ON THE DIRICHLET PROBLEM FOR THE PRESCRIBED MEAN CURVATURE
EQUATION OVER NONCONVEX DOMAINS

MATTHIAS BERGNER

Abstract

We study and solve the Dirichlet problem for graphs of prescribed mean cur-
vature H in R over general domains Q without requiring a mean convexity
assumption. By using pieces of nodoids as barriers we first give sufficient con-
ditions for the solvability in case of zero boundary values. Applying a result by
Schulz and Williams we can then also solve the Dirichlet problem for boundary
values satisfying a Lipschitz condition.

Introduction

In this paper we study and solve the Dirichlet problem for n-dimensional graphs of prescribed
mean curvature in R**!: Given a domain C R" and Dirichlet boundary values g € Co%(0%, R)
we want to find a solution f € C?(Q,R) N C°(Q, R) of

\Z2i

VAR

The given function H : Q x R — R is called the prescribed mean curvature. At each point z €
the geometric mean curvature of the graph f, defined as the average of the principal curvatures, is
equal to the value H(z, f(x)), thus a solution f is also called a graph of prescribed mean curvature
H.

=nH(z,f) inQ, f=¢g ond. (1)

For the minimal surface case, i.e. H = 0, it is known that the mean convexity of the domain
Q) yields a necessary and sufficient condition for the Dirichlet problem to be solvable for all Dirich-
let boundary values (see [7]). Here, mean convexity means that H(z) > 0 for the mean curvature
of 902 w.r.t. the inner normal. For the prescribed mean curvature case, a stronger assumption is
needed on the domain {2 in order to solve the boundary value problem for all Dirichlet boundary
values g. A necessary condition on the domain 2 and the prescribed mean curvature H is

") for (z,2) € 90 x R @)

H <
H (e, 2)| <™
(see [4, Corollary 14.13]). Additionally requiring a smallness condition on H implying the existence
of a C%estimate, Gilbarg and Trudinger [4, Theorem 16.9] could then solve the Dirichlet problem
in case H = H(z).

It is now a natural question to ask if we can relax the mean convexity assumption (2) if we
only consider very special boundary values, for example zero boundary values. This is indeed
possible, as our first existence result demonstates.



Theorem 1: Assumptions:

a) Let the bounded C*t*-domain ) C R" satisfy a uniform exterior sphere condition of radius
r > 0 and be included in the annulus {x € R" | r < |z| < r + d} for some constant d > 0.

b) Let the prescribed mean curvature H = H(z,z) € C'T%(Q x R,R) satisfy H, > 0 and the
smallness assumption

. 2(2r)nt
h:= (szli%|H(x,z)\ < Grrdn @ (3)

Then the Dirichlet problem (1) has a unique solution f € C*T*(Q,R) for zero boundary values.

For dimension n = 2 and constant mean curvature, similar existence theorems, again for zero
boundary values, can be found in [10], [11] or [12]. Note that Theorem 1 can be applied to the
annulus  := {z € R"|r < |z| < r 4+ d} which does not satisfy the mean convexity assumption
(2). More generally, given any bounded C2-domain © we can find constants 7 > 0 and d > 0 such
that assumption a) of Theorem 1 is satisfied for a suitable translation of €.

The uniqueness part of Theorem 1 follows directly from the assumption H, > 0 together with
the maximum principle. However, H, > 0 is not only needed for the uniqueness but also for the
existence of a solution. More precisely, it is needed to show a global gradient estimate for solutions
of Dirichlet problem (1) (see Section 2).

Note that some kind of smallness assumption on h in Theorem 1 is needed since there exists
the following necessary condition: If there exists a graph of constant mean curvature h > 0 over
a domain 2 containing a disc of radius ¢ > 0, then we have necessarily h < %. This follows

from a comparision with spherical caps of constant mean curvature 1 together with the maximum
principle. Consequently, the smallness condition on h in Theorem 1 cannot depend on the radius
r of the exterior sphere condition alone.

Furthermore, the smallness condition on h also cannot solely depend on the diameter of the do-
main: Consider the annulus Q = {z € R” | ¢ < |z| < 1} for some 0 < ¢ < 1 with diam(Q2) =2. A
calculation will show that a graph of constant mean curvature A > 0 having zero boundary values
does not exist if one chooses £ > 0 sufficiently small.

Theorem 1 specifically applies to convex domains. Note that a convex domain satisfies a uni-
form exterior sphere condition of any radius » > 0. By letting r — 400, we then obtain the
following corollary, which for dimension n = 2 and constant mean curvature can also be found in
[12, Corollary 3] or [10, Theorem 1.4].

