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Abstract. If the nilradical n(g) of the Lie algebra g of a pro-Lie group G is finite dimensional

modulo the center z(g), then every identity neighborhood U of G contains a closed normal

subgroup N such that G/N is a Lie group and G and N ×G/N are locally isomorphic.

Background and Introduction

A local morphism from a topological group G to a topological group H is a contin-
uous function λ:U → V , V ⊆ H, defined on an open identity neighborhood U of
G such that g, g′, gg′ ∈ U implies λ(gg′) = λ(g)λ(g′). A local morphism λ is called
a local isomorphism if it has an inverse λ−1:V → U which is a local morphism
from H to G. If a local isomorphism from G to H exists, then G and H are said
to be locally isomorphic.

For a closed normal subgroup N of G let q:G → G/N be the quotient mor-
phism. Then N is said to split locally if there is a local morphism λ:U → V from
G/N to G such that for the inclusion map j:V → G, the composition q ◦ j ◦ λ is
the identity map of U , that is, that q

(
λ(u)

)
= u for all u ∈ U ⊆ G/N .

Assume that N is a normal co-Lie subgroup, that is, G/N is a Lie group. Then
let L be the simply connected covering group of the identity component (G/N)0
and let p:L → G/N be the coextension of the covering morphism. Let W be a
connected symmetric open identity neighborhood of L such that p(W ) ⊆ U . Then
by the simple connectivity of L there is a unique morphism f :L → G such that
f(x) = λ

(
p(x)

)
for all x ∈ W (see for instance [2], Corollary A2.26). There is a

morphism α:L → Aut(N) given by α(x)(n) = f(x)nf(x)−1, allowing us to form
the semidirect product N×αL and the morphism

µ:N×L→ G, µ(n, x) = nf(x),

whose kernel is readily seen to be {(f(x)−1, x) : x ∈ f−1(N)} ∼= f−1(N), a
discrete subgroup of N×αL and whose image is the open subgroup of G generated
by Nλ(U). This simple and straightforward process allows us to view a closed
normal co-Lie subgroup N of G that splits locally as being given by an open
morphism with discrete kernel from a semidirect product N×L of N with a Lie
group L. In particular, N×L and G are locally isomorphic, as are L and G/N .

A closed normal subgroup of N is said to split locally and directly if the image
of some defining local morphism λ:U → V from G/N → G commutes elementwise
withN . Then, if G/N is a Lie group, this happens if the semidirect productN×αL
is direct and thus G and N × G/N are locally isomorphic. Iwasawa’s influential
paper [10] of 1949 contains the following powerful theorem:
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Iwasawa Local Splitting Theorem. Let G be a connected locally compact
group and U an identity neighborhood of G. Then there is a closed normal co-Lie
subgroup N contained in U that splits locally and directly. In particular, G and
N ×G/N are locally isomorphic.

Historically, our rendition of Iwasawa’s is not quite accurate. He formulated
this theorem for connected locally compact groups with are projective limits of
Lie groups. It was proved only three or four years later by Yamabe [13, 14] that
every connected locally compact group is indeed a projective limit of Lie groups.

Definition. A topological group is a pro-Lie group if it is complete and every
identity neighborhood contains a normal co-Lie subgroup. ut

Thus every connected locally compact group is a particular example of a pro-
Lie group. Better still: A topological group G is said to be almost connected if the
quotient group G/G0 modulo its component is compact. Yamabe’s Theorem even
establishes that any almost connected locally compact group is a pro-Lie group.

Evidently, a Local Splitting Theorem such as Iwasawa’s is of great power and
significance for the structure theory of connected locally compact groups and in-
deed many authors have used it in one way or another. This motivates us to
investigate local splitting for the class of pro-Lie groups in general.

It is shown in [1], [4], and [9] that a topological group is a pro-Lie group if
and only if it is the limit of a projective system of finite dimensional Lie groups;
it is not trivial that this condition is sufficient. Given this equivalence, it is not
hard to recognize another equivalent condition, namely, that G be isomorphic as
a topological group to a closed subgroup of a product of finite dimensional Lie
groups (see [9]).

