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Abstract

We study time-periodic Oseen flows past a rotating body in R3 proving
weighted a priori estimates in Lq-spaces using Muckenhoupt weights.
After a time-dependent change of coordinates the problem is reduced
to a stationary Oseen equation with the additional terms (ω×x) · ∇u
and −ω∧u in the equation of momentum where ω denotes the angular
velocity. Due to the asymmetry of Oseen flow and to describe its
wake we use anisotropic Muckenhoupt weights, a weighted theory of
Littlewood-Paley decomposition and of maximal operators as well as
one-sided univariate weights, one-sided maximal operators and a new
version of Jones’ factorization theorem.
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1 Introduction

We consider a three-dimensional rigid body K ⊂⊂ R3 rotating with angular
velocity ω = ω̃(0, 0, 1)T , ω̃ 6= 0, and assume that the complement R3 \ K
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is filled with a viscous incompressible fluid modelled by the Navier-Stokes
equations. Then we will analyze the viscous flow either past the rotating
body K with velocity u∞ = ke3 6= 0 at infinity or around a rotating body K
which is moving in the direction of its axis of rotation. Given the coefficient
of viscosity ν > 0 and an external force f̃ = f̃(y, t), we are looking for the
velocity v = v(y, t) and the pressure q = q(y, t) solving the nonlinear system

vt − ν∆v + v · ∇v +∇q = f̃ in Ω(t), t > 0

div v = 0 in Ω(t), t > 0

v(y, t) = ω ∧ y on ∂Ω(t), t > 0

v(y, t) → u∞ 6= 0 as |y| → ∞.

(1.1)

Here the time-dependent exterior domain Ω(t) is given - due to the rotation
with angular velocity ω - by

Ω(t) = Oω(t)Ω

where Ω ⊂ R3 is a fixed exterior domain and Oω(t) denotes the orthogonal
matrix

Oω(t) =

cos ω̃t − sin ω̃t 0
sin ω̃t cos ω̃t 0

0 0 1

 . (1.2)

Introducing the change of variables and the new functions

x = Oω(t)Ty and u(x, t) = OT
ω(t)(v(y, t)− u∞), p(x, t) = q(y, t), (1.3)

respectively, as well as the force term f(x, t) = O(t)T f̃(y, t) we arrive at the
modified Navier-Stokes system

ut − ν∆u+ u · ∇u+ k∂3u

−(ω ∧ x) · ∇u+ ω ∧ u+∇p = f in Ω× (0,∞)

div u = 0 in Ω× (0,∞)

u(x, t) → 0 as |x| → ∞

(1.4)

with boundary condition u(x, t) = ω ∧ x − u∞ on ∂Ω in the exterior time-
independent domain Ω.

Due to the new coordinate system attached to the rotating body the
nonlinear system (1.4) contains two new linear terms, the classical Coriolis
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force term ω ∧ u (up to a multiplicative constant) and the term (ω ∧ x) · ∇u
which is not subordinate to the Laplacian in unbounded domains. Linearizing
(1.4) in u at u ≡ 0 and considering only the stationary problem we arrive at
the modified Oseen system

−ν∆u+ k∂3u− (ω ∧ x) · ∇u+ ω ∧ u+∇p = f in Ω

div u = 0 in Ω

u → 0 at ∞
(1.5)

together with the boundary condition u(x, t) = ω∧x−u∞ on ∂Ω. Note that
there is no boundary condition in the case Ω = R3.

The linear system (1.5) has been analyzed in classical Lq-spaces, 1 < q <
∞, for the whole space case in [3], [4] proving the a priori -estimate

‖ν∇2u‖q + ‖∇p‖q ≤ c‖f‖q,

‖k∂3u‖q + ‖(ω ∧ x) · ∇u+ ω ∧ u‖q ≤ c(1 + k4

ν2|ω|2 )‖f‖q

(1.6)

with a constant c > 0 independent of ν, k and ω. For a discussion of weak
solutions we refer to [14], [15]; the spectrum of the linear operator defined by
(1.5) is considered in [8]. The corresponding case when u∞ = 0 has recently
been analyzed in [5]–[7], [11], [12], [19]–[21]. For a more comprehensive intro-
duction including physical considerations and non-Newtonian fluids we refer
to [9].

The aim of this paper is to generalize the a priori -estimate (1.6) to
weighted Lq-spaces for the whole space R3. For this reason we introduce
the weighted Lebesgue space

Lq
w(R3) = Lq

w =
{
u ∈ L1

loc(R3) : ‖u‖q,w =
( ∫

Rn

|u(x)|qw(x) dx
)1/q

<∞
}
,

where w ∈ L1
loc is a nonnegative weight function and should reflect the

anisotropy of the flow and the existence of a wake region in the downstream
direction x3 > 0. Our tools will include Littlewood-Paley theory, singular
integral operators, multiplier operators and maximal operators in weighted
spaces so that we need weight functions satisfying Muckenhoupt type condi-
tions. For a totally different approach using variational methods see [13].

Definition 1.1. Let R be a collection of bounded sets R in Rn, each of
positive Lebesgue measure |R|. A weight function 0 ≤ w ∈ L1

loc belongs to
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the Muckenhoupt class Aq(R) = Aq(Rn,R), 1 ≤ q < ∞, if there exists a
constant C > 0 such that

sup
R

(
1

|R|

∫
R

w(x) dx

)(
1

|R|

∫
R

w−1/(q−1) dx

)q−1

≤ C for any R ∈ R

if 1 < q <∞, and

sup
R∈R, R3x0

1

|R|

∫
R

w(x) dx ≤ Cw(x0) for a.a. x0 ∈ Rn,

if q = 1, respectively.

Due to the anisotropic nature of our problem we shall need a variant of
the classical Muckenhoupt class Aq(C) = Aq(R3, C), where C is the set of
all cubes Q ⊂ R3 with edges parallel to the coordinate axes. Namely, C is
replaced by J , the set of all bounded intervals (rectangles) in R3, leading to
the class Aq(J ) = Aq(R3,J ). Obviously, Aq(R3,J ) ( Aq(R3, C).

Moreover, to describe the anisotropy of the wake region more precisely
by weights we have to introduce in addition to the weights on Rn one-sided
Muckenhoupt weights and one-sided maximal operators on the real line, see
Definition 1.2, Theorem 2.3 and Lemma 2.4 below.

Definition 1.2. (i) For every locally integrable function u on the real line
let M+u be defined by

M+u(x) = sup
h>0

1

h

∫ x+h

x

|u(t)| dt.

Analogously,

M−u(x) = sup
h>0

1

h

∫ x

x−h

|u(t)| dt.

(ii) A weight function 0 ≤ w ∈ L1
loc(R) lies in the weight class A−1 if there

exists a constant c > 0 such that M+w(x) ≤ cw(x) for almost all x ∈ R.
Analogously, w ∈ A+

1 if and only if M−w(x) ≤ cw(x) for almost all x ∈ R.
The smallest constant c ≥ 0 satisfying M±w(x) ≤ cw(x) for almost all x ∈ R
is called the A∓1 -constant of w.

(iii) A weight function 0 ≤ w ∈ L1
loc belongs to the one-sided Muckenhoupt

class A+
q , 1 < q <∞, if there exists a constant C > 0 such that for all x ∈ R

sup
h>0

(
1

h

∫ x

x−h

w(t) dt

)(
1

h

∫ x+h

x

w(t)−1/(q−1) dt

)q−1

≤ C.
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The smallest constant C ≥ 0 satisfying this estimate is called the A+
q -constant

of w. By analogy, we define the set of weights A−q and the A−q -constant of a
weight in A−q .

Now we are in a position to describe the most general weights considered
in this paper. Note that these weights are independent of the angular vari-
able θ in the cylindrical coordinate system (r, θ, x3) ∈ [0,∞) × [0, 2π] × R
attached to the axis of revolution e3 = (0, 0, 1)T . Hence we will write
w(x) = w(x1, x2, x3) = wr(x3) for r = |(x1, x2)|, x = (x1, x2, x3).

