_2||_{X_1 + X_2} + ||B_1 u_1 + B_2 u_2||_{X_1 + X_2}. \tag{2.3}$$

For instationary problems we need, given a Banach space X, the usual Banach space $L^s(0,T;X)$, $0 < T \le \infty$, of measurable X-valued (classes of) functions u with norm

 $||u||_{L^s(0,T;X)} = \left(\int_0^T ||u(t)||_X^s dt\right)^{\frac{1}{s}}, \quad 1 \le s < \infty.$

If X is reflexive and $1 < s < \infty$, then

$$L^{s}(0,T;X)' = L^{s'}(0,T;X'), \quad s' = \frac{s}{s-1},$$

with the natural pairing $\langle u, f \rangle_T = \int_0^T \langle u(t), f(t) \rangle dt$, where $\langle \cdot, \cdot \rangle$ denotes the pairing between X and its dual X'.

Let $X = L^q(\Omega)$, $1 < q < \infty$. Then we use the notation

$$L^{s,q} := L^s(L^q(\Omega)) = L^s(0,T;L^q(\Omega)), \quad \|u\|_{L^{s,q}} = \left(\int_0^T \|u\|_q^s dt\right)^{1/s}.$$

The pairing of $L^s(0,T;L^q(\Omega))$ with its dual $L^{s'}(0,T;L^{q'}(\Omega))$ is given by $\langle u,f\rangle_T = \langle u,f\rangle_{\Omega,T} = \int_0^T \left(\int_\Omega u \cdot f \,dx\right) dt$. Moreover, we see that

$$L^{s,q} \cap L^{s,2} = L^s(0,T; L^q \cap L^2)$$
 and $L^{s,q} + L^{s,2} = L^s(0,T; L^q + L^2)$

since

$$(L^{s,q} + L^{s,2})' = (L^{s,q})' \cap (L^{s,2})' = L^{s'}(0,T;L^{q'} \cap L^2) = L^s(0,T;L^q + L^2)';$$

the pairing between $L^{s,q} + L^{s,2}$ and $(L^{s,q})' \cap (L^{s,2})'$ is given by $\langle u_1 + u_2, f \rangle_T = \langle u_1, f \rangle_T + \langle u_2, f \rangle_T$ for $u_1 \in L^{s,q}$, $u_2 \in L^{s,2}$, $f \in (L^{s,q})' \cap (L^{s,2})'$. Furthermore, we can choose the decomposition $u = u_1 + u_2 \in L^s(0, T; L^q + L^2)$ in such a way that

$$||u||_{L^{s,q}+L^{s,2}} = ||u_1||_{L^{s,q}} + ||u_2||_{L^{s,2}}.$$

We conclude that

$$||u_1 + u_2||_{L^{s,q} + L^{s,2}} = \sup \left\{ \frac{|\langle u_1 + u_2, f \rangle_T|}{||f||_{(L^{s,q})' \cap (L^{s,2})'}}; \ 0 \neq f \in L^{s'}(0, T; L^{q'} \cap L^2) \right\}.$$

Let us introduce the short notation

$$\tilde{L}^{s,q} = \begin{cases} L^{s,q} \cap L^{s,2}, & 2 \le q < \infty \\ L^{s,q} + L^{s,2}, & 1 < q < 2 \end{cases},$$

and note the duality relation $(\tilde{L}^{s,q})' = \tilde{L}^{s',q'}$.

Concerning domains of uniform $C^{1,1}$ -type (α, β, K) , see Definition 1.1, we have to introduce further notations. Obviously, the axes e_i , i = 1, ..., n, of the new coordinate system (y', y_n) may be chosen in such a way that $e_1, ..., e_{n-1}$ are tangential to $\partial\Omega$ at x_0 . Hence at y' = 0 the function $h \in C^{1,1}$ satisfies h(y') = 0 and $\nabla' h(y') = (\partial h/\partial y_1, ..., \partial h/\partial y_{n-1})(y') = 0$. By a continuity argument, for any given constant $M_0 > 0$, we may choose $\alpha > 0$ sufficiently small such that $\|h\|_{C^1} \leq M_0$ is satisfied.

It is easily shown that there exists a covering of $\overline{\Omega}$ by open balls $B_j = B_r(x_j)$ of fixed radius r > 0 with centers $x_j \in \overline{\Omega}$, such that with suitable functions $h_j \in C^{1,1}$ of type (α, β, K)

$$\overline{B}_j \subset U_{\alpha,\beta,h_j}(x_j) \text{ if } x_j \in \partial\Omega, \quad \overline{B}_j \subset \Omega \text{ if } x_j \in \Omega.$$
 (2.4)

Here j runs from 1 to a finite number $N=N(\Omega)\in\mathbb{N}$ if Ω is bounded, and $j\in\mathbb{N}$ if Ω is unbounded. Moreover, as an important consequence, the covering $\{B_j\}$ of Ω may be constructed in such a way that not more than a fixed number $N_0=N_0(\alpha,\beta,K)\in\mathbb{N}$ of these balls have a nonempty intersection:

If
$$1 \le j_1 < j_2 < \dots < j_N \text{ and } N > N_0$$
, then $\bigcap_{k=1}^N B_{j_k} = \emptyset$. (2.5)

Related to the covering $\{B_j\}$, there exists a partition of unity $\{\varphi_j\}$, $\varphi_j \in C_0^{\infty}(\mathbb{R}^n)$, such that

$$0 \le \varphi_j \le 1$$
, supp $\varphi_j \subset B_j$, and $\sum_{j=1}^{N} \varphi_j = 1$ or $\sum_{j=1}^{\infty} \varphi_j = 1$ on Ω . (2.6)

The functions φ_j may be chosen so that $|\nabla \varphi_j(x)| + |\nabla^2 \varphi_j(x)| \leq C$ uniformly in j and $x \in \Omega$ with $C = C(\alpha, \beta, K)$.

If Ω is unbounded, then Ω can be represented as the union of an increasing sequence of bounded uniform $C^{1,1}$ -domains $\Omega_k \subset \Omega$, $k \in \mathbb{N}$,

$$\Omega_1 \subset \ldots \subset \Omega_k \subset \Omega_{k+1} \subset \ldots, \quad \Omega = \bigcup_{k=1}^{\infty} \Omega_k,$$
(2.7)

where each Ω_k is of the same type (α', β', K') . Without loss of generality we assume that $\alpha = \alpha'$, $\beta = \beta'$, K = K'.

Using the partition of unity $\{\varphi_j\}$ we will perform the analysis of the Stokes operator by starting from well-known results for certain bounded and unbounded domains. For this reason, given $h \in C^{1,1}(\mathbb{R}^{n-1})$ satisfying h(0) = 0, $\nabla' h(0) = 0$ and with compact support contained in the (n-1)-dimensional ball of radius $r, 0 < r = r(\alpha, \beta, K) < \alpha$, and center 0, we introduce the bounded domain

$$H = H_{\alpha,\beta,h;r} = \{ y \in \mathbb{R}^n : h(y') - \beta < y_n < h(y'), |y'| < \alpha \} \cap B_r(0) ;$$

here we assume that $\overline{B_r(0)} \subset \{y \in \mathbb{R}^n : |y_n - h(y')| < \beta, |y'| < \alpha\}.$ On H we consider the classical Sobolev spaces $W^{k,q}(H)$ and $W_0^{k,q}(H)$, $k \in \mathbb{N}$, the dual space $W^{-1,q}(H) = (W_0^{1,q'}(H))'$ and the space

$$L_0^q(H) = \left\{ u \in L^q(H) : \int_H u \, dx = 0 \right\}$$

of L^q -functions with vanishing mean on H.

Lemma 2.1 Let $1 < q < \infty$ and $H = H_{\alpha,\beta,h,r}$.

