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Abstract. We introduce the embedded Weingarten map as a geometric
invariant of piecewise smooth surfaces. It is given by a (3 × 3)-matrix
and provides complete curvature information in a continuous way. Thus,
it is the appropriate tool for the C2-analysis of subdivision surfaces near
extraordinary points. We derive asymptotic expansions and show that
the convergence of the sequence of embedded Weingarten maps to a
constant limit is necessary and sufficient for curvature continuity.

1 Introduction

Locally, a subdivision surface x can be regarded as the union of the central point
xc and a sequence of smaller and smaller spline rings xm,m ∈ IN, which are
converging to xc,

xc = lim
m→∞

xm.

While, at least for linear stationary schemes, the parametrizations of the xm

are explicitly known, the central point xc itself is an isolated object so that
standard formulas for computing normal vector and curvature properties at this
point cannot be applied immediately. There are two ways to analyze x in a
vicinity of xc:

First, one can try to express x locally as the graph of a real-valued height
function h over the tangent plane at xc. Then h contains all curvature informa-
tion of x at xc. In particular, by definition, x is curvature continuous at xc if and
only if h is C2. Beyond its fundamental character as a definition, this approach
can also be used for analytical purposes. For instance, in [1], convergence of the
anchored osculating paraboloid, which is just the quadratic Taylor jet of h, is
used to prove curvature continuity of surfaces generated by guided subdivision.
However, explicit formulas for h and its derivatives are not easy to derive since
a nonlinear pair of equations has to be solved in order to determine the value of
h at a given point in the tangent plane.

Second, one can analyze convergence properties of geometric invariants to
draw conclusions on x at xc. For instance, x is normal continuous at xc if the
sequence of normal vectors nm of the spline rings is converging to a unique limit,
called the central normal,

nc := lim
m→∞

nm.



Equally, it is suggested in [4] to establish curvature continuity based on the
convergence of the principal curvatures κm

1,2 and the principal directions rm
1,2,

which are the standard second order geometric invariants of smooth surfaces,

κc
1,2 := lim

m→∞
κm

1,2, rc
1,2 := lim

m→∞
rm
1,2.

Favorably, these quantities are easy to derive from the underlying parametriza-
tions of the spline rings xm. However, there is a nasty little problem with this
approach: If xc happens to be an umbillic point of the surface, i.e., κc

1 = κc
2, then

the corresponding principal directions are not convergent at xc, even if the sur-
face is curvature continuous. The reason for that phenomenon is the fact that at
umbillic points any direction in the tangent plane is a principal direction. Con-
sequently, we have to state that curvature analysis based on principal directions
is a flawed approach which needs mending.

The principal directions are the eigenvectors of the Weingarten map, also
called the shape operator, to the principal curvatures. Hence, one could try to
consider convergence properties of the sequence Wm of Weingarten maps in-
stead of principal curvatures and directions. In principle, this is possible, but
point-wise, the Weingarten map lives in the tangent space of the surface, and a
coordinate system in this tangent space is required to express Wm explicitly. A
standard choice for such a coordinate system is given by the partial derivatives
of the surface parametrization. This parametrization, however, is typically not
C1 for a subdivision surface, even it is geometrically smooth. Hence, with re-
spect to these coordinates, the Weingarten map does not vary continuously on
the surface. A continuous choice of coordinates might locally be difficult, and,
for topological reasons, globally be impossible.

In this paper, we propose to extend the Weingarten map to the embedding
space IR3. Besides the principal directions, now regarded as vectors in IR3, also
the surface normal becomes an eigenvector corresponding to the trivial eigen-
value 0. The advantages of the embedded Weingarten map, which make it ap-
propriate for the study of subdivision surfaces, are that

– it is a geometric invariant of the surface, i.e., it does not depend on the
chosen parametrization but only on the shape of the surface;

– it varies continuously on the surface (even at umbillic points) if and only if
the surface is C2;

– it is easy to compute using the second fundamental form and the pseudo-
inverse of the derivative of the parametrization.

