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Abstract

Existence of weak solutions is proved for a phase field model describing an inter-
face in an elastically deformable solid, which moves by diffusion of atoms along the
interface. The volume of the different regions separated by the interface is conserved,
since no exchange of atoms across the interface occurs. The diffusion is only driven
by reduction of the bulk free energy. The evolution of the order parameter in this
model is governed by a degenerate parabolic fourth order equation. If a regulariz-
ing parameter in this equation tends to zero, then solutions tend to solutions of a
sharp interface model for interface diffusion. The existence proof is valid only for a
1 1

2
–dimensional situation.

1 Introduction

In this article we study a phase field model for the evolution of an interface in an elastically
deformable solid, which moves by diffusion of atoms along this interface. We prove
existence of weak solutions, however not for the full three-dimensional model, but for
an initial-boundary value problem in 11

2–space dimensions. Our studies continue work
on the formulation and mathematical investigation of phase field models for evolution of
interphases in solids, which was started in [2] and continued in [3, 4].

The interface described by the model separates the body in two regions consisting of
atoms of different types and having different elastic properties. No exchange of atoms
across the interface occurs, the volumes of the different regions separated by the interface
are therefore conserved in time. We call these regions phases. The diffusion of the atoms
along the interface is only driven by bulk terms of the free energy, surface terms are
neglected.

These properties of the model carry over from the properties of a related sharp inter-
face model: The phases in the phase field model are characterized by an order parameter,
whose evolution is governed by a non-uniformly parabolic partial differential equation of
fourth order. This equation is formulated in [3] following ideas explained in [2, 3, 4],
which suggest that when a certain regularizing parameter ν in this equation tends to
zero, then solutions of the model equations converge to solutions of a sharp interface
model for interface motion by interface diffusion. In this sharp interface model the nor-
mal speed is proportional to the value obtained by application of the surface Laplacian
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to the jump of the Eshelby tensor across the interface. Though several reasons suggest
that this conjectured convergence behavior is valid, there is no rigorous proof available
for a general situation. Yet, in Section 2 we state without proof a recently obtained
convergence result, which supports the conjecture.

In this introduction we first state the initial-boundary value problem for the phase
field model in three space dimensions. Since we do not have an existence result for this
three dimensional problem, we subsequently reduce the problem to an initial-boundary
value problem in one space dimension modelling the movement of a planar interface with
flux of atoms linearly growing in a direction tangential to the interface. Such a time
dependent flux can be generated by suitable boundary data and volume forces. Because
of this tangential flux we speak of a 11

2–dimensional problem. We close the introduction
by stating our existence result for this 11

2–dimensional problem in Theorem 1.3. This is
the main result of this article. It is proved in Sections 3 – 6.

Before proving Theorem 1.3 we discuss in Section 2 the background of the model: We
state the sharp interface model and the convergence result for ν → 0. In the formulation
of the new phase field model it was an important guiding line that the second law of
thermodynamics must be satisfied. We show at the end of Section 2 that this law is
fulfilled. This property of the model is essential for the existence proof, since in Section 3
a-priori estimates are derived from it.

To formulate the initial-boundary value problem, let Ω be an open subset in R3. It
represents the material points of a solid body. At the point x ∈ Ω at time t the material
is in phase 1 or 2 if the value S(t, x) ∈ R of the order parameter S is near to zero or
one. The other unknowns are the displacement u(t, x) ∈ R3 of the material point x at
time t and the Cauchy stress tensor T (t, x) ∈ S3. Here S3 denotes the set of symmetric
3 × 3-matrices. The unknowns must satisfy the quasi-static equations

−divx T (t, x) = b(t, x), (1.1)

T (t, x) = D
(
ε(∇xu) − ε̄S

)
(t, x), (1.2)

St(t, x) = cdivx

(
∇x

(
ψS(ε(∇xu), S) − ν∆xS

)
|∇xS|

)
(t, x) (1.3)

for (t, x) ∈ (0,∞) × Ω, and the boundary and initial conditions

u(t, x) = γ(t, x), (t, x) ∈ [0,∞) × ∂Ω, (1.4)

∂

∂n
S(t, x) = 0, (t, x) ∈ [0,∞) × ∂Ω, (1.5)

∂

∂n

(
ψS(ε, S) − ν∆xS

)
|∇xS|(t, x) = 0, (t, x) ∈ [0,∞) × ∂Ω, (1.6)

S(0, x) = S0(x), x ∈ Ω̄. (1.7)

Here n is the unit outward normal vector, ∇xu denotes the 3 × 3-matrix of first order
derivatives of u, the deformation gradient, and

ε (∇xu) =
1

2

(
∇xu+ (∇xu)

T )

is the strain tensor, where (∇xu)
T denotes the transposed matrix. ε̄ ∈ S3 is a given ma-

trix, the transformation strain. The elasticity tensor D : S3 → S3 is a linear, symmetric,
positive definite mapping. ψS = ∂

∂Sψ is the partial derivative of the free energy

ψ(ε, S) =
1

2

(
D(ε− ε̄S)

)
· (ε− ε̄S) + ψ̂(S), (1.8)
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where for ψ̂ : R → [0,∞) we choose a double well potential with minima at points S = 0
and S = 1 and where the scalar product of two matrices is denoted by A ·B =

∑
aijbij .

Thus,
ψS(ε, S) = −T · ε̄+ ψ̂′(S). (1.9)

Given are the positive constant c, the small positive constant ν, the volume force b :
[0,∞) × Ω → R3 and the boundary and initial data γ : [0,∞) × ∂Ω → R3, S0 : Ω → R.

This completes the formulation of an initial-boundary value problem. The equations
(1.1) and (1.2), which differ from the system of linear elasticity only by the term ε̄S,
determine the elastic properties of the two phases characterized by the values S ≈ 0 or
S ≈ 1: In the first phase the material is stress free at the strain state ε(∇xu) = 0, in the
other phase at ε(∇xu) = ε̄. The elasticity tensor D has the same value at both phases,
but it would be important for applications to study the case where D is a function of
S with D[0] 6= D[1]. The evolution equation (1.3) for the order parameter S is non-
uniformly parabolic because of the regularizing term divx

(
∇x(ν∆S) |∇xS|

)
. A complete

justification of the model (1.1) – (1.7) would require to show that this initial-boundary
value problem has solutions and to show that if the parameter ν in the regularizing term
tends to zero, then these solutions converge to solutions of the sharp interface model
(2.1) – (2.5) stated in Section 2, i.e. to strengthen the convergence result stated in
Theorem 2.2. We contribute to the justification by proving that solutions exist for the
11

2–dimensional problem stated in the next section.
In [11] a phase field model for interface motion by interface diffusion was formulated

in another way: In the Cahn-Hilliard equation St = −divx

(
m(S)∇x(ν∆xS − ψ′(S))

)
a

degenerate mobility function m(S) was chosen with zeros at S = 0 and S = 1, implying
that the mobility is different from zero only in a narrow band in the neighborhood of the
interface. In [11] it was shown that for ν → 0 the solution S approaches the characteristic
function of a region bounded by a front Γ̃(t) moving with normal velocity s given by

s = −C∆Γ̃(t)κΓ̃(t) , (1.10)

where κΓ̃(t) denotes the mean curvature of Γ̃(t) and where C = C ′ν. This is the evolution
equation for an interface moving by surface diffusion driven by surface free energy only,
cf. the discussion in the next section. Since in this approach the curvature appears
automatically, we believe that it can not be used when the diffusion is driven by the bulk
free energy as in our case, and that equation (1.3) must be used instead. In [17] it was
proved that solutions to the Cahn-Hilliard equation with degenerate mobility exist. For
other related investigations we refer to [6, 10, 12, 26, 28] and the references cited therein.

Statement of the main result. In the sharp interface model (2.1) – (2.5) the normal
speed of the interface determined by equation (2.3) is proportional to the value obtained
by application of the surface Laplacian to the jump in the Eshelby tensor. Therefore,
this model and also the regularized model (1.1) – (1.7) is not of interest in a strictly
one-dimensional situation, where all unknowns only depend on the first component x1

of x ∈ R3 and of t, since in this case the normal speed of a planar interface Γ̃(t) =
{(h(t), x2, x3) | (x2, x3) ∈ R2} would be equal to zero, hence h(t) = const. In this article
we thus consider a 11

2–dimensional problem.
In this 11

2–dimensional problem we have Ω = {(x1, x2, x3) ∈ R3 | a < x1 < d}. The
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volume force and boundary data can be split as

b(t, x) = b̃(t, x1) + b1(t, x2, x3), (1.11)

γ(t, x) = γ̃(t, x1) + γ1(t, x1, x2, x3), (1.12)

where b1, γ1 are such that the elliptic boundary value problem

−divx σ(t, x) = b1(t, x2, x3), (1.13)

σ(t, x) = D(ε(∇xv(t, x))), (1.14)

v(t, x) = γ1(t, x), x ∈ ∂Ω (1.15)

of linear elasticity has a solution x 7→ (v(t, x), σ(t, x)) : Ω → R3 × S3 satisfying

∂x1
σ(t, x) · ε̄ = 0, ∇x(∂2

x2
+ ∂2

x3
) (σ(t, x) · ε̄) = 0, x ∈ Ω. (1.16)

It follows that (∂2
x2

+ ∂2
x3

) (σ · ε̄) is independent of x. We thus define

r(t) = (∂2
x2

+ ∂2
x3

) (σ(t, x) · ε̄) ∈ R. (1.17)

Examples for b1, γ1, v, σ, ε̄ with theses properties can be readily constructed. In particular,
examples can be given with b1 = 0. Of course, if r 6= 0, then (v, σ) will be unbounded
for |(x2, x3)| → ∞. For the solution of (1.1) – (1.7) to the data given in (1.11), (1.12) we
make the ansatz

(u, T, S)(t, x) = (ũ, T̃ , S̃)(t, x1) + (v, σ, 0)(x).

Noting that (1.9) and (1.16) imply

ψS(ε(∇xu), S)x1
= (−T̃ · ε̄− σ · ε̄+ ψ̂′(S))x1

= (−T̃ · ε̄+ ψ̂′(S))x1
= ψS(ε(∇xũ), S)x1

,

we obtain by insertion of this ansatz into (1.1) – (1.7) an initial-boundary value problem
for (ũ, T̃ , S̃) in one space dimension. To formulate this initial-boundary value problem we
simplify the notation and denote (ũ, T̃ , S̃) and b̃ again by (u, T, S) and by b, respectively.
We write x for x1, let Ω = (a, d) be a bounded open interval, set QTe

= (0, Te)×Ω, where
Te (time of existence) is a positive constant, and denote

ε(ux) =
1

2

(
(ux, 0, 0) + (ux, 0, 0)T

)
∈ S3.

With these notations (u, T, S) : QTe
→ R3 × S3 × R must satisfy the equations

−T1x = b, (1.18)

T = D(ε(ux) − ε̄S), (1.19)

St = c
(
(ψS(ε(ux), S) − νSxx)x|Sx|

)
x

+ cr(t)|Sx| , (1.20)

and the boundary and initial conditions

u|[0,Te]×∂Ω = 0, (1.21)

Sx|[0,Te]×∂Ω = 0, (1.22)(
(ψS − νSxx)x|Sx|

)
|[0,Te]×∂Ω = 0, (1.23)

S|{0}×Ω = S0. (1.24)
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Here T1(t, x) denotes the first column of the matrix T (t, x). In (1.21) we assumed that
the function γ̃ from (1.12) vanishes. This is possible without restriction of generality
because of the linearity of the equations (1.18), (1.19). Given are the data b(t, x) ∈ R3

and S0(x) ∈ R. Since r(t) ∈ R defined in (1.17) can be computed by solving the boundary
value problem (1.13) – (1.15), also r : [0, Te) → R can be considered to be given.