This paper is concerned with the local direct splitting of arbitrarily small closed
normal co-Lie subgroups of pro-Lie groups. Unfortunately, the local splitting of
small normal co-Lie subgroups does not hold for arbitrary pro-Lie groups, as we
shall see by exhibiting examples. So our challenge is to find and describe the
general obstruction to local splitting.

Our procedures require some prerequisites, notably, on the Lie theory of pro-
Lie groups for which we refer to recent papers [4] and [6]; a comprehensive source
will become available shortly [9]. The first step is to investigate the local splitting
of normal co-Lie subgroups of pro-Lie groups in the spirit of our introductory
remarks. The second step will be the study of the local splitting on the Lie algebra
level, while the third and final step is the local splitting on the group level.
Acknowledgment. The authors thank the referee for a careful scrutiny of their text
which helped them to avoid a number of typographical errors and led to various
revisions that improved the presentation.

Locally Splitting Lie Group Quotients of Pro-Lie Groups

For our dealing with pro-Lie groups, we have pursued the strategy of preparing a
structure theoretical idea by first working as much as we can on the level of the
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pro-Lie algebras. We begin by proving a result that will motivate and justify why
we should focus on the pro-Lie algebra level.

Let G be a connected pro-Lie group with Lie algebra g = L(G) and N a closed
normal subgroup with Lie algebra n = L(N). Assume that g is the semidirect
sum n ⊕ h of the closed ideal n and a closed subalgebra h. We recall from [6]
or [9], Theorem 6.6(vi), that the functors Γ: proLIEALG → simpconnproLIEGR
and L: simpconnproLIEGR → proLIEALG implement an equivalence of categories
between the category of pro-Lie algebras and that of simply connected pro-Lie
groups. Define H def= Γ(h), the unique simply connected pro-Lie group with Lie
algebra h according to [6] and [9]. The inclusion ih: h → g induces a morphism

Γ(ih):H → G̃
def= Γ(g). Recall that we have a natural morphism πG: G̃→ G, called

the universal morphism. (It is obtained as the back adjunction of the pair of adjoint
functors (Γ,L) and reduces, in the case of connected Lie groups, to the universal
covering morphism.) We set ϕ def= πG ◦ Γ(ih) : H → G. Then ϕ is a morphism of
topological groups. Now we can define a group homomorphism α:H → Aut(N)
by α(h)(n) = ϕ(h)nϕ(h)−1 and see immediately that the automorphic action

(h, n) 7→ α(h)(n) : H ×N → N

is continuous (irrespective of a potential topology on Aut(N)). Therefore the
semidirect product N×αH, having the multiplication

(n1, h1)(n2, h2) = (n1α(h1)(n2), h1h2)

is well-defined. The reader should be alerted to the fact that for a subalgebra h of a
Lie algebra g, the inclusion ih: h → g may not induce an embedding Γ(ih): Γ(h) →
Γ(g) in general even in the case of Lie groups: If G = G̃ is S3 ∼= SU(2), the
unit quaternions under multiplication with g = R·i + R·j + k·R the set of pure
quaternions as Lie algebra and with the exponential function exp z = ez = 1+ z+
1
2z

2 + · · ·, and if h = R·i ⊆ g, then Γ(h) ∼= R while im Γ(ih) = 〈expS3 h〉 = eR·i =
S1 ⊆ C is a circle subgroup of S3 and so Γ(ih): Γ(h) → Γ(g) = G̃ is not injective.

We shall retain the notation we have just introduced in the following result:

Proposition 1.1. (The Splitting and Sandwich Theorem) Let N be a closed
normal subgroup of a pro-Lie group G and assume that the Lie algebra g of G is
the semidirect sum of the Lie algebra n of N and some closed subalgebra h of the
Lie algebra g of G. Then
(i) there is a simply connected pro-Lie group H with Lie algebra h ∼= g/n, a

semidirect product N×αH and two morphisms

G̃
πN×αH−−−−−→ N×αH

µ−−−−→ G,

whose composition µ ◦ πN×αH
is the universal morphism πG: G̃→ G.

