A Weighted LI-Approach to Oseen
Flow Around a Rotating Body
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Abstract

We study time-periodic Oseen flows past a rotating body in R? proving
weighted a priori estimates in L?-spaces using Muckenhoupt weights.
After a time-dependent change of coordinates the problem is reduced
to a stationary Oseen equation with the additional terms (w x z) - Vu
and —w Aw in the equation of momentum where w denotes the angular
velocity. Due to the asymmetry of Oseen flow and to describe its
wake we use anisotropic Muckenhoupt weights, a weighted theory of
Littlewood-Paley decomposition and of maximal operators as well as
one-sided univariate weights, one-sided maximal operators and a new
version of Jones’ factorization theorem.
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1 Introduction

We consider a three-dimensional rigid body K CC R3 rotating with angular
velocity w = ©(0,0,1)T, & # 0, and assume that the complement R3 \ K
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is filled with a viscous incompressible fluid modelled by the Navier-Stokes
equations. Then we will analyze the viscous flow either past the rotating
body K with velocity u., = kes # 0 at infinity or around a rotating body K
which is moving in the direction of its axis of rotation. Given the coefficient
of viscosity v > 0 and an external force f = f(y,t), we are looking for the
velocity v = v(y, t) and the pressure ¢ = ¢(y,t) solving the nonlinear system

vu—vAv+v-Vo+Vq = f in Q(),t>0
dive = 0 in Q(),t>0 (1.1)
v(y,t) = wAy on 0Qt),t>0

v(y,t) — U #0 as |yl — oc.

Here the time-dependent exterior domain €2(¢) is given - due to the rotation
with angular velocity w - by

Qt) = 0,(H)Q

where 2 C R? is a fixed exterior domain and O,,(t) denotes the orthogonal
matrix B _
coswt —sinwt 0
Ou(t) = | sinwt coswt 0. (1.2)
0 0 1

Introducing the change of variables and the new functions

r=0,t)"y and u(z,t) = Oly(v(y,t) —us), pla,t) =q(y,t), (1.3)

respectively, as well as the force term f(z,t) = O(t)” f(y,t) we arrive at the
modified Navier-Stokes system
uy — vAu+u - Vu + kdsu
—(wAz)-Vu+wAu+Vp = f in Qx(0,00) (1.4)
divu = 0 in Q x(0,00) '

u(z,t) — 0 as |z] — o0

with boundary condition u(z,t) = w Az — us on 02 in the exterior time-
independent domain 2.

Due to the new coordinate system attached to the rotating body the
nonlinear system (1.4) contains two new linear terms, the classical Coriolis
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force term w A u (up to a multiplicative constant) and the term (w A z) - Vu
which is not subordinate to the Laplacian in unbounded domains. Linearizing
(1.4) in v at w = 0 and considering only the stationary problem we arrive at
the modified Oseen system

—vAu+kOsu — (wAz) - Vu+wAu+Vp = f in
dive = 0 in (1.5)

u — 0 at oo

together with the boundary condition u(z,t) = w Az — us on 9S2. Note that
there is no boundary condition in the case ) = R3.

The linear system (1.5) has been analyzed in classical L9-spaces, 1 < g <
00, for the whole space case in [3], [4] proving the a priori-estimate

lvV2ully +11Vely < el fllg,
kgully + (WA 2) - VatwAull, < e(l+ #2511l

with a constant ¢ > 0 independent of v, k and w. For a discussion of weak
solutions we refer to [14], [15]; the spectrum of the linear operator defined by
(1.5) is considered in [8]. The corresponding case when u., = 0 has recently
been analyzed in [5]-[7], [11], [12], [19]-[21]. For a more comprehensive intro-
duction including physical considerations and non-Newtonian fluids we refer
to [9].

The aim of this paper is to generalize the a priori-estimate (1.6) to
weighted Li-spaces for the whole space R®. For this reason we introduce
the weighted Lebesgue space

L) = L = {u € LL(®) ¢ ulyw = ( [ Ju(o)tute) ds) " < oo},

n

where w € LJ . is a nonnegative weight function and should reflect the

anisotropy of the flow and the existence of a wake region in the downstream
direction x3 > 0. Our tools will include Littlewood-Paley theory, singular
integral operators, multiplier operators and maximal operators in weighted
spaces so that we need weight functions satisfying Muckenhoupt type condi-
tions. For a totally different approach using variational methods see [13].

Definition 1.1. Let R be a collection of bounded sets R in R", each of

positive Lebesgue measure |R|. A weight function 0 < w € L;_ belongs to
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the Muckenhoupt class A, (R) = A,(R",R), 1 < ¢ < oo, if there exists a
constant C' > 0 such that

1 1 ot
sup(—/w(x) dx) (—/w_l/(q_l) dx) <C forany ReR
r \|R[ Jr [R| Jr

if 1 <¢q < o0, and

1
sup —/ w(x)dr < Cw(zy) for a.a. zyp € R",
Rl Jr

RER, Rawo
if ¢ = 1, respectively.

Due to the anisotropic nature of our problem we shall need a variant of
the classical Muckenhoupt class 4,(C) = A,(R3,C), where C is the set of
all cubes Q@ C R? with edges parallel to the coordinate axes. Namely, C is
replaced by J, the set of all bounded intervals (rectangles) in R?, leading to
the class A,(J) = A,(R?, J). Obviously, 4,(R3, J) C A,(R?,C).

Moreover, to describe the anisotropy of the wake region more precisely
by weights we have to introduce in addition to the weights on R" one-sided
Muckenhoupt weights and one-sided maximal operators on the real line, see
Definition 1.2, Theorem 2.3 and Lemma 2.4 below.

Definition 1.2. (i) For every locally integrable function u on the real line
let M*u be defined by

N 1 x+h
MTu(x) = sup — lu(t)| dt.

Analogously, .
M~ u(zx) = sup 1 / lu(t)| dt.
w0 I Jon

(ii) A weight function 0 < w € L] (R) lies in the weight class Ay if there
exists a constant ¢ > 0 such that M*w(z) < cw(x) for almost all z € R.
Analogously, w € A if and only if M~ w(z) < cw(z) for almost all z € R.
The smallest constant ¢ > 0 satisfying M*w(x) < cw(z) for almost all z € R
is called the A7-constant of w.