(i) There exists a bounded linear operator

$$R: L_0^q(H) \to W_0^{1,q}(H)$$

such that $\operatorname{div} \circ R = I$ on $L_0^q(H)$ and $R(L_0^q(H) \cap W_0^{1,q}(H)) \subset W_0^{2,q}(H)$. Moreover, there exists a constant $C = C(\alpha, \beta, K, q) > 0$ such that

$$||Rf||_{W^{1,q}} \leq C||f||_{L^q} \quad for \ all \quad f \in L_0^q(H) ||Rf||_{W^{2,q}} \leq C||f||_{W^{1,q}} \quad for \ all \quad f \in L_0^q(H) \cap W_0^{1,q}(H) .$$
(2.8)

(ii) There exists $C = C(\alpha, \beta, K, q) > 0$ such that for every $p \in L_0^q(H)$

$$||p||_q \le C||\nabla p||_{W^{-1,q}} = C \sup \left\{ \frac{|\langle p, \operatorname{div} v \rangle|}{||\nabla v||_{g'}} : 0 \ne v \in W_0^{1,q'}(H) \right\}.$$
 (2.9)

(iii) For given $f \in L^q(H)$ let $u \in L^q_\sigma(H) \cap W^{1,q}_0(H) \cap W^{2,q}(H)$, $p \in W^{1,q}(H)$ satisfy the Stokes resolvent equation $\lambda u - \Delta u + \nabla p = f$ with $\lambda \in \mathcal{S}_{\varepsilon}$, $0 < \varepsilon < \frac{\pi}{2}$. Moreover, assume that supp $u \cup \text{supp } p \subset B_r(0)$. Then there are constants $\lambda_0 =$ $\lambda_0(q,\alpha,\beta,K) > 0, C = C(q,\varepsilon,\alpha,\beta,K) > 0$ such that

$$\|\lambda u\|_{L^{q}(H)} + \|u\|_{W^{2,q}(H)} + \|\nabla p\|_{L^{q}(H)} \le C\|f\|_{L^{q}(H)}$$
(2.10)

if $|\lambda| \geq \lambda_0$.

Proof: (i) It is well-known that there exists a bounded linear operator R: $L_0^q(H) \to W_0^{1,q}(H)$ such that u = Rf solves the divergence problem div u = f. Moreover, the estimate (2.8), holds with $C = C(\alpha, \beta, K, q) > 0$, see [10, III, Theorem 3.1]. The second part follows from [10, III, Theorem 3.2].

- (ii) A duality argument and (i) yield (ii), see [8], [15, II.2.1].
- (iii) We extend u, p by zero so that $(u, \nabla p)$ may be considered as a solution of the Stokes resolvent system in a bent half space; then we refer to [6, Theorem 3.1, (i)].

The next lemma concerns the instationary Stokes systems

$$u_t - \Delta u + \nabla p = f$$
, $u(0) = u_0$ or $-u_t - \Delta u + \nabla p = f$, $u(T) = u_0$, (2.11)

in the domain H. To describe this crucial result we define the Stokes operator as usual by $A_q = -P_q \Delta$ with domain $\mathcal{D}(A_q) = L^q_\sigma(H) \cap W_0^{1,q}(H) \cap W^{2,q}(H)$.

Lemma 2.2 Let $0 < T < \infty$, $u_0 \in \mathcal{D}(A_q)$ and $f \in L^q(0,T;L^q(H))$ be given. Assume that $u \in L^q(0,T,\mathcal{D}(A_q))$, $p \in L^q(0,T;W^{1,q}(H))$ solve one of the systems in (2.11) and satisfy supp $u_0 \cup \text{supp } u(t) \cup \text{supp } p(t) \subseteq B_r(0)$ for a.a. $t \in [0,T]$. Then there is a constant $C = C(q,\alpha,\beta,K,T) > 0$ such that

$$||u_t||_{L^q(0,T;L^q(H))} + ||u||_{L^q(0,T;W^{2,q}(H))} + ||\nabla p||_{L^q(0,T;L^q(H))}$$

$$\leq C(||u_0||_{W^{2,q}(H)} + ||f||_{L^q(0,T;L^q(H))}).$$
(2.12)

Proof: In the case $u(0) = u_0$ this estimate follows from [16, Theorem 4.1, (4.2) and (4.21')], see also [14]. A careful inspection of the proofs shows that the constant $C = C(\Omega)$ in (2.12) depends only on the type (α, β, K) and on q, T; actually, it suffices to assume the boundary regularity $C^{1,1}$ since only the boundarys of second order derivatives of functions locally describing the boundary is used.

The second case $-u_t - \Delta u + \nabla p = f$, $u(T) = u_0$, can be reduced to the first one by the transformation $\tilde{u}(t) = u(T-t)$, $\tilde{f}(t) = f(T-t)$, $\tilde{p}(t) = p(T-t)$.

We note that the assumption $u_0 \in \mathcal{D}(A_q)$ is used for simplicity and can be weakened as in Remark 1.5 (i). Since $u_t \in L^q(0,T;L^q_\sigma)$, the conditions $u(0) = u_0$ or $u(T) = u_0$, resp., are well defined.

Next we collect several results on Sobolev embedding estimates and on the Stokes operator A_q , $1 < q < \infty$, on bounded $C^{1,1}$ -domains.

Lemma 2.3 Let $\Omega \subseteq \mathbb{R}^n$ be a bounded $C^{1,1}$ -domain of type (α, β, K) .

(i) Let $1 < q < \infty$. Then for every $M \in (0,1)$ there exists some constant $C = C(q, M, \alpha, \beta, K) > 0$ such that

$$\|\nabla u\|_{L^q} \le M\|\nabla^2 u\|_{L^q} + C\|u\|_{L^q}, \quad u \in W^{2,q}(\Omega).$$
 (2.13)

(ii) Let $2 \le q < \infty$. Then for every $M \in (0,1)$ there exists a constant $C = C(q, M, \alpha, \beta, K) > 0$ such that

$$||u||_{L^q} \le M||\nabla^2 u||_{L^q} + C(||\nabla^2 u||_{L^2} + ||u||_{L^2}), \quad u \in W^{2,q}(\Omega).$$
 (2.14)

Proof: The proofs of (i), (ii) are easily reduced to the case $u \in W_0^{2,q}(\Omega')$, $\overline{\Omega} \subset \Omega'$, Ω' a bounded $C^{1,1}$ -domain, using an extension operator on Sobolev spaces the norm of which is shown to depend only on q and (α, β, K) . In (ii) we choose an $r \in [2, q)$ such that $||u||_{L^q} \leq M||\nabla^2 u||_{L^r} + C||u||_{L^r}$ and use the interpolation inequality

$$||v||_{L^r} \le \gamma \left(\frac{1}{\varepsilon}\right)^{1/\gamma} ||v||_{L^2} + (1-\gamma)\varepsilon^{1/(1-\gamma)} ||v||_{L^q},$$
 (2.15)

with $\gamma \in (0,1)$, $\frac{1}{r} = \frac{\gamma}{2} + \frac{1-\gamma}{q}$, for v = u and $v = \nabla^2 u$ for suitable $\varepsilon > 0$ to get (2.14). For basic details see [1, IV, Theorem 4.28], [9] and [15, II.1.3].

Lemma 2.4 Let $1 < q < \infty$ and let $\Omega \subseteq \mathbb{R}^n$ be a bounded $C^{1,1}$ -domain.

(i) The Stokes operator $A_q = -P_q \Delta : \mathcal{D}(A_q) \to L^q_{\sigma}(\Omega)$, where $\mathcal{D}(A_q) = L^q_{\sigma}(\Omega) \cap W^{1,q}_0(\Omega) \cap W^{2,q}(\Omega)$, satisfies the resolvent estimate

$$\|\lambda u\|_{L^q} + \|A_q u\|_{L^q} \le C\|f\|_{L^q}, \quad C = C(\varepsilon, q, \Omega) > 0,$$
 (2.16)

where $u \in \mathcal{D}(A_q)$, $\lambda u + A_q u = f \in L^q_\sigma(\Omega)$, $\lambda \in \mathcal{S}_\varepsilon$, $0 < \varepsilon < \frac{\pi}{2}$, and it holds the estimate

$$||u||_{W^{2,q}} \le C||A_q u||_{L^q}, \quad C = C(q,\Omega).$$

Moreover, $\langle A_q u, v \rangle = \langle u, A_{q'} v \rangle$ for all $u \in \mathcal{D}(A_q)$, $v \in \mathcal{D}(A_{q'})$ and $A'_q = A_{q'}$.

