A SIMPLE PROOF FOR BROUWER’S FIXED POINT THEOREM
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Abstract

Using only basic tools from calculus, we give a relatively simple proof for
Brouwer’s fixed point theorem.

In this note we will give a relatively simple proof of the following fixed point theorem, known as
Brouwer’s fixed point theorem in the literature:

Theorem 1: Let D :={z € R" : |z| < 1} be the closed unit ball in R". Then every continuous
function f: D — D has at least one fized point, i.e. there exists some x. € D with f(z.) = ..

The restriction to the ball D is not essential. Once the result is proved for the domain D, it can
be generalised directly to any other domain homeomorphic to D, for example the unit cube C :=
[0,1]™. In contrast to the other fixed point theorems such as the contraction mapping principle,
Brouwer’s fixed point theorem does not imply the uniqueness of the fixed point. In fact, easy
examples such as the identity mapping show that even infinitely many fixed points may be possible.
We also want to point out a generalisation from R" to Banach spaces is possible, the so-called
Schauder fixed point theorem. Instead of continuous mappings on then has to consider completely
continuous mappings. The Schauder fixed point theorem is used by Gilbarg and Trudinger in [1,
chapter 11.2] to develop the Leray-Schauder method. With this method one can solve the Dirichlet
problem for quasilinear elliptic partial differential equations provided certain a priori estimates of
solutions are given (see [1, Theorem 11.4]).

1. The proof

Before actually giving the proof of Brouwer’s fixed point theorem, we first need some auxiliary
lemmas.

Lemma 1: Let f,g € C?>(D,R™) be two functions with f = g in DNU for some open neigborhood
U of 0D. Then we have

/Jf(:(;)d:(; = /Jg(:(;)d:(;

D D

for the Jacobi determinants J; and Jy of f and g.

Proof:
Given a function f : D — R” we define a vector field a : D — R” by

ag(z) = det(fz, (%), -, for_ (%), f(2), frpp (®)s ooy [z, () fork=1,...,n.



In a similar way we define a vector field b: D — R" for the function g. Using the product rule of
differentiation we compute the divergence of this vector field
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dlva(x) = Z%ai(‘w):Z%det(fwla"'7fzi_11f1f$¢+17"'afwn)
i=1 i=1
= Zdet(fwla---afwj_1afwiwj7f$cj+1a---7f$ci_17f7f$ci+1a"-af:cn)

Jj<i
+ndet(far; s fan)
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J>i
= ndet(fz,,..., fz,) =nJf(z).

In a similar way we have divb(z) = n Jg(z). From the assumption f = ¢ in D N U for some open
neighborhood of U of D we conclude a = b in D N U. Hence the divergence theorem yields

1

/ Jy(z)da — % / diva(r)dr = / div b(x)dz = / J,(z)da
D D D
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which proves the lemma. O

Remark: For this lemma we have used the following fact: For two vector fields a,b € C'(D,R")
with @ = b in some open neighorhood of D we have [, diva(z)dz = [, divb(z)dz. This is a
consequence of the divergence theorem, however it can also be proven directly only using Fubini’s
theorem for iterated integrals and the fundamental theorem of calculus.

Next we need the following generalisation of Lemma, 1.

Lemma 2: Let f,g € C?(D,R") be two functions such that f = g on 8D. Then we have
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Proof:
Let the two functions f,g € C?(D,R") with f = g on D be given. We now construct a family of
functions f. € C%(D,R") for a parameter £ > 0 with the properties:

(@) = f@) iflel<1-2 , flo)=gla) if|e|>1—c.

Additionally, we assume that that f. and all its first derivatives are uniformly bounded independent
of £. Such a family can be constructed e.g. by

fe(2) = o=(|z]) f(2) + (1 — o=(|z]))g(2)

with a suitable function g. € C%(R, [0,1]). By Lemma 1 we now have

/st(z)dzZ/Jg(x)dx.

Noting that

/ J,(x)dz = / I, (z)dz + / Jp.(2)de = / Jy(z)dz + / I, (z)do

|z|<1—2¢ 1-2e<|z|<1 |z|<1—2¢ 1-2e<|z|<1

)



we obtain for € — 0 the relation

/Jf(x)dx :/Jg(x)dx,
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using the uniform boundedness of f. and its derivatives. O

Theorem 2: Let f € C?(D,R") be a function such that f(x) = z for x € OD. Then there exists
a point x, € D with f(x.) = 0.

Proof:

If f(z) # 0 for all z € D then we could define a function g(z) := % with the regularity

g € C*(D,R"). Note that g(D) C 8D which yields Jy(x) = 0 and hence [, Jy(z)dz = 0. We now
define h(z) := z for £ € D and note g(z) = z = h(z) for z € 0D. From Lemma 2 we conclude
Jp Jn(z)dz = 0. On the other hand, we note that Ji(z) = 1 and thus [, Jy(z)dz = |D| > 0, a
contradiction. O

Remark: A a direct consequence of this theorem we obtain the retraction lemma: There does
not exist a function f € C?(D,R") with both f(D) C 0D and f(z) = z for z € 8D.

We can now give the
Proof of Theorem 1(Brouwer’s fized point theorem):

1.) In the first step we prove the fixed point only for functions f € C%(D, D). Assume that f does
not have a fixed point. For z € D let A € R be a real number such that f(z) + Az — f(z)) €
0D, i.e. ) is solution of the quadratic equation

1=f(2) + Xz = f(@)° = |z = F(@)PA* + 2f(2) - (z = f(2))A + |f(2) .

Because of x € D, f(x) € D and f(z) # = there always exist two such solutions A\* () with
A (z) <0 and A*(z) > 1. We are interested in AT and note that A*(z) = 1 for z € dD.
From f € C?(D,R") we conclude A\ (z) € C?(D,R). We define a function

FeC*D,R") , F(z):=f(z)+ " (z)(z— f(z)) forzeD
and note F(D) C 0D as well as F(z) = z for z € dD. However, by Theorem 2 such a
function F' cannot exist and we obtain a contradiction.

2.) To prove the fixed point theorem also for continuous functions f € C°(D, D) we approximate
it by a sequence f* € C?(D,R") of functions converging uniformly in D to f. Because of
f(D) C D we may choose f" such that f*(D) C D holds. By 1.) there exists a fixed point
zn, € D of f™. After extracting a convergent subsequence from z, we have z, — z, for
n — oo and some z, € D. Because of the uniform convergence of f™ to f that z, is a fixed
point of f. O

Using Brouwer’s fixed point theorem, we can now generalise Theorem 2 to the following

Corollary 1: Let f € C°(D,R") be a mapping with f(8D) C 0D and f(x) # —x for all x € OD.
Then f has a zero, i.e. there exists some x, € D with f(z.) =0.

Proof: Assume to the contrary that f(z) # 0in D. Then by Theorem 1 the function g(z) := —%
must have a fixed point 2y with g(xzg) = z¢ and zy € dD. This however is a contradiction to the
assumption f(z) # —z for all z € 9D. O
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