(ii) Both kernels kerπN×αH
and kerµ are totally disconnected, and all of the

morphisms πN×αH
, µ, and πG induce isomorphisms L(πN×αH

), L(µ), and
L(πG) on the Lie algebra level.
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(iii) The function

h 7→ (ϕ(h)−1, h) : ϕ−1(N) → kerµ, ϕ:H → G,

is an isomorphism of prodiscrete groups.
(iv) The semidirect product N×αH is a pro-Lie group.

Proof. (i) Since h ∼= g/n, by [4], Corollary 6.7(i) or Corollary 4.21(i) of [9], the
Lie algebra h may be identified with the Lie algebra L(G/N). We set H def= Γ(h)
and obtain in this fashion a simply connected pro-Lie group whose Lie algebra
h agrees with that of G/N . By the remarks preceding the theorem we have an
automorphic action of H on N via the morphism α:H → Aut(N) so that N×αH

is well-defined. It remains to show that we may identify G̃ with (Ñ×αH)˜ in a
natural way, to define µ, and to verify µ ◦ πN×αH

= πG.
By the Strict Exactness Theorem 6.7 of [9], we may identify Ñ = Γ(n) with

a closed normal subgroup of G̃ = Γ(g) in such a fashion that πN = πG|Ñ . For
any h ∈ H, we shall abbreviate Γ(ih)(h) by h̃. Now by Theorem 6.11 of [9] on the
Preservation of Semidirect Products, there is a natural isomorphism

m: Ñ×ιH = Γ(n)×ιΓ(h) → G̃ = Γ(g),

m(x, h) = xΓ(ih)(h), x ∈ Ñ ⊆ G̃, h ∈ H, where the action of H on the normal
subgroup Ñ of G̃ is by inner automorphisms so that ι(h)(x) = h̃xh̃−1. In partic-
ular, Ñ×ιH is a pro-Lie group. Let us define µ:N×αH → G by µ(n, h) = nϕ(h).
Then we claim to have a commutative diagram of morphisms

(∗)
Ñ×ιH

m−−−−→ G̃

πN×idH

y yπG

N×αH −−−−→
µ

G.

Indeed, for (x, h) ∈ Ñ ×H we have µ ◦ (πN × idH)(x, h) = πN (x)ϕ(h)
= πG(x)πG(h̃) = πG

(
xh̃) = πG

(
m(x, h)

)
, which establishes our claim. If we

identify L(G̃) with g so that L(πG) becomes the identity and therefore L(Ñ)
becomes identified with n, applying L to the diagram (∗) we obtain the commuting
diagram

(∗∗)
L(Ñ×ιH)

L(m)−−−−→ g = n⊕ h

L(πN×idH)

y yidg

L(N×αH) −−−−→
L(µ)

g

of isomorphisms of pro-Lie algebras. It follows that (πN × idH)◦m−1: G̃ = Γ(g) →
N×αH is πN×αH

. This completes the proof of (i).
(ii) We have just observed that L(πN×αH

), L(µ), and L(πG) are isomorphisms.
This implies that their kernels are zero. But since L preserves kernels, it follows
from 3.30 or 4.23 of [9] that the kernels of πN×αH

, µ, and πG are totally discon-
nected.
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(iii) We have (n, h) ∈ kerµ iff n = ϕ(h)−1 ∈ N ∩ ϕ(H) iff h ∈ ϕ−1(N) and
n = ϕ(h)−1. Thus β:ϕ−1(N) → kerµ, β(h) = (ϕ(h)−1, h) is a bijective morphism
having the inverse given by β−1(n, h) = h and is therefore an isomorphism between
totally disconnected pro-Lie groups and consequently prodiscrete groups.