(iii) A weight function 0 < w € L] _ belongs to the one-sided Muckenhoupt

loc

class A;, 1 < g < oo, if there exists a constant C' > 0 such that for all z € R

1 xT 1 x+h q—l
Sup<— / w(t) dt) (— / w(t) V@b dt) <C.
h>0 h x—h h T

4



The smallest constant C' > 0 satisfying this estimate is called the A7 -constant
of w. By analogy, we define the set of weights A~ and the A -constant of a
weight in A .

Now we are in a position to describe the most general weights considered
in this paper. Note that these weights are independent of the angular vari-
able @ in the cylindrical coordinate system (r,6,z3) € [0,00) x [0,27] x R
attached to the axis of revolution e3 = (0,0,1)7. Hence we will write
w(z) = w(xy, T2, x3) = wy(x3) for r = |(xq, x2)|, x = (21, T2, x3).

Definition 1.3. For 1 < g < oo let
;[; = A/;(RS) = {w € A,(R?) : w is § — independent for a.a. 7 > 0,
w(@y, 22,) = (1) € A (R) (1.7)
with A (R)-constant essentially bounded in 7}.
Theorem 1.4. Let the weight function 0 < w € L (R?) be independent

of the angular variable 6 and satisfy the following condition depending on
q € (1,00):

2<g<oo: w’ €A

a2 Jor some T € [1,00)

~ (1.8)
l<g<2: w e ATq/2 for some T € (%,Q%J.
(i) Given f € L1 (R3)? there exists a solution (u,p) € Li. . (R?)3 x L] _(R?)
of (1.5) satisfying the estimate
vV *ullgw + VPl g < cllfllga, (1.9)

with a constant ¢ = ¢(q, w) > 0 independent of v, k and w.
(i) Let f € LE (R*)*NL% (R?)? such that both (q1,w:) and (g, wo) satisfy
the conditions (1.8), and let uy,us € L _(R3)? together with corresponding

pressure functions py,ps € L (R?) be solutions of (1.5) satisfying (1.9) for

(q1,w1) and (g2, ws), respectively. Then there are o, 5 € R such that uy
coincides with us up to an affine linear field aes + fw Az, o, 3 € R.

Corollary 1.5. Let the weight function 0 < w € L (R?) be independent
of the angular variable 6. Moreover, let w satisfy the following condition
depending on q € (1,00):

2<qg<oo: w €A ,(J) forsome 1€l 00
~q/g() [1,00) (1.10)

l<q<2: w €A ,(J) forsome 7€ (3 5%]
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where the weight class Av;(j), 1 <7 < o0, is defined by
F(7) = B RN AL,

Given f € L1 (R3)? there exists a solution (u,p) € Li _(R?)* x L (R3) of
(1.5) satisfying the estimate

/{Z5
0l + 0 7 ) =0 Al < € (14 S ) Il (111
with a constant ¢ = ¢(q, w) > 0 independent of v, k and w.

We remark that the w-dependent term 1 + % in (1.11) cannot be

avoided in general; see [4] for an example in the space L*(R?).
As an example of anisotropic weight functions we consider

w(w) =nj(@) = 1+ )"+ (@), s(@) = |(21,22,23)] — 23, (1.12)

introduced in [2] to analyze the Oseen equations; see also [13]-[14].

Corollary 1.6. The a priori estimate (1.9) holds for the anisotropic weights
w =g, see (1.12), provided that

2<qg<o0 —I<a<i 0<p<1 and o+ > —1
1<g<2 :—dI<a<qg-1 0<B<qg—1 and a+3> -1

Note that the condition 3 > 0 will reflect the existence of a wake region in
the downstream direction z3 > 0 where the solution of the original nonlinear
problem (1.1) will decay slower than in the upstream direction x5 < 0.

2 Preliminaries

To prove Theorem 1.4 we need several properties of Muckenhoupt weights and
of maximal operators. Recall that J stands for the set of all nondegenerate
rectangles in R™ with edges parallel to the coordinate axes.

Proposition 2.1. (1) Let p be a nonnegative reqular Borel measure such
that the strong centered Hardy-Littlewood mazimal operator

1
Mgp(z) = sup I /R dp

ReJ,R>z
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1s finite for almost all x € R™; here R runs through the collection J of
rectangles containing additionally the point x, and |R| denotes the Lebesgue
measure of R. Then (Mgzu)Y € Ay(J) for all v € [0,1).

(2) For all 1 < g < T we have A1(J) C Ay(T) C A-(T).

(3) Let 1 < g < oo and w € Ay(T). Then there are wy,wy € A1 (J) such
that

Conversely, given wy,we € A1(T), the weight w = wlw;_q belongs to Ay (T).

For the proofs see [10, Chapter IV, §6]. The claim (3) is a variant of
Jones’ factorization theorem, see [10, Chapter IV, Theorem 6.8].

For a rapidly decreasing function u € S(R™) let

1

Ful(§) = a(§) = ()2

/ e " Su(z)dr, ¢ €R",
be the Fourier transform of u. Its inverse will be denoted by F~!. Moreover,
we define the centered Hardy-Littlewood maximal operator

1

Mu(z) = sup —/ lu(y)|dy, xe€R",
Q3 |Q’ Q

for u € L] _(R™) where Q runs through the set of all closed cubes centered

at x.

Theorem 2.2. Let 1 < g < oo and w € A,.

(i) The operator M, defined e.g. on S(R™), is a bounded operator from
Li to L.

(i1) Let m € C"(R"™\ {0}) satisfy the pointwise Hormander-Mikhlin mul-
tiplier condition

[l D m(E)| < o for all € € R™\ {0}

and all multiindices o € Nij with |a| < ny € N, where ny > n/2. Then the
multiplier operator u — F~'(ma), u € S(R™), can be extended to a bounded
linear operator from L1 to LY.