Definition 1.3. For 1 ≤ q <∞ let

Ã−q = Ã−q (R3) = {w ∈ Aq(R3) : w is θ − independent for a.a. r > 0,

w(x1, x2, ·) = wr(·) ∈ A−q (R)

with A−q (R)-constant essentially bounded in r}.
(1.7)

Theorem 1.4. Let the weight function 0 ≤ w ∈ L1
loc(R3) be independent

of the angular variable θ and satisfy the following condition depending on
q ∈ (1,∞):

2 ≤ q <∞ : wτ ∈ Ã−τq/2 for some τ ∈ [1,∞)

1 < q < 2 : wτ ∈ Ã−τq/2 for some τ ∈
(

2
q
, 2

2−q

]
.

(1.8)

(i) Given f ∈ Lq
w(R3)3 there exists a solution (u, p) ∈ L1

loc(R3)3×L1
loc(R3)

of (1.5) satisfying the estimate

‖ν∇2u‖q,w + ‖∇p‖q,w ≤ c‖f‖q,w, (1.9)

with a constant c = c(q, w) > 0 independent of ν, k and ω.
(ii) Let f ∈ Lq1

w1
(R3)3∩Lq2

w2
(R3)3 such that both (q1, w1) and (q2, w2) satisfy

the conditions (1.8), and let u1, u2 ∈ L1
loc(R3)3 together with corresponding

pressure functions p1, p2 ∈ L1
loc(R3) be solutions of (1.5) satisfying (1.9) for

(q1, w1) and (q2, w2), respectively. Then there are α, β ∈ R such that u1

coincides with u2 up to an affine linear field αe3 + βω ∧ x, α, β ∈ R.

Corollary 1.5. Let the weight function 0 ≤ w ∈ L1
loc(R3) be independent

of the angular variable θ. Moreover, let w satisfy the following condition
depending on q ∈ (1,∞):

2 ≤ q <∞ : wτ ∈ Ã−τq/2(J ) for some τ ∈ [1,∞)

1 < q < 2 : wτ ∈ Ã−τq/2(J ) for some τ ∈
(

2
q
, 2

2−q

] (1.10)

5



where the weight class Ã−τ (J ), 1 ≤ τ <∞, is defined by

Ã−τ (J ) = Ã−τ (R3) ∩ Aτ (J ).

Given f ∈ Lq
w(R3)3 there exists a solution (u, p) ∈ L1

loc(R3)3×L1
loc(R3) of

(1.5) satisfying the estimate

‖k∂3u‖q,w + ‖(ω ∧ x) · u− ω ∧ u‖q,w ≤ c

(
1 +

k5

ν5/2|ω|5/2

)
‖f‖q,w (1.11)

with a constant c = c(q, w) > 0 independent of ν, k and ω.

We remark that the ω-dependent term 1 + k5

ν5/2|ω|5/2 in (1.11) cannot be

avoided in general; see [4] for an example in the space L2(R3).
As an example of anisotropic weight functions we consider

w(x) = ηα
β (x) = (1 + |x|)α(1 + s(x))β, s(x) = |(x1, x2, x3)| − x3, (1.12)

introduced in [2] to analyze the Oseen equations; see also [13]–[14].

Corollary 1.6. The a priori estimate (1.9) holds for the anisotropic weights
w = ηα

β , see (1.12), provided that

2 ≤ q <∞ : − q
2
< α < q

2
, 0 ≤ β < q

2
and α+ β > −1

1 < q < 2 : − q
2
< α < q − 1, 0 ≤ β < q − 1 and α+ β > − q

2
.

Note that the condition β ≥ 0 will reflect the existence of a wake region in
the downstream direction x3 > 0 where the solution of the original nonlinear
problem (1.1) will decay slower than in the upstream direction x3 < 0.

2 Preliminaries

To prove Theorem 1.4 we need several properties of Muckenhoupt weights and
of maximal operators. Recall that J stands for the set of all nondegenerate
rectangles in Rn with edges parallel to the coordinate axes.

Proposition 2.1. (1) Let µ be a nonnegative regular Borel measure such
that the strong centered Hardy-Littlewood maximal operator

MJµ(x) = sup
R∈J , R3x

1

|R|

∫
R

dµ
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is finite for almost all x ∈ Rn; here R runs through the collection J of
rectangles containing additionally the point x, and |R| denotes the Lebesgue
measure of R. Then (MJµ)γ ∈ A1(J ) for all γ ∈ [0, 1).

(2) For all 1 < q < τ we have A1(J ) ⊂ Aq(J ) ⊂ Aτ (J ).
(3) Let 1 < q <∞ and w ∈ Aq(J ). Then there are w1, w2 ∈ A1(J ) such

that
w =

w1

wq−1
2

.

Conversely, given w1, w2 ∈ A1(J ), the weight w = w1w
1−q
2 belongs to Aq(J ).

For the proofs see [10, Chapter IV, §6]. The claim (3) is a variant of
Jones’ factorization theorem, see [10, Chapter IV, Theorem 6.8].

For a rapidly decreasing function u ∈ S(Rn) let

Fu(ξ) = û(ξ) =
1

(2π)n/2

∫
Rn

e−ix·ξu(x) dx, ξ ∈ Rn,

be the Fourier transform of u. Its inverse will be denoted by F−1. Moreover,
we define the centered Hardy-Littlewood maximal operator

Mu(x) = sup
Q3x

1

|Q|

∫
Q

|u(y)| dy, x ∈ Rn,

for u ∈ L1
loc(Rn) where Q runs through the set of all closed cubes centered

at x.

Theorem 2.2. Let 1 < q <∞ and w ∈ Aq.
(i) The operator M, defined e.g. on S(Rn), is a bounded operator from

Lq
w to Lq

w.
(ii) Let m ∈ Cn(Rn \ {0}) satisfy the pointwise Hörmander-Mikhlin mul-

tiplier condition

|ξ||α| |Dαm(ξ)| ≤ cα for all ξ ∈ Rn \ {0}

and all multiindices α ∈ Nn
0 with |α| ≤ n1 ∈ N, where n1 ≥ n/2. Then the

multiplier operator u 7→ F−1(mû), u ∈ S(Rn), can be extended to a bounded
linear operator from Lq

w to Lq
w.

(iii) Let m be of class Cn in each “quadrant” of Rn and let a constant
B ≥ 0 exist such that ‖m‖∞ ≤ B,

sup
xk+1,...,xn

∫
I

∣∣∣∣ ∂km(x)

∂x1 · · · ∂xk

∣∣∣∣ dx1 · · · dxk ≤ B
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for any dyadic interval I in Rk, 1 ≤ k ≤ n, and also for any permutation of
the variables x1, . . . , xk within x1, . . . , xn. If 1 < p <∞ and w ∈ Ap(Rn,J ),
then m defines a bounded multiplier operator from Lp

w(Rn) to Lp
w(Rn).

Proof. (i) See [10, Theorem IV 2.8], [18, Theorem 9]. (ii) See [10, Theorem
IV 3.9] or [17, Theorem 4]. Note that the pointwise condition on m implies
the integral condition in [10], [17]. For the proof of (iii) see [17].

Concerning one-sided weights and one-sided maximal operators on the
real line, see Definition 1.2, we first recall the following duality property:
w ∈ A+

q if and only if w−q′/q = w−1/(q−1) ∈ A−q′ . Moreover we will need the
following results:

Theorem 2.3 (Theorem 1 of [23]). Let 1 < p <∞ and p′ = p
p−1

.

(i) Let w1 ∈ A+
1 , w2 ∈ A−1 . Then w1

wp−1
2

∈ A+
p . Conversely, given w ∈ A+

p

there exist w1 ∈ A+
1 , w2 ∈ A−1 such that w = w1

wp−1
2

.

(ii) The operator M+ is continuous from Lp
w(R) to itself if and only if

w ∈ A+
p . Analogously, M− : Lp

w(R) → Lp
w(R) if and only if w ∈ A−p .