(iv) Let M ∈ N (G) and K ∈ N (H). Then (M ∩N)×K is a normal subgroup
of N×αH, as is readily verified. (For instance,

(1, h)(m, k)(1, h−1) = (ϕ(h)mϕ(h)−1, hkh−1) ∈ (M ∩N)×K

if m ∈ M ∩ N and k ∈ K). But (N×αH)/(M × K) ∼= N/(N ∩M)×H/K is a
semidirect product of Lie groups and is therefore a Lie group. ut

Recall that semidirect products of pro-Lie groups need not be pro-Lie groups
as is exemplified by such locally compact groups as (Z/2Z)Z×Z with Z acting
automorphically on the power (Z/2Z)Z via the shift operation.

While G/N is not guaranteed to be a pro-Lie group, it does have a Lie algebra
isomorphic to g/n ∼= h, and by the definition in [6], Theorem 4.6(ii′′) or in [9] ,
Theorem 2.22(i′′), we have G̃/N = Γ(g/n) = Γ(h) = H.

Let q:G→ G/N denote the quotient morphism. Then the situation is described
in the following commutative diagram:

(†)

h
ih−−−−→ g

L(q)−−−−→ h
exp

G̃/N

y yexpG̃

yexpH

G̃/N
Γ(ih)−−−−→ G̃ −−−−→

q̃

G̃/N

πG/N

y ↘
ϕ

yπG

yπG/N

G/N G −−−−→
q

G/N

where the top horizontal rows compose to the respective identity morphism and
where we recall ϕ = πG ◦ Γ(ih).

We shall assume that G/N is a Lie group shortly after the following corollary
resumes the hypotheses of the preceding proposition and imposes additional ones.

Recall that a semidirect sum splitting g = n ⊕ h implies that h ∼= g/n, which
allowed us to identify Γ(h) and Γ(g/n) = G̃/N in view of the further natural
isomorphism g/n = L(G)/L(N) ∼= L(G/N) of [4], Corollary 6.7(i), or [9], Corollary
4.21(i).

In [9], 12.88 (see also [7, 8]) we prove the

Alternative Open Mapping Theorem. Let f :G→ H be a surjective mor-
phism between pro-Lie groups and assume that
(a) G/ ker f is a pro-Lie group.
(b) H is connected.
(c) L(f):L(G) → L(H) is surjective.
Then f is open.

We shall use this in the proof of the following



6 Iwasawa’s Local Splitting Theorem for Pro-Lie Groups 06-11-14

Corollary 1.2. Assume the hypotheses of Proposition 1.1 and the following hy-
potheses:
(v) The universal morphism πG/N : G̃/N → G/N is surjective.

(vi) The proto-Lie group (N×αG̃/N)/ kerµ is a pro-Lie group.
Then the morphism µ:N×αG̃/N → G defined by µ(n, h) = nϕ(h) as in Proposi-
tion 1.1 is a quotient morphism with a kernel isomorphic to the central prodiscrete
subgroup ϕ−1(N) of G̃/N .

Proof. From the diagram (†) we extract the commutative diagram

H
def= G̃/N

id−−−−→ G̃/N

ϕ

y yπG/N

G −−−−→
f

G/N.

Hypothesis (v) yields the surjectivity of πG/N , and thus that of f ◦ ϕ. So let

g ∈ G. Then there is an h ∈ G̃/N such that f(g) = f
(
ϕ(h)

)
. Therefore gϕ(h)−1 ∈

ker f = N , that is there is an n ∈ N such that gϕ(h)−1 = n; so g = nϕ(h) =
µ(n, h). Hence µ:N×αH → G is surjective. Now we invoke the Alternative Open
Mapping Theorem. Indeed its Hypothesis (a) is satisfied by Assumption (vi) above,
Hypothesis (b) is the connectivity of G̃/N , and Hypothesis (iii) is satisfied since
L(µ) is an isomorphism by 1.1(ii). Therefore µ is a quotient morphism and its
kernel was identified in 1.1(iii). ut

The situation is particularly clear ifG/N is a Lie group, in which case G̃/N = H
is the universal covering group of (G/N)0. Recall that N (G) is the filter basis of
all normal subgroups N such that G/N is a Lie group. Further recall from Chapter
9 of [9] that for a pro-Lie group G and a closed subalgebra h of the Lie algebra
g = L(G) of G we denote by A(h) the unique smallest analytic subgroup of G
having h as its Lie algebra.