Equations (1.18) – (1.20) constitute the initial-boundary value problem in one space
dimension, which we study in this article. It models a planar interface propagating with
speed cr(t). To state the existence result for this problem we need some notations and
definitions, which we introduce next.

For a subset A of QTe
, for a function g : A → V with values in some set V and for

t ∈ [0, Te] let

A(t) = {x | (t, x) ∈ A} ⊆ R and g(t) : A(t) → V, g(t)(x) = g(t, x).

We show that the component S in a solution (u, T, S) of the initial-boundary value
problem has the weak derivative Sxxx, however on a set A ⊆ QTe

, for which A(t) is
open for almost all t, but which itself is not open in R2. Such weak derivatives are more
general then standard weak derivatives on open sets. We define these general derivatives
as follows:

Definition 1.1 Let A ⊂ QTe
such that A(t) is open for almost all t ∈ [0, Te], and let

α ∈ N0. We call g : A → R the α-th local weak L2–derivative of S ∈ L2(QTe
) with respect

to x in A, if for almost all t ∈ [0, Te] the function g(t) belongs to L2,loc(A(t)) and is the
local weak derivative of S in the usual sense:

g(t) = ∂α
xS(t)|A(t), (1.25)

and if moreover there exists a sequence {An}n of measurable sets An ⊂ A with g|An
∈

L2(An) for all n ∈ N, such that

meas
(
A \

∞⋃

n=1

An

)
= 0.

Local weak derivatives in the sense of this definition are unique because of (1.25), and it
is immediately seen that if A is open then the local weak derivative in the sense of this
definition coincides with the ordinary local weak derivative. Therefore we use the same
name and the same notation as for ordinary local weak derivatives.

For S ∈ L2(0, Te;H
2(Ω)) let

AS = {(t, x) ∈ QTe
| |Sx(t, x)| > 0}.

Since by the Sobolev embedding theorem Sx(t) is continuous for almost all t, it follows
that AS(t) is open for almost all t.

Definition 1.2 Let b ∈ L∞(0, Te;L
2(Ω)), r ∈ L∞(0, Te) and S0 ∈ L2(Ω). A function

(u, T, S) with

u ∈ L2(0, Te;H
2(Ω)), u(t) ∈ H1

0 (Ω) a.e. in (0, Te), (1.26)

T ∈ L2(0, Te;H
1(Ω)), (1.27)

S ∈ L2(0, Te;H
2(Ω)) ∩ L∞(QTe

), Sx(t) ∈ H1
0 (Ω) a.e. in (0, Te), (1.28)
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is a weak solution of the problem (1.18) – (1.24), if (u, T, S) solves (1.18), (1.19) weakly,
if S has the local weak derivative Sxxx in AS with |Sx|Sxxx ∈ L1(AS) and if

(S, ϕt)QTe
+ c(νSxxx|Sx|, ϕx)AS + c

((
T · ε̄− ψ̂′(S)

)
x
|Sx|, ϕx

)
QTe

+ (cr|Sx|, ϕ)QTe
= −(S0, ϕ(0))Ω (1.29)

holds for all ϕ ∈ C∞
0 ((−∞, Te) × R).

The main result of this article is

Theorem 1.3 Assume that there exists a constant M > 0 such that the double well
potential ψ̂ ∈ C3(R, [0,∞)) satisfies

max
{
ψ̂′(S)2, S2

}
≤M(ψ̂(S) + 1). (1.30)

Then to all S0 ∈ H1(Ω), r ∈ L∞(0, Te) and b ∈ L2(QTe
) with bt ∈ L2(QTe

) there exists a
weak solution (u, T, S) of (1.18) – (1.24), which in addition to (1.26) – (1.29) satisfies

u ∈ L∞(0, Te;H
2(Ω)), T ∈ L∞(0, Te;H

1(Ω)) (1.31)

S ∈ L∞(0, Te;H
1(Ω)), St ∈ L

4

3 (0, Te;W
−1, 4

3 (Ω)), (1.32)

|Sx|Sxxx ∈ L
4

3 (QTe
), (1.33)

where we defined |Sx|Sxxx = 0 on QTe
\ AS .

This theorem is proved in Sections 3 – 6. The obvious idea is to replace the degenerate
parabolic equation (1.20) by the non-degenerate equation

St = c
(

(ψS − νSxx)x (|Sx|κ + κ)
)

x
+ cr|Sx|κ , (1.34)

where

|y|κ =
|y|2√
|y|2 + κ

, (1.35)

with a constant κ > 0, and to approximate a solution of (1.18) – (1.24) by a sequence of
solutions (uκ, T κ, Sκ) of an initial-boundary value problem to the equations (1.18), (1.19),
(1.34) with κ→ 0. Yet, though (1.34) is non-degenerate parabolic, we can not show that
the system (1.18), (1.19), (1.34) has classical solutions. Instead, we replace the term

|Sx|κ in (1.34) by |˜̂Sx|κ, where
˜̂
Sx is obtained from the given function Ŝx by convolution

with a mollifier. Since Ŝx is given, the resulting equation is linear in the terms with the
highest order derivatives and has smooth coefficients. This allows to apply a classical
theorem from the theory of fourth-order parabolic equations to obtain Hölder continuous
solutions. We then derive suitable a-priori estimates and apply a standard approximation
procedure to obtain weak solutions of (1.18), (1.19), (1.34). This construction is carried
out in Section 3. The proof of the important Lemma 3.4 is based on an energy inequality
implied by the second law of thermodynamics.

The a-priori estimates in Section 3 depend on κ and can therefore not be used to
prove existence of solutions of the original initial-boundary value problem, since in such
a proof the limit κ→ 0 must be studied. In Section 4 we thus derive an “energy estimate”
for solutions of the system (1.18), (1.19), (1.34), which is employed in Section 5 to prove
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a-priori estimates for such solutions, which hold uniformly with respect to κ. Using these
estimates and the Aubin–Lions Lemma we can then show in Section 6 that a suitable
sequence of such solutions converges to a solution of the original initial-boundary value
problem.

This complicated double approximation procedure is necessary, since in the derivation
of the energy estimate in Section 4 we use the special form of the term (|Sx|κ + κ)Sxxx

appearing in (1.34). Replacing |Sx|κ by |˜̂Sx|κ destroys this form. Because of this, we
cannot prove this energy estimate directly for the sequence of solutions from the first
approximation procedure but need to use solutions of (1.34) to derive uniform a-priori
estimates.

To get the local weak derivative Sxxx in Section 6 we apply Egorov’s Theorem to
decompose the set Ân = {(t, x) ∈ QTe

| |Sx(t, x)| > 1
n} into a set An, on which the

sequence Sκ
x converges uniformly to Sx and thus satisfies |Sκ

x | ≥ 1
2n for sufficiently small

κ, and into the set Ân \ An of small measure. Using the uniform estimate
∫
QTe

(|Sκ
x |κ +

κ)|Sκ
xxx|2 d(τ, x) ≤ C from Corollary 5.3, we can then show that Sκ

xxx converges in L2(An)
to Sxxx. In the last step we use that AS differs from

⋃∞
n=1 An only by a set of measure

zero.
We already mentioned the existence result [17] for the degenerate Cahn-Hilliard equa-

tion. Another degenerate parabolic equation, for which existence of solutions was studied
in several articles is the thin film equation St = −divx(m(S)∇x∆xS), for which m(S)
vanishes at zero. We refer to [7, 8, 9, 14] and the references therein. Yet, the mathemat-
ical properties of (1.3) containing the term |∇xS| differ essentially from the properties of
these equations.

2 The sharp interface problem

It is possible to construct traveling wave solutions of (1.1) – (1.7), which converge for
ν → 0 to solutions of a sharp interface model for interface motion by interface diffusion.
Based on this construction we recently found a convergence result for a more general
situation. This result is far from a proof, that solutions of (1.1) – (1.7) in general show
this asymptotic behavior, but it supports the conjecture. To motivate our investigations
we state this result without giving the proof, which is to be published. At the end of
this section we show that the model equations (1.1) – (1.3) satisfy the second law of
thermodynamics.

To state the sharp interface model, let the interface be given by a sufficiently smooth
three-dimensional manifold Γ̃ in [t1, t2] × Ω ⊂ R4 such that for all t ∈ [t1, t2]

Γ̃(t) =
{
x ∈ Ω | (t, x) ∈ Γ̃

}

is a two-dimensional manifold. The two different phases are characterized by the values
of a discontinuous order parameter S, which has the constant values 0 and 1 in the
regions separated by the phase interface, and which jumps along the interface. The
sharp interface problem, which determines the unknown position of the interface and the
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unknown functions u, T , consists of the equations

−divxT = b, (2.1)

T = D(ε(∇xu) − ε̄S), (2.2)

s[S] = −c∆Γ̃(t)(n · [C]n), (2.3)

[u] = 0, (2.4)

[T ]n = 0, (2.5)

and of suitable initial and boundary conditions. (2.1) and (2.2) must hold on ([t1, t2] ×
Ω)\Γ̃, the jump conditions (2.3) – (2.5) are given on Γ̃. Here c is a positive constant,
n(t, x) ∈ R3 is the unit normal vector to Γ̃(t) at x ∈ Γ̃(t) pointing into the region where
S = 1, and s(t, x) ∈ R is the normal speed of Γ̃(t) at x ∈ Γ̃(t) in direction n(t, x). Also,
∆Γ̃(t) is the surface Laplacian on Γ̃(t), and [u], [T ], [S], [C] denote the jumps of u, T, S
and of the Eshelby tensor

C(∇xu, S) = ψ(ε(∇xu), S)I − (∇xu)
TT

across Γ̃, where I is the 3 × 3–unit matrix and ψ is the free energy given in (1.8). We
use the notation (∇xu)

TT to denote the matrix product.
The evolution law (2.3) describes motion of the interface Γ̃(t) due to diffusion of atoms

along the interface. The flux is given by −c∇Γ̃(t)(n · [C]n) with the surface gradient ∇Γ̃(t).

There is no exchange of atoms between the phases, hence the volume
∫
Ω S(x, t)dx of one

of the phases is conserved in time. The evolution law is derived in the standard way
by application of the second law of thermodynamics under the assumption that the free
energy is given by Ψ(t) =

∫
Ω ψ(ε, S)dx and thus contains only bulk terms: the Clausius-

Duhem inequality must be satisfied, which for this free energy leads to the flux term
given above. For this derivation we refer to [2], where the application of the second law
of thermodynamics to an interface problem is discussed with mathematical rigor.

If one assumes more generally that the free energy is a sum of bulk and surface terms

Ψ(t) = α1

∫

Ω
ψ(ε(∇xu(t, x)), S(t, x))dx+ α2

∫

Γ̃(t)
dσ

with α1, α2 ≥ 0, then the evolution law obtained is

s[S] = −c∆Γ̃(t)

(
α1(n · [C]n) + α2κΓ̃(t)

)
, (2.6)

where κΓ̃(t) is the mean curvature of Γ̃(t). For α1 = 0 the equation (1.10) derived by

Mullins [24] results. For the derivation of (1.10) and more general equations we refer to
[13, 15, 27] and the literature cited there. Existence, regularity and asymptotic behavior
of a family of smooth hypersurfaces, whose evolution is governed by (1.10) or by an
alternative evolution law proposed in [13] is studied in [18, 19, 20]. We mention that it
is possible to generalize (1.3) to an equation regularizing the evolution law (2.6). This
equation is given in [3].