(iii) Let m be of class C™ in each “quadrant” of R™ and let a constant
B >0 exist such that ||m|l. < B,

ak
sup / m(x)
Th41seey Tn JT

_Z ) < B
0xy---0xp duy---dry <

7



for any dyadic interval T in R¥, 1 < k <n, and also for any permutation of
the variables 1, . ..,z within xq,...,x,. If 1 <p < oo and w € A,(R™, J),
then m defines a bounded multiplier operator from LP (R™) to LE (R™).

Proof. (i) See [10, Theorem IV 2.8], [18, Theorem 9]. (ii) See [10, Theorem
IV 3.9] or [17, Theorem 4]. Note that the pointwise condition on m implies
the integral condition in [10], [17]. For the proof of (iii) see [17]. n

Concerning one-sided weights and one-sided mazximal operators on the
real line, see Definition 1.2, we first recall the following duality property:
w € Al if and only if w /7 = w~ V"D € A Moreover we will need the
following results:

Theorem 2.3 (Theorem 1 of [23]). Let 1 <p < oo and p’ = 15.
(i) Let wy € AT, wy € A7. Then 2+ € Af. Conversely, given w € AFf

=
Wy

there exist wy € Af, wy € A} such that w = T

2
(i) The operator M is continuous from LE(R) to itself if and only if
w € Af. Analogously, M~ : Lt (R) — L% (R) if and only if w € A, .

Obviously, A, C A5 where A, denotes the usual Muckenhoupt class on
the real line. Hence [z]|*, (14 [z])* € AT if -1 <a<p—1,1<p < oo
However, in view of the anisotropic weight w = ng on R3, see (1.12), we have
to consider also one-dimensional anisotropic weight functions such as

Wap(x) = Wap(x;7) = (P +2)) (V2 + 22 —2)°, zeR,r>0. (21)

Lemma 2.4. (i) For every r > 0 the univariate weight W, g(x;r) lies in Ay
if and only if B >0, a < and o+ 3 > —1. Moreover, the Aj -constant of
W3 15 uniformly bounded in .

(ii) For every r > 0 the univariate weight
Wa,p(7) = wag(w;r) = (1+17 +2°) (1 + Vr? + 22 — 2)°
lies in A7 with an Ay -constant independent of r > 0 if and only if
a<0<pBanda+ 3> —1. (2.2)
(111) Let 1 < p < co. Then for every r > 0
Wa5(-;7) €AY for a> -1, <0, a+pf<p—1
Wap(-57) €A for a<p—1, >0, a+p>-1

Moreover, the Api-constant 1s uniformly bounded in r > 0.
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Proof. (i) A simple scaling argument shows that it suffices to look at the
weight W = w, g in (2.1) for r = 1 only and that the Aj-constant is inde-
pendent of » > 0. We will consider three cases.

Case 1: x> 0. Then w(x) ~ (1 + |x])*?, i.e., there exists a constant ¢ > 0
independent of 2 > 0 such that 1(1 + |z|)*? < @(z) < ¢(1+ |2])* 7 for all
x > 0. Hence for all h > 0

1 z+h 1 z+h
E/ w(t) dtwﬁ/ (1+t)*Pat.

If « — 3 > 0, then the term on the right hand-side is strictly increasing to
+00 as h — o0o. Thus we are led to the condition o < j3.
Now let a < 3. Then for all A > 0

1 z+h 1 x+h
E/ (144 dt < E/ (14 2)° B dt = (14 |2))°° ~ T(x).

Case 2: x < 0 and 0 < h < |z|. Then w(t) ~ (1+t|)*™P for all t € (x,z+h).
Assume that o + = —1 and let h = |z|. Then

0
1
| Jo ||

is not bounded by cw(z) = ¢/|z| uniformly in < 0 for any constant ¢ > 0.
Analogously, if a4+ < —1, then for h = |x| we see that ui' f;(1+|t\)°‘+5 dt ~
I?l\ is not bounded by cw(x) = ¢(1 + |z])**? uniformly in z < 0. Hence in
the following we have to assume that o + 3 > —1. We shall consider two
subcases: h > 0 small with respect to |z| and h comparable with |z|. If

0<h<‘92”—|,then

1 x+h 1 x+h
b [ el e = (L) ~ ().

For the second subcase assume that %‘ < h < |z|. Then we are led to the
integral

. |/ (1 + [t at

(L+a])o+8+1
<L Lasppia ~ I e
x| v 1, 2| < 1
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Case 3: © <0 and h > |x|. In this case we have to consider the sum

1 0 p 1 z+h p 1 0 p c x+h Bd
— w dt + — wdt < — wdt + — 14+ Pdt =1 I
h/xw +h/0 w _|x|xw +h/0 (1+1) 1+ I,

where the first integral I; is bounded by cw(x) uniformly in z < 0, see
Case 2, and where for |z| < 1 the second integral I5 is bounded by ¢ ~ w(z).
Therefore, let |z| > 1 in the following. If & — § < —1, then the condition
a+ B > —1 implies that § > 0; moreover, 5 is easily shown to be bounded
by cw(z) ~ (1 + |x])**? uniformly in x < 0 and h > |z|.

Now consider the case a— (3 > —1. We shall investigate three possibilities
of the position of h with respect to |z|. If h = 2|z|, then

1 | . c o
\7|/o (L4 07t = (4 Jal) 1 - 1),

Since ﬁ = o(|z|*™) = o(w(z)) by the condition that o + 8 > —1, the
assertion Iy < cw(z) ~ |2|*™P necessarily implies that |z|*# < ¢|z|*™P for
|z| > 1. Thus $ must be nonnegative.

Next, if |z| < h < 2|z, then, since « — f < a+ f and a + > —1,
||
I < ﬁ (1418 dt < cla|]ot? ~ @(z).
Tl Jo

Finally, if A > 2|z| > 2, then
B S o+ BT < o < el (o)

since a < 3 (see Case 1). Summarizing the previous cases and estimates we
have proved that there exists ¢ > 0 such that M Tw(x) < cw(x) for a.a. x € R,
and that this results holds if and only if 3 >0, a < (3, and a4+ > —1.