Corollary 1: Let a bounded conver C?*T*-domain Q C R* be given such that Q is included within
the strip {z € R* | 0 < =1 < d} of width d > 0. Let the prescribed mean curvature H €
Cte(Q x R,R) satisfy H, > 0 as well as

2
h:=sup|H(z,2z)| < — .
sup |H(z,2)| <

Then the Dirichlet problem (1) has a unique solution f € C*T*(Q,R) for zero boundary values.

Note that in Corollary 1 the diameter of the domain €2 can be arbitrarily large, while in Theorem 1
the diameter is bounded by 2(r + d).



In case of arbitrary boundary values g, Williams [16] could show that the Dirichlet problem (1)

for H = 0 is still solvable over domains not being mean convex domains, if one requires certain

smallness assumptions on g. More precisely he showed: For any Lipschitz constant 0 < L < \/%

there exists some € = (L, ) > 0 such that the Dirichlet problem (1) is solvable for the minimal
surface equation if the boundary values g satisfy

lg(z) —g(y)| < Llz —y| forz,y € 0Q and |[g(z)] <e forz e N . (4)

For the proof Williams first considers weak solutions of the minimal surface equation. Construct-
ing suitable barriers he then shows that these weak solutions are continuous up to the boundary
and that the Dirichlet boundary values are attained.

Schulz and Williams [15] generalised the result of Williams [16] from the minimal surface case
to the prescribed mean curvature case H = H(z, z). However, two more assumptions are needed
there: As in Theorem 1, the prescribed mean curvature function H must satisfy the monotonoc-
ity assumption H, > 0. This assumption is needed for the existence of weak solutions (see [9]).
Moreover, they require the existence of an initial solution fo € C?(Q2,R) N C*(Q,R) for Dirichlet

boundary values gg, which must be Lipschitz continuous with a Lipschitz constant smaller than
1
n—1"

Using our solution of Theorem 1 and Corollary 1 as an initial solution with zero boundary val-
ues, we can apply the result of Schulz and Williams to solve the Dirichlet problem for Lipschitz
continuous boundary values as well:

Theorem 2: Let the assumptions of Theorem 1 or Corollary 1 be satisfied. Then for any Lipschitz

constant 0 < L < \/7% there exists some € = ¢(Q2, H,L) > 0 such that the Dirichlet problem (1)

has a solution f € C*T*(Q,R)NC%' (Q,R) for all Lipschitz continuous boundary values g : 09 — R
satisfying assumption (4).

As demonstrated in [15], the smallness assumption on the Lipschitz constant L is sharp. One
can construct domains 2 for which the result of Theorem 2 is false for any Lipschitz constant
L> \/7% For the minimal surface case, this actually holds for all domains {2 which are not mean
convex (see [16, Theorem 4]).

This paper is organized as follows: In Section 1 we first we show that solutions satisfy a height
as well as a boundary gradient estimate. As barriers we use a piece of a rotationally symmetric
surface of constant mean curvature h, a so-called Delaunay nodoid. This surface is constructed in
Proposition 1 by solving an ordinary differential equation. There we need a smallness assumption
on h corresponding to assumption (3) of Theorem 1. In Section 2 we first give a global gradi-
ent estimate in terms of the boundary gradient (see Corollary 2). The monotonocity assumption
H, > 0 plays an important role there. We then give the proof of Theorem 1 and Corollary 1 using
the Leray-Schauder method from [4].

1. Estimates of the height and the boundary gradient

To obtain a priori C° estimates as well as boundary gradient estimates for solutions of problem
(1), it is essential to have certain super and subsolutions at hand serving us upper and lower
barriers. In this paper we will use a rotationally symmetric surface of constant mean curvature h,
a so-called Denaunay surface as barrier. For A = 0 we have the family of catenoids and for h # 0
a family consisting of two types of surfaces: the embedded unduloids and the immersed nodoids



(see [6]; [8] for n = 2). We will now construct a piece of the n-dimensional catenoid (if A = 0) and
n-dimensional nodoid (if A # 0) which is given as a graph defined over the annulus

{zeR"|r<|z|] <R}.
It can be represented almost explicitely by solving a second order ordinary differential equation.
Proposition 1: Let the numbers r > 0, h > 0 and R > r be given satisfying

2(2r)" 1
(R+r)m — (2r)"

h < (5)

Then there exists a function p € C?([r, R],[0,+00)) with p(r) = 0 and p(t) > 0 for t € (r, R]
such that the rotationally symmetric graph f(z) := p(|z|) defined on the annulus r < |z| < R has
constant mean curvature —h. Furthermore, there exists some ty € (r, R] such that p(t) is increasing
for t € [r,to] and decreasing for t € [to, R].