To state the convergence result we need some preparations: Suppose that the func-
tions u, T and the interface Γ̃ solve (2.1) – (2.5) and are sufficiently regular. Precisely,
we assume that Γ̃ is a C2-manifold such that the two-dimensional manifold Γ̃(t) does
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not have a boundary for all t ∈ [t1, t2] and such that the set
⋃

t∈[t1,t2] Γ̃(t) is compactly
contained in Ω. The set of all (t, x) ∈ [t1, t2] × Ω with S(t, x) = 0 is denoted by Γ, and
Γ′ is the set of all (t, x) ∈ [t1, t2] × Ω with S(t, x) = 1. Therefore the sets Γ, Γ′ and
Γ̃ are pairwise disjoint and satisfy Γ ∪ Γ′ ∪ Γ̃ = [t1, t2] × Ω. We also assume that the
functions u and T are two times continuously differentiable on Γ and on Γ′ with two
times continuously differentiable extensions from Γ to Γ ∪ Γ̃ and from Γ′ to Γ′ ∪ Γ̃.

These assumptions imply that there is δ > 0 such that for all t ∈ [t1, t2],

(x, ξ) 7→ y = x+ n(x)ξ : Γ̃(t) × (−δ, δ) → Ω

defines a new coordinate system in a neighborhood of Γ̃(t). Let

U =
{

(t, x+ n(x)ξ) | (t, x) ∈ Γ̃, |ξ| < δ
}
⊆ [t1, t2] × Ω,

and choose ϕ ∈ C∞([t1, t2] × Ω) such that ϕ = 0 outside the set U and ϕ = 1 in a
neighborhood of Γ̃. We use ϕ to decompose T and u in two terms:

T (t, y) = [T (t, x)]S(t, y)ϕ(t, y) + σ(t, y), (2.7)

u(t, y) = [∇xu(x, t)]n(x, t)

∫ ξ

0
S(t, x+ n(t, x)ζ)dζ ϕ(t, y) + v(t, y), (2.8)

where for (t, y) ∈ U the pair (x, ξ) ∈ Γ̃(t) × R is defined by y = x + n(t, x)ξ. Thus,
outside of U we have σ(t, y) = T (t, y), v(t, y) = u(t, y), and our assumptions imply that
σ is continuous and v is continuously differentiable at Γ̃. The theorem below shows that
the regularizing effect of (1.1) – (1.3) mainly is to replace the jump terms on the right
hand side of (2.7) and (2.8) by a smooth transition profile. This transition profile is
obtained by constructing a traveling wave solution (u(t, x), T (t, x), S0(x−rt)) of the one-
dimensional version (1.18) – (1.20) of the equations (1.1) – (1.3). This ansatz leads to
an ordinary differential equation for S0, which after some computations can be reduced
to equation (2.10) stated below. The general result is

Lemma 2.1 Let ψ̂ ∈ C2(R, [0,∞)) be a double well potential, which satisfies ψ̂(0) =
ψ̂(1), ψ̂′(0) = −ψ̂′(1) and

ψ̂(S) − ψ̂(0) +
1

2
min

x∈Γ̃(t)

(
ε̄ · [T (t, x)]

)
S(1 − S) > 0, for 0 < S < 1, (2.9)

ψ̂′(0) +
1

2
min

x∈Γ̃(t)
(ε̄ · [T (t, x)]) > 0.

Then for all x ∈ Γ̃(t) there are a = a(t, x) < 0 < d = d(t, x) and a strictly increasing
solution ξ 7→ S0(ξ) = S0(t, x, ξ) : [a, d] → [0, 1] of

S′
0 =

√
2

(
ψ̂(S0) − ψ̂(0) +

1

2
ε̄ · [T (t, x)]S0(1 − S0)

)
, (2.10)

S0(0) =
1

2
, S0(a) = 0, S0(d) = 1, S′

0(a) = S′
0(d) = 0.
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We extend the function S0 to all of Γ̃ × R by setting

S0(t, x, ξ) =

{
0, ξ < a(t, x),
1, ξ > d(t, x).

The symmetry conditions for ψ̂ at S = 0, 1 are imposed for simplicity. Without it (2.10)
becomes slightly more complicated. A closer investigation of the solution (u, T ) of (2.1),
(2.2) shows that ε̄ · [T (t, x)] ≤ 0 for all (t, x) ∈ Γ̃. Therefore condition (2.9) requires that
ψ̂ assumes one minimum at a point less than 0, the other minimum at a point greater
than 1 and that ψ̂ has a sufficiently large hump between 0 and 1. Every double well
potential with these properties is allowed. An example for a potential satisfying all the
conditions of this lemma is

ψ̂(S) = k(S + l)2(S − (1 + l))2

with l > 0 and kl(1 + l) > −1
2 minx∈Γ̃(t)(ε̄ · [T (t, x)]). For this potential S0 is an elliptic

function. In Section 1 we assumed in contrast that the double well potential ψ̂ has minima
at S = 0, 1. This is a normalizing condition, which we only imposed for simplicity. In
fact, all the proofs in Sections 3 – 6 and therefore all results from Section 1 are valid
without change for double well potentials with minima at arbitrary locations.

Theorem 2.2 Set

Ŝν(t, y) = S0(t, x, ξ/ν
1

2 )ϕ(t, y) + S(t, y)(1 − ϕ(t, y)),

T̂ν(t, y) = [T (t, x)]S0(t, x, ξ/ν
1

2 )ϕ(t, y) + σ(t, y),

ûν(t, y) = [∇xu(t, x)]n(t, x)

∫ ξ/ν
1
2

0
S0(t, x, ζ)dζ ϕ(t, y) + v(t, y),

where for (t, y) ∈ U the pair (x, ξ) ∈ Γ̃(t) × R is determined from x + n(t, x)ξ = y.
Then the function (ûν , T̂ν , Ŝν) satisfies the equations (1.1) – (1.3) weakly in the sense of
distributions up to an error of order o(1) for ν → 0, i.e. (1.3) holds in the sense that

(
∂tŜν − cdivx

(
∇x(ψS − ν∆xŜν)|∇xŜν |

)
, ϕ
)

(t1,t2)×Ω
= o(1)

for all ϕ ∈ C∞
0 ((t1, t2) × Ω), and corresponding relations hold for (1.1), (1.2).

Comparison with (2.7), (2.8) shows that the jump function S in the solution of the sharp

interface problem is replaced by the transition profile S0(t, x, ξ/ν
1

2 ), which scales with

ν−
1

2 for ν → 0.

Second law of thermodynamics. The second law requires that there exist a free
energy ψ∗ and a flux q such that the Clausius-Duhem inequality ∂

∂tψ
∗ + divx q ≤ b · ut

holds, cf. [5]. With ψ given in (1.8) we choose

ψ∗(ε, S,∇xS) = ψ(ε, S) +
ν

2
|∇xS|2, (2.11)

q(ut, St, ε,∇x ε, S, . . . ,∇3
xS)

= −T · ut − νSt · ∇xS − c(ψS − ν∆xS)∇x(ψS − ν∆xS) |∇xS|,
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and apply (1.1) and the relation ∇εψ ·εt = T ·ut, which holds by (1.2) and the symmetry
of T , to obtain after a short computation

∂

∂t
ψ∗ + divxq − b · ut

= (ψS − ν∆xS)St − c divx

(
(ψS − ν∆xS)∇x(ψS − ν∆xS)| ∇xS|

)
.

Insertion of (1.3) into this equation results in

∂

∂t
ψ∗ + divxq − b · ut = −c |∇x(ψS − ν∆xS)|2|∇xS| ≤ 0,

which shows that the second law holds for the system (1.1) – (1.3).

3 Existence for the approximate problem

To construct approximate solutions to (1.18) – (1.24) we prove in this section that there
exist weak solutions of the quasilinear, uniformly parabolic initial-boundary value prob-
lem in QTe

given by the equations

−T1x = b, (3.1)

T = D(ε(ux) − ε̄S), (3.2)

St = c
((

(ψS(ε(ux), S) − νSxx

)
x
(|Sx|κ + κ)

)
x

+ cr|Sx|κ , (3.3)

u = 0, on [0, Te] × ∂Ω, (3.4)

Sx = 0, on [0, Te] × ∂Ω, (3.5)

(ψS − νSxx)x = 0, on [0, Te] × ∂Ω, (3.6)

S(0, x) = S0(x), x ∈ Ω , (3.7)

with a fixed positive parameter κ, obtained from (1.18) – (1.24) by replacing (1.20)
with (1.34). By definition, (u, T, S) ∈ L2(0, Te;H

1(Ω)3) with Sxxx ∈ L2(QTe
) is a weak

solution of (3.1) – (3.7) if (3.1), (3.2), (3.4) (3.5) are satisfied weakly and if for all
ϕ ∈ C∞

0 ((−∞, Te) × R)

−(S, ϕt)QTe
= (S0, ϕ(0))Ω

+ c
(
(|Sx|κ + κ)(νSxxx − ψS,x), ϕx

)
QTe

+ c(r|Sx|κ , ϕ)QTe
. (3.8)

We start with a technical result used throughout the following sections.

Lemma 3.1 For every y ∈ R and κ > 0 we have

|y|κ ≤ |y| ≤ |y|κ + κ. (3.9)

Proof. The inequality sign on the left is obvious from the definition of |y|κ in (1.35). To
prove the second inequality note that

|y|
√
y2 + κ2 ≤

(√
y2 + κ2

)2
= y2 + κ2 ≤ y2 + κ

√
y2 + κ2 = (|y|κ + κ)

√
y2 + κ2.

Division of both sides of this estimate by
√
y2 + κ2 yields the stated inequality.

In the following we denote the L2(Ω)–norm by ‖ · ‖. If v is a function defined on QTe

then, by our convention, v(t) is defined on Ω. If no confusion is possible, we sometimes
drop the argument t and write v to denote v(t). The main result of this section is

11



Theorem 3.2 Assume that S0 ∈ H1(Ω), r ∈ L∞(0, Te) and b ∈ L2(QTe
) with bt ∈

L2(QTe
). Then there is a constant C̄ independent of κ and a weak solution (u, T, S) of

(3.1) – (3.7) with S ∈ L2(0, Te;H
3(Ω)) ⊆ L2(0, Te;C

2+α(Ω̄)), α < 1
2 , and with St ∈

L
4

3 (0, Te;W
−1, 4

3 (Ω)), such that

‖u‖L∞(0,Te;H2(Ω)) + ‖T‖L∞(0,Te;H1(Ω)) ≤ C̄, (3.10)

‖u‖L∞(QTe ) + ‖T‖L∞(QTe ) ≤ C̄, (3.11)

‖S‖L∞(0,Te;H1(Ω)) ≤ C̄, (3.12)

‖S‖L∞(QTe ) ≤ C̄. (3.13)

The proof is given in several lemmas, in which we construct a sequence of approximate
solutions and derive uniform a-priori bounds for it. These bounds allow to select a
subsequence, which converges to a solution of (3.1) – (3.7). The function (un, Tn, Sn) in
this sequence is constructed as solution of the semilinear initial-boundary value problem

obtained by replacing S in the term (|Sx|κ + κ) of (3.3) by the function S̃n−1, where
tilde denotes a smoothing operation, and by inserting for the data (b, r, S0) a sequence
(bn, rn, Sn

0 ) of functions with higher regularity. We thus have to study the semilinear
problem, which consists of the equations

−T1x = b, (3.14)

T = D(ε(ux) − ε̄S), (3.15)

St = c
(
( |˜̂Sx|κ + κ)(ψS(ε(ux), S) − νSxx)x

)
x

+ cr|Sx|κ , (3.16)

and of the boundary and initial conditions (3.4) – (3.7). Here Ŝ ∈ L2(0, Te;H
2(Ω)) is a

given function and

˜̂
Sx(t, x) = (χη ∗ Sx)(t, x) =

∫

QTe

χη(t− τ, x− y) Ŝx(τ, y) d(τ, y) , (3.17)

with the standard mollifier χη ∈ C∞
0 ({x ∈ R2 | |x| ≤ η}).