In Chapter 2, we develop the concept of the embedded Weingarten map in some
detail. Then, in Chapter 3, we apply it to subdivision surfaces and derive asymp-
totic expansions for the sequence Em of embedded Weingarten maps of the spline
rings. Finally, in Chapter 4, the convergence requirements on the sequence Em

are used to recall the well known conditions on curvature continuity.



2 The Extended Weingarten Map

Throughout the paper, points and vectors in IR3 are denoted by boldface latin
letters and understood as rows with three components, e.g., x = [x, y, z]. Points
in IR2, such as parameters of surfaces, are denoted by boldface greek letters, e.g.,
σ = (s, t). For matrices A,B, a dot indicates multiplication by the transpose,

A ·B := ABt.

Equally, if one or both factors are points in IR3, we define A · x := Axt, and
x · y := xyt. The Euclidean norm is denoted |x| :=

√
x · x. We consider a

parametrized surface
x : Ω 3 (s, t) → x(s, t) ∈ IR3

with domain Ω ⊂ IR2 which is twice differentiable. According to the above
convention, we also write x(σ) instead of x(s, t), but mostly, the argument is
simply omitted. The trace of x is denoted X := x(Ω). The first derivative of x
is given by the (2× 3)-matrix

Dx :=
[
xs

xt

]
,

and we assume that the cross product of its rows does not vanish,

×Dx := xs × xt 6= 0.

In other words, x is a regular C2-surface. The Gauss map of x is given by the
normalized normal vector,

n : Ω 3 σ →
×Dx(σ)
|×Dx(σ)|

∈ S2.

Differentiating the identity n · n ≡ 1, we obtain Dn · n = 0, what means that
the row vectors of Dn lie in the tangent plane of x at the corresponding point.
Hence, there exists a (2× 2)-matrix W , called the Weingarten map, with

Dn = −WDx.

Multiplication with the transpose of Dx yields

II = WI,

where

I := Dx ·Dx =
[
xs · xs xt · xs

xs · xt xt · xt

]
and also

II := −Dn ·Dx = −
[
xs · ns xt · ns

xs · nt xt · nt

]
=

[
xss · n xst · n
xst · n xtt · n

]



are symmetric (2× 2)-matrices, called the first and second fundamental form of
x, respectively. By det I = |×Dx|2 and regularity of the parametrization, I is
invertible, thus

W = II I−1.

Given a smooth curve γ(t) = σ + tσ′ + o(t) in the domain of x, we define the
related curves cx(t) := x(γ(t)) on the surface, and cn(t) := n(γ(t)) on the unit
sphere. Dropping, as usual, the parameter σ = γ(0), we obtain by the chain rule

c′x(0) = σ′Dx, c′n(0) = σ′WDx.

Now, we are looking for curves γ with the property that

– r := c′x(0) has unit length, and
– c′n(0) = κr for some κ ∈ IR, i.e., c′x(0) and c′n(0) are parallel.

Then the vector r ∈ IR3 is called a principal direction, and κ is the corresponding
principal curvature of x at the point x(σ). The condition c′n(0) = κr is equivalent
to

σ′W = κσ′, r = σ′Dx.

In other words, σ′ is a left eigenvector of W to the eigenvalue κ. One can
(and we will) show that W has always two real eigenvalues κ1, κ2, and that the
corresponding pair r1, r2 of principal directions can be chosen orthonormal. It is
well known that the principal curvatures and directions are geometric invariants
in the sense that they do not depend on the parametrization, but only on the
shape and the orientation of the surface. We state without proof

Theorem 1. Let x and x̃ be two regular C2-surfaces without self-intersections
and equal trace, X = X̃. Then, if x(σ) = x̃(σ̃),

n(σ) = sñ(σ̃)

either for s = 1 or s = −1. Further, if r is a principal direction of x at x(σ) to
the principal curvature κ, then it also a principal direction of x̃ at x̃(σ̃) to the
principal curvature sκ.

