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Abstract

We present the description of the spectrum of a linear perturbed Oseen–type operator
which arises from equations of motion of a viscous incompressible fluid in the exterior
of a rotating compact body. Considering the operator in the function space L2

σ(Ω) we
prove that the essential spectrum consists of an infinite set of overlapping parabolic
regions in the left half–plane of the complex plane. Our approach is based on a
reduction to invariant closed subspaces of L2

σ(Ω) and on a Fourier series expansion
with respect to an angular variable in a cylindrical coordinate system attached to the
axis of rotation.
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1 Motivation and introduction

Suppose that B is a compact body in R3 which is rotating about the x1–axis with a
constant angular velocity ω > 0. Denote by Ω(t) the exterior of B at time t and assume
that Ω(t) is a domain with boundary of class C1,1.

The flow of a viscous incompressible fluid in the exterior of the body B can be described
by the Navier–Stokes equation and the equation of continuity in the space–time region
{(x, t) ∈ R3×I; t ∈ I, x ∈ Ω(t)} where I is an interval on the time axis. The disadvantage
of this description is the variability of the spatial domain Ω(t). Therefore, many authors
use a time–dependent transformation of spatial coordinates which in fact also represents
the rotation about the x1 axis such that the body B is fixed and its exterior is just Ω(0)
in the new coordinate system. The system of equations after the transformation has the
form

∂tu− ν∆u− ω(e1 × x) · ∇u + ωe1 × u + (u · ∇)u +∇p = f (1.1)

∇ · u = 0 (1.2)

in Ω(0)× I, where e1 is the unit vector oriented in the direction of the x1–axis. The con-
dition of the adherence of the fluid to the body on the boundary, after the transformation,
has the form

u(x, t) = ωe1 × x, x ∈ ∂Ω(0). (1.3)

In order to simplify the notation, we shall write only Ω instead of Ω(0).
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Among a series of results on qualitative properties of the system (1.1)–(1.3) and related
linear problems, let us mention T. Hishida [15], [16], [17], G. P. Galdi [9], [10], R. Farwig,
T. Hishida, D. Müller [5], R. Farwig [3], [4], Š. Nečasová [23], M. Geissert, H. Heck,
M. Hieber [11], S. Kračmar, Š. Nečasová, P. Penel [19], R. Farwig, J. Neustupa [6] and
R. Farwig, Š. Nečasová, J. Neustupa [7].

We shall use the usual function spaces and notation:
◦ n is the outer normal vector on ∂Ω.
◦ (. , .)0,2 and ‖ . ‖0,2 are the scalar product and the norm in L2(Ω)3, respectively.
◦ W 1,2

0 (Ω) is the subspace of the Sobolev space W 1,2(Ω) consisting of functions
vanishing on ∂Ω in the sense of traces. As is well-known, W 1,2

0 (Ω) equals the
closure of C∞

0 (Ω) in the norm of W 1,2(Ω).
◦ ‖ . ‖k,2 denotes the norm in W k,2(Ω)3, k ∈ N.
◦ C∞

0,σ(Ω) denotes the space of all divergence–free functions from C∞
0 (Ω)3.

◦ L2
σ(Ω) is the closure of C∞

0,σ(Ω) in L2(Ω)3. The space L2
σ(Ω) can be characterized

as the space of all divergence–free (in the sense of distributions) vector functions
u from L2(Ω)3 such that u ·n = 0 on ∂Ω in the sense of traces ([8], pp. 111–115).

◦ Πσ denotes the orthogonal projection of L2(Ω)3 onto L2
σ(Ω).

Suppose that U∗ is a steady strong solution of the problem (1.1)–(1.3) such that

|∇U∗| ∈ L3/2(Ω) ∩ L3(Ω), (1.4)

lim
R→+∞

ess sup
|x|>R

|U∗ −U∗
∞| = 0 (1.5)

where U∗
∞ = (γ, 0, 0), γ ∈ R. The function U := U∗ −U∗

∞ equals ωe1 × x − (γ, 0, 0) on
∂Ω. Combining this information with the Sobolev inequality, see e.g. [8], p. 31, we can
deduce that U satisfies U ∈ Ls(Ω)3 for all 3 ≤ s < +∞. In order to study the behavior
of solutions near the steady solution U∗, we put u = U∗ + v = (γ, 0, 0) + U + v. Then
the perturbation v is a solution of the problem given by the equations

∂tv − ν∆v − ω(e1 × x) · ∇v + ωe1 × v + γ∂1v + (U · ∇)v + (v · ∇)U

+(v · ∇)v +∇p = 0,

∇ · v = 0

in Ω× I (where I is a time interval) and by the boundary condition

v(x, t) = 0 for x ∈ ∂Ω.

This problem can be written in the form of the operator equation

∂tv = Lω
γ v +Nv (1.6)

in L2
σ(Ω) where

Lω
γ v = Aω

γ v +Bv, (1.7)

Aω
γ v = Πσν∆v + Πσ[ω(e1 × x) · ∇v − ωe1 × v − γ∂1v], (1.8)

Bv = −Πσ[(U · ∇)v + (v · ∇)U ], (1.9)

Nv = −Πσ(v · ∇)v. (1.10)
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The operators Aω
γ and Lω

γ are defined in the same domains

D(Aω
γ ) = D(Lω

γ ) =
{

v ∈W 2,2(Ω)3 ∩W 1,2
0 (Ω)3 ∩ L2

σ(Ω); ω(e1 × x) · ∇v ∈ L2(Ω)3
}

which are dense subsets of L2
σ(Ω). The information on spectra of the linear operators Aω

γ

and Lω
γ plays a fundamental role in studies of the evolution equation (1.6). Whereas the

case γ = 0 was treated in detail in our paper [6], here we consider the important case
γ 6= 0. Our main theorem now reads as follows:

Theorem 1.1 (i) The essential spectrum σess(Aω
γ ) has the form

σess(Aω
γ ) = Λω

γ := {λ = α+ iβ + ikω ∈ C; α, β ∈ R, k ∈ Z, α ≤ −νβ2/γ2}, (1.11)

i.e., it consists of an infinite union of equally shifted filled parabolas in the left half–
plane of C, see Fig. 1.

(ii) The operator Aω
γ is not normal.

(iii) If λ is an eigenvalue of Aω
γ then Re λ < 0.

(iv) If the body B (and therefore also the domain Ω) is axially symmetric about the x1–
axis, then σ(Aω

γ ) = σess(Aω
γ ) = Λω

γ .

(v) The operator Lω
γ has the same essential spectrum as Aω

γ .

(vi) σ(Lω
γ ) = σess(Lω

γ )∪ Γ where Γ consists of an at most countable set of isolated eigen-
values of Lω

γ which can possibly cluster only at points of σess(Lω
γ ); each of them has

finite algebraic multiplicity.
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Fig. 1 : The shape of set Λω
γ

The proof of statements (i)–(iii) and (v), (vi) is given in Section 6. Statement (iv) is
proved in Section 5.
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2 Preliminaries

All function spaces needed in the following are considered to be spaces of complex–valued
functions.