(ii) If q = 2, then the resolvent problem $\lambda u + A_2 u = f \in L^2_{\sigma}(\Omega)$, $\lambda \in \mathcal{S}_{\varepsilon}$, has a unique solution $u \in \mathcal{D}(A_2)$ satisfying the estimate

$$\|\lambda u\|_{L^2} + \|A_2 u\|_{L^2} \le C\|f\|_{L^2} \tag{2.17}$$

with the constant $C = 1 + 2/\cos \varepsilon$ independent of Ω . Moreover, A_2 is selfadjoint and $\langle A_2 u, u \rangle = \|A_2^{\frac{1}{2}} u\|_{L^2}^2 = \|\nabla u\|_{L^2}^2$ for all $u \in \mathcal{D}(A_2)$.

Proof: For (i) see [6], [11], [16]. For (ii) – including even general unbounded domains – we refer to [15].

Finally we return to the instationary Stokes system for a bounded $C^{1,1}$ -domain $\Omega \subseteq \mathbb{R}^n$, written in the form of the abstract evolution problem

$$u_t + A_q u = f, \quad u(0) = u_0,$$
 (2.18)

with initial value $u_0 \in \mathcal{D}(A_q)$ and $f \in L^s(0,T;L^q_\sigma(\Omega)), 1 < q, s < \infty$. In view of the variation of constants formula we define the operators $\mathcal{J}_{s,q}$, $\mathcal{J}'_{s,q}$ by

$$\mathcal{J}_{s,q}f(t) = \int_0^t e^{-(t-\tau)A_q} f(\tau)d\tau, \quad \mathcal{J}'_{s,q}f(t) = \int_t^T e^{-(\tau-t)A_q} f(\tau)d\tau.$$
 (2.19)

Lemma 2.5 Let $\Omega \subseteq \mathbb{R}^n$ be a bounded $C^{1,1}$ -domain.

(i) Let 1 < q, $s < \infty$ and $0 < T < \infty$. Then for every initial value $u_0 \in \mathcal{D}(A_q)$ and external force $f \in L^s(0,T;L^q_\sigma(\Omega))$ the nonstationary Stokes system (2.18) has a unique solution $u \in L^s(0,T;\mathcal{D}(A_q))$ given by

$$u(t) = e^{-tA_q}u_0 + \mathcal{J}_{s,q}f(t)$$

satisfying the estimate

$$||u_t||_{L^{s,q}} + ||u||_{L^{s,q}} + ||A_q u||_{L^{s,q}} \le C(||u_0||_{\mathcal{D}(A_q)} + ||f||_{L^{s,q}})$$
(2.20)

with a constant $C = C(q, s, T, \Omega)$. Analogously, the nonstationary Stokes system $-u_t + A_q u = f$, $u(T) = u_0$, has a unique solution $u \in L^s(0, T; \mathcal{D}(A_q))$, namely, $u(t) = e^{-(T-t)A_q}u_0 + (\mathcal{J}'_{s,q}f)(t)$; this solution satisfies (2.20) with the same constant C. Moreover, there holds the duality relation $(\mathcal{J}_{s,q})' = \mathcal{J}'_{s',q'}$.

(ii) In the case q=2 the constant $C=C(2,s,T,\Omega)=C(s,T)$ in (2.20) does not depend on the domain Ω .

Proof: For (i) see [12], [16]. The assertions on $\mathcal{J}'_{s,q}$ follow from the transformation $\tilde{u}(t) = u(T-t)$, $\tilde{f}(t) = f(T-t)$ and by duality arguments. For (ii) – including even general unbounded domains – we refer to [15, IV.1.6].

Note that in (2.16) and (2.20) it is not clear up to now how the constant C will depend on the underlying bounded domain Ω except for q = 2.

3 Proofs

After a preliminary result on the equivalence of the norm $||u||_{W^{2,q}}$ to the graph norm $||u||_{\mathcal{D}(A_q)} = ||u||_{L^q} + ||A_q u||_{L^q}$ on $\mathcal{D}(A_q)$ for bounded domains $\Omega \subseteq \mathbb{R}^n$ we turn to the proofs of Theorem 1.3, see Subsection 3.1, and of Theorem 1.4, see Subsection 3.2, by considering in both cases first of all bounded domains for q > 2, then for 1 < q < 2, and finally unbounded domains.

Lemma 3.1 Let $\Omega \subseteq \mathbb{R}^n$ be a bounded $C^{1,1}$ -domain of type (α, β, K) . Then the graph norm $\|\cdot\|_{\mathcal{D}(A_q)}$ is equivalent to the norm $\|\cdot\|_{W^{2,q}}$ on $\mathcal{D}(A_q)$ with constants only depending on q, α, β, K . More precisely,

$$C_1 \|u\|_{W^{2,q}} \le \|u\|_{\mathcal{D}(A_q)} \le C_2 \|u\|_{W^{2,q}}, \quad u \in \mathcal{D}(A_q),$$
 (3.1)

with
$$C_1 = C_1(q, \alpha, \beta, K) > 0$$
, $C_2 = C_2(q, \alpha, \beta, K) > 0$.

Proof: We use the system of functions $\{h_j\}$, $1 \leq j \leq N$, parametrizing $\partial\Omega$, the covering of Ω by balls $\{B_j\}$, and the partition of unity $\{\varphi_j\}$ as described in Section 2. Let

$$U_j = U_{\alpha,\beta,h_j}^-(x_j) \cap B_j$$
 if $x_j \in \partial \Omega$ and $U_j = B_j$ if $x_j \in \Omega, \ 1 \le j \le N.$ (3.2)

Given $f \in L^q_\sigma(\Omega)$ and $u \in \mathcal{D}(A_q)$ satisfying $A_q u = f$, i.e. $-\Delta u + \nabla p = f$, div u = 0 in Ω , let $w_j = R((\nabla \varphi_j) \cdot u) \in W^{2,q}_0(U_j)$ be the solution of the divergence equation div $w_j = \text{div}\,(\varphi_j u) = (\nabla \varphi_j) \cdot u$ in U_j , $1 \leq j \leq N$. Moreover, let $M_j = M_j(p)$ be the constant such that $p - M_j \in L^q_0(U_j)$. By Lemma 2.1 (i), (ii) and the equation $\nabla p = f + \Delta u$ we conclude that $\|w_j\|_{W^{1,q}(U_j)} \leq C\|u\|_{L^q(U_j)}$, $\|w_j\|_{W^{2,q}(U_j)} \leq C\|u\|_{W^{1,q}(U_j)}$ as well as

$$||p - M_j||_{L^q(U_j)} \le C(||f||_{L^q(U_j)} + ||\nabla u||_{L^q(U_j)})$$

with $C = C(q, \alpha, \beta, K) > 0$ independent of j. Finally, let $\lambda_0 > 0$ denote the constant in Lemma 2.1 (iii). Then $\varphi_j u - w_j$ satisfies the local resolvent equation

$$\lambda_0(\varphi_j u - w_j) - \Delta(\varphi_j u - w_j) + \nabla(\varphi_j(p - M_j))$$

$$= \varphi_j f + \Delta w_j - 2\nabla \varphi_j \cdot \nabla u - (\Delta \varphi_j)u + (\nabla \varphi_j)(p - M_j) + \lambda_0(\varphi_j u - w_j)$$

in U_j . By (2.10) with $\lambda = \lambda_0$ and the previous *a priori* estimates we get the local inequalities

$$\|\varphi_j \nabla^2 u\|_{L^q(U_j)}^q + \|\varphi_j \nabla p\|_{L^q(U_j)}^q \le C(\|f\|_{L^q(U_j)}^q + \|u\|_{W^{1,q}(U_j)}^q), \tag{3.3}$$