Lemma 3.3 Let 0 < α < 1. To every Ŝ ∈ L2(QTe
), b ∈ C

α
4

,α(Q̄Te
), r ∈ C

α
4 ([0, Te]) and

S0 ∈ C4+α(Ω̄) there is a unique solution (u, T, S) of the initial-boundary value problem
(3.14) – (3.16), (3.4) – (3.7). This solution belongs to the space

L∞(0, Te;C
2+α(Ω̄)) × L∞(0, Te;C

1+α(Ω̄)) × C1+ α
4

,4+α(Q̄Te
)

and satisfies Sxxt ∈ L2(QTe
).

Proof. We reduce the system (3.14) – (3.16) to a single equation. To this end note that
for every t ∈ [0, Te] and for given S(t) the equations (3.14), (3.15), (3.4) form a boundary
value problem for (u(t), T (t)). It is shown in [3] that the solution is given by

u(t, x) = u∗
(∫ x

a
S(t, y)dy − x− a

d− a

∫ d

a
S(t, y)dy

)
+ w(t, x), (3.18)

T (t, x) = D(ε∗ − ε̄)S(t, x) − Dε∗

d− a

∫ d

a
S(t, y)dy + σ(t, x), (3.19)
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where u∗ ∈ R3, ε∗ ∈ S3 are suitable constants only depending on ε̄ and D and where
(w(t), σ(t)) : Ω → R3 × S3 is the solution to the elliptic boundary value problem

−σ1x(t) = b(t), (3.20)

σ(t) = Dε(wx(t)), (3.21)

w(t)|∂Ω = 0. (3.22)

Noting (1.9), we obtain from (3.19) that

ψS(ε(ux), S) = ψ̂′(S) − T · ε̄ = ψ̂′(S) − c1S +
ε̄ ·Dε∗
d− a

∫ d

a
Sdy − σ (3.23)

with c1 = ε̄ ·D(ε∗ − ε̄). Insertion of this equation into (3.16) yields the initial-boundary
value problem

St = −c
(
(|˜̂Sx|κ + κ)(νSxxx + (c1 − ψ̂′′(S))Sx + σx)

)
x

+ cr|Sx|κ , (3.24)

Sx = 0, (νSxx − ψS)x = 0, on (0, Te) × ∂Ω, (3.25)

S(0, x) = S̃0(x), x ∈ Ω. (3.26)

Since (3.24) is a semilinear, strictly parabolic equation for S with Hölder continuous
coefficients, we can use a theorem in [22, p. 616] or in [16] to assert that for any given
Ŝ ∈ L2(0, Te;H

2(Ω)) there is a unique classical solution S ∈ C1+α/4,4+α(Q̄Te
) of this

initial-boundary value problem with Sxxt ∈ L2(QTe
). This function S and the functions

u and T given by (3.18), (3.19) solve (3.14) – (3.16), (3.4) – (3.7).

In the following lemmas we assume that (u, T, S) is the solution of (3.14) – (3.16), (3.4) –
(3.7) given by Lemma 3.3 to data having the regularity stated in the lemma and satisfying
the estimates

‖b‖L2(QTe ) ≤ K, ‖bt‖L2(QTe ) ≤ K, r̄ = ‖r‖L∞(0,Te) ≤ K, ‖S0‖H1(Ω) ≤ K. (3.27)

Lemma 3.4 There is a constant C̄ independent of η and κ but depending on K, such
that for every Ŝ ∈ L2(0, Te;H

2(Ω)), all (b, r, S0) satisfying (3.27) and for any t ∈ [0, Te]

‖S(t)‖H1(Ω) ≤ C̄, (3.28)

‖S‖L∞(QTe ) ≤ C̄, (3.29)

‖u(t)‖H2(Ω) + ‖T (t)‖H1(Ω) ≤ C̄, (3.30)

‖u‖L∞(QTe ) + ‖T‖L∞(QTe ) ≤ C̄. (3.31)

Proof. The derivation of the following estimate for the free energy ψ∗ defined in (2.11)
and (1.8) is based on a variation of the second law of thermodynamics.

The definition (1.8) of ψ, equation (3.15) and the symmetry of T imply ∇εψ · εt =
T · εt = T · uxt . Thus, if we note (3.14), (3.16) and integrate by parts three times, where
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we use the boundary conditions (3.4), (3.5), (3.6), we obtain

d

dt

∫

Ω
ψ∗(ε, S, Sx)(t, x)dx−

∫

Ω
b(t, x)ut(t, x)dx

=

∫

Ω
(∇εψ · εt + ψSSt + νSxSxt) dx−

∫

Ω
butdx

=

∫

Ω
(ψS − νSxx)St dx

= c

∫

Ω
(ψS − νSxx)

((
(ψS − νSxx)x(|˜̂Sx|κ + κ)

)
x

+ r|Sx|κ
)
dx

= −c
∫

Ω
((ψS − νSxx)x)2(|˜̂Sx|κ + κ) − r(ψS − νSxx)|Sx|κdx. (3.32)

Integration with respect to t yields
∫

Ω
ψ∗(ε, S, Sx)(t, x)dx−

∫

Ω
ψ∗(ε, S, Sx)(0, x)dx

≤
∫

Qt

but d(τ, x) + c

∫

Qt

r(ψS − νSxx)|Sx|κ d(τ, x). (3.33)

For brevity we wrote ε = ε(ux). To estimate the second term on the right hand side of
this inequality note first that the boundary condition (3.5) implies

∫

Ω
Sxx|Sx|κ dx =

∫

Ω

(∫ Sx

0
|y|κ dy

)

x

dx = 0. (3.34)

Note also that by (3.27) and the Sobolev embedding theorem there is a constant C such
that

‖b(t)‖ ≤ C, (3.35)

for all t ∈ [0, Te]. Using this estimate, we obtain from elliptic regularity theory for the
solution (w, σ) of the elliptic problem (3.20) – (3.22)

‖w(t)‖L∞(Ω) + ‖σ(t)‖L∞(Ω) ≤ C1(‖w(t)‖H2(Ω) + ‖σ(t)‖H1(Ω)) ≤ C2‖b(t)‖ ≤ C, (3.36)

for all 0 ≤ t ≤ Te. Equation (3.23) and (3.36) imply

|ψS(ε(ux), S)| ≤ C(1 + ‖S‖L1(Ω) + |S| + |ψ̂′(S)|).

Using this estimate, (3.34), assumption (1.30) and (3.9) we compute
∣∣∣∣cr
∫

Ω
(ψS − νSxx)|Sx|κ dx

∣∣∣∣ =

∣∣∣∣cr
∫

Ω
ψS |Sx|κ dx

∣∣∣∣

≤ r̄C

∫

Ω

(
1 + ‖S‖L1(Ω) + |S| + |ψ̂′(S)|

)
|Sx|κ dx

≤ r̄C
(
1 + ‖S‖2 + ‖ψ̂′(S)‖2 + ‖Sx‖2

)

≤ r̄C

(
1 +

∫

Ω
ψ̂(S)dx+ ‖Sx‖2

)

≤ r̄C

(
1 +

∫

Ω
ψ∗(ε, S, Sx)dx

)
. (3.37)
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To estimate the first term on the right-hand side of (3.33) we write it in the form

∫

Qt

but d(τ, x) =

∫ t

0

(
d

dt

∫

Ω
bu dx−

∫

Ω
btu dx

)
dτ =

∫

Ω
bu dx

∣∣∣∣
t

0

−
∫

Qt

btu d(τ, x) . (3.38)

Equation (3.18), the bound for S0 in (3.27) and (3.36) give

‖u(0)‖ ≤ C, (3.39)

and (3.35) and (3.39) yield

∣∣∣∣
∫

Ω
b(0, x)u(0, x)dx

∣∣∣∣ ≤ C. (3.40)

We next use that u(t) vanishes at the boundary and that the definition of ε(ux) implies
|ε(ux)|2 ≥ 1

2 |ux|2 to conclude from Poincaré’s inequality and from (3.27), (3.35) for every
µ > 0

∣∣∣∣
∫

Ω
bu dx

∣∣∣∣ ≤ ‖b‖ ‖u‖ ≤ C‖b‖ ‖ux‖ ≤ C2

2µ
‖b‖2 +

µ

2
‖ux‖2 ≤ Cµ + µ‖ε‖2, (3.41)

∣∣∣∣
∫

Qt

btudxdτ

∣∣∣∣ ≤
∫ t

0
‖bt‖ ‖u‖dτ ≤ C

∫ t

0

(
‖bt‖2 + ‖ux‖2

)
dτ ≤ C + C

∫ t

0
‖ε‖2dτ. (3.42)

By (3.37), (3.38), (3.40) – (3.42) we can estimate the right hand side of (3.33) as

∣∣∣∣
∫

Qt

but d(τ, x) + c

∫

Qt

r(ψS − νSxx)|Sx|κd(τ, x)
∣∣∣∣

≤ Cµ + µ‖ε‖2 + C

∫ t

0

(
‖ε‖2 + r̄ + r̄

∫

Ω
ψ∗(ε, S, Sx)dx

)
dτ. (3.43)

From the definition of ψ∗ in (2.11) we see that the bound for S0 in (3.27) and (3.39)
imply ∣∣∣∣

∫

Ω
ψ∗(ε, S, Sx)(0, x)dx

∣∣∣∣ ≤ C. (3.44)

Combination of (3.33) with (3.43) and (3.44)) results in

∫

Ω
ψ∗(ε, S, Sx)(t, x)dx ≤ Cµ +µ‖ε‖2 +C

∫ t

0

(
‖ε‖2 + r̄ + r̄

∫

Ω
ψ∗(ε, S, Sx)dx

)
dτ. (3.45)

In order to absorb the term µ‖ε‖2 in the right hand side we use assumption (1.30) to
find

‖ε‖2 ≤ 2‖ε̄S‖2 + 2‖ε− ε̄S‖2

≤ C

∫

Ω
M(ψ̂(S) + 1) +

1

2
(D(ε− ε̄S)) · (ε− ε̄S) dx

≤ C

∫

Ω
ψ∗(ε, S, Sx) dx .
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We insert this estimate into (3.45) and choose µ sufficiently small to obtain
∫

Ω
ψ∗(ε, S, Sx) dx ≤ C

(
1 + r̄t+

∫ t

0
(1 + r̄)

∫

Ω
ψ∗(ε, S, Sx)dxdτ

)
.

Applying Gronwall’s inequality in the integral form we conclude from this inequality that
there is CTe

such that for every t ∈ [0, Te]∫

Ω
ψ∗(ε, S, Sx)(t, x) dx ≤ CTe

. (3.46)

(3.28) follows from this estimate, since (1.30) and (2.11) imply

|S|2 +
ν

2
|Sx|2 ≤ (M + 1)(ψ∗(ε, S, Sx) + 1).

The inequality (3.29) is an immediate consequence of (3.28) and the Sobolev embedding
theorem, and (3.30) results from (3.18), (3.19) together with the estimates for S and σ
in (3.28), (3.36). Finally, (3.31) is a consequence of (3.30) and the Sobolev embedding
theorem. The proof is complete.