(ii) To verify the necessity of (2.2) let » = 1 and w = wyg. For z > 0
when (1 + /72 + 22 — )% ~ 1, we have to estimate

1 z+h 1 x+h
E/ ’U)(t)dtf\-/ﬁ/ (1+t>adt

by cw(z) ~ (1 + 2)* Asin Case 1 of Part (i) (with 5 = 0) we get the
necessary condition a < 0.
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Let z < 0. Again we shall distinguish according to the size of h with
respect to |z|. If 0 < h < |z|, than w(t) ~ (1 + |¢])**? for all t € (z,z + h),

and
1 z+h 1 x+h
E/ w(t)dt ~ E/ (14|t at

is bounded by cw(x) ~ (1+]z|)**? only when a+ 3 > —1; cf. Case 2 of Part
(i). Finally, when < 0 and h > |z|, say h = 2|z| > 2, and when a > —1,
then

1 z+h 1 0 1 z+h
E/ w(t) dt ~ E/ (1+ |t)* P dt + E/ (1+t)*dt < cw(x) + c|z]?,
T T 0

which is bounded by cw(z) ~ (1+ |z])**? only if 8 > 0. However, if « < —1,
then the condition o+ 3 > —1 implies that even 3 > 0. Hence the conditions
(2.2) are necessary to prove that w € A; .

We shall prove that conditions (2.2) are sufficient for w,g(x;r) € Ay
with an A7 -constant independent of r > 0. Let us assume that (2.2) holds
and let first 0 < r < 1. Then

w(t) ~ (14 [t)* { (1 +1|’t|)ﬁ, iig

—B/2 0
- appiz  J (LH[E)EE>0 0 s
(1 + |t|) { (1 4 |t|)ﬁ/2, t<0 Wa' 5 (t,?“)

where o/ = a+ (3/2, ' = (/2. Since the assumptions (2.2) on «, 3 imply
that o/, § satisfy the assumptions in (i), w € A] with an Aj-constant
independent of 0 < r < 1.

Next let » > 1. An elementary calculation shows that

Wap(t;r), t< r?
w(t) { Waolt;r), t>1?

Then we will consider three cases.

Case 1: x < r* and z + h < r?. In this case, by Part (i),

1 x+h 1 x+h
E/ w(t)dt ~ E/ Wa,g(t;7) dt < cWqg(x;7) ~ cw(z)

with ¢ > 0 independent of r» > 1.
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Case 2: © > 1% and © + h > r*. Now

1 x+h 1 z+h
E/ w(t) dt ~ E/ Wa,o(t; ) dt < cWyo(z;7) ~ cw(x)

due to Case I in Part (i).

Case 3: x < r? but x + h > r2. Then

2

1 x+h 1 T 1 xz+h
b e g [ Gastndes g [ Gt

2

By Part (i), the first integral on the right hand side is bounded by
2

T Wa,5(757) < Wa,p(x;7) < cw(w). Hence it suffices to prove that

1 z+h
E/ Wao(t; ) dt < cw(z).
r2

If |z| < r?, then Part (i) implies that

z+h 2
1/ W o(t; 1) dt < eth=r Wao(r%7) < Wao(r?;r) < cr’®
h )2 ’ h ’ ’
where 72* < (r + |z])* < cw(z) since a < 0 < .

If < —r?% then w(z) ~ |z|**?, and a simple scaling argument and the
condition 8 > 0 allow to reduce the problem to the case r = 1. Actually it
suffices to show the existence of ¢ > 0 such that

xz+h
J = / t*dt < ch|x!a+6 when < -1, x+h>1.
1

If @ < —1, then J is bounded by m < clx|*tPHL < chlx|*tB | since a+ 3 >
—1 and h > |z| > 1. In the case a = —1 the integral J equals

log(z 4+ h) ~ logh + % <c(l+ hmm(ﬁ’l)) < ch|z|?71,

since 8 > —1—a = 0. Finally, for « > —1, we may bound J by ¢(x+h)**!. If
1 < |z| < h < 2|z|, this term is bounded by c|z| < ch|z|* < ch|z|**P. In the
remaining case when h > 2|z|, we get that (x + h)*T! < ch®*! < ch|z|*+?,
since o < 0 < (.

Now (ii) is completely proved.
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(iii) By Theorem 2.3 (i) and Part (ii) of this Lemma
(1 +T2 +x2)a1/2
(1472 4 22)e2(®=1/2(1 + /72 + 22 — g)P2(p—1)

for all aq, s, B satisfying —1 < a3 < 0, s <0 < Gy and ag + [P > —1.
Hence, with @ = a3 —as(p—1), B = —Fa(p—1), we get that w = wag(-;7) €
A for all a, 3 satisfying a > —1, 3 <0, and a + 3 < p — 1. By analogy,

(L+ 72+ 22214+ V2422 — z)” A
(1 + r2 +x2)ag(p71)/2 < p

w(x) = € Af

w(z) =

for all aq, ag, By satistying oy <0< 6y, ag + 1 > —1, —1 < ap < 0. Hence
w = wap(-;7) € A for all o, B such that 3 >0, a <p—Tland a+ 3> —1.
Moreover, in both cases the A;t—constant of the weight is uniformly bounded
inr > 0. [

Note that the univariate weights w, s and w, s mainly differ for large

x > 0. While wy g decays as (%)ﬁ as ¢ — oo for every fixed r > 0, the

weight wg g is bounded below by 1 as  — o0o. The reason to consider the
weights w, s rather than w, s is based on the use of the anisotropic weights
ng on R3, see Corollary 1.5, when fixing r = |(x1,13)|, 71,72 € R, so that
n5(x1, T2, ¥3) = Wa,p(T3;7).