 $1 \le j \le N$. Taking the sum over j = 1, ..., N and exploiting the crucial property of the number N_0 , see (2.5), we are led to the estimate

$$\|\nabla^{2}u\|_{L^{q}(\Omega)}^{q} + \|\nabla p\|_{L^{q}(\Omega)}^{q} = \int_{\Omega} \left(\left(\sum_{j} \varphi_{j} |\nabla^{2}u| \right)^{q} + \left(\sum_{j} \varphi_{j} |\nabla p| \right)^{q} \right) dx$$

$$\leq \int_{\Omega} N_{0}^{\frac{q}{q'}} \left(\sum_{j} |\varphi_{j} \nabla^{2}u|^{q} + \sum_{j} |\varphi_{j} \nabla p|^{q} \right) dx \quad (3.4)$$

$$\leq CN_{0}^{\frac{q}{q'}} \left(\sum_{j} \|f\|_{L^{q}(U_{j})}^{q} + \sum_{j} \|u\|_{W^{1,q}(U_{j})}^{q} \right).$$

Next we use (2.13) for the term $||u||_{W^{1,q}(U_j)}$. Choosing M > 0 sufficiently small in (2.13), exploiting the absorption principle and again the property of the number N_0 , (3.4) may be simplified to the estimate

$$\|\nabla^2 u\|_{L^q(\Omega)} \le C(\|f\|_{L^q(\Omega)} + \|u\|_{L^q(\Omega)}) \tag{3.5}$$

where $C = C(q, \alpha, \beta, K) > 0$. Since $f = A_q u$ and since the norm of the Helmholtz projection P_q in $L^q(\Omega)$ is bounded by $C = C(q, \alpha, \beta, K) > 0$, the proof of the lemma is complete.

3.1 Proof of Theorem 1.3

3.1.1 The Stokes resolvent in a bounded domain Ω when $q \geq 2$

We consider for $\lambda \in \mathcal{S}_{\varepsilon}$, $0 < \varepsilon < \frac{\pi}{2}$, the resolvent equation

$$\lambda u + A_a u = \lambda u - \Delta u + \nabla p = f$$
 in Ω

with $f \in L^q_\sigma(\Omega)$, where $2 \le q < \infty$. Our aim is to prove for its solution $u \in D(A_q)$ and $\nabla p = (I - P_q)\Delta u$ the estimate

$$\|\lambda u\|_{L^q \cap L^2} + \|\nabla^2 u\|_{L^q \cap L^2} + \|\nabla p\|_{L^q \cap L^2} \le C\|f\|_{L^q \cap L^2}, \quad |\lambda| \ge \delta > 0 \tag{3.6}$$

with a constant $C = C(q, \varepsilon, \delta, \alpha, \beta, K) > 0$. Note that this estimate is well-known for bounded domains with a constant $C = C(q, \varepsilon, \delta, \Omega) > 0$. As in Subsection 3.1 let $w_j = R((\nabla \varphi_j) \cdot u) \in W_0^{2,q}(U_j)$ and choose a constant $M_j = M_j(p)$ such that $p - M_j \in L_0^q(U_j)$. Then we obtain the local equation

$$\lambda(\varphi_j u - w_j) - \Delta(\varphi_j u - w_j) + \nabla(\varphi_j (p - M_j))$$

$$= \varphi_j f + \Delta w_j - 2\nabla \varphi_j \cdot \nabla u - (\Delta \varphi_j) u - \lambda w_j + (\nabla \varphi_j) (p - M_j)$$
(3.7)

Concerning the term λw_j , we apply the embedding $W^{1,r}(U_j) \subset L^q(U_j)$ for some $r \in [2, q)$, then Lemma 2.1(i) and use the interpolation estimate (2.15) for v = u to get for $M \in (0, 1)$ that

$$||w_j||_{L^q(U_j)} \le C_1 ||w_j||_{W^{1,r}(U_j)} \le M ||u||_{L^q(U_j)} + C_2 ||u||_{L^2(U_j)};$$

here $C_i = C_i(M, q, r, \alpha, \beta, K) > 0$. Moreover, $\|\nabla^2 w_j\|_{L^q(U_j)} \leq C \|\nabla u\|_{L^q(U_j)}$. For $p - M_j$ we use (2.9) and the equation $\nabla p = -\lambda u + \Delta u + f$ to see that

$$||p - M_j||_{L^q(U_j)} \le C \Big(||f||_{L^q(U_j)} + ||\nabla u||_{L^q(U_j)} + \sup \Big\{ \frac{|\langle \lambda u, v \rangle|}{||\nabla v||_{q'}} : 0 \ne v \in W_0^{1,q'}(U_j) \Big\} \Big),$$

where $C = C(q, \alpha, \beta, K) > 0$. Again we choose $r \in [2, q)$, use the embedding $W^{1,q'}(U_j) \subset L^{r'}(U_j)$, then (2.15) for $v = \lambda u$ to get that

$$||p - M_j||_{L^q(U_j)} \le C(||f||_{L^q(U_j)} + ||\nabla u||_{L^q(U_j)} + ||\lambda u||_{L^2(U_j)}) + M||\lambda u||_{L^q(U_j)}.$$

Finally, we apply to the local resolvent equation (3.7) the estimate (2.10) with λ replaced by $\lambda + \lambda'_0$ where $\lambda'_0 \geq 0$ is sufficiently large such that $|\lambda + \lambda'_0| \geq \lambda_0$ for $|\lambda| \geq \delta$, λ_0 as in (2.10).

Now we combine these estimates and are led to the local inequality

$$\|\lambda \varphi_{j} u\|_{L^{q}(U_{j})} + \|\varphi_{j} \nabla^{2} u\|_{L^{q}(U_{j})} + \|\varphi_{j} \nabla p\|_{L^{q}(U_{j})}$$

$$\leq C (\|f\|_{L^{q}(U_{j})} + \|u\|_{L^{q}(U_{j})} + \|\nabla u\|_{L^{q}(U_{j})} + \|\lambda u\|_{L^{2}(U_{j})}) + M\|\lambda u\|_{L^{q}(U_{j})}$$
(3.8)

with $C = C(M, q, \delta, \varepsilon, \alpha, \beta, K) > 0$. Raising each term in (3.8) to the qth power, taking the sum over j = 1, ..., N in the same way as in (3.3)–(3.5) and using the crucial property (2.5) of the integer N_0 we get the inequality

$$\|\lambda u\|_{L^{q}(\Omega)} + \|\nabla^{2} u\|_{L^{q}(\Omega)} + \|\nabla p\|_{L^{q}(\Omega)}$$

$$\leq C(\|f\|_{L^{q}(\Omega)} + \|u\|_{L^{q}(\Omega)} + \|\nabla u\|_{L^{q}(\Omega)} + \|\lambda u\|_{L^{2}(\Omega)}) + M\|\lambda u\|_{L^{q}(\Omega)}$$
(3.9)

with $C = C(M, q, \delta, \varepsilon, \alpha, \beta, K) > 0$, $|\lambda| \geq \delta$. For the proof of (3.9) we also used the reverse Hölder inequality $\left(\sum_j a_j^q\right)^{1/q} \leq \left(\sum_j a_j^2\right)^{1/2}$ for the real numbers $a_j = \|\lambda u\|_{L^2(U_j)}$ valid for $q \geq 2$. Applying (2.13) and choosing M sufficiently small we remove the terms $\|\nabla u\|_{L^q(\Omega)}$ and $\|\lambda u\|_{L^q(\Omega)}$ from the right-hand side in (3.9) by the absorption principle. The term $\|u\|_{L^q(\Omega)}$ is removed with the help of (2.14). Hence we get that

$$\|\lambda u\|_q + \|\nabla^2 u\|_q + \|\nabla p\|_q \le C(\|f\|_q + \|\lambda u\|_2 + \|u\|_2 + \|\nabla^2 u\|_2).$$

Now we combine this inequality with the estimate (2.17) for $|\lambda| \geq \delta$ and we apply (3.1) with q = 2. This proves the desired estimate (3.6) for $2 \leq q < \infty$.