Theorem 1.3. (Locally Splitting Lie Group Quotients) Assume, firstly, that
G is a pro-Lie group and that N is a normal subgroup of G such that G/N is a
Lie group.

Assume, secondly, that the Lie algebra g of G is the semidirect product of the
Lie algebra n of N and some closed subalgebra of g.

Let µ:N×αG̃/N → G be the morphism defined by µ(n, h) = nϕ(h), ϕ: G̃/N →
G, as in Proposition 1.1.

Then the morphism µ is an open morphism with a kernel isomorphic to a dis-
crete central subgroup of the Lie group G̃/N , and implements a local isomorphism
between N×αG̃/N and G.

If g = n ⊕ h semidirectly, then the analytic subgroup A(h) of G having Lie
algebra h agrees with ϕ(G̃/N), and has a countable intersection with N .
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N/N0 is locally compact metric totally disconnected and N has an open almost
connected subgroup N1 ∈ N (G) for which the same conclusions hold when N is
replaced by N1.

Proof. Since G/N is a Lie group, its identity component (G/N)0 is open. There
is therefore an open subgroup G of G containing N such that G/N = (G/N)0.
We notice that G̃/N = G̃/N . We observe that if the assertions of the theorem are
proved for G in place of G then they hold for G since G is open in G. For the
purposes of the proof we may therefore simplify notation by assuming that G/N
is connected, which we shall do henceforth.

Now we must verify the hypotheses of 1.2. Firstly, the assumptions of 1.1 are
satisfied. Next Hypothesis 1.2(ii) is satisfied, since the universal morphism

πG/N : G̃/N → G/N

of a Lie group is none other than the universal covering morphism which is surjec-
tive. Secondly, the kernel kerµ of µ is isomorphic to a totally disconnected central
subgroup of the Lie group G̃/N by 1.1(iii) and is therefore discrete. By 1.1(iv),
N×αG̃/N is a pro-Lie group. Then the quotient (N×αG̃/N)/ kerµ is complete
since any quotient of a Hausdorff topological groups modulo a first countable
closed or locally compact normal subgroup is complete: see for instance [12], p.
242, Lemma 13.13, and [12], p. 206, Theorem 11.18. Thus 1.2(ii) is satisfied as
well. Now 1.2 applies and shows that the morphism µ is a quotient morphism and
that its kernel is a discrete subgroup; it therefore implements a local isomorphism.

The subgroup

({1} ×H) kerµ
kerµ

=

(
N ∩ ϕ(H)

)
×H

{(ϕ(h)−1, h) : h ∈ ϕ−1(N)}
∼=

H

ϕ−1(N)

is mapped bijectively onto the analytic subgroup A(h) of G with Lie algebra h.
It intersects N in a countable subgroup since the subgroup kerπG/N of G̃/N is
finitely generated abelian and thus is countable.

By Definition 9.43 and Theorem 9.44 of [9], the factor group G/N0 is finite-
dimensional, hence locally compact metric. And it is no loss of generality that
N/N0 corresponds to ∆ in 9.44 of [9]. Therefore we may assume that N is almost
connected if we wish. ut

Corollary 1.4. If, in the circumstances of Theorem 1.3, the sum g = n⊕h is direct
with an ideal h, then there is a direct product N × G̃/N and an open morphism
µ:N × G̃/N → G with a discrete kernel implementing a local isomorphism. In
particular, G is locally isomorphic to the direct product of N and the Lie group
G/N .