Lemma 3.5 There is a constant C, independent of η but dependent on κ and K, such
that for any Ŝ with ‖Ŝ‖L∞(0,Te;H1(Ω)) ≤ C̄, for all data (b, r, S0) satisfying (3.27) and for
any t ∈ [0, Te] there hold

∫

Qt

(|˜̂Sx|κ + κ)|Sxxx|2d(τ, y) ≤ C, (3.47)

∫

Qt

|Sxx|2d(τ, y) ≤ C. (3.48)

Proof. (3.48) follows immediately from (3.28) and (3.47) by the interpolation inequality.
To prove (3.47) we multiply (3.24) by −Sxx , integrate with respect to x, integrate by
parts using the boundary conditions (3.5), (3.6) and note (3.34) to arrive at

1

2

d

dt
‖Sx‖2 + cν

∫

Ω
(|˜̂Sx|κ + κ)|Sxxx|2dx

= c

∫

Ω
(|˜̂Sx|κ + κ)ψSxSxxx dx− cr

∫

Ω
|Sx|κSxx dx

= c

∫

Ω
(|˜̂Sx|κ + κ)ψSxSxxx dx. (3.49)

Since by (3.29) the function S is bounded, we conclude from (3.23) and (3.36) that there
is a suitable constant C such that

|(ψS)x(ε, S)| = |ψ̂′′(S)Sx − c1Sx − σx| ≤ C(|Sx| + 1). (3.50)

Observing (3.50) we obtain by integration of (3.49) with respect to t for µ > 0

1

2
‖Sx‖2 + cν

∫

Qt

(|˜̂Sx|κ + κ)|Sxxx|2d(τ, x)

≤ 1

2
‖S0x‖2 + C

∫

Qt

(|˜̂Sx|κ + κ)(|Sx| + 1)|Sxxx|d(τ, x)

≤ 1

2
‖S0x‖2 + µ

∫

Qt

(|˜̂Sx|κ + κ)|Sxxx|2d(τ, x)

+ Cµ

∫

Qt

(|˜̂Sx|κ + κ)(|Sx|2 + 1)d(τ, x). (3.51)
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Using that (3.17) implies ‖˜̂Sx‖L2(QTe ) ≤ ‖Ŝx‖L2(QTe ) ≤ C‖Ŝx‖L∞(0,Te;L2(Ω) ≤ C̄, we
obtain from Hölder’s inequality

∣∣Cµ

∫

Qt

(|˜̂Sx|κ + κ)(|Sx|2 + 1) d(τ, x)
∣∣ ≤ Cµ(‖ |˜̂Sx|κ ‖L2(Qt) + 1)(‖Sx‖2

L4(Qt)
+ 1)

≤ Cµ(C̄ + 1)(‖Sx‖2
L4(Qt)

+ 1). (3.52)

Since Sx|∂Ω = 0, the Gagliardo-Nirenberg inequality implies

‖Sx‖L4(Ω) ≤ C‖Sxxx‖
1

8 ‖Sx‖
7

8 ,

cf. [1, 25]. By (3.28) we have ‖Sx‖ ≤ C̄, whence Hölder’s and Young’s inequalities give
for t ≤ Te

Cµ(C̄ + 1)

(∫ t

0
‖Sx‖4

L4(Ω)dτ

) 1

2

≤ Cµ(C̄ + 1)

(∫ t

0
‖Sxxx‖

1

2 ‖Sx‖
7

2dτ

) 1

2

≤ Cµ(C̄ + 1)

(∫ t

0
‖Sxxx‖2dτ

) 1

8 (
tC̄

14

3

) 3

8

≤ η‖Sxxx‖2
L2(Qt)

+ Cµη(C̄ + 1)
15

7 C̄
8

7 . (3.53)

We combine the inequalities (3.51) – (3.53) and obtain (3.47), if we choose µ = cν/2 and
η = cνκ/4.

Lemma 3.6 To every C̄ there is a constant C, independent of η but dependent on κ and
K, such that for any Ŝ with ‖Ŝ‖L∞(0,Te;H1(Ω)) ≤ C̄, for all data (b, r, S0) satisfying (3.27)
and for any t ∈ [0, Te]

‖St‖
L

4
3 (0,Te;W

−1, 4
3 (Ω))

≤ C. (3.54)

We omit the proof of this lemma, since it is similar to the proof of (5.9) in Section 5.

Lemma 3.7 (Aubin - Lions) Let B0, B1 be reflexive Banach spaces and let B be a
Banach space such that

B0 ⊂⊂ B ⊂ B1 ,

where ⊂⊂ denotes compact embedding. Define

W =

{
f | f ∈ Lp0(0, Te;B0), f

′ =
df

dt
∈ Lp1(0, Te;B1)

}

with Te being a given positive number and 1 < p0, p1 < +∞. Then the embedding of W
in Lp0(0, Te;B) is compact.

A proof of this lemma can be found in [23, p. 57], for example.

Proof of Theorem 3.2. To construct a sequence of approximate solutions of (3.1) – (3.7)
we choose a sequence of functions (bn, rn, Sn

0 ) ∈ C
α
4

,α(Q̄Te
) × C

α
4 ([0, Te]) × C4+α(Ω̄)

satisfying (3.27) with a fixed constant K independent of n, such that

‖bn − b‖L2(QTe ) + ‖rn − r‖L2(0,Te) + ‖Sn
0 − S0‖H1(Ω) → 0 (3.55)
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for n → ∞. Here (b, r, S0) are the data given in Theorem 3.2. Now set S0 ≡ S0. If
Sn is known, let (un+1, Tn+1, Sn+1) be the solution of (3.14) – (3.16), (3.4) – (3.7) with
Ŝ in (3.16) replaced by Sn and with (bn, rn, Sn

0 ) inserted for (b, r, S0). In (3.17) we set
η = 1

n+1 . By Lemma 3.4 there is a constant C̄ independent of n and of κ such that

‖Sn‖L∞(0,Te;H1(Ω)) + ‖un‖L∞(0,Te;H2(Ω)) + ‖Tn‖L∞(0,Te;H1(Ω)) ≤ C̄. (3.56)

Lemmas 3.5 and 3.6 then show that there is a constant C, also independent of n, such
that

‖Sn‖L2(0,Te;H3(Ω)) + ‖Sn
t ‖L

4
3 (0,Te;W

−1, 4
3 (Ω))

≤ C. (3.57)

We apply the Aubin-Lions lemma with p0 = 2, p1 = 4
3 ,

B0 = H3(Ω), B = C2+α(Ω̄), B1 = W−1, 4
3 (Ω),

where we choose 0 < α < 1
2 . The space H3(Ω) is compactly embedded in C2+α(Ω̄) and

the spaces L2(0, Te;H
3(Ω)), L

4

3 (0, Te;W
−1, 4

3 (Ω)) are both reflexive. Since the sequence

Sn is bounded in L2(0, Te;H
3(Ω)) and Sn

t is bounded in L
4

3 (0, Te;W
−1, 4

3 (Ω)), by (3.57),
this lemma shows that there is a subsequence, still denoted by Sn, and a function S ∈
L2(0, Te;C

2+α(Ω̄)) such that for n→ ∞

‖Sn − S‖L2(0,Te;C2+α(Ω̄)) → 0, (3.58)

‖Sn(t) − S(t)‖ → 0, for almost all 0 < t < Te . (3.59)

(3.58) and (3.18), (3.19) together with (3.55) and (3.20) – (3.22) imply that there is
(u, T ) ∈ L2(0, Te;H

2(Ω) ×H1(Ω)) such that

‖un − u‖L2(0,Te;H2(Ω)) + ‖Tn − T‖L2(0,Te;H1(Ω)) → 0. (3.60)

From (3.56) – (3.59) it follows for the limit function in a well known way that

S ∈ L∞(0, Te;H
1(Ω)) ∩ L2(0, Te;H

3(Ω)), St ∈ L
4

3 (0, Te;W
−1, 4

3 (Ω)), (3.61)

with
‖S‖L∞(0,Te;H1(Ω)) ≤ C̄. (3.62)

As a consequence of this estimate and the Sobolev embedding theorem we also have
S ∈ L∞(QTe

) with
‖S‖L∞(QTe ) ≤ C̄. (3.63)

By (3.57) we can choose the subsequence such that

Sn
xxx ⇀ Sxxx in L2(QTe

). (3.64)

Similarly, (3.60) and (3.56) imply

u ∈ L∞(0, Te;H
2(Ω)), T ∈ L∞(0, Te;H

1(Ω)),

‖u‖L∞(0,Te;H2(Ω)) + ‖T‖L∞(0,Te;H1(Ω)) ≤ C̄. (3.65)
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In order to show that (u, T, S) is a solution of (3.1) – (3.7) we derive several conver-
gence estimates. Noting that the convolution operator in (3.17) satisfies ‖ṽ‖L2(QTe ) ≤
‖v‖L2(QTe ) and that η = 1

n+1 → 0, we infer from (3.58) that

‖S̃n
x − Sx‖L2(QTe ) ≤ ‖S̃n

x − S̃x‖L2(QTe ) + ‖S̃x − Sx‖L2(QTe )

≤ ‖Sn
x − Sx‖L2(QTe ) + ‖S̃x − Sx‖L2(QTe ) → 0. (3.66)

Because v 7→ |v|κ is a continuous mapping on L2(QTe
) we conclude from (3.58) and from

this estimate that

‖ |Sn
x |κ − |S|κ‖L2(QTe ) → 0, ‖ |S̃n

x |κ − |Sx|κ ‖L2(QTe ) → 0. (3.67)

Together with (3.64) we obtain

(|S̃n
x |κ + κ)Sn+1

xxx ⇀ (|Sx|κ + κ)Sxxx , weakly in L1(QTe
). (3.68)

To show convergence of ψS(εn, Sn)x we write

ψ̂′′(Sn)Sn
x − ψ̂′′(S)Sx = ψ̂′′′(ξ)(Sn − S)Sn

x + ψ̂′′(S)(Sn
x − Sx) = I1 + I2 ,

where ξ(t, x) is a suitable number between Sn(t, x) and S(t, x). Since Sn is uniformly
bounded in L∞(QTe

), by (3.29), and S belongs to L∞(QTe
), by (3.63), we conclude that

also ψ̂′′′(ξ) is uniformly bounded on QTe
with respect to n, hence (3.56) and (3.58) yield

‖I1‖2
L2(QTe ) ≤ C

∫ Te

0
‖Sn − S‖2

L∞(Ω)‖Sn
x‖2dτ

≤ C‖Sn − S‖2
L2(0,Te;L∞(Ω))‖Sn

x‖2
L∞(0,Te;L2(Ω)) → 0. (3.69)

Moreover, (3.29) and (3.58) imply ‖I2‖L2(QTe ) → 0 for n → ∞. Since ψS(ε, S)x =

ψ̂′′(S)Sx − Tx · ε̄, these relations and (3.60), (3.67) yield

(|S̃n
x |κ + κ)ψS(εn+1, Sn+1)x → (|Sx|κ + κ)ψS(ε, S)x , in L1(QTe

). (3.70)

Finally, from (3.67) and (3.27), (3.55) we deduce

‖rn|Sn
x |κ − r|Sx|κ‖L2(QTe )

≤ ‖rn‖L∞(0,Te)‖ |Sn
x |κ − |Sx|κ‖L2(QTe ) + ‖rn − r‖L2(0,Te)‖ |Sx| ‖L∞(0,Te;L2(Ω))

→ 0. (3.71)

Since (un, Tn, Sn) is a strong solution of (3.14) – (3.16), (3.4) – (3.7), we conclude from
(3.55), (3.58), (3.60), and from (3.68), (3.70), (3.71) that (u, T, S) satisfies (3.1), (3.2),
(3.4), (3.5) and (3.8). Hence, it is a weak solution of (3.1) – (3.7). Relation (3.61) implies
that S belongs to the function spaces given in Theorem 3.2, the estimates (3.10), (3.12),
(3.13) follow from (3.65), (3.62), (3.63), and the inequality (3.11) is a consequence of
(3.10) and the Sobolev embedding theorem. This completes the proof of Theorem 3.2.

19



4 Energy inequality

The estimate (3.12) for first order derivatives of the component S in weak solutions of
(3.1) – (3.7) is independent of κ > 0. Later we also need estimates for higher derivatives,
which are independent of κ. Their proof in Section 5 is based on an energy inequality,
in fact the limit version of the integrated form of (3.49), which we show to hold in this
section.