Proof:
1.) Inserting p(|z|) = f(z) into the mean curvature equation
Vf

V—
V1+|V?

we obtain for p the second order differential equation

" n— 1)
P +( )p

L+p2)2  t(14p?):
Multiplying this equation by "~ ! and integrating this yields the first order differential equa-
tion
tn_lp'

——— =c—ht" (6)
/1 +p12
where ¢ € R is some integration constant serving as a parameter. We focus here on the case
¢ > 0, corresponding to the choice of a nodoid. The case ¢ = 0 yields a sphere and ¢ < 0 an
unduloid. Solving equation (6) for p’ we obtain
c— ht"

p(t) = N ey (7)

Clearly, (7) is only well defined for those t € (0,+00) for which the term under the root in
the denominator is positive. We will later determine for which ¢ this is the case. Integrating
(7) we can now define

c— hs"

t
p(t) = / \/SQn—Q _ (C _ hsn)ZdS (8)

with p(r) = 0.

2.) Let us first study the case h = 0. The denominator of (7) has exactly one zero a > 0 given
as solution of a®~! = ¢ and p/(t) is defined for all ¢ € (a,+00). For the integral (8) to be
defined, we need to have that r € (a,+0o0), which is equivalent to ¢ < r”~!. For example, we
can set ¢ := $r"~!. The function p(t) is now defined for all ¢ € [r,+00) and also p'(t) > 0
for all ¢ € [r,+00). The claim of the proposition now follows with ¢o = R.
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3.)

In case h > 0, the denominator of (7) has precisely two positive zeros 0 < a < b given as
solutions of the equations

ha +a” t=c¢ , R"—b"l=c.

Now p'(t) is defined for all ¢ € (a,b) and formally we have p'(a) = 400, p'(b) = —oo. Note
that for

1

to := (chil)ﬁ € (a,b)

we have
p(to) =0 , p'(t)>0 forte (a,tg) and p'(t) <0 fort e (to,b),

as desired. Now for the integral (8) to be defined, we need to have a < r < tp, which is
equivalent to restricting the parameter ¢ such that

hr" < ¢ < hr™ 4™t (9)
We then obtain p € C?([r,b), R).
We will now show the inequality
p'(to —8) > |p'(to +s)| foralls € (0,tg—a) . (10)

Together with p(r) = 0 this will yield p(¢t) > 0 for all ¢ € (r,r + 2(top — r)]. In fact, after some
computation (10) turns out to be equivalent to

q(to—s)+q(to+s) >0 forse (0,40 —a)

for the function ¢(t) := (c — ht")t!~™ = ct'~" — ht. This however is a direct consequence of
the inequality
c(to + s)7 ™ + ¢ty — s)1 " > 2ht

which holds for all s € (0,%), proving (10).

We now set
1

R = R/(c) ::r-|—2(t0—7'):2t0—r:2(ch71)z—7"<b.

From 4.) we conclude the positivity p(t) > 0 for all ¢ € (r, R']. Keeping in mind the
restriction (9) on ¢ we obtain the limit

1 1
R'(c) = 2(r" + h_lrn_l) tor= 27"(1 + h_lr_1> .
if we let ¢ — hr™ + r®~1. This proves the claim of the proposition whenever
1
R < 27‘(1 + h_lr_l) —

is satisfied. An easy computation, however, asserts that this inequality is indeed equivalent
to assumption (5) . O



The following picture shows the graph of the function p(t) for n = 2, h = %, a=1andb=A4.

0.5

-1.5

Remarks:

a) For h = 0 and n = 2 the function p(t) has the explicite form p(¢) = carcosh(t/c), the well
known catenary. If either A > 0 or n > 3 the function p(¢) can only be represented by the
elliptic integral given in the proof of Proposition 1.

b) In the case h = 0 we obtain the n-dimensional catenoid, a rotationally symmetric minimal
surface. The generating function is defined for all ¢ € [r,4+00). In case n = 2 we have
p(t) — o0 as t — oo. However, for n > 3 the function p(t¢) is uniformly bounded by some
constant.

c) In case h > 0, the maximal domain of definition of the function p(¢) is the interval (a,b).
In case n = 2 one can show that the length b — a of this interval is given by b — a = %, in
particular the length does not depend on the parameter ¢. This is no longer the case for
dimension n > 3 where b — a depends on both h and c.