3.1.2 The case Ω bounded, 1 < q < 2

We consider for $f \in L^2_{\sigma} + L^q_{\sigma} = L^q_{\sigma}$ and $\lambda \in \mathcal{S}_{\varepsilon}$, $|\lambda| \geq \delta$, the equation $\lambda u - \Delta u + \nabla p = f$ and its unique solution $u \in \mathcal{D}(A_q) + \mathcal{D}(A_2) = \mathcal{D}(A_q)$, $\nabla p = (I - \tilde{P}_q)\Delta u$. Note that $A_q = \tilde{A}_q$, $P_q = \tilde{P}_q$ and that $C^{\infty}_{0,\sigma}(\Omega)$ is dense in $L^{q'}_{\sigma}(\Omega) \cap L^2_{\sigma}(\Omega) = L^{q'}_{\sigma}(\Omega)$. Using $f = \lambda u - \tilde{P}_q \Delta u$, the density of $\mathcal{D}(A_{q'}) \cap \mathcal{D}(A_2) = \mathcal{D}(A_{q'})$ in $L^{q'}_{\sigma} \cap L^2_{\sigma}$, (3.6) with q replaced by q' > 2, and setting $g = \lambda v + \tilde{A}_{q'} v$ for $v \in \mathcal{D}(A_{q'}) \cap \mathcal{D}(A_2)$ we obtain that

$$||f||_{L^{2}_{\sigma}+L^{q}_{\sigma}} = \sup \left\{ \frac{|\langle \lambda u + \tilde{A}_{q}u, v \rangle|}{||v||_{L^{q'}_{\sigma} \cap L^{2}_{\sigma}}}; \ 0 \neq v \in \mathcal{D}(A_{q'}) \cap \mathcal{D}(A_{2}) \right\}$$

$$= \sup \left\{ \frac{|\langle u, \lambda v + \tilde{A}_{q'}v \rangle|}{||v||_{L^{q'}_{\sigma} \cap L^{2}_{\sigma}}}; \ 0 \neq v \in \mathcal{D}(A_{q'}) \cap \mathcal{D}(A_{2}) \right\}$$

$$= \sup \left\{ \frac{|\langle u, g \rangle|}{||(\lambda I - \tilde{P}_{q'}\Delta)^{-1}g||_{L^{q'}_{\sigma} \cap L^{2}_{\sigma}}}; \ 0 \neq g \in L^{q'}_{\sigma} \cap L^{2}_{\sigma} \right\}$$

$$\geq |\lambda|C^{-1} \sup \left\{ \frac{|\langle u, g \rangle|}{||g||_{L^{q'}_{\sigma} \cap L^{2}_{\sigma}}}; \ 0 \neq g \in L^{q'}_{\sigma} \cap L^{2}_{\sigma} \right\}.$$

$$(3.10)$$

By Section 2 the last term $\sup\{\ldots\}$ in (3.10) defines a norm on $L^q_{\sigma} + L^2_{\sigma}$ which is equivalent to the norm $\|\cdot\|_{L^q_{\sigma} + L^2_{\sigma}}$; the constants in this norm equivalence are related to the norm of $\tilde{P}_{q'}$ and depend only on q and (α, β, K) , cf. Theorem 1.2. Hence we proved the estimate $\|\lambda u\|_{L^q_{\sigma} + L^2_{\sigma}} \leq C\|f\|_{L^q_{\sigma} + L^2_{\sigma}}$ and even

$$\|\lambda u\|_{L^{q}_{\sigma}+L^{2}_{\sigma}} + \|u\|_{L^{q}_{\sigma}+L^{2}_{\sigma}} + \|A_{q}u\|_{L^{q}_{\sigma}+L^{2}_{\sigma}} \le C\|f\|_{L^{q}_{\sigma}+L^{2}_{\sigma}}, \quad \lambda \in \mathcal{S}_{\varepsilon}, \ |\lambda| \ge \delta.$$
 (3.11)

By virtue of Lemma 3.1 and (2.3) with $B_1 = A_q$, $B_2 = A_2$, we conclude that also the norms $||u||_{W^{2,q}+W^{2,2}}$ and $||u||_{L^q_{\sigma}+L^2_{\sigma}} + ||A_q u||_{L^q_{\sigma}+L^2_{\sigma}}$ are equivalent with constants depending only on q and (α, β, K) . Then (3.11) and the identity $\nabla p = f - \lambda u + \Delta u$ lead to the estimate

$$\|\lambda u\|_{L^{q}_{\sigma}+L^{2}_{\sigma}} + \|u\|_{W^{2,q}+W^{2,2}} + \|\nabla p\|_{L^{q}+L^{2}} \le C\|f\|_{L^{q}_{\sigma}+L^{2}_{\sigma}}$$

with $C=C(q,\delta,\varepsilon,\alpha,\beta,K)>0$. Hence we proved for every $q\in(1,\infty)$ the inequality

$$\|\lambda u\|_{\tilde{L}^{q}} + \|u\|_{\tilde{W}^{2,q}} + \|\nabla p\|_{\tilde{L}^{q}} \le C\|f\|_{\tilde{L}^{q}}, \quad u \in \mathcal{D}(\tilde{A}_{q}), \tag{3.12}$$

with $C = C(q, \delta, \varepsilon, \alpha, \beta, K) > 0$ when $|\lambda| \ge \delta > 0$. Now the proof of Theorem 1.3 (i) – (iii) is complete for bounded domains.

3.1.3 The case Ω unbounded

Consider the sequence of bounded subdomains $\Omega_j \subseteq \Omega$, $j \in \mathbb{N}$, of uniform $C^{1,1}$ -type as in (2.7), let $f \in \tilde{L}^q_{\sigma}(\Omega)$ and $f_j := \tilde{P}_q f|_{\Omega_j}$. Then consider the solution

 $(u_j, \nabla p_j)$ of the Stokes resolvent equation

$$\lambda u_j - \tilde{P}_q \Delta u_j = \lambda u_j - \Delta u_j + \nabla p_j = f_j, \quad \nabla p_j = (I - \tilde{P}_q) \Delta u_j \quad \text{in } \Omega_j.$$

From (3.12) we obtain the uniform estimate

$$\|\lambda u_j\|_{\tilde{L}^{q}_{\sigma}(\Omega_j)} + \|u_j\|_{\tilde{W}^{2,q}(\Omega_j)} + \|\nabla p_j\|_{\tilde{L}^{q}(\Omega_j)} \le C\|f\|_{\tilde{L}^{q}_{\sigma}(\Omega)}$$
(3.13)

with $|\lambda| \geq \delta > 0$, $C = C(q, \delta, \varepsilon, \alpha, \beta, K) > 0$. Extending u_j and ∇p_j by 0 to vector fields on Ω we find, suppressing subsequences, weak limits

$$u = w - \lim_{j \to \infty} u_j$$
 in $\tilde{L}^q_{\sigma}(\Omega)$, $\nabla p = w - \lim_{j \to \infty} \nabla p_j$ in $\tilde{L}^q(\Omega)^n$

satisfying $u \in \mathcal{D}(\tilde{A}_q)$, $\lambda u - \Delta u + \nabla p = \lambda u - \tilde{P}_q \Delta u = f$ in Ω and the *a priori* estimates (1.2), (1.3). Note that each ∇p_j when extended by 0 need not be a gradient field on Ω ; however, by de Rham's argument, the weak limit of the sequence $\{\nabla p_j\}$ is a gradient field on Ω . Hence we solved the Stokes resolvent problem $\lambda u + \tilde{A}_q u = \lambda u - \Delta u + \nabla p = f$ in Ω .