Due to the geometry of the problem we introduce cylindrical coordinates
(r,z3,0) € (0,00) x R x [0,27) and write u(xy,z2,23) = u(r,x3,6). Then
the term (e3 A ) - Vu = —x901u + x105u may be rewritten in the form
(es A x) - Vu = Opu using the angular derivative dy applied to u(r,xs,8).
Working first of all formally or in the space S'(R?) of tempered distributions
we apply the Fourier transform F = = to (1.5). With the Fourier variable
£=(&,8,8) € R? and s = |¢| we get from (1.5)

(vs? + ik&s) i — D(0,0 — es ANT) +i€p = f, i&-1=0. (2.4)

Here (e3 A &) - Ve = —£,0/0& + £,0/0¢, = 0, is the angular derivative in
Fourier space when using cylindrical coordinates (s, &3, ¢, ) € Ry xR x [0, 27).
Since £ - u = 0 implies € - ((%i[ —w X ﬂ) = 0, the unknown pressure p is
given by —|¢|2p = i€ - [, i.e.,

€ - Nf

Vp(e) =it p= T
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Then the Hormander-Mikhlin multiplier theorem on weighted L?-spaces
(Theorem 2.2 (ii)) yields for every weight w € A,(R? C) the estimate

IVPllgw < el fllguw (2.5)

where ¢ = ¢(q, w) > 0; in particular Vp € L4.
Hence u may be considered as a (solenoidal) solution of the reduced prob-
lem

—vAU+ kOsu — D(0pu —es Au) = F := f —Vp in R (2.6)
or—in Fourier space—
(vs® 4 ikés)i — D(8,1 — es ANT) = F.

As shown in [Fa2| this inhomogeneous linear differential equation of first
order with respect to ¢ has the unique 2m-periodic solution

N 1 2w [w - N
U(f) — 7 /0 e (€] +2k£3)t03;(t)./fF(Ow(t)f) dt,

G Y ERET
1—e ’ (2.7)

-/ " EOT (1) (FF(0,(t) - —Ktes))(€) di.

0

Finally note that e “1¢* is the Fourier transform of the heat kernel E,(x) =
(dmwt)=3/2e~ 1o/ vielding

u(z) = / B, OL(t)F(Ou(t) - —ktes)(x) dt. (2.8)
0
Since F' = f — Vp is solenoidal, the identity £ - F=0 easily implies that
also u is solenoidal.
The main ingredients of the proof of Theorem 1.4 are a weighted version
of Littlewood-Paley theory and a decomposition of the integral operator

T1w) = [ Dul€)OLOF FOLD) - ~kten))

. (2.9)
= /0 ¢t(§)Of/y(t).7-—f (Ow/y(t) . —ét%) () %a

where

06 = okl wd G0 =G, t>0. @0)
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are the Fourier transforms of the function ¢y = —AF; € S(R?) and of ¢;(z) =
t=3/24)(2/\/t), t > 0, resp. Note that due to Theorem 1.4 it suffices to find an
estimate of ||Aul|4. in order to estimate all second order derivatives 0;0,u
of w.

To decompose 1/% choose ¥ € Cf° ( , ) satisfying 0 < x¥ < 1 and
Z]:_Oo X(279s) =1 forall s > 0. Then define x;, j € Z, by its Fourier
transform 4

X&) =x(277[¢]), £ eRY,
yielding > 72 X; =1 on R™\ {0} and
supp\; C A2 127 = {¢ e R®: 2771 < ¢ < 27} (2.11)
Using x;, we define for j € Z

. 1 ~ o~
WZWXJ‘“/J (¢=Xj'1/1)- (2.12)

Obviously, Z;‘;foo Y/ =) on R3. Finally, in view of (2.9), (2.12), we define
the linear operators

0= [ RAOOLOF SO0 - ke OF

k

(2.13)
/ 1/% Ow/y ]:f( w/v(t) - —;t€3>(§)—

Since formally T = Z;}i_ooTj, we have to prove that this infinite series
converges even in the operator norm on LY.

For later use we cite the following lemma, see [6].

Lemma 2.5. The functions 17, ¢f, J E€Z, t >0, have the following proper-
ties:
j—1 Jj+1
(i) suppf © A (27, 2).
(it) For m > 2 let h(z) = (1 + |z|*)™ and hy(z) = t’3/2h(%), t > 0.
Then there exists a constant ¢ > 0 independent of j € Z such that

17 ()] < 272 hyoos(z), = € R,

. | 2.14
17y < c272V0. 240
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To introduce a weighted Littlewood-Paley decomposition of L choose
¢ € Cg°(3,2) such that 0 < ¢ < 1 and [;°@(s)*% = 1. Then define
¢ € S(R?) by its Fourier transform $(£) = ¢(|€|) yielding for every s > 0

~ ~ - 1 2
7:(6) = BWSIE). supp s C AL 5) (2.15)
and the normalization [° 3,(£)? % =1 for all £ € R™\ {0}.

Theorem 2.6. Let 1 < ¢ < 0o and w € A (R3). Then there are constants
c1, ¢ > 0 depending on q,w and ¢ such that for all f € LY

o o ds 1/2
llflawe < | ([Tlear tOPL) ] S aalfli 210)
0 .
where o5 € S(R™) is defined by (2.15).
Proof. See [22, Proposition 1.9, Theorem 1.10], and also [17], [24]. n

3 Proofs

As a preliminary version of Theorem 1.4 we prove the following proposition.
The extension to more general weights based on complex interpolation of
L1 -spaces will be postponed to the end of Section 3.

Proposition 3.1. Let the weight w € L _(R3) be independent of the angle 0

loc
and define w,(x3) = w(x1, X2, x3) for fited r = |(x1,22)| > 0. Assume that

w e A;/Q if q¢> 2,
we A or LeAf if ¢=2 (3.1)
w -9 ¢ Ao if 1<q<2.

Then the linear operator T defined by (2.9) satisfies the estimate

1T fllgw < el fllgu  for ol f e L, (3.2)

with a constant ¢ = ¢(q, w) > 0 independent of f.
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Proof. Step 1. First we consider the case ¢ > 2, w € Aq 1o C A,, and define
the sublinear operator M/, a modified maximal operator, by

Migta) =sup [ (] 1a) (0L 02+ Sre) T (53)
where A, = [15,16s]. Then we will prove the preliminary estimate
I Fllaws < 2 V2 AMO 2 o s, 5 € 2 (3.4
where v denotes the #-independent weight
v = wf(%)l/@) — w2 € ZZZ/Q = AJ (¢-2)" (3.5)

To prove (3.4) we use the Littlewood-Paley decomposition of LI, see
(2.16), applied to T; f. By a duality argument we find some function 0 < g €

LW — (ng/z))* with [|g|l(g/2y,» = 1 such that

— OO « ‘ 5 @
q/lw—/o /RS oo+ Tif (2)Pg(x) dz — . (3.6)