Obviously, Ap ⊂ A±p where Ap denotes the usual Muckenhoupt class on
the real line. Hence |x|α, (1 + |x|)α ∈ A±p if −1 < α < p − 1, 1 < p < ∞.
However, in view of the anisotropic weight w = ηα

β on R3, see (1.12), we have
to consider also one-dimensional anisotropic weight functions such as

w̃α,β(x) = w̃α,β(x; r) = (r2 + x2)α/2(
√
r2 + x2 − x)β, x ∈ R, r > 0. (2.1)

Lemma 2.4. (i) For every r > 0 the univariate weight w̃α,β(x; r) lies in A−1
if and only if β ≥ 0, α ≤ β and α + β > −1. Moreover, the A−1 -constant of
w̃α,β is uniformly bounded in r.

(ii) For every r > 0 the univariate weight

wα,β(x) = wα,β(x; r) = (1 + r2 + x2)α/2(1 +
√
r2 + x2 − x)β

lies in A−1 with an A−1 -constant independent of r > 0 if and only if

α ≤ 0 ≤ β and α+ β > −1. (2.2)

(iii) Let 1 < p <∞. Then for every r > 0

wα,β(· ; r) ∈ A+
p for α > −1, β ≤ 0, α + β < p− 1

wα,β(· ; r) ∈ A−p for α < p− 1, β ≥ 0, α + β > −1.
(2.3)

Moreover, the A±p -constant is uniformly bounded in r > 0.

8



Proof. (i) A simple scaling argument shows that it suffices to look at the
weight w̃ = w̃α,β in (2.1) for r = 1 only and that the A−1 -constant is inde-
pendent of r > 0. We will consider three cases.

Case 1: x > 0. Then w̃(x) ∼ (1 + |x|)α−β, i.e., there exists a constant c > 0
independent of x > 0 such that 1

c
(1 + |x|)α−β ≤ w̃(x) ≤ c(1 + |x|)α−β for all

x > 0. Hence for all h > 0

1

h

∫ x+h

x

w̃(t) dt ∼ 1

h

∫ x+h

x

(1 + t)α−β dt.

If α − β > 0, then the term on the right hand-side is strictly increasing to
+∞ as h→∞. Thus we are led to the condition α ≤ β.

Now let α ≤ β. Then for all h > 0

1

h

∫ x+h

x

(1 + t)α−β dt ≤ 1

h

∫ x+h

x

(1 + x)α−β dt = (1 + |x|)α−β ∼ w̃(x).

Case 2: x < 0 and 0 < h < |x|. Then w̃(t) ∼ (1+ |t|)α+β for all t ∈ (x, x+h).
Assume that α+ β = −1 and let h = |x|. Then

1

|x|

∫ 0

x

(1 + |t|)−1 dt =
log(1 + |x|)

|x|

is not bounded by cw̃(x) = c/|x| uniformly in x < 0 for any constant c > 0.

Analogously, if α+β < −1, then for h = |x| we see that 1
|x|

∫ 0

x
(1+ |t|)α+β dt ∼

1
|x| is not bounded by cw̃(x) = c(1 + |x|)α+β uniformly in x < 0. Hence in
the following we have to assume that α + β > −1. We shall consider two
subcases: h > 0 small with respect to |x| and h comparable with |x|. If

0 < h < |x|
2

, then

1

h

∫ x+h

x

(1 + |t|)α+β dt ∼ 1

h

∫ x+h

x

(1 + |x|)α+β dt = (1 + |x|)α+β ∼ w̃(x).

For the second subcase assume that |x|
2
< h < |x|. Then we are led to the

integral

1

|x|

∫ x+h

x

(1 + |t|)α+β dt

≤ 1

|x|

∫ 0

x

(1 + |t|)α+β dt ∼

{
(1+|x|)α+β+1

|x| , |x| > 1

1, |x| < 1
∼ w̃(x).
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Case 3: x < 0 and h > |x|. In this case we have to consider the sum

1

h

∫ 0

x

w̃ dt+
1

h

∫ x+h

0

w̃ dt ≤ 1

|x|

∫ 0

x

w̃ dt+
c

h

∫ x+h

0

(1 + t)α−β dt =: I1 + I2,

where the first integral I1 is bounded by cw̃(x) uniformly in x < 0, see
Case 2, and where for |x| < 1 the second integral I2 is bounded by c ∼ w̃(x).
Therefore, let |x| > 1 in the following. If α − β ≤ −1, then the condition
α + β > −1 implies that β > 0; moreover, I2 is easily shown to be bounded
by cw̃(x) ∼ (1 + |x|)α+β uniformly in x < 0 and h > |x|.

Now consider the case α−β > −1. We shall investigate three possibilities
of the position of h with respect to |x|. If h = 2|x|, then

1

|x|

∫ |x|

0

(1 + t)α−β dt =
c

|x|
(
(1 + |x|)α−β+1 − 1

)
.

Since 1
|x| = o

(
|x|α+β

)
= o(w̃(x)) by the condition that α + β > −1, the

assertion I2 ≤ cw̃(x) ∼ |x|α+β necessarily implies that |x|α−β ≤ c|x|α+β for
|x| > 1. Thus β must be nonnegative.

Next, if |x| < h < 2|x|, then, since α− β ≤ α+ β and α+ β > −1,

I2 ≤
c

|x|

∫ |x|

0

(1 + t)α−β dt ≤ c|x|α+β ∼ w̃(x).

Finally, if h > 2|x| > 2, then

I2 ≤
c

h
(1 + x+ h)α−β+1 ≤ chα−β ≤ c|x|α+β ∼ w̃(x)

since α ≤ β (see Case 1 ). Summarizing the previous cases and estimates we
have proved that there exists c > 0 such thatM+w̃(x) ≤ cw̃(x) for a.a. x ∈ R,
and that this results holds if and only if β ≥ 0, α ≤ β, and α+ β > −1.

(ii) To verify the necessity of (2.2) let r = 1 and w = wα,β. For x > 0
when (1 +

√
r2 + x2 − x)β ∼ 1, we have to estimate

1

h

∫ x+h

x

w(t) dt ∼ 1

h

∫ x+h

x

(1 + t)α dt

by cw(x) ∼ (1 + x)α. As in Case 1 of Part (i) (with β = 0) we get the
necessary condition α ≤ 0.
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Let x < 0. Again we shall distinguish according to the size of h with
respect to |x|. If 0 < h < |x|, than w(t) ∼ (1 + |t|)α+β for all t ∈ (x, x + h),
and

1

h

∫ x+h

x

w(t) dt ∼ 1

h

∫ x+h

x

(1 + |t|)α+β dt

is bounded by cw(x) ∼ (1+ |x|)α+β only when α+β > −1; cf. Case 2 of Part
(i). Finally, when x < 0 and h > |x|, say h = 2|x| > 2, and when α > −1,
then

1

h

∫ x+h

x

w(t) dt ∼ 1

h

∫ 0

x

(1 + |t|)α+β dt+
1

h

∫ x+h

0

(1 + t)α dt ≤ cw(x) + c|x|α,

which is bounded by cw(x) ∼ (1+ |x|)α+β only if β ≥ 0. However, if α ≤ −1,
then the condition α+β > −1 implies that even β > 0. Hence the conditions
(2.2) are necessary to prove that w ∈ A−1 .

We shall prove that conditions (2.2) are sufficient for wα,β(x; r) ∈ A−1
with an A−1 -constant independent of r > 0. Let us assume that (2.2) holds
and let first 0 < r < 1. Then

w(t) ∼ (1 + |t|)α ·
{

1, t > 0
(1 + |t|)β, t < 0

∼ (1 + |t|)α+β/2 ·
{

(1 + |t|)−β/2, t > 0
(1 + |t|)β/2, t < 0

∼ w̃α′,β′(t; r)

where α′ = α + β/2, β′ = β/2. Since the assumptions (2.2) on α, β imply
that α′, β′ satisfy the assumptions in (i), w ∈ A−1 with an A−1 -constant
independent of 0 < r < 1.