The theory developed so far is well established, but not fully satisfactory for
the analysis of subdivision surfaces. Clearly, if we assume for instance κ1 ≤ κ2,
the principal curvatures depend continuously on the parameter σ ∈ Ω. But by
contrast, the principal directions reveal discontinuities at umbillic points which
are characterized by κ1 = κ2. Here, any direction in the tangent plane is a
principal direction, and accordingly, r1, r2 do not converge when approaching
such a point. Below, this phenomenon is illustrated at hand of a paraboloid of
revolution, where the principal directions diverge near the vertex. In standard
text books on differential geometry, this problem is not fully resolved, but merely
addressed as a degenerate situation. In our context, however, continuity is an
indispensable analytic tool since we want to study convergence properties of
spline rings without having immediate access to a single surface parametrization
near the extraordinary point. We suggest the following approach:



Definition 2. For a regular C2-surface x, let

Dx+ := (I−1Dx)t

denote the pseudo-inverse of Dx, which is a (3× 2)-matrix. Then we define the
embedded Weingarten map of x as the symmetric (3× 3)-matrix

E := Dx+ II ·Dx+.

We claim that this object is a geometric invariant which contains the complete
curvature information in a continuous way. Because E ·n = 0, the normal vector
is always an eigenvector of E to the eigenvalue 0. The two other eigenvectors
can be chosen orthonormal (mutually and with respect to n), and collected in a
(2× 3)-matrix R. The diagonal matrix of the corresponding pair of eigenvalues
is denoted K. We obtain the factorization

E = [Rt nt]
[
K 0
0 0

] [
R
n

]
= RtKR,

and therefore
RE = KR.

By orthogonality of the eigenvectors, we have R·n = 0. Hence, there exists a (2×
2)-matrix Σ with R = ΣDx. Together with the definitions E = DxtI−1III−1Dx
and W = II I−1, we conclude from the last display ΣWDx = WΣDx, and
eventually

ΣW = KΣ.

That is, the diagonal entries of K = diag(κ1, κ2) are the eigenvalues of W ,
and the rows of Σ = [σ′1;σ

′
2] are the corresponding left eigenvectors which, via

[r1; r2] := ΣDx = R, yield the principal directions.
So far, we have found the following: The embedded Weingarten map E is

a symmetric (3 × 3)-matrix with a trivial eigenvalue 0 corresponding to the
surface normal n. The other two eigenvalues are the principal curvatures, and
the corresponding eigenvectors are the principal directions of the surface. But
unlike these directions, the matrix E depends continuously on the parameter σ.
The following theorem establishes E as a geometric invariant:

Theorem 3. Let x and x̃ be two regular C2-surfaces without self-intersections
and equal trace, X = X̃, and let n(σ) = sñ(σ̃) for x(σ) = x̃(σ̃) as in Theorem 1.
Then the corresponding embedded Weingarten maps are equal up to sign,

E(σ) = sẼ(σ̃).

Proof. Let s = 1. If r is a principal direction of x at x(σ) to the principal cur-
vature κ, then, by Theorem 1, it is also a principal direction of x̃ at x̃(σ̃) to κ.
Further, E(σ) · n(σ) = Ẽ(σ̃) · ñ(σ̃) = 0. Hence, the eigenspaces and eigenval-
ues of E(σ) and Ẽ(σ̃) coincide so that E(σ) = Ẽ(σ̃). If s = −1, then again,
the corresponding eigenspaces coincide. However, the eigenvalues and hence the
matrices have opposite sign. ut



The mean and the product of the principal curvatures are known as mean cur-
vature and Gaussian curvature of x, respectively,

Km :=
κ1 + κ2

2
, Kg := κ1κ2.