We can now show the following a priori estimates of the height and boundary gradient.
Theorem 3: Assumptions:

a) Let the bounded C*t*-domain Q C R™ satisfy a uniform exterior sphere condition of radius
r > 0 and be included in the annulus {x € R" | r < |z| < r + d} for some constant d > 0.

b) Let the prescribed mean curvature H = H(z,z) € C1t(Q x R, R) satisfy the smallness
assumption |H (z,z)| < h for some constant

2(2r)™ 1

< Grxdr =@

c) Let f € C*t2(Q,R) be a solution of problem (1) for zero boundary values.



Then there exists a constant C = C(h,r,d) such that f satisfies the estimates

fllco) <C  and S;lglvf(w)l <C.

Proof:

1.) We first show the CC-estimate. Since 2 C {z € R* : r < |z| < r + d} the rotationally
symmetric graph n(z) = p(|z|) with constant mean curvature —h is well defined for all
z € Q. Here, p(t) is the function defined by Proposition 1 for R := r + d. Noting n(z) > 0
and f(z) = 0 on 012, the maximum principle yields f(z) < n(z) in Q. Similary, we obtain
f(z) > —n(z). Combining these estimates we have

[ fllco) =sup|f(z)] <supln(z)| < sup |[p(t)| =plto) =: Ci .
Q Q r<t<r+d

Here, #y defined by Proposition 1 is the argument for which the function p achieves its
maximum. Note that p only depends on r,d and h and hence C; = Cy(r,d, h).

2.) Given some point zy € 92 we show the boundary gradient estimate at xy. Since € satisfies
a uniform exterior sphere condition of radius r, we may assume that

QNB.(0)=0 and =z € 0B,(0)NIN

holds after a suitable translation. We define the annulus U := {z € R" : r < |z| < tp} and
consider the graph

n€C*U,R) , n(z):=p(z|) forzel.

From f(z) = 0 on 09 together with f(z) < p(to) = n(z) for |z| = to we conclude f(z) < n(z)
on 9(2NU). The maximum principle gives f(z) < n(z) in @ N U. Similarly we can also
conclude that f(z) > —n(z) in QNU. From 2y € 9(QNU) and f(z) = n(zo) we obtain

0
= < |— = p =:
V1 (@) = | f )| < | ontao)| = ()] =2 G
where v is the outward normal to 02 at xg. O

Remark: Note that for this result we do not need the monotonocity assumption H, > 0. However,
we will need this assumption in the next section to prove a global gradient estimate.

2. Global gradient estimate and the proof of Theorem 1

In the previous section we have shown a CC-estimate together with a boundary gradient estimate,
thus we can assume

[f(z)| <M inQ (11)

for a given solution f € C?T*(Q,R) of problem (1). It now remains to establish a global gradient
estimate. In case H = H(x), i.e. the prescribed mean curvature does not depend on f, such a global
estimate can be found in [4, Theorem 15.2]. Using a differential equation for the normal, we will
now demonstrate that such a global estimate also holds in case H = H(z, z), if the monotonocity
assumption H, > 0 holds. Our argumentation is similar to [1], where the more general case of
prescribed anisotropic mean curvature is studied. We first define the upper unit normal vector

1

V1I+IVIP

7

N = N(z) := (-Vf,1) forzeQ.



The following parameter invariant differential equation for the normal
AN + (tr(8?) —nVH - N)N = —nVH (12)

was derived in [2, Corollary 4.3]. This equation is a generalisation of [13, Satz 1], where the case
n = 2 and conformal parameters was studied. Here, A denotes the Laplace-Beltrami operator and
tr(S?) = Y. | k? where k; are the principal curvatures of the surface. We now want to derive a
lower bound for the function £(z) := Nypy1(x) = N(x)-ep4+1 > 0. Once this is achieved, we can use

Ez)y =01+ |Vf(x)\2)_% to derive an upper bound for |V f|. Multiplying equation (12) by e,11
we obtain for £ the equation

A€+ (tr(S?) —nVH - N)¢ = —nH, .
Then tr(52) > 0 together with the assumption H, > 0 will give the differential inequality
Aé+cE<0 inQ (13)

with the constant

c:=—n sup |VH(z,z)|<0.
Qx[-M,M]

We now use a product trick &(z) = (z) €(z) for = € Q where ¢ € C?t%(Q,(0,400)) is some
positive function to be choosen later. Using (13) then £ must satisfy the differential inequality

PAE+ Y ai(w)lo, + E@)E <0 (14)

i=1
for some coefficients @; and ¢ = A + cip. We want the function € to achieve its minimum on 6.