Next let r ≥ 1. An elementary calculation shows that

w(t) ∼
{
w̃α,β(t; r), t < r2

w̃α,0(t; r), t > r2 .

Then we will consider three cases.

Case 1: x < r2 and x+ h < r2. In this case, by Part (i),

1

h

∫ x+h

x

w(t) dt ∼ 1

h

∫ x+h

x

w̃α,β(t; r) dt ≤ cw̃α,β(x; r) ∼ cw(x)

with c > 0 independent of r > 1.
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Case 2: x > r2 and x+ h > r2. Now

1

h

∫ x+h

x

w(t) dt ∼ 1

h

∫ x+h

x

w̃α,0(t; r) dt ≤ cw̃α,0(x; r) ∼ cw(x)

due to Case 1 in Part (i).

Case 3: x < r2 but x+ h > r2. Then

1

h

∫ x+h

x

w(t) dt ∼ 1

h

∫ r2

x

w̃α,β(t; r) dt+
1

h

∫ x+h

r2

w̃α,0(t; r) dt

By Part (i), the first integral on the right hand side is bounded by
r2−x

h
w̃α,β(x; r) ≤ w̃α,β(x; r) ≤ cw(x). Hence it suffices to prove that

1

h

∫ x+h

r2

w̃α,0(t; r) dt ≤ cw(x).

If |x| ≤ r2, then Part (i) implies that

1

h

∫ x+h

r2

w̃α,0(t; r) dt ≤
x+ h− r2

h
w̃α,0(r

2; r) ≤ w̃α,0(r
2; r) ≤ cr2α

where r2α ≤ (r + |x|)α ≤ cw(x) since α ≤ 0 ≤ β.
If x < −r2, then w(x) ∼ |x|α+β, and a simple scaling argument and the

condition β ≥ 0 allow to reduce the problem to the case r = 1. Actually it
suffices to show the existence of c > 0 such that

J :=

∫ x+h

1

tα dt ≤ ch|x|α+β when x ≤ −1, x+ h ≥ 1.

If α < −1, then J is bounded by 1
|α+1| ≤ c|x|α+β+1 ≤ ch|x|α+β, since α+β >

−1 and h > |x| > 1. In the case α = −1 the integral J equals

log(x+ h) ∼ log h+
x

h
≤ c

(
1 + hmin(β,1)

)
≤ ch|x|β−1,

since β > −1−α = 0. Finally, for α > −1, we may bound J by c(x+h)α+1. If
1 < |x| < h < 2|x|, this term is bounded by c|x| ≤ ch|x|α ≤ ch|x|α+β. In the
remaining case when h > 2|x|, we get that (x + h)α+1 ≤ chα+1 ≤ ch|x|α+β,
since α ≤ 0 ≤ β.

Now (ii) is completely proved.

12



(iii) By Theorem 2.3 (i) and Part (ii) of this Lemma

w(x) =
(1 + r2 + x2)α1/2

(1 + r2 + x2)α2(p−1)/2(1 +
√
r2 + x2 − x)β2(p−1)

∈ A+
p

for all α1, α2, β2 satisfying −1 < α1 ≤ 0, α2 ≤ 0 ≤ β2 and α2 + β2 > −1.
Hence, with α = α1−α2(p−1), β = −β2(p−1), we get that w = wα,β(· ; r) ∈
A+

p for all α, β satisfying α > −1, β ≤ 0, and α+ β < p− 1. By analogy,

w(x) =
(1 + r2 + x2)α1/2(1 +

√
r2 + x2 − x)β1

(1 + r2 + x2)α2(p−1)/2
∈ A−p

for all α1, α2, β1 satisfying α1 ≤ 0 ≤ β1, α1 + β1 > −1, −1 < α2 ≤ 0. Hence
w = wα,β(· ; r) ∈ A−p for all α, β such that β ≥ 0, α < p− 1 and α+ β > −1.
Moreover, in both cases the A±p -constant of the weight is uniformly bounded
in r > 0.

Note that the univariate weights w̃α,β and wα,β mainly differ for large

x > 0. While w̃0,β decays as
(

1
x

)β
as x → ∞ for every fixed r > 0, the

weight w0,β is bounded below by 1 as x → ∞. The reason to consider the
weights wα,β rather than w̃α,β is based on the use of the anisotropic weights
ηα

β on R3, see Corollary 1.5, when fixing r = |(x1, x2)|, x1, x2 ∈ R, so that
ηα

β (x1, x2, x3) = wα,β(x3; r).
Due to the geometry of the problem we introduce cylindrical coordinates

(r, x3, θ) ∈ (0,∞) × R × [0, 2π) and write u(x1, x2, x3) = u(r, x3, θ). Then
the term (e3 ∧ x) · ∇u = −x2∂1u + x1∂2u may be rewritten in the form
(e3 ∧ x) · ∇u = ∂θu using the angular derivative ∂θ applied to u(r, x3, θ).
Working first of all formally or in the space S ′(R3) of tempered distributions
we apply the Fourier transform F = ̂ to (1.5). With the Fourier variable
ξ = (ξ1, ξ2, ξ3) ∈ R3 and s = |ξ| we get from (1.5)

(νs2 + ikξ3)û− ω̃(∂ϕû− e3 ∧ û) + iξp̂ = f̂ , iξ · û = 0. (2.4)

Here (e3 ∧ ξ) · ∇ξ = −ξ2∂/∂ξ1 + ξ1∂/∂ξ2 = ∂ϕ is the angular derivative in
Fourier space when using cylindrical coordinates (s, ξ3, φ, ) ∈ R+×R×[0, 2π).
Since iξ · û = 0 implies iξ ·

(
∂ϕû − ω × û

)
= 0, the unknown pressure p is

given by −|ξ|2p̂ = iξ · f̂ , i.e.,

∇̂p(ξ) = iξ · p̂ =
(ξ · f̂)f̂

|ξ|2
.
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Then the Hörmander-Mikhlin multiplier theorem on weighted Lq-spaces
(Theorem 2.2 (ii)) yields for every weight w ∈ Aq(R3, C) the estimate

‖∇p‖q,w ≤ c‖f‖q,w (2.5)

where c = c(q, w) > 0; in particular ∇p ∈ Lq
w.

Hence u may be considered as a (solenoidal) solution of the reduced prob-
lem

−ν∆u+ k∂3u− ω̃(∂θu− e3 ∧ u) = F := f −∇p in R3, (2.6)

or—in Fourier space—

(νs2 + ikξ3)û− ω̃(∂ϕû− e3 ∧ û) = F̂ .

As shown in [Fa2] this inhomogeneous linear differential equation of first
order with respect to ϕ has the unique 2π-periodic solution

û(ξ) =
1

1− e−2π(ν|ξ|2+ikξ3)/ω̃

∫ 2π/ω̃

0

e−(ν|ξ|2+ikξ3)tOT
ω (t)FF (Oω(t)ξ) dt,

=

∫ ∞

0

e−ν|ξ|2tOT
ω (t)(FF (Oω(t) · −kte3))(ξ) dt.

(2.7)

Finally note that e−ν|ξ|2t is the Fourier transform of the heat kernel Et(x) =
(4πνt)−3/2e−|x|

2/4νt yielding

u(x) =

∫ ∞

0

Et ∗OT
ω (t)F (Oω(t) · −kte3)(x) dt. (2.8)

Since F = f − ∇p is solenoidal, the identity iξ · F̂ = 0 easily implies that
also u is solenoidal.