They can be computed easily form W ,

Km =
1
2

trace W, Kg = detW = det II/ det I,

and equally from E,

Km =
1
2

trace E, Kg =
1
2

trace2 E − 1
2
‖E‖2F,

where ‖E‖2F :=
∑

i,j E2
i,j is the squared Frobenius norm of E. A point x(σ) is

called elliptic if Kg(σ) > 0, hyperbolic if Kg(σ) < 0, and parabolic if Kg(σ) = 0.
Now, we consider a continuous surface x : Ω → IR3 which is regular and Ck

everywhere with the exception of a single point, say σ0 = 0. Such an x is called
a Ck

0 -surface. More generally, we say that x is a Ck
r surface if there exists a

regular Cr-surface x̃ with equal trace, X = X̃. It is well known that x is a
Ck

1 -surface if the Gauss map converges,

nc := lim
σ→0

n(σ),

and if the projection of x to the tangent plane at x(0) is locally injective. The
next theorem provides a similar result for curvature continuity and will be fun-
damental for the investigation of subdivision surfaces:

Theorem 4. Let x : Ω → IR3 be a Ck
1 -surface, k ≥ 2. It is a Ck

2 -surface if and
only if the embedded Weingarten map converges, i.e., if the limit

Ec = lim
σ→0

E(σ)

exists.

Proof. Without loss of generality, let us assume that nc = e3 := [0, 0, 1] is the
third unit vector, and that x(0) = 0. Since the projection of x to the tangent
plane at x(0) is locally injective, is can be represented as graph over the tangent
plane. That is, there exists a scalar function h such that, locally,

x̃(u, v) := [u, v, h(u, v] = x(σ).

The function h is C1, and, by the inverse function theorem, it is twice differen-
tiable for (u, v) 6= (0, 0). By Theorem 4, the embedded Weingarten maps of x
and x̃ are equal up to sign so that

lim
(u,v)→(0,0)

Ẽ(u, v) = s lim
σ→σ0

E(σ) = sEc, s ∈ {−1, 1}.

Now, the mean value theorem shows that h is twice differentiable also at the
origin, and that sEc is the embedded Weingarten map at this point. ut



Let us illustrate the concepts developed so far at hand of a simple example. We
consider the C∞0 -surface

x(s, t) := [2
√

s, 2
√

t, s + t], (s, t) ∈ [0, 1]2.

The parametrization is not differentiable at the origin so that we do not know
beforehand if the surface is normal or curvature continuous. Of course, the
reparametrization [x, y, (x2 + y2)/4] shows that it is part of a paraboloid of
revolution, what settles the problem immediately, but in more complicated sit-
uations, such knowledge is not readily available. With w := (1 + s + t)−1/2, we
obtain for (s, t) 6= (0, 0)

Dx =
[
1/
√

s 0 1
0 1/

√
t 1

]
, n = w [−

√
s, −

√
t, 1].

The normal vector converges according to

lim
(s,t)→(0,0)

n(s, t) = [0, 0, 1],

and obviously, the projection of x to the xy-plane is injective so that x is a
C∞1 -surface. Further,

I =
[
1 + 1/s 1

1 1 + 1/t

]
, II =

w

2

[
1/s 0
0 1/t

]
, W =

w3

2

[
1 + t −t
−s 1 + s

]
.

Hence, the principal curvatures are κ1 = w/2 and κ2 = w3/2. For (s, t) 6= (0, 0),
the corresponding left eigenvectors are unique up to orientation, and we obtain

r1 =
1√

s + t
[
√

t, −
√

s, 0], r2 =
w√
s + t

[
√

s,
√

t, s + t].

Obviously, these vectors do not converge as (s, t) → (0, 0). Rather, the origin
is an umbillic point, and any direction in the xy-plane is a principal direction.
Now we compute the embedded Weingarten map. With v := 2 + s + t, we find
for (s, t) 6= (0, 0)

Dx+ = w2

√s(1 + t) −
√

st

−
√

ts
√

t(1 + s)
s t

 , E =
w5

2

 1 + vt −v
√

st
√

s

−v
√

st 1 + vs
√

t√
s

√
t s + t

 .

Its eigenvalues are κ1, κ2, 0, and the corresponding eigenvectors are r1, r2,n. At
the origin, we obtain the limit

lim
(s,t)→(0,0)

E(s, t) =
1
2

1 0 0
0 1 0
0 0 0

 .

Unlike its first two eigenvectors, this matrix is uniquely determined. Because E
depends continuously on (s, t) on the whole domain, we can conclude that x is
a C∞2 -surface, or in other words, it is curvature continuous.