Lemma 2.1 There exists c1 > 0 such that if v ∈ D(Aω
γ ) and Aω

γ v = f , then

‖v‖2,2 + ‖(ωe1 × x) · ∇v‖0,2 ≤ c1(γ)
(
‖f‖0,2 + ‖v‖0,2

)
. (2.1)

Proof. The equation Aω
γ v = f means that Aω

0 v = f + Πσγ ∂1v. Applying the results
from [5] (Ω = R3) or from [16] (Ω being an exterior domain in R3) to the solution of the
equation Aω

0 v = g (with g = f + Πσγ ∂1v), we obtain

‖v‖2,2 + ‖(ωe1 × x) · ∇v‖0,2 ≤ c1(0)
(
‖Aω

0 v‖0,2 + ‖v‖0,2

)
≤ c1(0)

(
‖f‖0,2 + |γ| ‖Πσ∂1v‖0,2 + ‖v‖0,2

)
.

Interpolating suitably the norm ‖Πσ∂1v‖0,2 between the norms ‖v‖0,2 and ‖v‖2,2, we arrive
at (2.1). �

Lemma 2.2 Aω
γ is a closed operator in L2

σ(Ω) and its adjoint has the form

(Aω
γ )∗v = Πσν∆v −Πσ[ω(e1 × x) · ∇v − ωe1 × v − γ∂1v] = A−ω

−γ v (2.2)

with D
(
(Aω

γ )∗
)
= D(Aω

γ ).

Proof. The operator Aω
γ generates a C0–semigroup, see [11]. Hence it is closed and there

exists ξ0 ∈ R such that ξ ∈ ρ(Aω
γ ) and R(ζI − Aω

γ ), the range of ζI − Aω
γ , equals L2

σ(Ω)
for ξ > ξ0.

Let us denote by Tω
γ the operator on the right hand side of (2.2) with D(Tω

γ ) = D(Aω
γ ),

i.e. Tω
γ = A−ω

−γ . Then Tω
γ is closed and R(ζI − Tω

γ ) = L2
σ(Ω) if ζ > 0 is sufficiently large.

Using integration by parts, we can verify that(
u, Aω

γ v
)
0,2

=
(
Tω

γ u, v
)
0,2

for all u ∈ D(Tω
γ ) and v ∈ D(Aω

γ ). It means that the operators Aω
γ and Tω

γ are adjoint to
each other and Tω

γ ⊂ (Aω
γ )∗, see T. Kato [18], p. 167.

Suppose that u ∈ D((Aω
γ )∗). Then there exists w ∈ D(Tω

γ ) such that [ζI − (Aω
γ )∗]u =

(ζI − Tω
γ )w. Multiplying both sides of this identity by v ∈ D(Aω

γ ), we arrive at(
u, (ζI −Aω

γ )v
)
0,2

=
(
w, (ζI −Aω

γ )v
)
0,2

.

As this holds for all v ∈ D(Aω
γ ), we get u = w ∈ D(Tω

γ ) and consequently, D((Aω
γ )∗) ⊂

D(Tω
γ ). Thus, (Aω

γ )∗ = Tω
γ . �

Lemma 2.3 If v ∈ D(Aω
γ ), then both the terms ω(e1×x) ·∇v−ωe1×v and γ∂1v belong

to L2
σ(Ω).
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Proof. It was already shown in [6] that ω(e1 × x) · ∇v − ωe1 × v ∈ L2
σ(Ω).

The space C∞
0,σ(Ω) is dense in D(Aω

γ ) in the topology of W 1,2(Ω)3; hence given v ∈
D(Aω

γ ), there exists a sequence vn ∈ C∞
0,σ(Ω) such that vn → v in W 1,2(Ω)3. Let ψ be a

function from W 1,2
loc (Ω) such that ∇ψ ∈ L2(Ω)3. Then we have∫

Ω
γ∂1v · ∇ψ dx = lim

n→+∞

∫
Ω
γ∂1v

n · ∇ψ dx = − lim
n→+∞

∫
Ω

div (γ∂1v
n)ψ dx = 0.

Thus the function γ∂1v is orthogonal to the subspace of all gradients in L2(Ω)3, which
implies that it belongs to L2

σ(Ω), see e.g. G. P. Galdi [8], p. 103. �

Lemma 2.3 enables us to omit the projection Πσ in front of the terms in the brackets
on the right hand side of (1.8) and (2.2). The operator Aω

γ can therefore be simplified to

Aω
γ v = A0

0v + ω(e1 × x) · ∇v − ωe1 × v − γ∂1v

= A0
γv + ω(e1 × x) · ∇v − ωe1 × v (2.3)

where A0
0 ≡ νΠσ∆ is the Stokes operator in L2

σ(Ω) with domain D(A0
0) = W 2,2(Ω)3 ∩

W 1,2
0 (Ω)3 ∩ L2

σ(Ω). The Stokes operator A0
0 is selfadjoint in L2

σ(Ω), see e.g. Y. Giga,
H. Sohr [12]. Moreover, A0

γ is the usual Oseen operator with the same domain as A0
0. By

analogy, the adjoint operator to Aω
γ can be simplified to

(Aω
γ )∗v = A0

0v − ω(e1 × x) · ∇v + ωe1 × v + γ∂1v

= A0
−γv − ω(e1 × x) · ∇v + ωe1 × v (2.4)

Lemma 2.4 The operator B, defined by (1.9), is Aω
γ –compact.

Proof. We have proved in [6] that the operator B is Aω
0 –compact. The proof in the case

of γ 6= 0 can be done in the same way. The crucial step is an appropriate application of
Lemma 2.1, which enables us to deduce that the boundedness of two sequences {φn} and
{Aω

γ φn} in L2
σ(Ω) implies the boundedness of {φn} in W 2,2(Ω)3. �

Lemmas 2.2 and 2.4 imply that the operator Lω
γ is closed in L2

σ(Ω), see [18], p. 194.
It will be further advantageous to work in cylindrical coordinates. We shall denote by

x1, r and ϕ the cylindrical coordinate system whose axis is the x1–axis such that the angle
ϕ is measured from the positive part of the x2–axis towards the positive part of the x3–
axis. The corresponding cylindrical components of vector functions will be denoted by the
indices 1, r and ϕ, e.g. u1, ur and uϕ. In order to distinguish between the Cartesian and the
cylindrical components of vectors, we shall write the Cartesian components in parentheses
and the cylindrical components in brackets. Thus, we have (u1, u2, u3) , [u1, ur, uϕ].
Using the transformations

ur = u2 cosϕ+ u3 sinϕ,
uϕ = −u2 sinϕ+ u3 cosϕ,

u2 = ur cosϕ− uϕ sinϕ,
u3 = ur sinϕ+ uϕ cosϕ,

we can calculate that

(ω × x) · ∇u− ω × u = ω ∂ϕu− (ω × u) = ω ∂ϕ(u1, u2, u3)− ω (0,−u3, u2)

5



= ω ∂ϕ

 u1

ur cosϕ− uϕ sinϕ
ur sinϕ+ uϕ cosϕ

T

− ω

 0
−ur sinϕ− uϕ cosϕ
ur cosϕ− uϕ sinϕ

T

= ω

 ∂ϕu1

(∂ϕur) cosϕ− (∂ϕuϕ) sinϕ
(∂ϕur) sinϕ+ (∂ϕuϕ) cosϕ

T

, ω

 ∂ϕu1

∂ϕur

∂ϕuϕ

T

= ω ∂ϕ

[
u1, ur, uϕ

]
.