The main ingredients of the proof of Theorem 1.4 are a weighted version
of Littlewood-Paley theory and a decomposition of the integral operator

Tf(x) =

∫ ∞

0

ψ̂νt(ξ)O
T
ω (t)Ff(Oω(t) · −kte3)(ξ)

dt

t

=

∫ ∞

0

ψ̂t(ξ)O
T
ω/ν(t)Ff

(
Oω/ν(t) · −

k

ν
te3

)
(ξ)

dt

t
,

(2.9)

where

ψ̂(ξ) =
1

(2π)3/2
|ξ|2e−|ξ|2 and ψ̂t(ξ) = ψ̂(

√
tξ), t > 0, (2.10)
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are the Fourier transforms of the function ψ = −∆E1 ∈ S(R3) and of ψt(x) =
t−3/2ψ(x/

√
t), t > 0, resp. Note that due to Theorem 1.4 it suffices to find an

estimate of ‖∆u‖q,w in order to estimate all second order derivatives ∂j∂ku
of u.

To decompose ψ̂t choose χ̃ ∈ C∞
0

(
1
2
, 2

)
satisfying 0 ≤ χ̃ ≤ 1 and∑∞

j=−∞ χ̃(2−js) = 1 for all s > 0. Then define χj, j ∈ Z, by its Fourier
transform

χ̂j(ξ) = χ̃(2−j|ξ|), ξ ∈ Rn,

yielding
∑∞

j=−∞ χ̂j = 1 on Rn \ {0} and

supp χ̂j ⊂ A(2j−1, 2j+1) := {ξ ∈ R3 : 2j−1 ≤ |ξ| ≤ 2j+1}. (2.11)

Using χj, we define for j ∈ Z

ψj =
1

(2π)3/2
χj ∗ ψ

(
ψ̂ = χ̂j · ψ̂

)
. (2.12)

Obviously,
∑∞

j=−∞ ψj = ψ on R3. Finally, in view of (2.9), (2.12), we define
the linear operators

Tjf(x) =

∫ ∞

0

ψ̂j
νt(ξ)O

T
ω (t)Ff(Oω(t) · −kte3)(ξ)

dt

t

=

∫ ∞

0

ψ̂j
t (ξ)O

T
ω/ν(t)Ff

(
Oω/ν(t) · −

k

ν
te3

)
(ξ)

dt

t
.

(2.13)

Since formally T =
∑∞

j=−∞ Tj, we have to prove that this infinite series
converges even in the operator norm on Lq

w.
For later use we cite the following lemma, see [6].

Lemma 2.5. The functions ψj, ψj
t , j ∈ Z, t > 0, have the following proper-

ties:
(i) supp ψ̂j

t ⊂ A
(

2j−1
√

t
, 2j+1
√

t

)
.

(ii) For m > 3
2

let h(x) = (1 + |x|2)−m and ht(x) = t−3/2h
(

x√
t

)
, t > 0.

Then there exists a constant c > 0 independent of j ∈ Z such that

|ψj(x)| ≤ c2−2|j| h2−2j(x), x ∈ R3,

‖ψj‖1 ≤ c2−2|j| .
(2.14)
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To introduce a weighted Littlewood-Paley decomposition of Lq
w choose

ϕ̃ ∈ C∞
0 (1

2
, 2) such that 0 ≤ ϕ̃ ≤ 1 and

∫∞
0
ϕ̃(s)2 ds

s
= 1

2
. Then define

ϕ ∈ S(R3) by its Fourier transform ϕ̂(ξ) = ϕ̃(|ξ|) yielding for every s > 0

ϕ̂s(ξ) = ϕ̃(
√
s|ξ|), supp ϕ̂s ⊂ A

( 1

2
√

2
,

2√
2

)
(2.15)

and the normalization
∫∞

0
ϕ̂s(ξ)

2 ds
s

= 1 for all ξ ∈ Rn \ {0}.

Theorem 2.6. Let 1 < q < ∞ and w ∈ Aq(R3). Then there are constants
c1, c2 > 0 depending on q, w and ϕ such that for all f ∈ Lq

w

c1‖f‖q,w ≤

∥∥∥∥∥
(∫ ∞

0

|ϕs ∗ f(·)|2 ds
s

)1/2
∥∥∥∥∥

q,w

≤ c2‖f‖q,w (2.16)

where ϕs ∈ S(Rn) is defined by (2.15).

Proof. See [22, Proposition 1.9, Theorem 1.10], and also [17], [24].

3 Proofs

As a preliminary version of Theorem 1.4 we prove the following proposition.
The extension to more general weights based on complex interpolation of
Lq

w-spaces will be postponed to the end of Section 3.

Proposition 3.1. Let the weight w ∈ L1
loc(R3) be independent of the angle θ

and define wr(x3) := w(x1, x2, x3) for fixed r = |(x1, x2)| > 0. Assume that

w ∈ Ã−q/2 if q > 2,

w ∈ Ã−1 or 1
w
∈ Ã+

1 if q = 2,

w2/(2−q) ∈ Ã−q/(2−q) if 1 < q < 2.

(3.1)

Then the linear operator T defined by (2.9) satisfies the estimate

‖Tf‖q,w ≤ c‖f‖q,w for all f ∈ Lq
w (3.2)

with a constant c = c(q, w) > 0 independent of f .
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Proof. Step 1. First we consider the case q > 2, w ∈ Ã−q/2 ⊂ Aq, and define

the sublinear operator Mj, a modified maximal operator, by

Mjg(x) = sup
s>0

∫
As

(
|ψj

t | ∗ |g|
)(
OT

ω/ν(t)x+
k

ν
te3

) dt
t
, (3.3)

where As = [ s
16
, 16s]. Then we will prove the preliminary estimate

‖Tjf‖q,w ≤ c‖ψj‖1/2
1 ‖Mj‖1/2

L
(q/2)′
v

‖f‖q,w , j ∈ Z, (3.4)

where v denotes the θ-independent weight

v = w−
(

q
2

)′/(
q
2

)
= w−

2
q−2 ∈ Ã+

(q/2)′ = Ã+
q/(q−2). (3.5)

To prove (3.4) we use the Littlewood-Paley decomposition of Lq
w, see

(2.16), applied to Tjf . By a duality argument we find some function 0 ≤ g ∈
L

(q/2)′
v =

(
L

(q/2)
w

)∗
with ‖g‖(q/2)′,v = 1 such that∥∥∥∥∫ ∞

0

|ϕs ∗ Tjf(·)|2 ds
s

∥∥∥∥
q/2,w

=

∫ ∞

0

∫
R3

|ϕs ∗ Tjf(x)|2g(x) dx ds
s
. (3.6)

To estimate the right-hand side of (3.6) note that

ϕs ∗ Tjf(x) =

∫ ∞

0

OT
ω/ν(t)(ϕs ∗ ψj

t ∗ f)
(
Oω/ν(t)x−

k

ν
te3

) dt
t
,

where ϕs ∗ ψj
t = 0 unless t ∈ A(s, j) := [22j−4s, 22j+4s]. Since

∫
t∈A(s,j)

dt
t

=

log 28 for every j ∈ Z, s > 0, we get by the inequality of Cauchy-Schwarz
and the associativity of convolutions that

|ϕs ∗ Tjf(x)|2 ≤ c

∫
A(s,j)

∣∣∣∣(ψj
t ∗ (ϕs ∗ f)

) (
Oω/ν(t)x−

k

ν
te3

)∣∣∣∣2 dtt
≤ c‖ψj‖1

∫
A(s,j)

(
|ψj

t | ∗ |ϕs ∗ f |2
)(
Oω/ν(t)x−

k

ν
te3

) dt
t

;

here we used the estimate |(ψj
t ∗ (ϕs ∗ f))(y)|2 ≤ ‖ψj

t‖1(|ψj
t | ∗ |ϕs ∗ f |2

)
(y)
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and the identity ‖ψj
t‖1 = ‖ψj‖1, see (2.14). Thus

|Tjf‖2
q,w

≤ c‖ψj‖1

∫ ∞

0

∫
A(s,j)

∫
R3

(|ψj
t | ∗ |ϕs ∗ f |2)

(
Oω/ν(t)x−

k

ν
te3

)
g(x) dx

dt

t

ds

s

≤ c‖ψj‖1

∫ ∞

0

∫
A(s,j)

∫
R3

(|ψj
t | ∗ |ϕs ∗ f |2)(x) g

(
OT

ω/ν(t)x+
k

ν
te3

)
dx
dt

t

ds

s

≤ c‖ψj‖1

∫
R3

∫ ∞

0

|ϕs ∗ f |2(x)
∫

A(s,j)

(
|ψj

t | ∗ g
)(
OT

ω/ν(t)x+
k

ν
te3

) dt
t

ds

s
dx,

(3.7)

since ψj
t is radially symmetric. By definition of Mj the innermost integral

is bounded by Mjg(x) uniformly in s > 0. Hence we may proceed in (3.7)
using Hölder’s inequality as follows:

‖Tjf‖2
q,w ≤ c‖ψj‖1

∫
R3

(∫ ∞

0

|ϕs ∗ f |2(x)
ds

s

)
Mjg(x) dx

≤ c‖ψj‖1

∥∥∥∫ ∞

0

|ϕs ∗ f |2(x)
ds

s

∥∥∥
q/2,w

‖Mjg‖(q/2)′,v.