To estimate the right-hand side of (3.6) note that

> d
| lermrors
0

k dt
ws * Tjf(z / 02, (t) Ws*iﬁt*f)( w/u()x_;te3>77
where @, * ¢/ = 0 unless t € A(s, j) := [2%~%s, 225, Since fteA(S P & —

log 28 for every j € Z, s > 0, we get by the inequality of Cauchy-Schwarz
and the associativity of convolutions that

2
oun TR < [ (W= o ) (Oupttre = res)| §
; k d
<elflh [ (w1l 5F) (Ot = Jtes) T

here we used the estimate |(¢ * (¢, * f))(W)* < |97 1 (1¢7] * s * [I) ()
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and the identity [[v7 ], = 1471, see (2.14). Thus
7,11
<l [ f [ et st (0untin = ) o) nE S
<l [ f [ et s o000 + res) as T

k dtd
< c|lv]lx /]RS/O los * f]? () /A( ' (]wt\ *g)( w/y(t)g;- + ;t63> 7_de
| (3.7)

since wz is radially symmetric. By definition of M7 the innermost integral
is bounded by M/g(x) uniformly in s > 0. Hence we may proceed in (3.7)
using Holder’s inequality as follows:

) o ds .
1351 < el [ ([ lore 520 %) Mgt da

. ds .
< c[[¢’]h /0 s f1*(x) — Mgl a2y -

S llg/2w

(3.8)

Now (2.16) and the normalization ||g|| /2y, = 1 complete the proof of (3.4).

Step 2. We estimate ||M?g||(4/2) - For functions v depending on 6, 23 only
let My, denote the “helical” maximal operator

1 k
Myav(0, z3) = sup — / 1| (9 — —t ,Tg+ —t) dt,

s>0 S

where A, = [16, 163} Then, writing p := (%),, we claim that
Mig(z) < 27 M(Myag)(z)  for a.a. z € R", (3.9)
M gllpw < 02_2“'”9“27,1)» (3.10)

where in (3.9) Mg is considered as Myag(r, -, ) for almost all r > 0.
To prove (3.9) we use the pointwise estimate |7 (x)] < 272lhyy 2 (2),
see Lemma 2.5 (ii). Hence

s>0

) . k dt
Migla) < 2 2sup [ (hyeo <o) (02 0 + Stes) .
As 1% t

18



Moreover, there exists a constant ¢ > 0 independent of s > 0, j € Z, such
that hp-25 < chgy-2; for all t € A,. Consequently,

‘ : k dt
Mig(z) < 27 sup hyp-os / |g|< Cu/,j( Jr + —te;;) n
v

s>0

< 27 sup hy ¥ Myag(x).
>0
Since h is nonnegative, radially decreasing, and |||y = ||h|l1 = ¢o > 0 for
all t > 0, a well-known convolution estimate, see [25], II §2.1, yields the
pointwise estimate (3.9).

Step 3. Note that up to now we have not yet used any specific properties of
the weight v € A,,. To estimate My g we shall work with a suitable one-sided
maximal operator since our weight belongs to a Muckenhoupt class in R? but
a problem occurs when the weight is considered with respect to x3 only. This
naturally corresponds to the physical circumstances of the problem, where
in the Oseen case the wake should appear. To estimate Myqg we write
gr-(0,23) = g(r,0,23) = g(z) and v,.(x3) = v(x), r = |(x1,22)| > 0, for the
f-independent weight v. Then by the 2m-periodicity of g, and v, with respect
to 8 we get for almost all » > 0

// Muagr (0, x3) v, (23) dO dz;
o 16s L L
// sslilgs/ |gr|<0—%<x3+;t),x3+;t> dt
27 16s l{? V4
/ / sup — / Yr,6 (xg + —t) dt
s>0 S 1%

df v, (z3) dxs
21
~ 16 / / Mg s) P (3) dizy dB
0 R

where v,9(y3) = [9,/(0 — $ys,ys) and M™ denotes the one-sided maximal
operator, see Definition 1.2. Since w, € A_,, by (3.5) and Theorem 2.3 (i)

p

ve(23) dO dxs

v, = w9 2'/(a/?) ¢ A w2y = = Af with an At-constant uniformly bounded in
r > 0. Then Theorem 2.3 (ii) yields the estimate

2m
/ Muagr (0, 23) v, (23) dO da
R JO

2
< c/ /R |r0(x3)[Pu,(23) das df = C”ngIz/p(RX(O,QW),UT(:ES))7
0
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where ¢ > 0 is independent of k, v. Integrating with respect to rdr, r €
(0, 00), Fubini’s theorem allows to consider an extension of My, to a bounded
operator from L?(R3) to itself with an operator norm bounded uniformly in
k, v. Moreover, M : LP(R®) — LP(R?®) is bounded by Theorem 2.3 (ii).
Hence, (3.9) implies (3.10), and by (3.4) as well as Lemma 2.5 (ii) we get the
estimate

1T fllgw < €277 fll0

for all f € L4 (R?) with a constant ¢ > 0 independent of j € Z. Summarizing
the previous inequalities we proved (3.2) for ¢ > 2.

Step 4. Now let ¢ =2, w € g;. In this case the Littlewood-Paley decompo-
sition of T} f in L2 implies that

rTfuzwgc/ / (o0 * T () o) dr

where ]
ge LY, v=— and |[g|lcco = esssupgs|gv| = 1.
w
By the same reasoning as before we arrive at (3.4), i.e
1T f 2 < 279 MGl |1 f 12 (3.11)
and at (3.9). Concerning My, we use the pointwise estimate g.(6,z3) <

w,(z3) for a.a. 6§ € (0,27), x3 € R, and get that

1 16s k’
Myag-(0,23) < sup —/ Wy (xg + —t) dt <16 Mtw,(x3) < cw,(x3)
s>0 S Jo v

with a constant ¢ > 0 independent of 7 > 0. Since w is an A;(R3)-weight,
(3.9) implies that

Mig(x) < 27 Muw(x) < 27 hw(z)

and consequently that | M7 g||s., < 272! with a constant ¢ > 0 independent
of j € Z. Hence || T} fll2. < c272 proving (3.2) when ¢ = 2.