One could argue that also the standard Weingarten map W converges as
(s, t) → (0, 0), and that curvature continuity follows equally from that. This is
correct, but the situation changes if we attach to x a second piece of surface

x̃(s, t) := [−2
√

t, 2
√

s, s + t], (s, t) ∈ [0, 1]2

with

ñ = w [−
√

t,
√

s, s+t], W̃ =
w3

2

[
1 + t −t
−s 1 + s

]
, Ẽ =

w5

2

1 + vs v
√

st −
√

t

v
√

st 1 + vt
√

s

−
√

t
√

s s + t

 .

Then x and x̃ join normal continuous according to

x(0, u) = x̃(u, 0) = [0, 2
√

u, 0], u ∈ [0, 1]

n(0, u) = ñ(u, 0) = (1 + u)−1/2 [0, −
√

u, 1].

The corresponding standard Weingarten maps differ at the common boundary,

W (0, u) =
(1 + u)−3/2

2

[
1 + u −u

0 1

]
, W̃ (u, 0) =

(1 + u)−3/2

2

[
1 0
−u 1 + u

]
,

while the embedded Weingarten maps coincide,

E(0, u) = Ẽ(u, 0) =
(1 + u)−5/2

2

(1 + u)2 0 0
0 1

√
u

0
√

u u

 .

From the latter observation, we conclude that the composed surface X ∪ X̃ is
curvature continuous.

The following sketchy considerations concerning the embedded Weingarten
map are not directly related to the forthcoming analysis, but perhaps interesting
in their own right:

– For a non-parabolic point, i.e, Kg(σ) 6= 0, we define the pseudo-inverse of E
by

E+ := RtK−1R.

Then the embedded Weingarten map is related to the first and second fun-
damental form by

I = Dn (E+)2 ·Dn, II = DnE+ ·Dn.

Further, Dn and Dx are related by

Dn = −DxE, Dx = −DnE+.

Differentiating the last equation with respect to s and t, we find that the
integrability condition xst = xts is equivalent to

nsE
+
t = ntE

+
s ,

provided that nst = nts. Compared with that, the integrability condition for
the first and second fundamental form, also known as the Mainardi-Codazzi
and Gauss equations, are slightly more complicated.



– If, as before, near a point x(σ) the surface x is locally described as the
graph of a local height function h, and if coordinates are chosen such that
x(σ) = 0 is the origin and the surface normal is the third unit vector, then
the quadratic Taylor jet

h2(u, v) = au2 + 2buv + cv2 (1)

of h is called the osculating paraboloid of x at x(σ). This surface can be
regarded as a degenerate quadric. Its vertex is the origin, the two main
axes in the xy-plane are the principal directions of x, and the corresponding
eigenvalues are the principal curvatures. Further, its symmetry axis, which
is the main axes corresponding to the eigenvalue 0, is the normal vector
n(σ). These informations are sufficient to verify that, in implicit form, the
osculating paraboloid is the set of all y ∈ IR3 satisfying(

(y − x)E − 2n
)
· (y − x) = 0, (2)

where of course, x,n and E are evaluated at σ. The advantage of (2) over
(1) is that it does not refer to special coordinates.

– Let X be a surface given in implicit form,

X := {y ∈ IR3 : f(y) = 0}.

A regular point x ∈ X of the surface is characterized by

f(x) = 0, g := ∇f(x) 6= 0.

Then n := −g/|g| is the normal vector (or more precisely one of the two
normal vectors) of X at x. The quadratic Taylor expansion of 2f at x reads

f2(y) =
(
(y − x)H + 2g

)
· (y − x),

where H is the Hessian H of f at x. Hence, the quadric Q := {y : f2(y) = 0}
is osculating X at x. Now let us consider the modified function

f̃2(y) =
(
(y − x)H̃ + 2g

)
· (y − x),

where
H̃ := (Id−N)H(Id−N), N := ntn,

yielding the quadric Q̃ := {y : f̃2(y) = 0}. First, we observe that also Q̃ is
osculating X at x because (H − H̃) · t = 0 for all vectors t with t · n = 0.
Second, Q̃ is a paraboloid with symmetry axes n because H̃ · n = 0. Hence,
Q̃ is the osculating paraboloid of X at x, and comparison with (2), using
g = −|g|n, shows that

E :=
H̃

|g|
is the embedded Weingarten map of X at x. The formulas derived here can
also be found in the unpublished manuscript [5].