(3.8)

Now (2.16) and the normalization ‖g‖(q/2)′,v = 1 complete the proof of (3.4).

Step 2. We estimate ‖Mjg‖(q/2)′,v. For functions γ depending on θ, x3 only
let Mhel denote the “helical” maximal operator

Mhelγ(θ, x3) = sup
s>0

1

s

∫
As

|γ|
(
θ − ω

ν
t, x3 +

k

ν
t
)
dt,

where As =
[

s
16
, 16s

]
. Then, writing p :=

(
q
2

)′
, we claim that

Mjg(x) ≤ c2−2|j|M(Mhelg)(x) for a.a. x ∈ Rn, (3.9)

‖Mjg‖p,v ≤ c2−2|j|‖g‖p,v, (3.10)

where in (3.9) Mhelg is considered as Mhelg(r, ·, ·) for almost all r > 0.
To prove (3.9) we use the pointwise estimate |ψj

t (x)| ≤ c2−2|j|ht2−2j(x),
see Lemma 2.5 (ii). Hence

Mjg(x) ≤ c2−2|j| sup
s>0

∫
As

(ht2−2j ∗ |g|)
(
OT

ω/ν(t)x+
k

ν
te3

) dt
t
.
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Moreover, there exists a constant c > 0 independent of s > 0, j ∈ Z, such
that ht2−2j ≤ chs2−2j for all t ∈ As. Consequently,

Mjg(x) ≤ c2−2|j| sup
s>0

hs2−2j ∗
∫

As

|g|
(
OT

ω/ν(t)x+
k

ν
te3

) dt
t

≤ c2−2|j| sup
t>0

ht ∗Mhelg(x).

Since h is nonnegative, radially decreasing, and ‖ht‖1 = ‖h‖1 = c0 > 0 for
all t > 0, a well-known convolution estimate, see [25], II §2.1, yields the
pointwise estimate (3.9).

Step 3. Note that up to now we have not yet used any specific properties of
the weight v ∈ Ap. To estimateMhelg we shall work with a suitable one-sided
maximal operator since our weight belongs to a Muckenhoupt class in R3 but
a problem occurs when the weight is considered with respect to x3 only. This
naturally corresponds to the physical circumstances of the problem, where
in the Oseen case the wake should appear. To estimate Mhelg we write
gr(θ, x3) = g(r, θ, x3) = g(x) and vr(x3) = v(x), r = |(x1, x2)| > 0, for the
θ-independent weight v. Then by the 2π-periodicity of gr and vr with respect
to θ we get for almost all r > 0∫

R

∫ 2π

0

Mhelgr(θ, x3)
pvr(x3) dθ dx3

≤
∫

R

∫ 2π

0

∣∣∣∣ sup
s>0

1

s

∫ 16s

0

|gr|
(
θ − ω

k

(
x3 +

k

ν
t
)
, x3 +

k

ν
t
)
dt

∣∣∣∣pvr(x3) dθ dx3

=

∫
R

∫ 2π

0

∣∣∣∣ sup
s>0

1

s

∫ 16s

0

γr,θ

(
x3 +

k

ν
t
)
dt

∣∣∣∣p dθ vr(x3) dx3

= 16

∫ 2π

0

∫
R

∣∣M+γr,θ(x3)
∣∣pvr(x3) dx3 dθ

where γr,θ(y3) = |gr|(θ − ω
k
y3, y3) and M+ denotes the one-sided maximal

operator, see Definition 1.2. Since wr ∈ A−q/2, by (3.5) and Theorem 2.3 (i)

vr = w
−(q/2)′/(q/2)
r ∈ A+

(q/2)′ = A+
p with an A+

p -constant uniformly bounded in

r > 0. Then Theorem 2.3 (ii) yields the estimate∫
R

∫ 2π

0

Mhelgr(θ, x3)
pvr(x3) dθ dx3

≤ c

∫ 2π

0

∫
R
|γr,θ(x3)|pvr(x3) dx3 dθ = c‖gr‖p

Lp(R×(0,2π), vr(x3)),
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where c > 0 is independent of k, ν. Integrating with respect to r dr, r ∈
(0,∞), Fubini’s theorem allows to consider an extension ofMhel to a bounded
operator from Lp

v(R3) to itself with an operator norm bounded uniformly in
k, ν. Moreover, M : Lp

v(R3) → Lp
v(R3) is bounded by Theorem 2.3 (ii).

Hence, (3.9) implies (3.10), and by (3.4) as well as Lemma 2.5 (ii) we get the
estimate

‖Tjf‖q,w ≤ c2−2|j|‖f‖q,w

for all f ∈ Lq
w(R3) with a constant c > 0 independent of j ∈ Z. Summarizing

the previous inequalities we proved (3.2) for q > 2.

Step 4. Now let q = 2, w ∈ Ã−1 . In this case the Littlewood-Paley decompo-
sition of Tjf in L2

w implies that

‖Tjf‖2
2,w ≤ c

∫ ∞

0

∫
Rn

|ϕs ∗ Tjf |2(x) g(x) dx
ds

s
,

where

g ∈ L∞v , v =
1

w
and ‖g‖∞,v = ess supR3 |g v| = 1.

By the same reasoning as before we arrive at (3.4), i.e.,

‖Tjf‖2,w ≤ c2−|j|‖Mjg‖1/2
∞,v ‖f‖2,w, (3.11)

and at (3.9). Concerning Mhel we use the pointwise estimate gr(θ, x3) ≤
wr(x3) for a.a. θ ∈ (0, 2π), x3 ∈ R, and get that

Mhelgr(θ, x3) ≤ sup
s>0

1

s

∫ 16s

0

wr

(
x3 +

k

ν
t
)
dt ≤ 16M+wr(x3) ≤ cwr(x3)

with a constant c > 0 independent of r > 0. Since w is an A1(R3)-weight,
(3.9) implies that

Mjg(x) ≤ c2−2|j|Mw(x) ≤ c2−2|j|w(x)

and consequently that ‖Mjg‖∞,v ≤ c2−2|j| with a constant c > 0 independent
of j ∈ Z. Hence ‖Tjf‖2,w ≤ c2−2|j| proving (3.2) when q = 2.

Step 5. The remaining estimates are proved by duality arguments. Obviously
the dual operator to T is defined by

T ∗f(x) =

∫ ∞

0

(−∆)Oω(t)Et ∗ f(OT
ω (t)x+ kte3) dt,
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which has the same structure as K, but with an ”opposite orientation”.
Hence T ∗ is bounded on Lq

w for q ≥ 2 and all weights w ∈ Ã+
q/2 . Now

let 1 < q < 2 and w2/(2−q) ∈ Ã−q/(2−q) = Ã−(q′/2)′ . Then by simple duality

arguments w′ = w−q′/q ∈ Ã+
(q′/2) and

|〈Tf, g〉| = |〈f, T ∗g〉| ≤ ‖f‖q,w‖T ∗g‖q′,w′ ≤ c‖f‖q,w‖g‖q′,w′ .