Lemma 4.1 The weak solution (u, T, S) of (3.1) – (3.7) given in Theorem 3.2 satisfies
for almost all 0 < t < Te

1

2
‖Sx(t)‖2 + cν

∫

Qt

(|Sx|κ + κ)|Sxxx|2 d(τ, x)

≤ 1

2
‖S0x‖2 + c

∫

Qt

(|Sx|κ + κ)ψSxSxxx d(τ, x). (4.1)

Proof. Let (un, Tn, Sn) be the sequence of functions constructed in the proof of Theo-
rem 3.2. By definition, Sn satisfies the equation (3.49) with Ŝ replaced by Sn−1. Inte-
gration of this equation yields

1

2
‖Sn

x (t)‖2 + cν

∫

Qt

(|˜Sn−1
x |κ + κ)|Sn

xxx|2d(τ, x)

=
1

2
‖S0x‖2 + c

∫

Qt

(|˜Sn−1
x |κ + κ)(ψn

S)xS
n
xxx d(τ, x), (4.2)

where (ψn
S)x = ψ̂′′(Sn)Sn

x − c1Sn
x −σx, by (3.23). Let LHn and RHn denote the left hand

side and the right hand side of this equation. We show that

1

2
‖Sx(t)‖2 + cν

∫

Qt

(|S̃x|κ + κ)|Sxxx|2d(τ, x) ≤ lim inf
n→∞

LHn , (4.3)

lim inf
n→∞

RHn = lim
n→∞

RHn =

∫

Qt

(|Sx|κ + κ)ψSxSxxx d(τ, x). (4.4)

Since lim infn→∞ LHn = lim infn→∞RHn, by (4.2), Lemma 4.1 is an immediate conse-
quence of these relations.

To prove (4.3) note that (3.59), (3.64) and the lower semi-continuity of the L2–norm
with respect to weak convergence imply

‖Sx(t)‖2 = lim
n→∞

‖Sn
x (t)‖2, ‖Sxxx‖2

L2(Qt)
≤ lim inf

n→∞
‖Sn

xxx‖2
L2(Qt)

, (4.5)

for almost all 0 < t < Te. Moreover, the estimate

∫

Qt

(|˜Sn−1
x |κ + κ)|Sn

xxx|2d(τ, x) ≤ C,

which follows from (3.47) and the definition of the sequence Sn, implies that there is
χ ∈ L2(QTe

) and a subsequence such that

(|˜Sn−1
x |κ)

1

2Sn
xxx ⇀ χ, weakly in L2(QTe

).
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Again using the weak lower semi-continuity of the L2–norm, we infer from this relation
and from (4.5) that

1

2
‖Sx(t)‖2 + cν

∫

Qt

|χ|2 + κ|Sxxx|2d(τ, x) ≤ lim inf
n→∞

LHn . (4.6)

For the proof of (4.3) it remains to identify the function χ. To this end we use the
elementary inequality |

√
|x| −

√
|y| | ≤

√
|x− y|, x, y ∈ R, and the uniform Lipschitz

continuity of the function y → |y|κ to compute

∣∣∣∣(|
˜Sn−1
x |κ)

1

2 − (|Sx|κ)
1

2

∣∣∣∣
4

≤
∣∣∣∣ |

˜Sn−1
x |κ − |Sx|κ

∣∣∣∣
2

≤ C

∣∣∣∣
˜Sn−1
x − Sx

∣∣∣∣
2

.

We integrate and note (3.66) to conclude

‖(|˜Sn−1
x |κ)

1

2 − (|Sx|κ)
1

2 ‖4
L4(QTe ) ≤ C‖˜Sn−1

x − Sx‖2
L2(QTe ) → 0

for n→ ∞. Consequently we have that

(|˜Sn−1
x |κ)

1

2 → (|Sx|κ)
1

2 , (4.7)

strongly in L4(QTe
) as n → ∞. On the other hand, by (3.64) we have Sn

xxx ⇀ Sxxx in
L2(QTe

), which implies for ϕ,ψ ∈ L4(QTe
) that

∫

QTe

(Sn
xxxϕ)ψ d(τ, x) →

∫

QTe

(Sxxxϕ)ψ d(τ, x).

This means that Sn
xxxϕ ⇀ Sn

xxx, weakly in the dual space L
4

3 (QTe
) of L4(QTe

), which
together with (4.7) yields

∫

QTe

(
|˜Sn−1

x |κ
) 1

2

Sn
xxxϕd(τ, x) →

∫

QTe

(|Sx|κ)
1

2Sxxxϕd(τ, x).

Thus, (|˜Sn−1
x |κ)

1

2Sn
xxx ⇀ (|Sx|κ)

1

2Sxxx weakly in L
4

3 (QTe
). Since (|˜Sn−1

x |κ)
1

2Sn
xxx ⇀ χ in

L2(QTe
) implies (|˜Sn−1

x |κ)
1

2Sn
xxx ⇀ χ in L

4

3 (QTe
), it follows that

χ = (|Sx|κ)
1

2Sxxx.

Insertion of this equation into (4.6) yields (4.3).

To prepare the proof of (4.4) we derive three convergence relations. Note first that the
Gagliardo-Nirenberg inequality

‖f‖L∞(Ω) ≤ C‖fx‖
1

2 ‖f‖ 1

2 ,

holds for every f ∈ H1
0 (Ω). We can therefore apply it to the function Sx. Noting (3.58),

which yields that Sn
x → Sx strongly in L2(0, Te;H

1(Ω)), we obtain for n→ ∞
∫ t

0
‖Sn

x − Sx‖4
L∞(Ω)dτ ≤ C

∫ t

0
‖Sn

xx − Sxx‖2dτ → 0. (4.8)
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Using that |(|y|κ)′| ≤ C we conclude from this estimate

∫ t

0
‖ |Sn

x |κ − |Sx|κ‖4
L∞(Ω)dτ ≤ C

∫ t

0
‖Sn

x − Sx‖4
L∞(Ω)dτ → 0. (4.9)

Furthermore, by virtue of (3.29) we obtain the third convergence relation

∫ t

0
‖Sn − S‖4

L∞(Ω)dτ ≤ C

∫ t

0
‖Sn − S‖2

L∞(Ω)dτ → 0. (4.10)

Now we can prove (4.4). To this end we insert (ψn
S)x = (ψ̂n

S)x − (c1S
n
x + σx)x into the

left hand side of this relation and consider first the term with (ψ̂n
S)x . Write

∫

Qt

|˜Sn−1
x |κ(ψ̂n

S)xS
n
xxxd(τ, x) =

∫

Qt

(|˜Sn−1
x |κ − |Sx|κ)(ψ̂n

S)xS
n
xxxd(τ, x)

+

∫

Qt

|Sx|κ(ψ̂′′(Sn) − ψ̂′′(S))Sn
xS

n
xxxd(τ, x)

+

∫

Qt

|Sx|κψ̂′′(S)(Sn
x − Sx)Sn

xxxd(τ, x)

+

∫

Qt

|Sx|κψ̂′′(S)SxS
n
xxx

= I1 + I2 + I3 + I4. (4.11)

We shall prove that each term on the right-hand side of (4.11) converges. For I1 the
Hölder and triangle inequalities and the estimates (3.28), (3.47), (4.9) imply

|I1| ≤
∫ t

0
‖ |˜Sn−1

x |κ − |Sx|κ ‖L∞(Ω) ‖Sn
x‖ ‖Sn

xxx‖dτ

≤ C

(∫ t

0
‖ |˜Sn−1

x |κ − |Sx|κ ‖2
L∞(Ω)dτ

) 1

2
(∫ t

0
‖Sn

xxx‖2dτ

) 1

2

≤ C

(∫ t

0
‖ |˜Sn−1

x |κ − |Sx|κ ‖2
L∞(Ω)dτ

) 1

2

→ 0, (4.12)

as n→ ∞. From the Gagliardo-Nirenberg inequality in the form

‖Sx‖L∞(Ω) ≤ C‖Sxxx‖
1

4 ‖Sx‖
3

4

and from (3.28), (3.47) we infer

∫ t

0
‖Sn

x |Sx|κ‖4
L∞(Ω)dτ ≤

∫ t

0
‖Sn

x‖4
L∞(Ω)‖ |Sx|κ‖4

L∞(Ω)dτ

≤ C

∫ t

0
‖Sxxx‖‖Sn

xxx‖dτ

≤ C

∫ t

0

(
‖Sxxx‖2 + ‖Sn

xxx‖2
)
dτ ≤ C.
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By assumption ψ̂′′′(S) is continuous. Consequently, the last estimate together with the
mean value theorem, (3.29) and (4.10) yield

|I2| ≤
∫ t

0
‖ψ̂′′(Sn) − ψ̂′′(S)‖L∞(Ω)‖ |Sx|κSn

x‖ ‖Sn
xxx‖dτ

≤ C

∫ t

0
‖Sn − S‖L∞(Ω)‖ |Sx|κSn

x‖ ‖Sn
xxx‖dτ

≤ C

(∫ t

0
‖Sn − S‖4

L∞(Ω)dτ

) 1

4
(∫ t

0
‖ |Sx|κSn

x‖4
L∞(Ω)dτ

) 1

4
(∫ t

0
‖Sn

xxx‖2dτ

) 1

2

≤ C

(∫ t

0
‖Sn − S‖4

L∞(Ω)dτ

) 1

4

→ 0, (4.13)

as n→ ∞. Proceeding similarly as in the derivation of (4.12) we obtain from (4.8) that

|I3| ≤ C

∫ t

0
‖Sn

x − Sx‖L∞(Ω)‖Sx‖ ‖Sn
xxx‖dτ → 0, (4.14)

as n→ ∞. Finally, the Sobolev embedding theorem and (3.29) yield

‖ |Sx|κψ′′(S)Sx‖L2(QTe ) ≤ C‖S2
x‖L2(QTe ) = C‖Sx‖2

L4(QTe ) ≤ C

∫ t

0
‖Sx‖2

H1(Ω)dτ ≤ C,

from which we know that |Sx|κψ′′(S)Sx is an element of L2(QTe
) and can be regarded as

a test function. Since Sn converges weakly in L2(0, Te;H
3(Ω)), one obtains for n → ∞

that

I4 →
∫

Qt

|Sx|κψ̂′′(S)SxSxxxd(τ, x). (4.15)

Combination of (4.11) – (4.15) yields
∫

Qt

|˜Sn−1
x |κ(ψ̂n

S)xS
n
xxx d(τ, x) →

∫

Qt

|Sx|κ(ψ̂S)xSxxx d(τ, x).

In a similar but simpler way we obtain
∫

Qt

|˜Sn−1
x |κ(c1S

n
x + σx)Sn

xxx d(τ, x) →
∫

Qt

|Sx|κ(c1Sx + σx)Sxxx d(τ, x)

∫

Qt

κ(ψn
S)xS

n
xxx d(τ, x) →

∫

Qt

κ(ψS)xSxxx d(τ, x).

The last three relations imply (4.4). This completes the proof of Lemma 4.1.