3 Asymptotic Expansions

In this section, we derive asymptotic expansions for the fundamental forms and
the embedded Weingarten map of the sequence of spline rings. The details of
the setup can be found in [9] or [4].

We consider a subdivision surface X composed of spline rings

xm = BPm, Pm = AmP,

where B is a row vector of basis functions forming a partition of unity, P is a
column vector of initial control points, and A is a square subdivision matrix with
rows summing to one. We assume a standard scheme, i.e., the eigenvalues of A
are

λ0 = 1, λ := λ1 = λ2, µ := λ3 = · · · = λr,

where
1 > λ > µ > λi, i > r.

Denoting the right eigenvector to λi by vi, we define the eigenfunctions

fi := Bvi

and the eigencoefficients qi by the expansion

P =
∑

i

viqi.

Now, we obtain
xm =

∑
i

λm
i fiqi.

Since f0 = 1, we obtain

xm = q0 + λm[f1, f2]Q + o(λm), Q =
[
q1

q2

]
.

The planar spline ring
Ψ := [f1, f2]

is called the characteristic map of the scheme [6], and it is well known that X is
a Ck

1 -surface for almost all initial data if Ψ is regular and injective. In particular,
the central normal vector is

nc := lim
m→∞

×Dxm

|×Dxm|
=

q1 × q2

|q1 × q2|
,

provided that q1,q2 are linearly independent. In the following, we will assume
generic initial data, i.e.,

det[qi,qj ,qk] 6= 0, i 6= j 6= k,



and note that the set of non-generic data has measure zero so that it can be
excluded from our analysis without an essential loss of generality. In particular,
q1,q2 are linearly independent for generic initial data so that the central normal
is well defined.

To efficiently deal with asymptotic expansions, we introduce an equivalence
relation for sequences of functions with coinciding leading terms. We write

am cm

= bm iff am − bm = o(cm),

where o(cm)/cm converges uniformly to zero as m → ∞. For example, am 1= a
means that am converges to a. For vector-valued expressions, the equivalence
relation is understood component-wise. For simplicity, cm

= is mostly replaced by
the symbol .= with the understanding that the dot refers to the lowest order term
specified explicitly on the right hand side of a relation. Hence, the expansion of
the sequence of spline rings above now simply reads xm .= q0 +λmΨQ, meaning
that the omitted remainder term decays faster than λm.

For the following analysis of curvature, we assume for the sake of simplicity
(but without loss of generality) that Cartesian coordinates are chosen such that
q0 = 0 is the origin and nc = e3 is the third unit vector. Hence, the eigencoeffi-
cients q1,q2 lie in the xy-plane, and there exists a (2× 2)-matrix L with

Q = LT, T :=
[
1 0 0
0 1 0

]
.

For generic initial data, detL 6= 0. With Ψ̃ := ΨL and

ϕ :=
r∑

`=3

f` q` · nc,

the asymptotic expansion of xm involving also the behavior of the normal com-
ponent reads

xm .= [λmΨ̃ , µmϕ] = x̃ diag([λm, λm, µm]).

The spline ring x̃ is called the central surface of X, and many shape properties
of X are related to those of x̃, see [4, 3].

From [4], we recall without proof the following expansions:

Theorem 5. The asymptotic expansions of the partial derivatives and the fun-
damental forms of the spline rings xm are

Dxm .= λmDΨ̃ T = λmDΨLT

Im .= λ2mI, I−1 .= λ−2mI−1, I := DΨ̃ ·DΨ̃

IIm .= µmII, II :=

√
det Ĩ

det I
ĨI,

where Ĩ and ĨI are the fundamental forms of the central surface x̃.