Finally, to prove uniqueness of u we assume that there is some $v \in \mathcal{D}(\tilde{A}_q)$ and $\lambda \in \mathcal{S}_{\varepsilon}$ satisfying $\lambda v - \tilde{P}_q \Delta v = 0$. Given $f' \in \tilde{L}^{q'}(\Omega)^n$ let $u \in \mathcal{D}(\tilde{A}_{q'})$ be a solution of $\lambda u - \tilde{P}_{q'} \Delta u = \tilde{P}_{q'} f'$. Then

$$0 = \langle \lambda v - \tilde{P}_{a} \Delta v, u \rangle = \langle v, (\lambda - \tilde{P}_{a'} \Delta) u \rangle = \langle v, \tilde{P}_{a'} f' \rangle = \langle v, f' \rangle$$

for all $f' \in \tilde{L}^{q'}(\Omega)^n$; hence, v = 0.

Now Theorem 1.3 (i) - (iii) is proved. The assertions (iv) of this Theorem are proved by standard duality arguments and semigroup theory.

3.2 Proof of Theorem 1.4

Let $0 < T < \infty$, $1 < s, q < \infty$, and consider a domain $\Omega \subseteq \mathbb{R}^n$, $n \ge 2$, of uniform $C^{1,1}$ -type (α, β, K) . Then we define the subspace $\tilde{L}^{s,q}_{\sigma} := L^s (0, T; \tilde{L}^q_{\sigma}(\Omega))$ of $\tilde{L}^{s,q} := L^s (0, T; \tilde{L}^q(\Omega))$ with norm $\|\cdot\|_{\tilde{L}^{s,q}_{\sigma}} = \|\cdot\|_{L^s(0,T;\tilde{L}^q(\Omega)_{\sigma})}$. In addition to the operators $\mathcal{J}_{s,q}$, $\mathcal{J}'_{s,q}$ for bounded domains, see Lemma 2.4, we define $\tilde{\mathcal{J}}_{s,q}$, $\tilde{\mathcal{J}}'_{s,q}$ by

$$\tilde{\mathcal{J}}_{s,q}f(t) = \int_0^t e^{-(t-\tau)\tilde{A}_q} f(\tau) d\tau, \qquad \tilde{\mathcal{J}}'_{s,q}f(t) = \int_t^T e^{-(\tau-t)\tilde{A}_q} f(\tau) d\tau,$$

for $f \in \tilde{L}^{s,q}_{\sigma}$ and $0 \le t \le T$. Since $(\tilde{A}_q)' = \tilde{A}_{q'}$, we obtain for all $f \in \tilde{L}^{s,q}_{\sigma}$, $g \in \tilde{L}^{s',q'}_{\sigma}$ that

$$\langle \tilde{\mathcal{J}}_{s,q} f, g \rangle_T = \langle f, \tilde{\mathcal{J}}'_{s',q'} g \rangle_T.$$

3.2.1 Maximal regularity in a bounded domain Ω when $s = q \ge 2$

First we consider the case $u_0 = 0$ and s = q. Then $u = \tilde{\mathcal{J}}_{q,q}f$ solves the equation $u_t + \tilde{A}_q u = f$, u(0) = 0, and $u = \tilde{\mathcal{J}}'_{q,q}f$ is the solution of the system $-u_t + \tilde{A}_q u = f$, u(T) = 0. Our aim is to prove in both cases the estimate (1.7) with a constant $C = C(T, q, \alpha, \beta, K) > 0$. Obviously it suffices to consider the case $u = \tilde{\mathcal{J}}_{q,q}f$ since the other case follows using the transformation $\tilde{u}(t) = u(T - t)$, $\tilde{f}(t) = f(T - t)$. By Lemma 2.5 we know that $u = \tilde{\mathcal{J}}_{q,q}$ solves the equation

$$u_t + \tilde{A}_q u = u_t - \Delta u + \nabla p = f \in L^q(0, T; \tilde{L}_{\sigma}^q), \quad u(0) = 0,$$

with $\nabla p = (I - \tilde{P}_q)\Delta u$, and that u satisfies (2.20) with a constant $C = C(\Omega, q) > 0$; note that the norms $||u||_{W^{2,q}}$ and $||u||_{\mathcal{D}(A_q)}$ are equivalent. Thus it remains to prove that C in (2.20) can be chosen depending only on T, q and (α, β, K) .

For this reason, we use the system of functions $\{h_j\}$, $1 \leq j \leq N$, the covering of Ω by balls $\{B_j\}$, and the partition of unity $\{\varphi_j\}$ as described in Section 2 as well as the bounded sets $U_j \subset B_j$, cf. (3.2). On U_j define $w = R((\nabla \varphi_j) \cdot u) \in L^q(0,T;W_0^{2,q}(U_j))$, and let $M_j = M_j(p)$ be the constant depending on $t \in (0,T)$ such that $p - M_j \in L^q(0,T;L_0^q(U_j))$, see Lemma 2.1. Since $\operatorname{div} w = (\nabla \varphi_j) \cdot u$ and $\operatorname{div} w_t = (\nabla \varphi_j) \cdot u_t$ for a.a. $t \in (0,T)$, the term $(\varphi_j u - w)$ solves in U_j the local equation

$$(\varphi_{j}u - w)_{t} - \Delta(\varphi_{j}u - w) + \nabla(\varphi_{j}(p - M_{j}))$$

$$= \varphi_{j}f - w_{t} + \Delta w - 2\nabla\varphi_{j} \cdot \nabla u - (\Delta\varphi_{j})u + (\nabla\varphi_{j})(p - M_{j}).$$
(3.14)

From (2.8), (2.9) using $w_t = R((\nabla \varphi_j) \cdot u_t)$ and $\nabla p = f - u_t + \Delta u$ we will prove for all $\varepsilon \in (0, 1)$ the estimates

$$||w_{t}||_{L^{q}(L^{q}(U_{j}))} \leq C||u_{t}||_{L^{q}(L^{2}(U_{j}))} + \varepsilon||u_{t}||_{L^{q}(L^{q}(U_{j}))},$$

$$||\nabla^{2}w||_{L^{q}(L^{q}(U_{j}))} \leq C(||u||_{L^{q}(L^{q}(U_{j}))} + ||\nabla u||_{L^{q}(L^{q}(U_{j}))}),$$

$$||p - M_{j}||_{L^{q}(L^{q}(U_{j}))} \leq C(||f||_{L^{q}(L^{q}(U_{j}))} + ||u_{t}||_{L^{q}(L^{2}(U_{j}))} + ||\nabla u||_{L^{q}(L^{q}(U_{j}))})$$

$$+ \varepsilon||u_{t}||_{L^{q}(L^{q}(U_{j}))}$$
(3.15)

with $C = C(q, T, \varepsilon, \alpha, \beta, K) > 0$. In fact, for the proof of $(3.15)_1$, choose $r \in [2, q)$ such that the embedding $W^{1,r}(U_j) \subset L^q(U_j)$ holds with an embedding constant $c = c(q, r, \alpha, \beta, K) > 0$ independent of j. Moreover,

$$||w_t||_{L^q(U_j)} \le c||w_t||_{W^{1,r}(U_j)} \le c||u_t||_{L^r(U_j)}$$

for a.a. $t \in (0,t)$. Then the interpolation inequality (2.15) proves $(3.15)_1$, and $(2.8)_2$ implies $(3.15)_2$. For the proof of $(3.15)_3$ we use (2.9), the embedding $W^{1,q'}(U_j) \subset L^{r'}(U_j)$ with an embedding constant $c = c(q, r, \alpha, \beta, K) > 0$ independent of j and apply the previous interpolation argument to u_t .