By the maximum principle this is guaranteed if ¢ > 0. Therefore, we show

Proposition 2: Let f € C?t2(Q,R) be a solution of (1) satisfying (11). Let the prescribed mean
curvature H € C'7(Q x R, R) satisfy H, > 0 and

\H| + |VH| < h inQx[-M,M]

with a constant h > 0. Then there exists some constant A\ = A(h) such that the function 1(z) =
eM @) for ¢ € Q satisfies the differential inequality

AYp+cp >0 in Q (15)
where Q := {z € Q : |Vf(z)| > 1}.

Proof:
We first note Vi = AMpV f. Using the definition of the Laplace-Beltrami operator, a straightforward
computation gives

\V/ 2
nH(z, f) [Vf[?
A +A .
¢(\/1+|Vf|2 1+|Vf|2)
Here, we have used Af = nH(1 + |Vf|2)’%, being the n + 1-th component of the parameter

invariant mean curvature equation AX = nHN. We now obtain at each point z € 2 the following
estimate

_ 2 |Vf|2 nH 1.9
A¢+c¢_¢(,\ Hwﬂzumm)qu(ix —nh,\—nh).
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By solving a quadratic inequality we may choose A = A(h) large enough such that Ay + cyp > 0
holds in (2. =

As a consequence we obtain the following gradient estimate.

Corollary 2: Given a C*t*-domain Q C R” let fe C?t*(Q,R) be a solution of (1) satisfying
(11). Let the prescribed mean curvature H € C'*(Q x R,R) be given satisfying H, > 0 and

\H|+|VH| <h inQx[—M,M).

Then there ezists a constant C = C(M,h) > 1 such that

sup |V f(z)] < C(2+ sup |Vf())) .
€N €N

Proof:
We consider the last component of the normal

1
= >0
NE ANV @P

By (14) together with Proposition 2 there exists some constant A\ = A(h) > 0 such that for

£(z) = &(x)e M@ > 0 we have the differential inequality

£(z) == N(z) - e

PAE+ D ai(2)er, <0 inQi={z€Q : |Vf(z)| >1}.
=1

We now choose a point zg €  where |V f| achieves its maximum within Q. If zq ¢ Q then we
have |V f(z)| < |Vf(zo)| <1 and we are done. Otherwise the maximum principle yields

E(wo) > e ME(zg) > ™M inf E(w) > M inf & ()
e} N

)

which gives

IV (@0)] < V1+|V(20)? < e sup /14 [V (2)]? < (1 +5up [V (2)]) -
o N

We now note that 90 C 90U {z € Q : |Vf(z)| = 1} which yields

sup [V f(z)| <1+ sup|Vf(z)].
a0 0

The desired estimate now follows for C := 22 O

We can finally give the
Proof of Theorem 1:

For ¢ € [0,1] consider the family of Dirichlet problems
__ V5
V1+I[VSP

Let f be such a solution for some t € [0,1]. By Theorem 3 together with Corollary 2 we have the
estimate

f602+a(§,R) . div =tnH(z,f) inQ and f=0 ondf. (16)

[fllcr) < C

9



with some constant C' independet of ¢t. The Leray-Schauder method [4, Theorem 13.8] yields a
solution of the Dirichlet problem (16) for each t € [0,1]. For ¢ = 1 we obtain the desired solution
of (1). O

Proof of Corollary 1:

Corollary 1 is obtained as the limit case of Theorem 1 by increasing the radius r of the ex-
terior sphere condition to infinity. First, since Q is bounded and included within the strip
{r €e R* : 0 < z; < d}, after a suitable translation it will also be included within the an-
nulus {z € R" : r < |z| < r + d} for sufficiently large r > 0. To show which smallness condition
on h is required in order to apply Theorem 1 we have to compute the limit

2(2r)"1
1m .
r—oo (2r + d)® — (2r)"

(17)

To do this, we calculate

n __ n n n—1 n—2\ _ n
lim (2r +d) 2r) — lim 2r)" + n(2r)" td+ O(r" %) — (2r) _ n_d