Finally let q = 2 and 1
w
∈ Ã+

1 . As before,

|〈Tf, g〉| ≤ ‖f‖2,w‖T ∗g‖2,1/w ≤ c‖f‖2,w‖g‖2,1/w .

Now Proposition 3.1 is completely proved.

Lemma 3.2 ([1]). Let 1 ≤ p1, p2 < ∞, let 0 < w1, w2 be weight functions,
δ ∈ (0, 1), and

1

p
=

1− δ

p1

+
δ

p2

, w
1
p = w

1−δ
p1

1 · w
δ

p2
2 .

Then [
Lp1

w1
, Lp2

w2

]
δ

= Lp
w

in the sense of complex interpolation.

In the following we shall derive an anisotropic variant of Jones’s factoriza-
tion theorem tailored to our situation, when we need to work with one-sided
Muckenhoupt weights with respect to x3, satisfying the usual Muckenhoupt
condition in three dimensions.

Lemma 3.3 (Anisotropic Version of Jones’ Factorization Theorem).

Suppose that w ∈ Ã−q . Then there exist weights w1 ∈ Ã−1 and w2 ∈ Ã+
1 such

that
w =

w1

wq−1
2

.

Here Ã+
1 is defined by analogy with Ã−1 , cf. Definition 1.2, by assuming for

w2 ∈ Ã+
1 that (w2)r ∈ A+

1 with A+
1 -constant uniformly bounded in r > 0. An

analogous result holds for w ∈ Ã+
q .

Proof. Let q ≥ 2. Given w ∈ Ã−q we consider the operator T defined by

Tf =
(
w−1/qM(f q/q′w1/q)

)q′/q
+ w1/qM(fw−1/q)

+
(
w−1/qM+

1 (f q/q′

r w1/q
r )

)q′/q
+ w1/qM−

1 (frw
−1/q
r )
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where r = |(x1, x2)|. Then for all f ∈ Lq(R3)

‖Tf‖q
q ≤ c

{∫
R3

w−q′/q
(
M(f q/q′w1/q)

)q′
dx+

∫
R3

w
(
M(fw−1/q)

)q
dx

+

∫
R2

( ∫
R
w−q′/q

r

(
M+

1 (f q/q′

r w1/q
r )

)q′
dx3

)
d(x1, x2)

+

∫
R2

( ∫
R
wr

(
M+

1 (frw
−1/q
r )

)q
dx3

)
d(x1, x2)

}
≤ Aq‖f‖q

q,

with a constant A = A(q, w) > 0.
Let us fix a nonnegative θ-independent function f ∈ Lq(R3) with ‖f‖q = 1

and define

η =
∞∑

k=1

(2A)−kT k(f),

where T k(f) = T (T k−1(f)). Obviously Tf and therefore also η are θ-
independent. Moreover, η ∈ Lq(R3) and ‖η‖q ≤

∑∞
k=1 2−k = 1. In par-

ticular, η(x) < ∞ for a.a. x ∈ R3, ηr(·) ∈ Lq(R) for a.a. (x1, x2) ∈ R2 and
ηr(x3) <∞ for a.a. x3 ∈ R. Since T is subadditive and positivity-preserving,
we get the pointwise inequality

Tη ≤
∞∑

k=1

(2A)−kT k+1(f) =
∞∑

k=2

(2A)1−kT k(f) ≤ (2A)η.

Now let w1 := w1/qηq/q′ and w2 := w−1/qη such that w = w1/w
q−1
2 . Then

M(w1) ≤ w1/q(Tη)q/q′ ≤ w1/qηq/q′(2A)q/q′ = (2A)q/q′w1

M+
1 ()((w1)r) ≤ w1/q(Tη)q/q′ ≤ w1/qηq/q′(2A)q/q′ = (2A)q/q′(w1)r

M(w2) ≤ w−1/qT (η) ≤ w−1/qη 2A = 2Aw2

M−
1 ((w2)r) ≤ w−1/qT (η) ≤ w−1/qη 2A = 2A(w2)r

proving that w1 ∈ Ã−1 , w2 ∈ Ã+
1 .

The case 1 ≤ q < 2 follows by a simple duality argument, since w ∈ Ã−q
is equivalent to w−q′/q ∈ Ã+

q′ .
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Proof of Theorem 1.4 (i). Let q ∈ (1,∞) and w ∈ Aq such that the Lq
w-

estimate of ∇p holds, see (2.5). Hence it suffices to consider u defined by
(2.7)–(2.8). We consider arbitrary q1, q2 ∈ (1,∞) and δ ∈ (0, 1) with

1 < q1 < q < q2 <∞, q1 ≤ 2 ≤ q2 and
1

q
=

1− δ

q1
+
δ

q2
, (3.12)

and assume that wτ ∈ Ã−τq/2 with τ = 2
2−q(1−δ)

∈ [1,∞). By Lemma 3.3 there

exist weights u ∈ Ã−1 , v ∈ Ã+
1 such that

wτ =
u

vτq/2−1
=

u

v
q

2−q(1−δ)
−1
.

Then we define the weights w1, w2 by

w
2/(2−q1)
1 =

u

v
2(q1−1)
2−q1

and w2 =
u

v
q2−2

2

yielding
w

2/(2−q1)
1 ∈ Ã−q1/(2−q1), w2 ∈ Ã−q2/2.

Since, due to an elementary calculation, w = w
q(1−δ)/q1

·
1 w

qδ/q2
,

2 Lemma 3.3 and

Proposition 3.1 prove that T is bounded on Lq
w(R3). Since u1 ∈ Ã−1 , v1 ∈ Ã+

1

are arbitrary, we proved the boundedness of T on Lq
w for arbitrary w if

wτ ∈ Ã−τq/2, τ =
2

2− q(1− δ)
∈ [1,∞).

Now we have to find all admissible τ subject to the restrictions given by
(3.12). For this reason consider the easier term

s = 2

(
1− 1

τ

)
= q(1− δ) = q

1
q
− 1

q2

1
q1
− 1

q2

.

First Case 1 < q < 2, in which 1 < q1 < q and q2 ≥ 2. Due to monotonicity
properties of s as a function of 1

q1
and of 1

q2
it suffices to check s at the corners

of the rectangle (1
q
, 1)×(0, 1

2
]. The corresponding function values are q, 1 and

2− q. Hence the range of s equals the interval (2− q, q) yielding for τ = 2
2−s

the condition
2

q
< τ <

2

2− q
.
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Note that the limiting value τ = 2
2−q

is allowed due to Proposition 3.1.

Finally the condition wτ ∈ Ã−τq/2,
2
q
< τ ≤ 2

2−q
, easily implies that w ∈ Aq:

By Lemma 3.3 there exist u1 ∈ Ã−1 , v1 ∈ Ã+
1 such that

w =
u

1
τ
1

v
q
2
− 1

τ
1

, (3.13)

where u
1
τ
1 ∈ Ã−1 and q

2
− 1

τ
≤ q − 1 yielding v

( q
2
− 1

τ
)/(q−1)

1 ∈ Ã+
1 .

Second Case q > 2, in which 1 < q1 ≤ 2 and q2 > q. In this case the values

of s at the corners of the rectangle [1
2
, 1)× (0, 1

q
) in the

(
1
q1
, 1

q2

)
-plane are 0, 1

and 2. Hence
1 < τ <∞,

and we observe that τ = 1 is admissible due to Proposition 3.1. Finally
note that the condition wτ ∈ Aτq/2 implies also w ∈ Ã−q : There exist u1 ∈
Ã−1 , v1 ∈ Ã+

1 such that w satisfies (3.13), where again q
2
− 1

τ
+ 1 ≤ q for all

τ ∈ (1,∞).

Third Case q = 2. In this case it suffices to interpolate between L2
w1

and

L2
w2

, where w1 ∈ Ã−1 and 1
w2
∈ Ã+

1 , see Proposition 3.1. Then T is bounded

on L2
w for all

w =
w1−δ

1

wδ
2

, 0 < δ < 1.