5 A Priori Estimates independent of κ

In this section we establish a-priori estimates for solutions (uκ, T κ, Sκ) of the regularized
problem (3.1) – (3.7), which hold independently of κ. Since we consider the limit κ→ 0,
we assume that

0 < κ ≤ 1. (5.1)

Let (uκ, T κ, Sκ) be the weak solution of (3.1) – (3.7) given by Theorem 3.2 to fixed data
S0 ∈ H1(Ω), r ∈ L∞(0, Te) and b ∈ L2(QTe

) with bt ∈ L2(QTe
).
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Lemma 5.1 There is a constant C independent of κ such that for any t ∈ [0, Te] there
hold

∫

Qt

(|Sκ
x |κ + κ)|Sκ

xxx|2d(τ, y) ≤ C

(
1 +

∫ t

0
‖Sκ

xx‖
1

2dτ

)
, (5.2)

‖ |Sκ
x |κSκ

xxx‖L
4
3 (Qt)

≤ C

(
1 +

∫ t

0
‖Sκ

xx‖
1

2dτ

) 1

2

. (5.3)

Proof. To prove (5.2) we use (3.50) in the energy inequality (4.1) and apply (3.12) and
Young’s inequality to obtain

1

2
‖Sκ

x‖2 + cν

∫

Qt

(|Sκ
x |κ + κ)|Sκ

xxx|2d(τ, x)

≤ C

(∫

Qt

(|Sκ
x |κ + κ)(|Sκ

x | + 1)|Sκ
xxx|d(τ, x) + 1

)

≤ µ

∫

Qt

(|Sκ
x |κ + κ)|Sκ

xxx|2d(τ, x) + Cµ

(∫

Qt

(|Sκ
x |κ + κ)|Sκ

x |2d(τ, x) + 1

)
. (5.4)

The last term on the the right-hand side is estimated using Hölder’s inequality and (3.9),
(3.12). This yields

∣∣Cµ

∫

Qt

(|Sκ
x |κ + κ)|Sκ

x |2d(τ, x)
∣∣ ≤ Cµ

∫ t

0
(‖ |Sκ

x |κ ‖ + 1)‖Sκ
x‖2

L4(Ω)dτ

≤ Cµ

∫ t

0
(‖Sκ

x‖ + 1)‖Sκ
x‖2

L4(Ω)dτ

≤ Cµ

∫ t

0
‖Sκ

x‖2
L4(Ω)dτ. (5.5)

Noting that Sκ
x |∂Ω = 0, we have the Gagliardo-Nirenberg inequality in the form

‖Sκ
x‖L4(Ω) ≤ C‖Sκ

xx‖
1

4 ‖Sκ
x‖

3

4 , (5.6)

hence, again using (3.12),

Cµ‖Sκ
x‖2

L4(Ω) ≤ Cµ‖Sκ
xx‖

1

2 ‖Sκ
x‖

3

2 ≤ Cµ‖Sκ
xx‖

1

2 . (5.7)

The inequality (5.2) results if we choose µ = 1
2cν in (5.4) and estimate the right hand

side of (5.4) with (5.5) and (5.7).
To verify (5.3) let 2 > p ≥ 1, q = 2

p and 1
q + 1

q′ = 1. Hölder’s inequality yields

∫

Qt

(|Sκ
x |κ|Sκ

xxx|)p d(τ, x)

=

∫

Qt

(|Sκ
x |κ)

p

2

(
(|Sκ

x |κ)
p

2 |Sκ
xxx|p

)
d(τ, x)

≤
(∫

Qt

(|Sκ
x |κ)

pq′

2 d(τ, x)

) 1

q′
(∫

Qt

(|Sκ
x |κ)

pq

2 |Sκ
xxx|pqd(τ, x)

) 1

q

≤
(∫

Qt

(|Sκ
x |κ)

p

2−p d(τ, x)

) 2−p

2
(∫

Qt

|Sκ
x |κ|Sκ

xxx|2d(τ, x)
) p

2

. (5.8)
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The estimates (3.9), (3.12) and (5.2) show that the right hand side of (5.8) is bounded
for p

2−p ≤ 2, i.e. p ≤ 4
3 . This proves (5.3) and completes the proof of the lemma.

Lemma 5.2 There is a constant C independent of κ such that

‖∂tS
κ‖

L
4
3 (0,Te;W

−1, 4
3 (Ω))

≤ C, (5.9)

‖Sκ
xx‖L2(QTe ) ≤ C. (5.10)

Proof. Because of the boundary condition (3.6) we obtain by partial integration

(
(ψS − νSκ

xx)x , S
κ
x

)
QTe

= (ψS , S
κ
xx)QTe

+ ν‖Sκ
xx‖2

L2(QTe ). (5.11)

Since (3.11) and (3.13) imply

‖ψS‖L∞(QTe ) = ‖ψ̂′(Sκ) − T κ · ε̄‖L∞(QTe ) ≤ C,

it follows that
|(ψS , S

κ
xx)QTe

| ≤ ν

4
‖Sκ

xx‖2
L2(QTe ) + Cν . (5.12)

To estimate the left hand side of (5.11) we use the Gagliardo-Nirenberg inequality

‖Sκ
x‖L

8
3 (Ω)

≤ C‖Sκ
xx‖

1

8 ‖Sκ
x‖

7

8 ,

and obtain together with (3.12)

‖(Sκ
x)2‖

L
4
3 (QTe )

=

(∫ Te

0
‖Sκ

x‖
8

3

L
8
3 (Ω)

dτ

) 3

4

≤ C

(∫ Te

0
‖Sκ

xx‖
1

3dτ

) 3

4

.

We employ this estimate and (3.50), (3.9), (5.3), (3.12), (5.2) to compute

‖(ψS − νSκ
xx)x S

κ
x‖L

4
3 (QTe )

≤ ‖(ψS − νSκ
xx)x(|Sκ

x |κ + κ)‖
L

4
3 (QTe )

≤ C‖(|Sκ
x | + 1)(|Sκ

x |κ + κ)‖
L

4
3 (QTe )

+ ν‖Sκ
xxx|Sκ

x |κ‖L
4
3 (QTe )

+ ν‖κSκ
xxx‖L

4
3 (QTe )

≤ C‖(Sκ
x)2‖

L
4
3 (QTe )

+ C‖Sκ
x‖L

4
3 (QTe )

+ C + C

(
1 +

∫ Te

0
‖Sκ

xx‖
1

2dτ

) 1

2

+ C‖
√
κSκ

xxx‖L2(QTe )

≤ C

(∫ Te

0
‖Sκ

xx‖
1

3dτ

) 3

4

+ C +

(∫ Te

0
‖Sκ

xx‖
1

2dτ

) 1

2

≤ Cν +
ν

4

∫ Te

0
‖Sκ

xx‖2dτ = Cν +
ν

4
‖Sκ

xx‖2
L2(QTe ) . (5.13)

We also used Hölder’s and Young’s inequalities. Combination of this estimate with (5.11)
and (5.12) yields (5.10).
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To prove (5.9) we infer from (3.8) and (3.12), (5.13) that for all ϕ ∈ C∞
0 (QTe

)

|(Sκ
t , ϕ)QTe

| =
∣∣c
(
(ψS − νSκ

xx)x(|Sκ
x |κ + κ), ϕx

)
QTe

− c(r|Sκ
x |κ , ϕ)QTe

∣∣

≤ c‖(ψS − νSκ
xx)x(|Sκ

x |κ + κ)‖
L

4
3 (QTe )

‖ϕx‖L4(QTe )

+ cr̄ ‖ |Sκ
x |κ‖L

4
3 (QTe )

‖ϕ‖L4(QTe )

≤ C
(
1 + r̄ + ‖Sκ

xx‖2
L2(QTe )

)
‖ϕ‖L4(0,Te;W 1,4(QTe )) , (5.14)

where we used the notation r̄ = ‖r‖L∞(0,Te) . This means that

‖Sκ
t ‖L

4
3 (0,Te;W

−1, 4
3 (Ω))

≤ C
(
1 + r̄ + ‖Sκ

xx‖2
L2(QTe )

)
, (5.15)

which together with (5.10) implies (5.9). The proof is complete.

We combine Lemmas 5.1 and 5.2 to obtain in an obvious way

Corollary 5.3 There is a constant C, independent of κ, such that for any t ∈ [0, Te]

∫

Qt

(|Sκ
x |κ + κ)|Sκ

xxx|2d(τ, y) ≤ C, (5.16)

‖ |Sκ
x |κSκ

xxx‖L
4
3 (Qt)

≤ C. (5.17)

6 Existence of solutions to the phase field model

In this section we use the a-priori estimates established in the previous sections to study
the convergence of the solutions (uκ, T κ, Sκ) of the regularized problem (3.1) – (3.7) for
κ → 0, thereby proving Theorem 1.3. Besides Lemma 3.7 we need another well known
result, which we state first: *

Theorem 6.1 (Egorov) Let (Γ,Σ, µ) be a measure space with µ(Γ) < ∞, let f, f1, f2,
f3, · · · be real valued, measurable functions on Γ, and assume that f j(x) → f(x) as
j → ∞ for almost every x ∈ Γ.

Then, for every ε > 0 there is a subset Mε ⊂ Γ with µ(Mε) > µ(Γ) − ε, such that
f j(x) converges to f(x) uniformly on Mε. That is, for every δ > 0 there is an Nδ such
that when j > Nδ we have that for every x ∈Mε

|f j(x) − f(x)| < δ.

A proof of Theorem 6.1 can be found in [21, p. 16], for example.
We start by deriving some results about strong and pointwise convergence for the

family of weak solutions (uκ, T κ, Sκ) of (3.1) – (3.7) constructed in Theorem 3.2:

Lemma 6.2 Let 0 < α < 1
2 . There is a sequence κn → 0 and a function S ∈

L2(0, Te;C
1+α(Ω̄)) with

S ∈ L2(0, Te;H
2(Ω)) ∩ L∞(0, Te;H

1(Ω)) ∩ L∞(QTe
), St ∈ L

4

3 (0, Te;W
−1, 4

3 (Ω)),
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such that the sequence Sκn, still denoted by Sκ, satisfies

‖Sκ − S‖L2(0,Te;C1+α(Ω̄)) → 0, (6.1)

‖Sκ(t) − S(t)‖C1+α(Ω̄), → 0, a.e. in [0, Te], (6.2)

‖ |Sκ
x |κ − |Sx| ‖L2(0,Te;L∞(Ω)) → 0. (6.3)

Proof. The estimates (3.12), (5.9), (5.10) imply that the functions Sκ are uniformly
bounded in L2(0, Te;H

2(Ω)) and that the time derivatives ∂
∂tS

κ are uniformly bounded

in L
4

3 (0, Te;W
−1, 4

3 (Ω)) for κ → 0. Based on these estimates we apply Lemma 3.7. We
choose p0 = 2, p1 = 4

3 and

B0 = H2(Ω), B = C1+α(Ω̄), B1 = W−1, 4
3 (Ω).

The spaces H2(Ω) and W−1, 4
3 (Ω) are reflexive and the Sobolev embedding theorem im-

plies that H2(Ω) is compactly embedded in C1+α(Ω̄) for 0 < α < 1
2 . From Lemma 3.7 we

thus conclude that there is a subsequence, which we still denote by Sκ, which converges
strongly in Lp0(0, Te;B) = L2(0, Te;C

1+α(Ω̄)) to a function S for κ→ 0. Clearly, we can
assure that ‖Sκ(t)− S(t)‖C1+α(Ω̄) → 0 for almost all t in [0, Te] by going over to another

subsequence, if necessary. This proves (6.1) and (6.2). We have S ∈ L2(0, Te;H
2(Ω))

and St ∈ L
4

3 (0, Te;W
−1, 4

3 (Ω)), since the sequences Sκ and Sκ
t are uniformly bounded in

these spaces. S ∈ L∞(0, Te;H
1(Ω)) ⊆ L∞(QTe

) is implied by (3.12) together with (6.2).
From inequality (3.9) we obtain 0 ≤ |Sκ

x(t, x)| − |Sκ
x(t, x)|κ ≤ κ, whence

‖ |Sx|(t) − |Sκ
x |κ(t) ‖L∞(Ω) ≤ ‖Sx(t) − Sκ

x(t)‖L∞(Ω) + κ. (6.4)

Relation (6.3) is implied by this estimate and by (6.1).

We also need a convergence result for third derivatives: Let

AS = {(t, x) ∈ QTe
| Sx(t, x) 6= 0}.