In the following, the vector function u will be identified with [u1, ur, uϕ]; the same holds
for other vectors or vector functions. Thus, the relation (2.3) between the operator Aω

γ

and the Stokes operator A0
0 can be written in the form

Aω
γ u = A0

0u + ω ∂ϕu− γ ∂1u (2.5)

where A0
0 now stands for the Stokes operator in cylindrical coordinates.

If T is a closed linear operator in a Hilbert space H, then we shall use the following
notions and notation:

◦ N(T ) is the null space of T , R(T ) is the range and T ∗ is the adjoint operator to T .

◦ nul(T ) is the nullity and def(T ) is the deficiency of T .

◦ ind(T ) = nul(T )− def(T ) denotes the index of T .

◦ nul′(T ) is the approximate nullity and def ′(T ) is the approximate deficiency of T .

◦ ρ(T ) denotes the resolvent set of T .

◦ σp(T ) is the point spectrum of T , σc(T ) its continuous spectrum and σr(T ) its
residual spectrum.

◦ σ(T ) is the whole spectrum of T (= σp(T ) ∪ σc(T ) ∪ σr(T )).

◦ σess(T ) denotes the essential spectrum of T , i.e. the set of λ ∈ C such that nul′(T −
λI) = def ′(T − λI) = +∞.

◦ σ̃c(T ) denotes the set of those λ ∈ C for which there exists a non–compact sequence
{un} in the unit sphere inH such that (T−λI)un → 0 for n→ +∞. It is equivalent
to the equality nul′(T − λI) = +∞.

◦ T is said to be normal if T ∗T = TT ∗.

The definitions of these notions can be found in [18] or in [13], see [6] for the survey
of their main properties. For the purposes of this paper, let us recall that σp(T ), σr(T )
and σc(T ) are mutually disjoint, σ(T ), σess(T ) and σ̃c(T ) are closed sets in C and σc(T ) ⊂
σess(T ) ⊂ σ̃c(T ) ⊂ σ(T ).

3 The Oseen operator A0
γ

It is known that the spectra of the Stokes operator A0
0 satisfy the identities

σp(A0
0) = σr(A0

0) = ∅, (3.1)

σ(A0
0) = σess(A0

0) = σc(A0
0) = (−∞, 0]. (3.2)

6



(The residual spectrum of A0
0 is empty because A0

0 is selfadjoint. The reasons why the
point spectrum is also empty are explained in [6]. The identities σ(A0

0) = σc(A0
0) = (−∞, 0]

follow from I. M. Glazman [13] and O. A. Ladyzhenskaya [20].)
The spectrum of the Oseen operatorA0

γ was studied by K. I. Babenko in [1]. Considering
the case Ω = R3 and assuming that λ ∈ Λ0

γ where

Λ0
γ =

{
λ = α+ iβ ∈ C; α, β ∈ R, α ≤ −νβ2/γ2

}
, (3.3)

K. I. Babenko mentions a construction (based on the Fourier transform) of a non–compact
sequence {vn} in the unit sphere in L2

σ(Ω) such that ‖(A0
γ − λI)vn‖0,2 → 0 as n → +∞.

Then λ ∈ σess(A0
γ) and consequently Λ0

γ ⊂ σess(A0
γ). On the other hand, the author states

that the equation

(A0
γ − λI)v = f , (3.4)

for Re λ > 0 and f ∈ L2
σ(Ω), can be solved by means of a Green’s function of the Dirichlet

problem with a reference to F. Odqvist [24] for more details concerning the construction
of Green’s function and its estimates. Furthermore, K. I. Babenko emphasizes that it is
not difficult to treat the other cases of λ ∈ C−Λ0

γ . Thus, he arrives at Propositions 4 and
5 which imply that C− Λ0

γ ⊂ ρ(A0
γ).

Since the information on the spectrum of the operator A0
γ is of fundamental importance,

in the following theorem we present a complete proof based on a totally different approach.

Theorem 3.1 σ(A0
γ) = σess(A0

γ) = Λ0
γ.

Proof. I. Let us begin with the inclusion C−Λ0
γ ⊂ ρ(A0

γ) to be proved by contradiction.
Suppose that λ = α + iβ ∈ (C − Λ0

γ) ∩ σ(A0
γ). Assume that λ ∈ σp(A0

γ) ∪ σc(A0
γ) at first.

Then there exists a sequence vn in the unit sphere in L2
σ(Ω) such that

(A0
γ − λI)vn = εn −→ 0 in L2

σ(Ω) as n→ +∞. (3.5)

This sequence {vn} can be constant if λ ∈ σp(A0
γ). We test (3.5) with vn (in the L2–sense

for complex–valued functions) and get that

−ν ‖∇vn‖2
0,2 − λ ‖vn‖2

0,2 − γ (∂1v
n,vn)0,2 = (εn,vn)0,2 . (3.6)

Note that Re (∂1v
n,vn)0,2 = 0. Next we consider the real and imaginary part of (3.6) and

see that

ν ‖∇vn‖2
0,2 = −α ‖vn‖2

0,2 − Re (εn,vn)0,2 ≤ −α+ ‖εn‖0,2 . (3.7)

Using (3.5), we observe that α ≤ 0. From (3.6) and (3.7) we obtain

‖∇vn‖0,2 ≤
(
−α
ν

+
1
ν
‖εn‖0,2

)1/2
, (3.8)

as well as

β = β ‖vn‖2
0,2 = −γ Im (∂1v

n,vn)0,2 − Im (εn,vn)0,2

7



so that

|β| ≤ γ ‖∇vn‖0,2 + ‖εn‖0,2 . (3.9)

Inserting the estimate (3.8) into (3.9) we are led to the inequality

|β| ≤ γ
(
−α
ν

+
1
ν
‖εn‖0,2

)1/2
+ ‖εn‖0,2 .

As n→ +∞, (3.5) implies that |β| ≤ γ
√
−α/ν, i.e. α ≤ νβ2/γ2. Obviously, this inequality

is in contradiction with the assumption λ ∈ C− Λ0
γ . Hence λ ∈ C− Λ0

γ cannot belong to
σp(A0

γ) ∪ σc(A0
γ). Now assume that λ ∈ σr(A0

γ). Then λ belongs to the point spectrum of
the adjoint operator (A0

γ)∗; this leads to the same contradiction as if λ ∈ σp(A0
γ). Thus,

λ ∈ ρ(A0
γ) which implies that C− Λ0

γ ⊂ ρ(A0
γ).