Step 5. The remaining estimates are proved by duality arguments. Obviously
the dual operator to T' is defined by

T f(z) = /Ooo(—A)Ow(t)Et « (O (t)x + ktes) dt,
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which has the same structure as K, but with an ”opposite orientation”.
Hence 7™ is bounded on LI for ¢ > 2 and all weights w € Af Now

q/2”
let 1 < g < 2 and w9 ¢ A o) = A_q (@/2) Then by simple duality
arguments w' = w=1/? € A(q,/z) and

(T 9 = 1T < M llgwl Tl wr <

Finally let ¢ = 2 and 1 € A}. As before,

KT, )| < N fll2wll T gll2,1/w <

Now Proposition 3.1 is completely proved. [ ]

Lemma 3.2 ([1]). Let 1 < py,ps < 00, let 0 < wy,wy be weight functions,
d€(0,1), and

1 1—-6 0 1 1=5 5
R + —, wr = wy P2
p Y4 P2

Then
18123, = L2

w1i?

in the sense of complex interpolation.

In the following we shall derive an anisotropic variant of Jones’s factoriza-
tion theorem tailored to our situation, when we need to work with one-sided
Muckenhoupt weights with respect to x3, satisfying the usual Muckenhoupt
condition in three dimensions.

Lemma 3.3 (Anlsotroplc Version of Jones’ Factorization Theorem)

Suppose that w € A Then there exist weights w, € A1 and wy € A1 such

that
w1

Here gl:f is defined by analogy with gf, cf. Definition 1.2, by assuming for
wy € Af that (wy), € A with Af -constant uniformly bounded in r > 0. An
analogous result holds for w & A;F.

Proof. Let ¢ > 2. Given w € Eq— we consider the operator 7' defined by

Tf = (w IMF 0 ) M fro )
. (w—l/qu"‘(fg/q/wi/q))q//q + 'lUl/qu_(fer_l/q)
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where r = |(z1,72)|. Then for all f € LI(R?)

||Tf||g§c{/ w9 (M 9)) dx+/ w(M(fw™ )" dz
RB

R3

+/ (/qu//q(Mfr(fg/q/w;/q))QI dﬂ?:s) d(z1, z2)
R2 \JR

o [ ([ ) de

< A 11

with a constant A = A(q,w) > 0.
Let us fix a nonnegative -independent function f € L¢(R3) with || f||, = 1

and define .

)= STy

k=1
where T*(f) = T(T*'(f)). Obviously Tf and therefore also 7 are 6-
independent. Moreover, n € L4(R3) and ||n|l, < Y72, 27%F = 1. In par-
ticular, n(z) < oo for a.a. x € R3 n,(-) € LY(R) for a.a. (z1,72) € R? and
n-(x3) < oo for a.a. x3 € R. Since T is subadditive and positivity-preserving,
we get the pointwise inequality

<Y QRA)TFTH(F) = (24)TFTH(f) < (24)n.
k=1 k=2

Now let w; 1= w'/1?/? and w, := w9y such that w = wy /w? . Then

M(w;) < wl/q(Tn)q/q’ < wl/q77 (2A) (QA)q/q’w1
M ()((wr),) < wU(T)W T < w7 (24)00 = (24)7 (wy),
M(wy) <w YT (n) < w Vin2A = 2Aw,
My ((wa),) < w ™17 () < w V124 = 2A(ws),

proving that wy € Ay, wy € A}
The case 1 < g < 2 follows by a simple duality argument, since w € A
is equivalent to w=7/7 € Al n
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Proof of Theorem 1.4 (i). Let ¢ € (1,00) and w € A, such that the LI-
estimate of Vp holds, see (2.5). Hence it suffices to consider u defined by
(2.7)—(2.8). We consider arbitrary ¢, ¢ € (1,00) and ¢ € (0, 1) with

1:1_5+£, (3.12)

I<qi<g<@p<oo, ¢<2<¢qg and -
q q1 q2

2
2—q(1-9)

exist weights u € Ay, v € A} such that

and assume that w™ € g;q/Q with 7 = € [1,00). By Lemma 3.3 there

- U U
w = -1 —4___q°
vTa/2— vZ-a1—9)

Then we define the weights wy, ws by

2/(2-q) _ U __u
w; = =g and wy=-—=
v 2—qq (O
yielding
wy/ G e 4~ wy € A
1 a/@2-q) 2 02/2
a(1=8)/q;  498/a2
Since, due to an elementary calculation, w =w, =~ 1w,  Lemma 3.3 and

Proposition 3.1 prove that 7" is bounded on L% (R3). Since uy € A7, v, € A}
are arbitrary, we proved the boundedness of 7" on L for arbitrary w if

~_ 2

w e ATq/Z’ T = m € [1,00)

Now we have to find all admissible 7 subject to the restrictions given by
(3.12). For this reason consider the easier term

s:2<1—%):q(1—5):q

First Case 1 < ¢ < 2, in which 1 < ¢; < ¢ and ¢ > 2. Due to monotonicity
properties of s as a function of qu and of qiz it suffices to check s at the corners

S =

1
q
1

1

S |-

q

of the rectangle (%, 1) x (0, 3]. The corresponding function values are ¢, 1 and
2 — g. Hence the range of s equals the interval (2 — ¢, q) yielding for 7 = ﬁ
the condition

2 e 2

- < T < —.

q 2—q
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Note that the limiting value 7 = ﬁ is allowed due to Proposition 3.1.
Finally the condition w”™ € Z;q /2 % <7< Q—Eq, easily implies that w € A,:

By Lemma 3.3 there exist u; € A7, v; € Al such that

, (3.13)

1~ 41y /(g ~
where uf € Af and £ — 1 < ¢ —1 yielding v§2 DI ¢ AT

Second Case ¢ > 2, in which 1 < ¢; < 2 and ¢ > ¢. In this case the values

of s at the corners of the rectangle [%, 1) x (0,2) in the (i, L)-plane are 0,1
q q1 -’ q2

and 2. Hence
1 <7< o0,

and we observe that 7 = 1 is admissible due to Proposition 3.1. Finally
note that the condition w™ € Ay, implies also w € A;: There exist u; €

AT, v € Af such that w satisfies (3.13), where again 4 — 1 +1 < ¢ for all
T € (1,00).