In particular, one easily concludes that the sign of the Gaussian curvature of the
spline rings and the central surface are asymptotically equal at non-parabolic
points,

signKm
g = sign det IIm .= sign det ĨI if det ĨI 6= 0.

Now we are prepared to derive the asymptotic expansion of the embedded Wein-
garten map of the spline rings.

Theorem 6. The embedded Weingarten maps Em of the spline rings x̃ satisfy

Em .= (µ/λ2)m

[
E 0
0 0

]
, E := DΨ̃

−1
II ·DΨ̃

−1
.

Proof. By Theorem 5, we obtain for the pseudo-inverse of Dxm

(Dxm)+ = (Dxm)t(Im)−1 .= λ−m TtDΨ̃
t
I−1 = λ−m TtDΨ̃

−1
.

Hence,

Em = (Dxm)+ IIm · (Dxm)+ .= (µ/λ2)m Tt
(
DΨ̃

−1
II ·DΨ̃

−1)
T

= (µ/λ2)m TtET,

as stated.

4 Conditions for Curvature Continuity

By Theorem 4, a subdivision surface is Ck
2 if and only if k ≥ 2, and if

Ec := lim
m→∞

Em

exists and is constant. Obviously, a limit can exist only in the following cases:

1. µ/λ2 > 1 and E = 0. Although it is often taken for granted that the first
condition alone implies divergence of the principal curvatures, it has to be
excluded that the second condition cannot be satisfied for generic initial data.
This part of the argument, which is not completely trivial, is rarely carried
out in detail. The condition E = 0 implies II = ĨI = 0 since DΨ̃ = DΨ L
has full rank. Let us consider the central surface x̃ = [Ψ̃ , ϕ]. Its second
fundamental form vanishes if and only if its trace is part of a plane. Hence,
there exists a vector ñ with unit length and a number c̃ such that

[1, x̃] · [c̃, ñ] = B[e, ṽ1, ṽ2, w] · [c̃, ñ] = 0,

where e = v0 = [1; . . . ; 1] are the control points of the 1-function, [ṽ1, ṽ2] =
[v1, v2]L are the control points of Ψ̃ , and

w :=
r∑

`=3

v` q` · nc



are the control points of ϕ. Since the functions in B are assumed to form a
basis1, we have

[e, ṽ1, ṽ2, w] · [c̃, ñ] = 0.

For generic initial data, q` · nc 6= 0 for all ` ∈ {3, . . . , r}. Hence, linear
independence of the eigenvectors v0, . . . , vr implies that the third component
ñ3 of ñ must vanish. This, however, contradicts

|ñ3| =
|det DΨ̃ |
|x̃s × x̃t|

=
|det DΨ · det L|

|x̃s × x̃t|
6= 0.

This verifies in a rigorous way that the case µ/λ2 > 1 cannot yield curvature
continuity for generic initial data.

2. µ/λ2 < 1. This case yields curvature continuity with Ec = 0. However, the
enforced flat spot at the central point is not acceptable in most applications.

3. µ/λ2 = 1. This is the well known case of bounded curvature, and one can
show that E is constant if and only if

f` ∈ {f2
1 , f1f2, f

2
2 }, ` = 3, . . . , r,

i.e., if the subsub-dominant eigenfunctions are quadratic polynomials in the
subdominant ones.

Recently, a new class of C2
2 -schemes was devised by Karciauskas and Peters [1,

2] under the label of guided subdivision. Generalizing the idea of TURBS [8]
in a striking way, these subdivision schemes combine for the first time analytic
smoothness with geometric fairness and ease of use. Still, they are more com-
plicated than standard schemes, like the algorithms of Catmull-Clark or Loop,
and in particular, according to the results in [7], the polynomial bi-degree of the
patches is at least (6, 6) if the setup described here is used. Hence, curvature
discontinuous schemes are not yet obsolete, and their shape properties should
be further investigated and optimized. As a result of this paper, the embed-
ded Weingarten limit map, given by the symmetric (2 × 2) matrix E, is the
appropriate tool to do that.
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