II. Now we will prove that Λ0
γ ⊂ σ̃c(A0

γ). Let λ = α + iβ ∈ (Λ0
γ)◦ be given; here (Λ0

γ)◦

denotes the interior of Λ0
γ , i.e. the set of α+ iβ ∈ C such that α < −νβ2/γ2. The number

α can be written in the form α = α1 + α2 where α1 = −νβ2/γ2 and α2 < 0.
We shall explicitly define functions vn ∈ L2

σ(Ω) such that ‖vn‖0,2 = 1, (A0
γ−λI)vn → 0

in L2
σ(Ω) as n→ +∞ and such that the sequence {vn} does not contain any subsequence,

convergent in L2
σ(Ω). Let us denote by vn

1 , vn
r and vn

ϕ the cylindrical components of vn.
Put

vn
1 (x1, r, ϕ) := 0,

vn
r (x1, r, ϕ) := κn U

n(x1)V n(r) eikϕ,

vn
ϕ(x1, r, ϕ) := − 1

ik
∂r [r vn

r (x1, r, ϕ)] = − 1
ik
κn U

n(x1)
[
V n(r) + r

dV n(r)
dr

]
eikϕ

where k is an arbitrary, but fixed chosen non–zero integer. Then, obviously, vn satisfies
the condition

∇ · vn ≡ ∂1v
n
1 +

1
r
∂r(rvn

r ) +
1
r
∂ϕv

n
ϕ = 0.

Here the function Un has the form

Un(x1) := ηn
1 (x1)Y (x1) (3.10)

where ηn
1 is an infinitely differentiable function on (−∞,+∞) such that 0 ≤ ηn

1 ≤ 1,

ηn
1 (x1) =

{
0 for x1 ≤ −n− n2 and n+ n2 ≤ x1,

1 for −n2 ≤ x1 ≤ n2,

and Y (x1) = eiax1 . The identity α1 = −νβ2/γ2 guarantees that the characteristic equation
νζ2− γζ − (α1 + iβ) = 0, corresponding to the equation (3.11) below, has the root ζ1 = ia
where a = −β/γ. Thus, the function Y is a bounded non–trivial solution of the ordinary
differential equation

ν Y ′′(x1)− γ Y ′(x1)− (α1 + iβ) Y (x1) = 0 (3.11)
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in the interval (−∞,+∞). The function V n has the form

V n(r) := ηn
2 (r) eibr; b =

√
−α2

ν
(3.12)

where ηn
2 is an infinitely differentiable function on [0,+∞) such that 0 ≤ ηn

2 ≤ 1 and

ηn
2 (r) =

{
0 for 0 ≤ r ≤ n and 3n+ n2 ≤ r,

1 for 2n ≤ r ≤ 2n+ n2.

Both the functions η1 and η2 can be chosen so that their derivatives are of the order 1/n.
The definition of V n guarantees that it satisfies

ν
d2

dr2
V n(r)− α2 V

n(r) = 0 (3.13)

for 2n < r < 2n + n2. Finally, the constant κn is chosen so that ‖vn‖0,2 = 1. Thus, the
support of vn is a subset of

Sn :=
{
x = [x1, r, ϕ] ∈ R3; −n−n2 ≤ x1 ≤ n+n2, n ≤ r ≤ 3n+n2, 0 ≤ ϕ < 2π

}
. (3.14)

Considering the norm of vn, we can observe that for large n the decisive contribution
comes from the integral of |vn

ϕ|2, namely of its part
∣∣(−1/ik)κn U

n r (dV n/dr) eikϕ
∣∣2, on

the region

Dn :=
{
x = [x1, r, ϕ] ∈ R3; −n2 < x1 < n2, 2n < r < 2n+ n2, 0 < ϕ < 2π

}
. (3.15)

The integrals of all other parts on other regions are of a lower order in n. Calculating the
integral of

∣∣(−1/ik)κn U
n r (dV n/dr) eikϕ

∣∣2 on the domain Dn, we obtain∫ n2

−n2

∫ 2n+n2

2n

∫ 2π

0

∣∣∣∣κn

ik
Un(x1) r

dV n(r)
dr

∣∣∣∣2 r dϕdr dx1

= 2π
κ2

n

k2

∫ n2

−n2

|Un(x1)|2 dx1

∫ 2n+n2

2n
r3

∣∣∣∣dV n(r)
dr

∣∣∣∣2 dr

= 2π
κ2

n

k2
2n2 b

2

4

(
(2n+ n2)4 − (2n)4

)
.

Here we have used the equalities ηn
1 (x1) = ηn

2 (r) = 1, hence |Un(x1)| = |V n(r)| = 1 for
(x1, r, ϕ) ∈ Dn. Thus, there exist n0 ∈ N and positive constants c2 and c3 (independent
of n) such that

∀n ∈ N, n ≥ n0 :
c2
n5

≤ κn ≤ c3
n5

. (3.16)

Now looking at (A0
γ − λI)vn, we can omit the projection Πσ in front of the Laplace

operator in A0
γvn because ∆vn is divergence–free and has a compact support in Ω. Thus,

(A0
γ−λI)vn = ν∆vn−γ∂1v

n−λvn. Calculating the norm of this expression in L2
σ(Ω), we

observe that the contributions coming from Ω−Dn tend to zero as n→ +∞ because they
represent square roots of integrals of functions bounded by Cκ2

nr
2 on Sn − Dn. Due to
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(3.16), this contribution is of the order n−1/2. Concerning the integral on Dn, the decisive
part again comes from (ν∆ − γ∂1 − λI)vn

ϕ, namely from (ν∆ − γ∂1 − λI) applied to the
term (−1/ik)κn U

n r (dV n/dr) eikϕ because of the factor r inside this term. Note that due
to (3.11) and (3.13)

(
ν∆− γ∂1 − λI

)(κn

ik
Un(x1) r

dV n(r)
dr

eikϕ

)
=

(
ν∂2

1 + ν∂2
r +

ν

r
∂r +

ν

r2
∂2

ϕ − γ ∂1 − λI
)(

κn

ik
Un(x1) r

dV n(r)
dr

eikϕ

)
=

κn

ik
Un(x1)

(
ν

d2

dr2
+
ν

r

d
dr

− α2I

) [
r

dV n(r)
dr

]
eikϕ

+
κn

ik

(
νY ′′(x1)− γY ′(x1)− [α1 + iβ]Y (x1)

) [
r

dV n(r)
dr

]
eikϕ

− κn

ik
νk2

r2
Un(x1) r

dV n(r)
dr

eikϕ

=
{
κn

ik
Un(x1) r

d
dr

[
ν

d2V n(r)
dr2

− α2 V
n(r)

]
+
κn

ik
Un(x1) 2ν

d2V n(r)
dr2

+
κn

ik
Un(x1)

ν

r

d
dr

[
r

dV n(r)
dr

]
− κn

ik
Un(x1)

νk2

r

dV n(r)
dr

}
eikϕ

=
νκn

ik

(
−3b2 +

ib
r
− k2 ib

r

)
ei(ax1+br) eikϕ

where in the last step we used the simple forms of the functions Un and V n on Dn, i.e.
Un(x1) = eiax1 and V n(r) = eibr. Hence[∫ n2

−n2

∫ 2n+n2

2n

∫ 2π

0

∣∣∣∣(ν∆− γ∂1 − λI
) (

κn

ik
Un(x1) r

dV n(r)
dr

eikϕ

)∣∣∣∣2 r dϕ dr dx1

]1/2

≤ C(ν, k, b)κn

[∫ n2

−n2

∫ 2n+n2

2n
r dr dx1

]1/2

= C(ν, k, b)κn n
[
(2n+ n2)2 − (2n)2

]1/2
.