Third Case ¢ = 2. In this case it suffices to interpolate between Lfvl and
L2, where wy € A7 and w% € A, see Proposition 3.1. Then T is bounded

on L2 for all
w10
w=—"+—,0<<1.
w

2
Then w'/(=9 = w; /w) "™ or with 7 = = € (1,00),

w1

= 7—1
2

T

w eﬁ;:g—

Tq/2"

(ii) Note that L% (R") C S'(R™), i = 1,2; indeed, w; € Ly (R") and
f|x|21wi(:v)|x\’"qi dxr < oo, see [10, IV.3 (3.2)]. Since the equation (1.5) is
linear, it suffices to consider f = 0 and a solution u € S'(R™)" of (1.8). In the
proof of [6], Theorem 1.1 (2), (3), it was shown that under these assumptions
u is a polynomial and that u(x) = aw+BwAx+7y(x1, 2, —223)T, o, 8,7 € R

(u(z) = B(—x2,21) if n =2). n
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Proof of Corollary 1.5. Considering a prior: estimates for # we use the

representation (2.7) of u. In order to analyze the dependence of the following
estimates on the parameters k, v and @ let

= k)0, V' =v/o and D(£) =1— e ZWEPHKE)
Then for f € S(R?)3 we get the identity
ik'E3
D(¢)

where F' = f — Vp, see (2.6). Choose a cut-off function n € C§°(B;(0)) with
n(§) =1 for £ € By/3(0) and define the multiplier functions

ik’ €31, () K1 —=nu(§)
D) NG

where 7,/(£) = n(\/V'€), as well as
po:(§) = ei(ylmzﬂk/gg)ta pe(§) = iffg\/pef(ylmz“k/&)t, t € (0,2m).

Then we get

—_— 2 ’ 2 1./ A~
kOsu(€) = / e VIEFHRE O (1) F(O,, (1)) dt, (3.14)
0

mo(§) = mi(§) =

kDsu(€) = mo(€)To(€) + m ()1 (),

where Iy(z), I, (x) are defined by their Fourier transforms

~

() = / " 0a(€) OF. (1) F(O, (1)) (€) dt,

~

HO = [ md© 0L FOL0 O dt
Concerning the multiplier function py,; we note that e.g.

‘53%“—;;‘ = |(—2V/t§32, - ikltfs)e_(yllglzﬁk/&)t|
C(WHE? + SoViTlgl) e e
< O(1+25)

with a constant C' > 0 independent of £ # 0, t € (0,27), k' > 0 and v/ > 0.
Then it is easily seen that fi9, p1 satisfy the pointwise multiplier estimates

IN

sup - max sup (|€* Do ()| + VEHE DEm(€)]) < C

k
(on<cli+ )
te(0,2r) ¢ €#£0 ( \/V|W|
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uniformly in & > 0 and v/ > 0, where o € N3 runs through the set of all
multi-indices o € {0,1}3. Hence Theorem 2.2 (iii) and (2.5) show that

ollgr < (14 ﬁ) | IF Ot < 1+ m)Hquw,

k ] k
10l < o1+ W> / S IFOes(t) g < 1+ W)Hqu,w,

where ¢ > 0 is independent of k£, w and v. Moreover, a lengthy, but elementary
calculation proves that mg, m; satisfy the pointwise estimates

4

k
max max Sup|§o‘D§m]( )| < C<1 + )
] 0,1 (07 g | |2

with ¢ > 0 independent of v, w, k; for details see [3]. Now another application
of Theorem 2.2 (iii) yields the estimate

k‘5
10l < ¢ (14 )

for f € S(R?)3, with a constant ¢ > 0 independent of f,k,v and w. Since
S(R?) is dense in L% (R3), this result extends to all f € L4; for its proof
we refer to [3]. However, note that we did not estimate F(O,(t) - — ktes)€)
in LI(£2) as in [3]; instead we have to deal with F(O,,(t)-), and the shift
operator is estimated with the help of multipliers.

Now Corollary 1.5 is completely proved. [ ]

Proof of Corollary 1.6. We have to check for which «, § the weight w(z) =
ng(z) = (1+|x])*(1 + s(z))? satisfies the conditions needed in Theorem 1.4.
From [2] and [16, Theorem 5.2] we know that w = 7§ € A4,, 1 < p < o0, if
and only if -1 < f <p—1and =3 < a+ 3 < 3(p—1); moreover, by Lemma
2.4 (iii) we have to satisfy the conditions « <p—1, >0, a+ (> —1 to
get that w,(-) € A .
Let ¢ > 2. Then in view of (1.8) and (2.3) we have to analyze the convex
set
C = {(af);a<i-L 3>0,a+8>-1 —L1<p<i-1

e
—3<a+pB<¥—3 forsomer € [l00)}
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Obv1ously the conditions 3 > —% and —2 < a4+ < 34 — % are redundant

since 1 — ; is positive; moreover, the condltlons a+pf3 > —% and 3 < € — 1

yield a > —1. We will see that ’

C = { ;——<oc<§ 0<6<—a+6>—1}
Indeed, it suffices to consider pairs (o, 5) with a < 0. If moreover o+ 3 < 0,
we find 79 > 1 such that a + § = —Tl—o. Then [ = —Tio—a < —%O—i-% and
a<0<i-— %; consequently (o, 3) € C. If a+ ( > 0, we may choose T
suﬁﬁmently large to show that («, 3) € C.

Now consider the case 1 < ¢ < 2. As in the previous case we have to
analyze the set C where now 7 runs in the interval (q, 5 q] Smce T > 5 the
same conditions as before are redundant; moreover, & > —2%. Then we will

show show that

C = {(e, ——<a<q—1 0<pf<q—1, Oz+ﬂ>——}

Indeed, if e.g. @ <0 and a+ 3 < € —1 <0, then there exists 75 € (— Tq}

suchthatoz—l—ﬂ——— ﬁ——%—a<—g—|— andoz<0<——% however,

when o + 3 > 4 — 1, we may choose 7 = Q%q to see that («, ) € C.
[
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