Then w1/(1−δ) = w1/w
δ/(1−δ)
2 , or with τ = 1

1−δ
∈ (1,∞),

wτ =
w1

wτ−1
2

∈ Ã−τ = Ã−τq/2.

(ii) Note that Lqi
wi

(Rn) ⊂ S ′(Rn), i = 1, 2; indeed, wi ∈ L1
loc(Rn) and∫

|x|≥1
wi(x)|x|−nqi dx < ∞, see [10, IV.3 (3.2)]. Since the equation (1.5) is

linear, it suffices to consider f = 0 and a solution u ∈ S ′(Rn)n of (1.8). In the
proof of [6], Theorem 1.1 (2), (3), it was shown that under these assumptions
u is a polynomial and that u(x) = αω+βω∧x+γ(x1, x2,−2x3)

T , α, β, γ ∈ R
(u(x) = β(−x2, x1) if n = 2).
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Proof of Corollary 1.5. Considering a priori estimates for ∂u
∂x3

we use the
representation (2.7) of u. In order to analyze the dependence of the following
estimates on the parameters k, ν and ω̃ let

k′ = k/ω̃, ν ′ = ν/ω̃ and D(ξ) = 1− e−2π(ν′|ξ|2+ik′ξ3).

Then for f ∈ S(R3)3 we get the identity

̂k∂3u(ξ) =
ik′ξ3
D(ξ)

∫ 2π

0

e−(ν′|ξ|2+ik′ξ3)tOT
e3

(t) F̂ (Oe3(t)ξ) dt, (3.14)

where F = f −∇p, see (2.6). Choose a cut-off function η ∈ C∞
0 (B1(0)) with

η(ξ) = 1 for ξ ∈ B1/2(0) and define the multiplier functions

m0(ξ) =
ik′ξ3ην′(ξ)

D(ξ)
, m1(ξ) =

k′√
ν ′

1− ην′(ξ)

D(ξ)
,

where ην′(ξ) = η(
√
ν ′ξ), as well as

µ0,t(ξ) = e−(ν′|ξ|2+ik′ξ3)t, µ1,t(ξ) = iξ3
√
ν ′e−(ν′|ξ|2+ik′ξ3)t, t ∈ (0, 2π).

Then we get
̂k∂3u(ξ) = m0(ξ)Î0(ξ) +m1(ξ)Î1(ξ),

where I0(x), I1(x) are defined by their Fourier transforms

Î0(ξ) =

∫ 2π

0

µ0,t(ξ)O
T
e3

(t) F̂ (Oe3(t)·)(ξ) dt,

Î1(ξ) =

∫ 2π

0

µ1,t(ξ)O
T
e3

(t) F̂ (Oe3(t)·)(ξ) dt.

Concerning the multiplier function µ0,t we note that e.g.∣∣ξ3 ∂µ0,t

∂ξ3

∣∣ =
∣∣(−2ν ′tξ2

3 − ik′tξ3)e
−(ν′|ξ|2+ik′ξ3)t

∣∣
≤ C

(
ν ′t|ξ|2 + k′√

ν′

√
ν ′t|ξ3|

)
e−ν′|ξ|2t

≤ C
(
1 + k′√

ν′

)
with a constant C > 0 independent of ξ 6= 0, t ∈ (0, 2π), k′ > 0 and ν ′ > 0.
Then it is easily seen that µ0,t, µ1,t satisfy the pointwise multiplier estimates

sup
t∈(0,2π)

max
α

sup
ξ 6=0

(
|ξαDα

ξ µ0,t(ξ)| +
√
t|ξαDα

ξ µ1,t(ξ)|
)
≤ C

(
1 +

k√
ν|ω|

)
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uniformly in k′ > 0 and ν ′ > 0, where α ∈ N3
0 runs through the set of all

multi-indices α ∈ {0, 1}3. Hence Theorem 2.2 (iii) and (2.5) show that

‖I0‖q,w ≤ c
(
1 +

k√
ν|ω|

) ∫ 2π

0

‖F (Oe3(t)·)‖q,w dt ≤ c
(
1 +

k√
ν|ω|

)
‖f‖q,w,

‖I1‖q,w ≤ c
(
1 +

k√
ν|ω|

) ∫ 2π

0

1√
t
‖F (Oe3(t)·)‖q,w dt ≤ c

(
1 +

k√
ν|ω|

)
‖f‖q,w,

where c > 0 is independent of k, ω and ν. Moreover, a lengthy, but elementary
calculation proves that m0,m1 satisfy the pointwise estimates

max
j=0,1

max
α

sup
ξ 6=0

|ξαDα
ξmj(ξ)| ≤ C

(
1 +

k4

ν2|ω|2
)

with c > 0 independent of ν, ω, k; for details see [3]. Now another application
of Theorem 2.2 (iii) yields the estimate

‖k∂3u‖q,w ≤ c

(
1 +

k5

ν5/2|ω|5/2

)
‖f‖q,w

for f ∈ S(R3)3, with a constant c > 0 independent of f, k, ν and ω. Since
S(R3) is dense in Lq

w(R3), this result extends to all f ∈ Lq
w; for its proof

we refer to [3]. However, note that we did not estimate F̂ (Oω(t) · − kte3)ξ)
in Lq(Ω) as in [3]; instead we have to deal with F̂ (Oe3(t) ·), and the shift
operator is estimated with the help of multipliers.

Now Corollary 1.5 is completely proved.

Proof of Corollary 1.6. We have to check for which α, β the weight w(x) =
ηα

β (x) = (1 + |x|)α(1 + s(x))β satisfies the conditions needed in Theorem 1.4.
From [2] and [16, Theorem 5.2] we know that w = ηα

β ∈ Ap, 1 < p < ∞, if
and only if −1 < β < p−1 and −3 < α+β < 3(p−1); moreover, by Lemma
2.4 (iii) we have to satisfy the conditions α < p − 1, β ≥ 0, α + β > −1 to
get that wr(·) ∈ A−p .

Let q > 2. Then in view of (1.8) and (2.3) we have to analyze the convex
set

C =
{
(α, β); α < q

2
− 1

τ
, β ≥ 0, α + β > − 1

τ
, − 1

τ
< β < q

2
− 1

τ
,

− 3
τ
< α + β < 3q

2
− 3

τ
for some τ ∈ [1,∞)

}
.
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Obviously the conditions β > − 1
τ

and − 3
τ
< α + β < 3q

2
− 3

τ
are redundant

since q
2
− 1

τ
is positive; moreover, the conditions α + β > − 1

τ
and β < q

2
− 1

τ

yield α > − q
2
. We will see that

C =
{
(α, β); −q

2
< α <

q

2
, 0 ≤ β <

q

2
, α + β > −1

}
.

Indeed, it suffices to consider pairs (α, β) with α < 0. If moreover α+β < 0,
we find τ0 > 1 such that α + β = − 1

τ0
. Then β = − 1

τ0
− α < − 1

τ0
+ q

2
and

α < 0 < q
2
− 1

τ0
; consequently (α, β) ∈ C. If α + β ≥ 0, we may choose τ

sufficiently large to show that (α, β) ∈ C.
Now consider the case 1 < q < 2. As in the previous case we have to

analyze the set C where now τ runs in the interval
(

2
q
, 2

2−q

]
. Since τ > 2

q
, the

same conditions as before are redundant; moreover, α > − q
2
. Then we will

show show that

C =
{
(α, β);−q

2
< α < q − 1, 0 ≤ β < q − 1, α + β > −q

2

}
.

Indeed, if e.g. α < 0 and α + β ≤ q
2
− 1 < 0, then there exists τ0 ∈

(
2
q
, 2−q

2

]
such that α+β = − 1

τ0
, β = − 1

τ0
−α < − 1

τ0
+ q

2
and α < 0 < q

2
− 1

τ0
; however,

when α+ β > q
2
− 1, we may choose τ = 2

2−q
to see that (α, β) ∈ C.
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