The last term tends to zero as n → +∞ due to (3.16). In this way, we prove that
‖(A0

γ − λI)vn‖0,2 → 0 as n→ +∞.
The sequence {vn} does not contain any convergent subsequence because the intersec-

tion of supports of any infinite family of functions, chosen from {vn}, is empty.
Since λ was an arbitrarily chosen number from (Λ0

γ)◦, we have obtained the inclusion
(Λ0

γ)◦ ⊂ σ̃c(A0
γ). It means that nul′(A0

γ − λI) = +∞. Since the operators A0
γ and (A0

γ)∗

differ only in the sign in front of γ∂1, we can prove in the same way that nul′((A0
γ)∗−λI) =

+∞. It means that def ′(A0
γ − λI) = +∞ and consequently, λ ∈ σess(A0

γ). The essential
spectrum is a closed set, hence Λ0

γ ⊂ σess(A0
γ). �

Theorem 3.1 provides an information on the shape of the whole spectrum σ(A0
γ), but it

does not specify which numbers λ from σ(A0
γ) belong to σp(A0

γ), σc(A0
γ) or to σr(A0

γ). We
do answer this question in this paper neither for the operator A0

γ nor for the more general
operator Aω

γ .

10



The Oseen operator A0
γ generates an analytic semigroup, see T. Miyakawa [22]. There-

fore the operator (−A0
γ) is sectorial, see D. Henry [14], p. 20–21. The next theorem states

the non–normality of the Oseen operator, which stresses the difference between the Stokes
and Oseen operators.

Theorem 3.2 The Oseen operator A0
γ is not normal.

Proof. Constructing a function z ∈ D((A0
γ)∗A0

γ) which is not in D(A0
γ(A0

γ)∗), we show
that the domains D((A0

γ)∗A0
γ) and D(A0

γ(A0
γ)∗) do not coincide.

Let R > 0 be so large that the body B is contained in the interior of the cube [−R,R]3.
Recall that Ω = R3 − B. Define the set

Ωper :=
{
x = (x1, x2, x3) ∈ R3; ∃ k, l,m ∈ Z :(
x1 − kR, x2 − lR, x3 −mR

)
∈ [−R,R]3 − B

}
.

Note that Ωper is a domain in R3 which consists of infinitely many copies of the set
[−R,R]3 − B, periodically repeated in directions parallel with the x1–, x2– and x3–axis.
We shall use the following function spaces:

◦ (C∞
0 )3per is the space of infinitely differentiable vector functions φ in Ωper, R–

periodic in the directions of all Cartesian axes and such that dist (supp φ; B) > 0.
◦ (L2)3per is the completion of (C∞

0 )3per in the norm identical with the L2–norm on
(−R,R)3 − B. The spaces (W 1,2

0 )3per and (W 2,2)per are defined analogously.
◦ (L2

σ)per is the closure of the space of divergence–free functions from (C∞
0 )3per in

(L2)3per.

Let (A0
0)per denote the Stokes operator in (L2

σ)per with the dense domain D((A0
0)per) =

(W 2,2)3per ∩ (W 1,2
0 )3per ∩ (L2

σ)per. Then (A0
0)per has a compact resolvent and its spectrum,

as well as the spectrum of (A0
0)per − γ∂1 (with the same domain), consists of a countable

number of isolated eigenvalues with finite multiplicities and negative real parts. Choose
an eigenvalue ζ of (A0

0)per − γ∂1 and denote by u an associated eigenfunction so that the
equation

(A0
0)peru− γ∂1u− ζu = 0 (3.17)

is satisfied in Ωper.
Let us show, by contradiction, that the eigenfunction u can be chosen so that ∂1u 6≡ 0

on ∂Ωper. Assume the opposite, i.e. that all eigenfunctions v of the operator (A0
0)per−γ∂1,

corresponding to the eigenvalue ζ, satisfy ∂1v ≡ 0 on ∂Ωper. Then, for each of them, there
are two possibilities: either ∂1v ≡ 0 in Ωper (which can be easily excluded) or ∂1v is
also an eigenfunction of (A0

0)per − γ∂1 corresponding to the same eigenvalue ζ. Since the
eigenspace of (A0

0)per−γ∂1, generated by all such eigenfunctions, is finite–dimensional, we
can choose an eigenfunction u so that

γ ∂1u = µu (3.18)

with an appropriate constant µ. Since u = 0 on ∂Ωper and equation (3.18) is satisfied in
Ωper, the integration of (3.18) on line segments parallel with the x1–axis and starting from
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the boundary of Ωper yields that u = 0 on all such line segments. Thus, u vanishes iden-
tically in an open subset of Ωper. Now the unique continuation principle, see e.g. R. Leiss
[21], applied to w = curlu, shows that w ≡ 0 in Ωper. Consequently, u ≡ 0 in Ωper which
is impossible because u is an eigenfunction. Since the assumption that ∂1u ≡ 0 on ∂Ωper

leads to contradiction, we have ∂1u 6≡ 0 on ∂Ωper.
Note that ∂Ω ⊂ ∂Ωper and ∂Ωper consists of infinitely many copies of ∂Ω repeated

periodically with the period R in the direction of each Cartesian coordinate. Now we
multiply function u by an infinitely–differentiable cut–off function ηR which equals one in
the neighborhood of ∂Ω and whose support is contained in (−R,R)3 −B, and correct the
product ηRu by an appropriate function UR which guarantees that div (ηRu−UR) = 0. By
these means we can obtain a function z in D((A0

γ)∗A0
γ) which coincides with the function

u constructed above in the neighborhood of Ω and equals zero outside (−R,R)3. The
function z satisfies ∂1z 6≡ 0 on ∂Ω. Then z cannot belong to D(A0

γ(A0
γ)∗) because all

functions from D((A0
γ)∗A0

γ)∩D(A0
γ(A0

γ)∗) satisfy on ∂Ω the conditions z = A0
0z +γ∂1z =

A0
0z − γ∂1z = 0, which implies that ∂1z = 0 on ∂Ω. �

4 Axially symmetric domains – decomposition of L2
σ(Ω)

and of A0
γ

We shall assume that the domain Ω ⊂ R3 is axially symmetric with respect to the x1–axis
in this section.

Let k be an integer. We introduce the following spaces and notation:

◦ L2(Ω)3k = {v ∈ L2(Ω)3; v = V (x1, r) eikϕ}
◦ C∞

0 (Ω)3k = C∞
0 (Ω)3 ∩ L2(Ω)3k

◦ C∞
0,σ(Ω)k = C∞

0 (Ω)3k ∩ C∞
0,σ(Ω)

◦ L2
σ(Ω)k = the closure of C∞

0,σ(Ω)k in L2(Ω)3k
◦ Pk – the orthogonal projection of L2(Ω)3 onto L2(Ω)3k
◦ (A0

γ)k – the restriction of the operator A0
γ to the space L2

σ(Ω)k

Obviously, L2(Ω)3k, k ∈ Z, is a closed subspace of L2(Ω)3, and L2
σ(Ω)k is a closed subspace

of L2
σ(Ω). The domain of (A0

γ)k equals D(A0
γ) ∩ L2

σ(Ω)k.
Each function v from L2(Ω)3 can uniquely be written in the form of a convergent

Fourier series – with respect to the variable ϕ – of terms from L2(Ω)3k, k ∈ Z:

v(x1, r, ϕ) =
+∞∑

k=−∞
V k(x1, r) eikϕ; V k(x1, r) =

1
2π

∫ 2π

0
v(x1, r, ϕ) e−ikϕ dϕ. (4.1)

Thus, we have L2(Ω)3 = . . .⊕L2(Ω)3−2 ⊕L2(Ω)3−1 ⊕L2(Ω)30 ⊕L2(Ω)31 ⊕L2(Ω)32 ⊕ . . . . We
have proved in [6] that

Πσ L
2(Ω)3k = L2

σ(Ω) ∩ L2(Ω)3k = L2
σ(Ω)k = PkL

2
σ(Ω). (4.2)

The next lemma generalizes some results from [6].
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Lemma 4.1 Let k ∈ Z. Then (A0
γ)k is a closed operator in L2

σ(Ω)k with the dense domain
D((A0

γ)k); moreover D((A0
γ)k) = Pk[D(A0

γ)], R((A0
γ)k) ⊂ L2

σ(Ω)k.