Since Sx(t) ∈ Cα(Ω) for almost all t ∈ [0, Te], the set AS(t) = {x ∈ Ω | Sx(t, x) 6= 0} is
open.

Lemma 6.3 The limit function S has the local weak L2–derivative Sxxx on AS in the
sense of Definition 1.1. Moreover, there exists a subsequence Sκ such that

|Sκ
x |κSκ

xxx ⇀ χ, weakly in L
4

3 (QTe
), (6.5)

where the function χ ∈ L
4

3 (QTe
) is given by

χ(t, x) =

{
0, if Sx(t, x) = 0

|Sx|Sxxx, if Sx(t, x) 6= 0.
(6.6)

Proof. To show that S has the local weak derivative Sxxx on AS we first construct
the family of sets {An}n appearing in Definition 1.1. Remember that the measurable
function t → |Sκ

x − Sx|Cα(Ω̄) converges to zero for almost all t ∈ [0, Te], by (6.2). Thus,

27



from Theorem 5.1 we see that there is a sequence {Mn}n of measurable subsets of [0, Te]
with

meas ([0, Te] \Mn) ≤ 1

n
, Mn ⊂Mn+1, (6.7)

such that |Sκ
x(t) − Sx(t)|Cα(Ω̄) converges to zero uniformly with respect to t ∈Mn. This

means that Sx(t) ∈ Cα(Ω̄) for all t ∈ Mn and that Sκ
x converges to Sx uniformly on the

set Mn × Ω. Let

Ân = {(t, x) ∈ QTe
| |Sx(t, x)| > 1

n
}, An = Ân ∩ (Mn × Ω). (6.8)

We have

An ⊂ An+1 , (6.9)

by (6.7), and

∞⋃

n=1

An =
( ∞⋃

n=1

Ân

)
\

∞⋂

n=1

((
[0, Te] \Mn

)
× Ω

)
= AS \ (N × Ω), (6.10)

with the set

N =
∞⋂

n=1

(
[0, Te] \Mn

)
⊂ [0, Te]

of Lebesgue measure zero. Here we used that
⋃∞

n=1 Ân = AS . Equation (6.10) yields

AS(t) =
∞⋃

n=1

An(t) (6.11)

for all t ∈ [0, Te] \ N . Because Sx(t) is continuous for all t ∈ Mn, it follows from (6.8)
that

Ân(t) = {x ∈ Ω | (t, x) ∈ Ân}
is open for all t ∈ Mn . Again by (6.8) and by (6.11), this means that An(t) and AS(t)
are open subsets of Ω for all t ∈ [0, Te].

We next show that Sxxx exists on An. Since Sκ
x converges uniformly on An, there is κ0

such that for all 0 < κ < κ0 and all (t, x) ∈ An

|Sκ
x(t, x)| > 1

2n
.

Recalling (5.16) and (3.9) we obtain

C ≥
∫

QTe

(|Sκ
x |κ + κ)|Sκ

xxx|2d(τ, x) ≥
∫

QTe

|Sκ
x | |Sκ

xxx|2d(τ, x) ≥
∫

An

1

2n
|Sκ

xxx|2d(τ, x),

hence
‖Sκ

xxx‖L2(An) ≤
√

2nC.

Thus, we can select a subsequence, again denoted by Sκ, such that

Sκ
xxx ⇀ gn, weakly in L2(An). (6.12)
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To prove that gn(t) = Sxxx(t) on An(t) for almost all t, note that since An is measurable
and since An(t) is open for all t ∈ [0, Te] we can define the space

L2
An

(0, Te;H
3
0 (Ω)) = {v ∈ L2(An) | v(t) ∈ H3

0 (An(t)) for all t ∈ [0, Te] }.

This space is separable as closed subspace of the separable space L2(0, Te;H
3(Ω)). Let

K be a countable dense subset of L2
An

(0, Te;H
3
0 (Ω)). For ϕ ∈ K, t ∈ (0, Te) and h > 0

such that t+ h ≤ Te we obtain

∫ t+h

t

∫

Ω
gn(τ, x)ϕ(τ, x) dxdτ = lim

κ→0

∫ t+h

t

∫

An(τ)
Sκ

xxx(τ, x)ϕ(τ, x) dxdτ

= − lim
κ→0

∫ t+h

t

∫

An(τ)
Sκ(τ, x)ϕxxx(τ, x) dxdτ = −

∫ t+h

t

∫

Ω
S(τ, x)ϕxxx(τ, x)dxdτ.

We multiply this equation with 1
h and take the limit h → 0 on both sides. By a result

from integration theory these limits exist for almost all t ∈ (0, Te) and are equal to the
inner integrals, whence

∫

Ω
gn(t)ϕ(t) dx =

∫

Ω
S(t)ϕxxx(t)dx, (6.13)

for almost all t. Since countable unions of countable sets are countable, it follows that
there is a subset L ⊆ [0, Te] of Lebesgue measure zero, such that for all ϕ ∈ K the
equation (6.13) holds for t ∈ [0, Te] \ L. From the density of K in L2

An
(0, Te, H

3
0 (Ω)) it

follows by measure theory that {v(t) | v ∈ K} is a dense subset of H3
0 (An(t)) for almost

all t ∈ [0, Te]. Consequently, (6.13) holds with ϕ(t) replaced by an arbitrary function
ϕ ∈ H3

0 (An(t)) for almost all t, and this means that S(t) ∈ H3(An(t)) and

Sxxx(t) = gn(t) ∈ L2(An(t)) (6.14)

for almost all t ∈Mn.
We next construct a function g on AS and show that it is the third x-derivative of S

on AS . Since N in (6.10) has measure zero, it suffices to define g on the set
⋃∞

n=1 An.
Using (6.9) we set

g|An
= gn

for all n ∈ N. This condition can be satisfied since (6.14) and the uniqueness of weak
derivatives imply gm|An

= gn for m ≥ n. To verify that g(t) ∈ L2,loc(AS(t)), let K be a
compact subset of AS(t) =

⋃∞
n=1 An(t). Then {An(t)} is an open covering of the compact

set K, and therefore finitely many of the sets An(t) suffice to cover K; whence K ⊆ An(t)
for sufficiently large n, by (6.9). Relation (6.14) now implies g(t)|K = gn(t)|K ∈ L2(K),
thence g(t) ∈ L2,loc(AS(t)). Next we consider ϕ ∈ C∞

0 (AS(t)). Since suppϕ ⊆ AS(t) is
compact, we conclude as above that suppϕ ⊆ An(t) for sufficiently large n. Consequently
(6.14) yields

(g(t), ϕ)AS(t) = (gn(t), ϕ)An(t) = −(S(t), ϕxxx)An(t) = −(S(t), ϕxxx)AS(t),

and so we have S(t) ∈ H3,loc(AS(t)) with g(t) = Sxxx(t) for almost all t ∈ [0, Te]. Since
meas (AS \An) → 0 for n→ ∞, by (6.10), and since g|An

= gn ∈ L2(An), by (6.12), the
conditions of Definition 1.1 are satisfied, hence S has the local weak L2–derivative Sxxx
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on AS .

To show that the relations (6.5) and (6.6) hold, we use (5.17), which implies that a sub-
sequence exists, still denoted by Sκ, such that |Sκ

x |κSκ
xxx converges weakly in L4/3(QTe

).
Let χ be the limit function. To identify this function remember (6.4), which together
with the uniform convergence of Sκ

x on An to Sx implies that |Sκ
x |κ converges uniformly

on An to |Sx|. From (6.12) we thus conclude

|Sκ
x |κSκ

xxx ⇀ |Sx|Sxxx ,

weakly in L2(An). This implies that |Sκ
x |κSκ

xxx also converges to |Sx|Sxxx weakly in

L
4

3 (An). Since weak limits are unique, we obtain that χ = |Sx|Sxxx on An. This holds
for every n, hence χ = |Sx|Sxxx almost everywhere in AS . We finally observe that
Hölder’s inequality, (5.16) and (6.3) yield

∫

{|Sx|≤δ}

∣∣∣|Sκ
x |κSκ

xxx

∣∣∣
4

3

d(τ, x)

≤
(∫

{|Sx|≤δ}
|Sκ

x |2κ d(τ, x)
) 1

3
(∫

{|Sx|≤δ}
|Sκ

x |κ|Sκ
xxx|2 d(τ, x)

) 2

3

≤ C
(
‖ |Sκ

x |κ − |Sx| ‖L2(QTe ) + ‖Sx‖L2({|Sx|≤δ})

) 2

3

≤ C(δ + δ meas QTe
)

2

3 ,

for all κ sufficiently small. Since |Sκ
x |κSκ

xxx converges to χ weakly in L
4

3 ({|Sx| ≤ δ}), this
estimate implies that

‖χ‖
L

4
3 ({Sx=0})

≤ ‖χ‖
L

4
3 ({|Sx|≤δ})

≤ C(1 + meas QTe
)

1

2 δ
1

2 .

This holds for all δ > 0, whence χ = 0 on the set {(t, x) | Sx(t, x) = 0}. The proof of
Lemma 6.3 is complete.

Proof of Theorem 1.3. Let Sκ be the subsequence and S be the limit function from
Lemma 6.2, let (uκ, T κ, Sκ) be the corresponding sequence of weak solutions to (3.1) –
(3.7) constructed in Theorem 3.2. The relations (3.18), (3.19) and (6.1) imply that a
function (u, T ) ∈ L2(0, Te;H

2(Ω) ×H1(Ω)) exists such that

‖uκ − u‖L2(0,Te;H2(Ω)) + ‖T κ − T‖L2(0,Te;H1(Ω)) → 0 (6.15)

for κ → 0. We show that (u, T, S) is a weak solution of (1.18) – (1.24) and satisfies
(1.31) – (1.33). To this end observe that the relations (1.28) and (1.32) for S follow from
Lemma 6.2 and from (3.5), (3.13). Relation (1.33) is implied by Lemma 6.3, the relations
(1.26), (1.27) are consequences of (6.15) and (3.4), and (1.31) results from (3.10). The
partial differential equations (3.1), (3.2) together with (6.1), (6.15) imply that (u, T, S)
satisfies (1.18), (1.19). To prove that (1.29) holds we study the convergence of the terms
in the equation (3.8) satisfied by (uκ, T κ, Sκ). Note that (6.1), (6.3) and (6.5), (6.6) yield
for ϕ ∈ C∞

0 ((−∞, Te) × R) that

(Sκ, ϕt)QTe
→ (S, ϕt)QTe

, (6.16)

c(r|Sκ
x |κ, ϕ)QTe

→ c(r|Sx|, ϕ)QTe
, (6.17)

(|Sκ
x |κSκ

xxx, ϕx)QTe
→ (|Sx|Sxxx, ϕx)

PS
, (6.18)
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as κ→ 0. The inequality (5.16) yields

|(κSκ
xxx , ϕx)QTe

| ≤ κ
1

2 ‖κ 1

2Sκ
xxx‖L2(QTe ) ‖ϕx‖L∞(QTe ) ≤ Cκ

1

2 → 0. (6.19)

For the term containing ψS(εκ, Sκ)x = ψ̂′′(Sκ)Sκ
x −T κ

x · ε̄ we argue as in (3.69) and obtain
from (3.12), (3.13), (6.1), (6.3), (6.15) that

ψS(εκ, Sκ)x (|Sκ
x |κ + κ) → ψS(ε, S)x|Sx|, in L1(QTe

), (6.20)

Inserting (6.16) – (6.20) into equation (3.8) shows that (u, T, S) solves (1.29) for all
ϕ ∈ C∞

0 ((−∞, Te) × R). Therefore (u, T, S) is a weak solution of the problem (1.18) –
(1.24) having the regularity properties stated in Theorem 1.3. The proof of this theorem
is complete.
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