Applying the local estimate (2.12) to (3.14) and using (3.15) we get that

$$\|\varphi_{j}u_{t}\|_{L^{q}(L^{q}(U_{j}))} + \|\varphi_{j}u\|_{L^{q}(L^{q}(U_{j}))} + \|\varphi_{j}\nabla^{2}u\|_{L^{q}(L^{q}(U_{j}))} + \|\varphi_{j}\nabla p\|_{L^{q}(L^{q}(U_{j}))}$$

$$\leq C(\|f\|_{L^{q}(L^{q}(U_{j}))} + \|u\|_{L^{q}(W^{1,q}(U_{j}))} + \|u_{t}\|_{L^{q}(L^{2}(U_{j}))}) + \varepsilon\|u_{t}\|_{L^{q}(L^{q}(U_{j}))}$$

with $C = C(T, q, \varepsilon, \alpha, \beta, K) > 0$. Raising this inequality to its qth power, taking the sum over j = 1, ..., N and exploiting the crucial property of the number N_0 , see (2.5), we are led to the estimate

$$||u_t||_{L^{q,q}}^q + ||u||_{L^{q,q}}^q + ||\nabla^2 u||_{L^{q,q}}^q + ||\nabla p||_{L^{q,q}}^q$$

$$= \int_{0}^{T} \int_{\Omega} \left(\left| \sum_{j} \varphi_{j} u_{t} \right|^{q} + \left| \sum_{j} \varphi_{j} u \right|^{q} + \left| \sum_{j} \varphi_{j} \nabla^{2} u \right|^{q} + \left| \sum_{j} \varphi_{j} \nabla p \right|^{q} \right) dx dt \\
\leq \int_{0}^{T} \int_{\Omega} N_{0}^{\frac{q}{q'}} \left(\sum_{j} |\varphi_{j} u_{t}|^{q} + \sum_{j} |\varphi_{j} u|^{q} + \sum_{j} |\varphi_{j} \nabla^{2} u|^{q} + \sum_{j} |\varphi_{j} \nabla p|^{q} \right) dx dt \\
\leq C N_{0}^{\frac{q}{q'}} \left(\sum_{j} \|f\|_{L^{q}(0,T;L^{q}(U_{j}))}^{q} + \sum_{j} \|u\|_{L^{q}(0,T;W^{1,q}(U_{j}))}^{q} + \sum_{j} \|u_{t}\|_{L^{q}(0,T;L^{2}(U_{j}))}^{q} \right) \\
+ \varepsilon N_{0}^{\frac{q}{q'}} \sum_{j} \|u_{t}\|_{L^{q}(0,T;L^{q}(U_{j}))}^{q} . \tag{3.16}$$

Choosing $\varepsilon > 0$ sufficiently small, exploiting the absorption principle and again the property of the number N_0 , we may simplify (3.16) to the estimate

$$||u_t||_{L^{q,q}} + ||u||_{L^{q,q}} + ||\nabla^2 u||_{L^{q,q}} + ||\nabla p||_{L^{q,q}} \le C(||f||_{L^{q,q}} + ||u||_{L^{q,q}} + ||u_t||_{L^{q,2}})$$
(3.17)

where $C = C(q, \alpha, \beta, K) > 0$; note that in order to deal with the sum of the terms $||u_t||_{L^q(0,T;L^2(U_j))}$ we also used the reverse Hölder inequality. Now, concerning the term $||u||_{L^{q,q}}$, we use (2.14) with $\varepsilon > 0$ sufficiently small and exploit the absorption principle. Finally we apply Lemma 2.5 (ii), i.e., we add the estimate (2.20) with q = 2 to (3.17), and use the equivalence of the norm $||u||_{W^{2,q}(\Omega)}$ to the graph norm $||u||_{\mathcal{D}(\mathcal{A}_q)}$, see (3.1). This argument proves estimate (1.7) for bounded domains when s = q > 2, u(0) = 0. Again using Lemma 3.1 we get (1.6) for s = q, u(0) = 0.

To prove (1.6) with $u_0 \in \mathcal{D}(\tilde{A}_q)$ we solve the system $\tilde{u}_t + \tilde{A}_q \tilde{u} = \tilde{f}$, $\tilde{u}(0) = 0$, with $\tilde{f} = f - \tilde{A}_q u_0$. Then $u(t) = \tilde{u}(t) + u_0$ yields the desired solution with $u_0 \in D(\tilde{A}_q)$. This proves Theorem 1.4 for bounded Ω and $s = q \geq 2$.

3.2.2 The case Ω bounded, 1 < s = q < 2

In this case we consider for $f \in L^{q,q}_{\sigma} + L^{q,2}_{\sigma} = L^{q,q}_{\sigma}$ and the initial value $u_0 = 0$ the Stokes system $u_t + \tilde{A}_q u = f$, u(0) = 0. By Lemma 2.5 there exists a unique solution $u(t) = \mathcal{J}_{q,q} f(t) = \tilde{\mathcal{J}}_{q,q} f(t)$; here we used that $\tilde{P}_q = P_q$ and $\tilde{A}_q = A_q$. For

the following duality argument we need that the space

$$C_0^\infty(C_{0,\sigma}^\infty) = \left\{ v \in C_0^\infty(\Omega \times (0,T)); \ \operatorname{div} v(x,t) = 0 \ \ \forall t \in (0,T) \right\}$$

is dense in $L_{\sigma}^{q',q'} \cap L_{\sigma}^{q',2} = (L_{\sigma}^{q,q} + L_{\sigma}^{q,2})'$. Then the identity

$$\langle u_t + \tilde{A}_q u, \tilde{A}_{q'} v \rangle = \langle u, (-\partial_t + \tilde{A}_{q'}) \tilde{A}_{q'} v \rangle = \langle \tilde{A}_q u, (-\partial_t + \tilde{A}_{q'}) v \rangle$$

holds for $u = \mathcal{J}_{q,q}f$ and every $v \in \tilde{A}_{q'}^{-1}(C_0^{\infty}(C_{0,\sigma}^{\infty}))$, since $(\tilde{\mathcal{J}}_{q',q'}')' = \tilde{\mathcal{J}}_{q,q}$. Let $g = -v_t + \tilde{A}_{q'}v$. Then we obtain by (1.6) with s = q replaced by $s' = q' \geq 2$ and u replaced by v that

$$||f||_{L_{\sigma}^{q,q}+L_{\sigma}^{q,2}} = \sup \left\{ \frac{|\langle u_{t} + \tilde{A}_{q}u, \tilde{A}_{q'}v \rangle_{T}|}{||\tilde{A}_{q'}v||_{L_{\sigma}^{q',q'} \cap L_{\sigma}^{q',2}}}; \ 0 \neq v \in \tilde{A}_{q'}^{-1}(C_{0}^{\infty}(C_{0,\sigma}^{\infty})) \right\}$$

$$= \sup \left\{ \frac{|\langle \tilde{A}_{q}u, g \rangle_{T}|}{||\tilde{A}_{q'}v||_{L_{\sigma}^{q',q'} \cap L_{\sigma}^{q',2}}}; \ 0 \neq v \in \tilde{A}_{q'}^{-1}(C_{0}^{\infty}(C_{0,\sigma}^{\infty})) \right\}$$

$$\geq \frac{1}{C} ||\tilde{A}_{q}u||_{L_{\sigma}^{q,q}+L_{\sigma}^{q,2}},$$

$$(3.18)$$

where $C = C(T, q', \alpha, \beta, K) > 0$. Here we used that the estimate (1.6) with q, s replaced by q', s' also holds with u, u_0, f replaced by v, v(T) = 0, g due to the transformation in time in the proof of Lemma 2.5, and exploited the norm equivalence

$$\|\cdot\|_{L^q_\sigma + L^2_\sigma} \sim \sup \left\{ \frac{|\langle \cdot, h \rangle|}{\|h\|_{L^{q'}_\sigma \cap L^2_\sigma}}; \ 0 \neq h \in L^{q'}_\sigma \cap L^2_\sigma \right\}$$

with constants depending only on q and (α, β, K) , cf. Theorem 1.2. Hence we obtain the estimate $\|\tilde{A}_q u\|_{L^{q,q}_{\sigma} + L^{q,2}_{\sigma}} \le C \|f\|_{L^{q,q}_{\sigma} + L^{q,2}_{\sigma}}$, and it follows

$$||u_t||_{L^{q,q}_{\sigma} + L^{q,2}_{\sigma}} + ||\tilde{A}_q u||_{L^{q,q}_{\sigma} + L^{q,2}_{\sigma}} \le C||f||_{L^{q,q}_{\sigma} + L^{q,2}_{\sigma}}.$$
(3.19)