Proof. The operator (A0
γ)k is closed because it is the restriction of the closed operator

A0
γ onto a closed subspace of L2

σ(Ω). The domain of (A0
γ)k is the set of functions from

L2
σ(Ω)k, that belong to W 2,2(Ω)3 ∩W 1,2

0 (Ω)3. This set contains C∞
0,σ(Ω), hence it is dense

in L2
σ(Ω)k.

Let v ∈ D(A0
γ) ≡W 2,2(Ω)3∩W 1,2

0 (Ω)3∩L2
σ(Ω) and let (4.1) be its Fourier expansion in

the variable ϕ. Then V k(x1, r) eikϕ ≡ Pkv ∈W 2,2(Ω)3, and, due to the axial symmetry of
Ω and the boundary condition satisfied by v on ∂Ω, V k(x1, r) eikϕ also belongs toW 1,2

0 (Ω)3.
Using the equation div v = 0 and the orthogonality of the functions div

[
V k(x1, r) eikϕ

]
in

L2(Ω)3 (for different k), we can prove that div
[
V k(x1, r) eikϕ

]
= 0. Hence V k(x1, r) eikϕ ∈

L2
σ(Ω)k and consequently, Pk[D(A0

γ)] ⊂ D((A0
γ)k).

On the other hand, if v ∈ D((A0
γ)k), then it belongs to D(A0

γ), and since Pkv = v, it
also belongs to L2(Ω)3k. Hence v ∈ D(A0

γ) ∩ L2(Ω)3k = D(A0
γ) ∩ L2

σ(Ω)k = Pk[D(A0
γ)].

If v ∈ D((A0
γ)k), then ∆v, ∂1v ∈ L2(Ω)3k, and due to (4.2), A0

γv = νΠσ∆v − γ∂1v ∈
L2

σ(Ω)k. Hence A0
γ is reduced onto L2

σ(Ω)k. �

Lemma 4.2 Let k ∈ Z. Then σ((A0
γ)k) = σess((A0

γ)k) = Λ0
γ where Λ0

γ is the parabolic
region in C defined by (3.3): Λ0

γ =
{
λ = α+ iβ ∈ C; α, β ∈ R, α ≤ −νβ2/γ2

}
.

Proof. The operator (A0
γ)k is a part of A0

γ , hence σ((A0
γ)k) ⊂ σ(A0

γ) = Λ0
γ .

On the other hand, for λ ∈ (Λ0
γ)◦, we have shown the existence of a non–compact

sequence vn ∈ L2
σ(Ω) such that ‖vn‖0,2 = 1 and (A0

γ − λI)vn → 0 in L2
σ(Ω) as n → +∞

in the proof of Theorem 3.1, part II. The construction of vn involved the choice of an
arbitrary non–zero integer k. An easy examination shows that the functions vn actually
belong not only to L2

σ(Ω), but to L2
σ(Ω)k. Thus, we obtain that (Λ0

γ)◦ ⊂ σ̃c((A0
γ)k) for

k 6= 0. Using the same arguments as at the end of the proof of Theorem 3.1, we deduce
that Λ0

γ ⊂ σess((A0
γ)k) for k 6= 0. It completes the proof in the case when k 6= 0.

The case k = 0 must be treated separately. Suppose that λ = α + iβ ∈ (Λ0
γ)◦. Let

us construct a non–compact sequence {vn} in the unit sphere in L2
σ(Ω)0 such that (A0

γ −
λI)vn → 0 as n→ +∞. The requirement that vn ∈ L2

σ(Ω)0 means that vn ≡ [vn
1 , v

n
r , v

n
ϕ]

does not depend on ϕ. Then the condition div vn = 0 says that ∂1(rvn
1 ) + ∂r(rvn

r ) = 0.
This equation is automatically satisfied if vn has the cylindrical components

vn(x1, r) =
[ 1
r
∂rψ

n(x1, r), −
1
r
∂1ψ

n(x1, r), 0
]
. (4.3)

Put ψn(x1, r) = δn U
n(x1)V n(r) where Un and V n are the same functions as in the proof of

Theorem 3.1, i.e. the functions given by (3.10) and (3.12), and where the factor δn must be
chosen so that ‖vn‖0,2 = 1. Calculating the norm of ‖vn‖0,2, we can observe that for large
n the decisive contribution comes from the integral on Dn, see (3.15). The contribution
coming from Ω−Dn is of a lower order in powers of n. The cut–off functions ηn

1 and ηn
2

are both equal to 1 on Dn. Hence Un(x1) = eiax1 , where a = −β/γ, and V n(r) = eibr,
where b =

√
−α2/ν, see the proof of Theorem 3.1. Thus, ψ(x1, r) = δn ei(ax1+br) on Dn
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and ∫
Dn

|vn|2 dx =
∫ n2

−n2

∫ 2n+n2

2n

∫ 2π

0

(
|vn

1 |2 + |vn
r |2

)
dϕ r dr dx1

= 2π
∫ n2

−n2

∫ 2n+n2

2n

1
r

(
|∂rψ

n|2 + |∂1ψ
n|2

)
dr dx1

= 2π δ2n

∫ n2

−n2

∫ 2n+n2

2n

1
r

(a2 + b2) dr dx1

= 2π δ2n (a2 + b2) 2n2
(
ln(2n+ n2)− ln(2n)

)
The condition that this tends to 1 as n→ +∞ leads to the existence of constants c4, c5 > 0
and n0 ∈ N such that

∀n ∈ N, n ≥ n0 :
c4

n
√

lnn
≤ δn ≤ c5

n
√

lnn
. (4.4)

Suppose that n is so large that the support of vn is a subset of Ω. Then (A0
γ − λI)vn =

ν∆vn − γ∂1v
n − λvn and so ‖(A0

γ − λI)vn‖2
0,2 equals

δ2n

∫
Sn−Dn

∣∣ν∆vn − γ∂1v
n − λvn

∣∣2 dx + δ2n

∫
Dn

∣∣ν∆vn − γ∂1v
n − λvn

∣∣2 dx (4.5)

where Sn is defined by (3.14). The integrands are less than or equal to C/r2. Thus, the
first term in (4.5) can be estimated from above by

Cδ2n

∫ n+n2

−n−n2

dx1

(∫ 2n

n
+

∫ 3n+n2

2n+n2

)
r dr
r2

+ Cδ2n

(∫ −n2

−n−n2

+
∫ n+n2

n2

)
dx1

∫ 3n+n2

n

r dr
r2

≤ Cδ2n (2n+ 2n2)
(
ln

2n
n

+ ln
3n+ n2

2n+ n2

)
+ Cδ2n

(
2n ln

3n+ n2

n

)
.