T—00 2(27‘)"*1 T—00 2(27“)"*1 2

We see that the limit in (17) is equal to % and hence the smallness condition h < % is required.
Alternatively we could prove Corollary 1 also directly, by proving an analogue result to Theorem
3 for convex domains. Instead of using the nodoid we would then use a cylinder as barrier whose
axis is lying in the z1, . .., 7, hyperplane. Note that the cylinder {z € R*" :z?+...+22 = (£)?}

has constant mean curvature h = n—zd, corresponding to the smallness condition from above. O

Remarks:

a) Using the methods from [1], it is also possible to generalise Theorem 1 and Corollary 1 to
the case of prescribed anisotropic mean curvature, i.e. H = H(X,N) depends on both the
point in space X and the normal N of the graph.

b) The results can also be generalised in another direction: Define the boundary part

n—1

;= {:B €0 : |H(z,z)| <

- H(z) for all z € ]R}

where H(z) is the mean curvature of dQ at = w.r.t. the inner normal. Now choose a subset
I' ¢ Ty such that dist(T',0Q\I'y) > 0. On I we can use the standard boundary gradient
estimate (see [4, Corollary 14.8]) and prescribe C?*® boundary values g there. Our boundary
gradient estimate of Theorem 3, requiring zero boundary values, is then only needed on 9Q\T'.
This way, Theorem 1 and Corollary 1 also hold for Dirichlet boundary values g € C?T%(092, R)
with g(z) = 0 on OQ\I" and |g(z)| < €, where e = ¢(Q,T', H) > 0 is some constant determined
by the height of the nodoid constructed in Proposition 1.

References

[1] M.Bergner: The Dirichlet problem for graphs of prescribed anisotropic mean curvature in
R™*1. Preprint at Fachbereich Mathematik of Technische Universitit Darmstadt, 2006.

[2] U.Clarenz, H.von der Mosel: On surfaces of prescribed F-mean curvature. Pacific J. Math.
213, No. 1, 2004.

10



[3] M.Giaquinta: On the Dirichlet problem for surfaces of prescribed mean curvature. manuscripta
math. 12, 73-86, 1974.

[4] D.Gilbarg, N.S.Trudinger: Elliptic Partial Differential Equations of Second Order. Springer,
Berlin Heidelberg New York, 1983.

[6] E.Giusti: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics
Vol. 80, Birkhduser Boston-Basel-Stuttgart, 1984.

[6] W.-Y.Hsiang, W.-C.Yu: A generalization of a theorem of Delaunay. J. Differential Geometry
16, 161-177, 1981.

[7] H.Jenkins, J.Serrin: The Dirichlet problem for the minimal surface equation in higher dimen-
sions. J. Reine Angew. Math. 229, 170-187, 1968.

[8] K.Kenmotsu: Surfaces with constant mean curvature. Translations of Mathematical Mono-
graphs, Vol. 221, American Mathematical Society, 2003.

[9] M.Miranda: Dirichlet problem with L' data for the non-homogeneous minimal surface equa-
tion. Indiana Univ. Math. J. 24, 227-241, 1974.

[10] R.Lépez: Constant Mean Curvature Graphs on unbounded convex domains. Journal of Diff.
Equations 171, 54-62, 2001.

[11] R.Lépez: Constant Mean Curvature Graphs in a Strip of R%. Pacific J. Math. 206, No. 2,
2002.

[12] J.Ripoll: Some Characterization, Uniqueness and Existence Results for Euclidean Graphs of
Constant Mean Curvature with Planar Boundary. Pacific J. Math. 198, No. 1, 2001.

[13] F.Sauvigny: Flichen vorgeschriebener mittlerer Krimmung mit eineindeutiger Projektion auf

eine Ebene. Math. Zeit. 180, 41-67, 1982.
[14] F.Sauvigny: Partial Differential Equations, Vol. 1 and 2. Springer Universitext, 2006.

[15] F.Schulz, G.Williams: Barriers and ezistence results for a class of equations of mean curvature
type. Analysis 7, 359-374, 1987.

[16] G.Williams: The Dirichlet Problem for the Minimal Surface Equation with Lipschitz Contin-
uous Boundary Data. Jounal Reine Angew. Math. 354, 123-140, 1984.

Matthias Bergner

Technische Universitdt Darmstadt

Fachbereich Mathematik, AG 3

Differentialgeometrie und Geometrische Datenverarbeitung
Schlossgartenstrafle 7

D-64289 Darmstadt

Germany

e-mail: bergner@mathematik.tu-darmstadt.de

11