Proof. We continue to write H and again assume without loss of generality that
G/N is connected. The closed connected subgroup ϕ(H) is the minimal analytic
subgroup with Lie algebra h and is closed. Now h is not only a subalgebra, but an



8 Iwasawa’s Local Splitting Theorem for Pro-Lie Groups 06-11-14

ideal. This implies that ϕ(H) is normal. Since N is normal, [N,ϕ(H)] ⊆ N∩ϕ(H).
Since ϕ(H) is connected, [N,ϕ(H)] is connected and contains 1. On the other
hand, N ∩ϕ(H) is a countable Hausdorff topological group and is therefore totally
disconnected. It follows that [N,ϕ(H)] is singleton and thus N and ϕ(H) commute
elementwise. Thus α:H → Aut(N), α(h)(n) = ϕ(h)nϕ(h)−1 = n is the constant
morphism. Therefore N×αH is a direct product. ut

With these results we are now poised to shift the emphasis of our research to
the Lie algebra.

The Lie Algebra Theory of the Local Splitting

The following definitions are put into place mainly for the purpose of convenience
in the formulations that follow.

Definition 2.1. An ideal n in a pro-Lie algebra is called complemented, respec-
tively, well-complemented if there a finite-dimensional subalgebra h such that g is
the semidirect sum, respectively, direct sum, n⊕ h algebraically and topologically.
It is called supplemented if there is a finite-dimensional subalgebra h such that
g = n + h. ut

Every well-complemented ideal is complemented, and every complemented ideal
is supplemented. Every supplemented ideal n is cofinite-dimensional, that is,
dim g/n <∞.

Remember that the essential structural ingredient and invariant of a pro-Lie
algebra g is the filter basis I(g) of all cofinite dimensional closed ideals j, and recall
that I(g) converges to zero. So supplemented ideals always are elements of I(g).

Definition 2.2. A pro-Lie algebra g is said to be rich, meaning “rich in comple-
mented ideals,” if g has arbitrarily small complemented ideals; that is, for every
zero neighborhood U of g there is a complemented ideal n contained in U . It is
called very rich if g has arbitrarily small well-complemented ideals. Finally g is
said to be extremely rich if all sufficiently small ideals are well-complemented. ut

Notice that the set CI(g) of complemented ideals of a pro-Lie algebra contains
g and thus is not empty. Therefore, an alternative way of expressing the condition
of richness is saying that
g is rich iff CI(g) is cofinal in I(g).

Every finite-dimensional Lie algebra is extremely rich by default since {0} is well-
complemented in this case.

We recall at this point that a pro-Lie algebra is called reductive if g =
∏

j∈J sj
for a family of finite-dimensional simple Lie algebras sj or 1-dimensional algebras
isomorphic to R. (See [9], Chapter 7, notably, Theorem 7.27.)
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Proposition 2.3.
(i) Any ideal of a reductive pro-Lie algebra is a direct Lie algebra summand

algebraically and topologically.
(ii) Every reductive pro-Lie algebra is extremely rich.

Proof. (i) follows from Theorem 7.27(a) of [9].
(ii) By definition of the product topology, given a zero neighborhood U , there

is a finite subset F ⊆ J and a family of zero neighborhoods Uj ⊆ sj for j ∈ F such
that

∏
j∈JWj is a zero neighborhood contained in U if

Wj =
{

sj for j ∈ J \ F ,
Uj for j ∈ F ,

provided the finitely many Uj , j ∈ F are selected small enough. Now for this par-
ticular set F we construct n as in (i) above. Then we indeed have n ⊆

∏
j∈JWj ⊆

U and n is well-complemented as we saw in (i). ut

A bit more generally, we can formulate the following result:

Proposition 2.4. An arbitrary product of finite dimensional Lie algebras is very
rich.

Proof. By following the line of argument of the proof of Proposition 2.3, the
proof follows straightforwardly. ut

It is important that we take note of some examples which show that not every
pro-Lie algebra is rich, let alone very rich. We shall use some multilinear algebra
for weakly complete topological vector spaces which is provided in [9], Appendix 2,
notably in Lemma A2.21, Lemma A2.22, and Corollary A2.23, or in [2], Chapter
7, Definition 7.27ff.