Using (4.4), we verify that the right hand side tends to zero as n → +∞. In the second
term in (4.5), we use the identity ψn(x1, r) = δn ei(ax1+br) which holds on Dn. Note
that the function Y (x1) = eiax1 satisfies the differential equation (3.11) and that the
function eibr satisfies the differential equation (3.13). Then calculating the expression
ν∆vn − γ∂1v

n − λvn we find that |ν∆vn − γ∂1v
n − λvn| ≤ Cδn/r

2. Consequently the
second term in (4.5) can be estimated by

Cδ2n

∫ n2

−n2

∫ 2n+n2

2n

∫ 2π

0

1
r4

dϕ r dr dx1 = Cδ2n n
2

∫ 2n+n2

2n

dr
r3

≤ Cδ2n .

Due to (4.4), the right hand side tends to zero as n → +∞. Hence we have shown that
‖(A0

γ − λI)vn‖0,2 → 0 as n → +∞. The sequence {vn} is non–compact because the
intersection of the supports of any infinite family of functions chosen from {vn} is empty.
Since all the functions vn belong to L2

σ(Ω)0, we have proved that λ ∈ σ̃c((A0
γ)0). Applying

once again the same arguments as at the end of the proof of Theorem 3.1, we observe
that λ ∈ σess((A0

γ)0) and due to the closedness of σess((A0
γ)0), we obtain the inclusion

Λ0
γ ⊂ σess((A0

γ)0). This completes the proof in the case k = 0. �

Since −(A0
γ)k is, by definition, the reduction of the sectorial operator −A0

γ on the space
L2

σ(Ω)k, −(A0
γ)k is a sectorial operator in L2

σ(Ω)k.
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5 Axially symmetric domains Ω – the operator Aω
γ and

its decomposition

Let k ∈ Z. We shall denote by (Aω
γ )k the restriction of Aω

γ to L2
σ(Ω)k. The domain of

(Aω
γ )k is the same as the domain of (A0

γ)k, i.e.,

D((Aω
γ )k) = D((A0

γ)k) ≡W 2,2(Ω)3 ∩W 1,2
0 (Ω)3 ∩ L2

σ(Ω)k.

If u ∈ L2
σ(Ω)k, then it has the form u(x1, r, ϕ) = U(x1, r) eikϕ and ∂ϕu = i kU eikϕ = i ku.

Therefore, (Aω
γ )k can be rewritten as

(Aω
γ )ku = (A0

γ)ku + ω ∂ϕu = (A0
γ)ku + ikωu. (5.1)

Thus, (Aω
γ )k is a closed and densely defined operator in L2

σ(Ω)k. The representation (5.1)
of the operator (Aω

γ )k and Lemma 4.2 imply that

σ((Aω
γ )k) = σess((Aω

γ )k) = {λ ∈ C; λ− ikω ∈ Λ0
γ}. (5.2)

The next lemma provides the information on the spectrum of the full operator Aω
γ . It

confirms that statement (iv) of Theorem 1.1 is true.

Lemma 5.1 σ(Aω
γ ) = σess(Aω

γ ) = Λω
γ where set Λω

γ is defined by (1.11):
Λω

γ = {λ = α+ iβ + ikω ∈ C; α, β ∈ R, k ∈ Z, α ≤ −νβ2/γ2}.

Proof. Each operator (Aω
γ )k, k ∈ Z, is a part of the operator Aω

γ , hence σess((Aω
γ )k) ⊂

σess(Aω
γ ). Thus, ∪k∈Z σess((Aω

γ )k) = Λω
γ ⊂ σess(Aω

γ ) ⊂ σ(Aω
γ ).

It remains to prove the opposite inclusion, i.e. that σ(Aω
γ ) ⊂ Λω

γ or equivalently that
(C − Λω

γ) ⊂ ρ(Aω
γ ). Suppose that λ ≡ α + iβ ∈ C − Λω

γ . We will show that the operator
Aω

γ − λI has a bounded inverse in L2
σ(Ω). Let f ∈ L2

σ(Ω) with Fourier expansion

f(x1, r, ϕ) =
+∞∑

k=−∞
fk(x1, r) eikϕ,

where fk eikϕ ∈ L2
σ(Ω)k, be given. Let us at first solve the equation ((Aω

γ )k − λI)wk =
fk eikϕ in L2

σ(Ω)k. Putting wk = uk eikϕ and using (5.1), we observe that this equation is
equivalent with

(A0
γ)k(uk eikϕ)− (α+ iβ − ikω)(uk eikϕ) = fk eikϕ. (5.3)

Due to Lemma 4.2 we have α+iβ−ikω ∈ ρ((A0
γ)k) for all k ∈ Z. Since the operator −(A0

γ)k

is sectorial, we deduce from resolvent estimates for sectorial operators, see e.g. D. Henry
[14], p. 23, that there exists a constant M > 0, independent of k, such that

‖uk‖0,2 = ‖uk eikϕ‖0,2 ≤
M

1 + |k|
‖fk eikϕ‖0,2 =

M

1 + |k|
‖fk‖0,2 . (5.4)

Then the series
∑+∞

k=−∞ uk eikϕ converges in L2
σ(Ω) and u =

∑+∞
k=−∞ uk eikϕ satisfies the

estimate

‖u‖2
0,2 =

+∞∑
k=−∞

‖uk‖2
0,2 ≤

+∞∑
k=−∞

M2

(1 + |k|)2
‖fk‖2

0,2 ≤ M2 ‖f‖2
0,2 . (5.5)
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From the equation (5.3) and the estimate (5.4), we have∥∥(Aω
γ )k(uk eikϕ)

∥∥
0,2

≤ ‖fk eikϕ‖0,2 + |α+ iβ| ‖uk eikϕ‖0,2 ≤ C ‖fk eikϕ‖0,2

where C is independent of k. Using these inequalities and the closedness of the operator
Aω

γ , we deduce that u ∈ D(Aω
γ ) and (Aω

γ − λI)u = f . This information, together with
(5.5), completes the proof. �

6 General exterior domains – the operators Aω
γ and Lω

γ

Using the same procedure as in the proof of Theorem 3.2, we can show that the operator
Aω

γ is not normal, i.e., that the statement (ii) of Theorem 1.1 is true.
If λ = α + iβ is an eigenvalue of Aω

γ and v is a corresponding eigenfunction, then,
multiplying the equation Aω

γ v = λv by v and integrating on Ω, we obtain the identity
−ν ‖∇v‖2

0,2 = α ‖v‖2
0,2; compare with that part of the proof of Theorem 3.1 which lead

to (3.8). This verifies Theorem 1.1 (iii).
Let R0 = max {|x|; x ∈ B} and ΩR = Ω ∩BR(0).