By virtue of Lemma 3.1 and (2.3) with $B_1 = A_q$, $B_2 = A_2$, we conclude that also the norms $||u||_{W^{2,q}+W^{2,2}}$ and $||u||_{L^q_{\sigma}+L^2_{\sigma}}+||A_qu||_{L^q_{\sigma}+L^2_{\sigma}}$ are equivalent with constants depending only on q and (α, β, K) . Then (3.19) and the identity $\nabla p = f - u_t + \Delta u$ lead to the estimate

$$||u_t||_{L^{q,q}_{\sigma} + L^{q,2}_{\sigma}} + ||u||_{L^q(0,T;W^{2,q} + W^{2,2})} + ||\nabla p||_{L^{q,q} + L^{q,2}} \le C||f||_{L^{q,q}_{\sigma} + L^{q,2}_{\sigma}}$$
(3.20)

with $C = C(q, \varepsilon, \alpha, \beta, K) > 0$.

Now the proof of Theorem 1.4 is complete for bounded domains in the case s = q, u(0) = 0. The case $u_0 \in \mathcal{D}(\tilde{A}_q)$ is treated as in 3.3.1.

3.2.3 The case Ω unbounded

Consider the sequence of bounded subdomains $\Omega_j \subseteq \Omega$, $j \in \mathbb{N}$, of uniform $C^{1,1}$ -type as in (2.7), let $f \in \tilde{L}^{q,q}_{\sigma}$ and $f_j := \tilde{P}^{(j)}_q f_{|_{\Omega_j}}$ where $\tilde{P}^{(j)}_q$ denotes the Helmholtz projection in $\tilde{L}^q(\Omega_j)$. Then consider the solution $(u_j, \nabla p_j)$ of the instationary Stokes equation

$$\partial_t u_j - \tilde{P}_q \Delta u_j = \partial_t u_j - \Delta u_j + \nabla p_j = f_j, \quad \nabla p_j = (I - \tilde{P}_q) \Delta u_j \quad \text{in} \quad \Omega_j \times (0, T)$$

with initial condition $u_i(0) = 0$. From (1.6) with s = q we obtain the estimate

$$\|\partial_t u_j\|_{\tilde{L}^{q,q}} + \|u_j\|_{L^q(0,T;\tilde{W}^{2,q}(\Omega_j))} + \|\nabla p_j\|_{\tilde{L}^{q,q}} \le C\|f\|_{\tilde{L}^{q,q}_{\sigma}}$$
(3.21)

on Ω_j with $C = C(T, q, \alpha, \beta, K) > 0$ independent of $j \in \mathbb{N}$. Extending u_j and ∇p_j for a.a. $t \in (0, T)$ from Ω_j by 0 to vector fields on Ω we find, suppressing subsequences, weak limits

$$u = w - \lim_{j \to \infty} u_j$$
 in $\tilde{L}^{q,q}_{\sigma}(\Omega)$, $\nabla p = w - \lim_{j \to \infty} \nabla p_j$ in $\tilde{L}^{q,q}(\Omega)$

satisfying $u \in L^q(0,T; \tilde{L}^q_{\sigma}(\Omega), \partial_t u - \Delta u + \nabla p = \partial_t u + \tilde{A}_q u = f$ in $\Omega \times (0,T)$ and the *a priori* estimate (1.6) with $u_0 = 0$; it follows (1.7) for this case. Hence we solved the instationary Stokes equation $\partial_t u + \tilde{A}_q u = \partial_t u - \Delta u + \nabla p = f$, u(0) = 0, in $\Omega \times (0,T)$ and proved (1.6), (1.7).

Up to now we considered only the case when $s=q,\ u(0)=0$. However, an abstract extrapolation argument shows that the validity of (1.6) with s=q immediately extends to all $s\in(1,\infty)$, see [2, p. 191] and [5, (1.12)], where A has to be replaced by $-\tilde{A}_q-\delta I$ with $\delta>0$ as in (1.4). The case $u(0)=u_0\neq 0$ can be reduced to the case $u_0=0$ in the same way as before.

Finally, to prove uniqueness let $v \in L^s(0,T;\tilde{W}^{2,q})$ satisfy $\partial_t v + \tilde{A}_q v = 0$ and v(0) = 0. Given $f' \in \tilde{L}^{s',q'}$ let $u \in L^{s'}(0,T;\tilde{W}^{2,q'})$ be a solution of $-u_t + \tilde{A}_{q'}u = \tilde{P}_{q'}f'$, u(T) = 0. Then

$$0 = \langle v_t + \tilde{A}_q v, u \rangle_T = \langle v, (-\partial_t + \tilde{A}_{q'})u \rangle_T = \langle v, \tilde{P}_{q'} f' \rangle_T = \langle v, f' \rangle_T$$

for all $f' \in \tilde{L}^{s',q'}$; hence, v = 0.

Now Theorem 1.4 is proved.

References

- [1] R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975
- [2] H.Amann, Linear and Quasilinear Parabolic Problems, Vol.I: Abstract Linear Theory, Birkhäuser Verlag Basel 1995

- [3] J. Bergh and J. Löfström, *Interpolation Spaces*, Springer-Verlag, New York, 1976
- [4] M.E. BOGOVSKI, Decomposition of $L_p(\Omega, \mathbb{R}^n)$ into the direct sum of subspaces of solenoidal and potential vector fields, Soviet Math. Dokl. 33 (1986), 161-165
- [5] P. CANNARSA AND V. VESPRI, On maximal L^p regularity for the abstract Cauchy problem, Boll. Un. Mat. Ital. (6) 5 (1986), 165-175
- [6] R. Farwig and H., Sohr, Generalized resolvent estimates for the Stokes system in bounded and unbounded domains, J. Math. Soc. Japan 46 (1994), 607–643
- [7] R. FARWIG, H. KOZONO AND H. SOHR, An L^q -approach to Stokes and Navier-Stokes equations in general domains, Acta Math. 195, 21–53 (2005)
- [8] R. FARWIG, H. KOZONO AND H. SOHR, On the Helmholtz decomposition in general unbounded domains, Arch. Math. 87 (2006), to appear
- [9] A. FRIEDMAN, Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969
- [10] G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. I, Linearized Steady Problems, Springer-Verlag, New York, 1994
- [11] Y. Giga, Analyticity of the semigroup generated by the Stokes operator in L_r -spaces, Math. Z. 178 (1981), 297–265
- [12] Y. GIGA AND H. SOHR, Abstract L^p-estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains, J. Funct. Anal. 102 (1992), 72-94
- [13] V.N. MASLENNIKOVA AND M.E. BOGOVSKI, *Elliptic boundary value problems in unbounded domains with noncompact and nonsmooth boundaries*, Rend. Sem. Mat. Fis. Milano, LVI (1986), 125–138
- [14] P. MAREMONTI, V.A. SOLONNIKOV, On nonstationary Stokes problem in exterior domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), 395449
- [15] H. Sohr, The Navier-Stokes Equations, Birkhäuser Verlag, Basel, 2001
- [16] V.A. Solonnikov, Estimates for solutions of nonstationary Navier-Stokes equations, J. Soviet Math. 8 (1977), 467–529
- [17] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, 1978