Examples 2.5. (i) We write g = RN0 , where N0 = {0, 1, 2, . . .}; and for any
subset J ⊆ N0 we identify RJ with the obvious vector subspace of g. The bracket
operation of g is written

[(x, r1, r2, . . .), (y, s1, s2, . . .)] =
(
x·(0, 0, s1, s2, . . .)− y·(0, 0, r1, r2, . . .)

)
=(0, 0, xs1 − yr1, xs2 − yr2, . . .).

Then g has a descending sequence of ideals g[n] = R{n+1,n+2,...}, n = 1, 2, . . .,
each of codimension one in the preceding one, but none of them is supplemented,
let alone complemented. Thus g is a pronilpotent center-free algebra which is not
rich.

(ii) For n ∈ N, let Cn be the R-module defined on the underlying real vector
space of C defined by the action (r, c) 7→ r·nc = 2πnirc : R× C → C. This is the
Lie algebra action corresponding to the group action of the circle group R/Z given
by (r + Z, c) 7→ e2πinrc : R/Z × C → C. We consider the product module V def=
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∏
n∈Z Cn with the morphism α: R → Der(V )given by α(r)(cn)n∈Z = (r·ncn)n∈Z.

Now we form the semidirect product g
def= V×αR, that is, the product V ×R with

componentwise addition and the bracket [(c, r), (d, s)] = (α(r)(d)− α(s)(c), 0).
Then g is a metabelian rich pro-Lie algebra that is not very rich.
(iii) This example will present the pro-Heisenberg algebra h(V ) over a given

weakly complete topological vector space V with dimV > 1. We define

h(V ) = V ×
2∧
V, [(v, x), (w, y)] = (0, v ∧ w)),

with the componentwise topological vector space structure. Then dim ≥ 2 implies
that h(V ) is a class 2 nilpotent pro-Lie algebra, and [h(V ), h(V )] = z

(
h(V )

)
=

{0}×
∧2

V since the span of the v∧w is dense in
∧2

V . We record that g
def= h(V )

is its own nilradical n(g) and n(g)/z(g) ∼= V .
Now assume that g

def= h(V ) is an ideal direct sum g1 ⊕ g2. Assume g1 ⊆ z(g),
then z(g) = [g1 + g2, g1 + g2] = [g2, g2] ⊆ g2 and so g1 ⊆ g1 ∩ g2 = {0}. Thus
suppose that neither of the summands is zero. Then none of them is contained in
z(g). Let (v1, z1) ∈ g1 \ z(g) and (v2, z2) ∈ g2 \ z(g). Then

(0, 0) = [(v1, z1), (v2, z2)] = (0, v1 ∧ v2).
Thus v2 ∈ R·v1 by Corollary A2.23 of [9], that is, there is a nonzero r ∈ R such
that v2 = r·v1, and so v1 ∧ V = v2 ∧ V 6= {0}. Since g1 and g2 are ideals, we have
{0} × (v1 ∧ V ) = [(v1, z1), g] ⊆ g1 and {0} × (v2 ∧ V ) = [(v2, z2), g] ⊆ g2. Hence
{(0, 0)} 6= {0} × (v1 ∧ V ) ⊆ g1 ∩ g2, and this is a contradiction. Thus h(g) does
not allow an ideal direct sum decomposition.

In particular, if dimV = ∞, then h(V ) is a nilpotent class 2 pro-Lie algebra
that is not very rich. On the other hand, if V = span({e1, e2}), then V is the
semidirect product of the ideal z

(
h(V )

)
⊕ R·(e1.0) = R·e1 × R·(e1 ∧ e2) and the

subalgebra R·(e2, 0).