Lemma 6.1 Let λ ∈ σ̃c(Aω
γ ). Then there exists R > R0 and a non–compact sequence

{un} in D(Aω
γ ) such that ‖un‖0,2 = 1, un = 0 in ΩR and

(Aω
γ − λI) un −→ 0 in L2

σ(Ω) for n→ +∞. (6.1)

Proof. The condition λ ∈ σ̃c(Aω
γ ) means that nul′(Aω

γ − λI) = +∞. Then there exists
an orthonormal sequence {vn} in L2

σ(Ω) such that

(Aω
γ − λI) vn = εn −→ 0 in L2

σ(Ω) for n→ +∞; (6.2)

the construction of the sequence {vn} is based on Lemma IV.2.3 in [18] and is explained
in [6]. Obviously {vn} converges to the zero function weakly in L2

σ(Ω). Using (6.2) and
the estimate (2.1), we get that the sequence {vn} is bounded in W 1,2

0 (Ω)3 ∩W 2,2(Ω)3.
Then there exists a subsequence, again denoted by {vn}, which is weakly convergent to
0 in W 1,2

0 (Ω)3 ∩W 2,2(Ω)3. Moreover, {ω(e1 × x) · ∇vn} converges weakly to 0 in L2
σ(Ω).

Suppose that R ≥ R0 + 3 is a fixed number. The compact imbedding W 2,2(ΩR)3 ↪→
↪→W 1,2(ΩR)3 yields

vn −→ 0 strongly in W 1,2(ΩR)3. (6.3)

The first part of (6.2) can be written in the form

ν∆vn + ω(e1 × x) · ∇vn − ωe1 × vn − γ∂1v
n − λvn +∇qn = εn (6.4)

where qn is an appropriate scalar function. It follows from (6.4) and (2.1) that ∇qn → 0
weakly in L2(Ω)3. Thus, the functions qn, which are given uniquely up to an additive
constant by (6.4), can be chosen so that qn → q ≡ const. strongly in L2(ΩR). We may
even assume that q = 0.
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Denote by η an infinitely differentiable cut–off function in Ω such that

η(x) =

{
0 if |x| < R− 2,
1 if |x| > R− 1,

and 0 ≤ η(x) ≤ 1 if R − 2 ≤ |x| ≤ R − 1. Put un = ηvn − V n where div V n = ∇η · vn.
Although V n is not given uniquely, the results on solutions of the equation div V = f , see
e.g. [2], show that the function V n can be chosen such that supp V n ⊂ {x ∈ Ω; R − 3 <
|x| < R} and there exist c6 > 0 such that

‖V n‖2,2 = ‖V n‖2,2; ΩR
≤ c6 ‖∇η · vn‖1,2; ΩR

−→ 0 (6.5)

as n → +∞. (Here ‖ . ‖2,2; ΩR
and ‖ . ‖1,2; ΩR

denote the norm in W 2,2(ΩR)3 and in
W 1,2(ΩR)3, respectively.) The function un is divergence–free, equals 0 in ΩR−3, equals vn

in Ω−ΩR and belongs to L2(Ω)3. Due to the properties of the functions η and V n we get
un ∈ D(Aω

γ ). Obviously un satisfies

ν∆un + ω(e1 × x) · ∇un − ωe1 × un − γ∂1u
n − λun +∇(ηqn)

= η
[
ν∆vn + ω(e1 × x) · ∇vn − ωe1 × vn − γ∂1uv − λvn

]
+ 2ν∇η · ∇vn

+ ν(∆η)vn − ν∆V n +
[
ω(e1 × x) · ∇η

]
vn − γ (∂1η) vn − ω(e1 × x) · ∇V n

+ωe1 × V n + γ∂1V
n + λV n +∇(ηqn)

= ηεn + 2ν∇η · ∇vn + ν(∆η)vn − ν∆V n +
[
ω(e1 × x) · ∇η

]
vn − γ (∂1η) vn

−ω(e1 × x) · ∇V n + ωe1 × V n + γ∂1V
n + λV n + (∇η)qn (6.6)

where ηεn → 0 in L2(Ω)3 due to (6.2), and ν[2∇η ·∇vn +(∆η)vn] → 0 in L2(Ω)3 because
∇η and ∆η are supported in ΩR and due to (6.3). The terms

[
ω(e1 × x) · ∇η

]
vn and

γ (∂1η) vn also tend to zero in in L2(Ω)3 for the same reasons. Furthermore, all terms
involving V n tend to 0 in L2(Ω)3 due to (6.5). Finally, (∇η)qn → 0 in L2(Ω)3 because
qn → 0 in L2(ΩR) and ∇η is supported in ΩR. Thus,

ν∆un + ω(e1 × x) · ∇un − ωe1 × un − γ∂1u
n − λun +∇(ηqn) −→ 0 in L2(Ω)3

for n→ +∞, and therefore {un} satisfies (6.1). Moreover, we have

‖un‖2
0,2 ≥

∫
|x|>R

|un(x)|2 dx =
∫
|x|>R

|vn(x)|2 dx −→ 1 for n→ +∞

because ‖vn‖0,2 = 1 and due to (6.3). If we divide each of the functions un by its norm
in L2

σ(Ω) and denote the new function again by un, we obtain the sequence {un} with all
the properties stated in Lemma 6.1. Finally, the orthonormality of {vn} and (6.3) imply
the non–compactness of the sequence {un}. �

We denote by Âω
γ the operator which is defined in the same way as Aω

γ , however on the
whole space R3 rather than on the exterior domain Ω ⊂ R3. Obviously, the operator Âω

γ

has all the properties derived in Sections 4 and 5.

Lemma 6.2 σ̃c(Aω
γ ) = σ̃c(Âω

γ ) = Λω
γ .
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Proof. Suppose that λ ∈ σ̃c(Aω). Let R > 0 and {un} be a number and a sequence,
respectively, with the properties named in Lemma 6.1. All functions un, extended by zero
from Ω to the whole space R3, belong to the domain of operator Âω

γ . Thus, (6.1) shows
that λ ∈ σ̃c(Âω

γ ).

On the other hand, if λ ∈ σ̃c(Âω
γ ) then we can use analogous arguments and prove that

λ also belongs to σ̃c(Aω
γ ). �

Let us show that σ̃c(Aω
γ ) ⊂ σess(Aω

γ ); the opposite inclusion is trivial. For λ ∈ σ̃c(Aω
γ ) we

have that nul′(Aω
γ −λI) = +∞. Moreover, λ ∈ σ̃c((Aω

γ )∗) = σ̃c(A−ω
−γ ), so that nul′((Aω

γ )∗−
λI) = +∞. Hence def ′(Aω

γ − λI) = +∞ which shows that λ ∈ σess(Aω
γ ), see [18], p. 234.

We have thus proved Theorem 1.1 (i). Theorem IV.5.35 in [18] and Lemma 2.4 imply that
the essential spectrum of the operator Lω

γ is the same as σess(Aω
γ ); therefore it is also given

by (1.11). Moreover, since ind(Lω
γ − λI) = 0 in C− σess(Lω

γ ) and due to Theorem IV.5.31
in [18], C− σess(Lω

γ ) can contain at most countably many eigenvalues λ of Lω
ω, which can

cluster only on the boundary of C−σess(Lω
γ ) and 0 < nul(Lω

γ −λI) = def(Lω
γ −λI) < +∞

at each of them. This implies Theorem 1.1 (vi).
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