The Campbell-Hausdorff multiplication on h(g) is given by (v, x) ∗ (w, y) =(
v+w, x+ y+ 1

2 (v ∧w)
)
. The pro-Lie group (h(g), ∗) is called the pro-Heisenberg

group H(V ) over the weakly complete topological vector space V . If dimV is
infinite, H(V ) is an example of a nilpotent pro-Lie group of class 2 which does not
satisfy Iwasawa’s Local Splitting Theorem. ut

If dimV = 2, then H(V )N is a class 2 nilpotent pro-Lie group satisfying the
Iwasawa Local Splitting Theorem.
[For a verification of the details of Example 2.5(i), for a finite subset F ⊆ Z,
identify VF =

∏
n∈F Cn in the obvious way with a subgroup of V . Show that

(VZ\F ×{0})×(VF ×R) with the action of VF ×R on VZ\F ×{0} via R. Show that
a direct product decomposition as required in a rich algebra is not possible.] ut

Every pro-Lie algebra g contains a unique smallest ideal ncored(g) such that
g/ncored(g) is reductive; moreover ncored(g) is pronilpotent and equals [g, r(g)] for
the radial r(g) of g. (See [9], Definition 7.65 and Theorems 7.66, 7.67). We call
ncored(g) the coreductive radical of g.
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Lemma 2.6. Let g be a pro-Lie algebra.
(i) Assume that f is a finite-dimensional ideal such that g/f is rich, respectively,

very rich. Then g is rich, respectively, very rich. Indeed there are arbitrarily small
ideals i ∈ I(g) for which there is a finite-dimensional subalgebra, respectively, ideal
h containing f such that g = i⊕ h.

(ii) Assume that dim ncored(g) <∞. Then g is very rich.

Proof. (i) Since dim f < ∞ and lim I(g) = 0 we find a j0 ∈ I(g) such that
j0 ∩ f = {0}. Then j ∈ I(g) and j ⊆ j0 implies j ∩ f = {0}. Since f is finite-di-
mensional, j0 + f is closed and since f is an ideal, j0 ⊕ f is an ideal direct sum and
(j0 ⊕ f)/f ∈ I(g/f). Since g/f is rich, there is an ideal i of g containing f such that
i ⊆ j0 ⊕ f and that g/f is a semidirect sum i/f ⊕ h/f for a subalgebra h of g such
that dim h/f < ∞, implying that dim h < ∞. So g = i + h and i ∩ h = f while,
on the other hand, f ⊆ i ⊆ j0 ⊕ f. Then the modular law implies i = (i ∩ j0) ⊕ f.
Therefore g = i+h = (i∩ j0)⊕ f+h = (i∩ j0)+h and i∩ j0∩h = j0∩ f = {0}. Thus,
since h is finite-dimensional, g is the semidirect sum (i∩ j0)⊕ h with i∩ j0 ∈ I(g).
Since j0 may be taken arbitrarily small, this shows that g is rich. If g/f is very
rich, h may be chosen to be an ideal, and so the sum (i ∩ j)⊕ h is direct, showing
that g is very rich. If g/f is extremely rich, the argument works for all sufficiently
small i ∈ I(g), and this shows that g is extremely rich.

(ii) is an immediate consequence of (i). ut

Proposition 2.7. Let g be a pro-Lie algebra, g′ = [g, g] its commutator algebra,
and z(g) its center. Then the following statements are equivalent:

dim g′<∞,(A)
dim g/z(g)<∞.(B)

If these conditions are satisfied, then g′ is finite-dimensional, and therefore
closed. Let z ⊆ z(g) be a cofinite-dimensional closed vector subspace and v be a
finite-dimensional vector subspace such that g = z⊕ v.
(i) f = g′ ⊕ v is a finite-dimensional ideal containing g′ and satisfying g = z + f.

In particular, there is a central ideal a ∈ I(g) such that g = a⊕ f and a ⊆ z.
(ii) g is very rich.

Proof. (B)=⇒(A): Write g = z(g) ⊕ v with a finite-dimensional vector subspace
v. Then g′

def= [g, g] = span{[z + v, z′ + v′] : z, z′ ∈ z(g), v, v′ ∈ v} = span{[v, v′] :
v, v′ ∈ v} is finite-dimensional since v is finite-dimensional.

(A)=⇒(B): Assume that dim g′ < ∞. Denote by b: g × g → g′ the continuous
bilinear map given by b(x, y) = [x, y]. Then it follows from Lemma A2.21 of
Appendix 2 of [9] that there is a cofinite-dimensional closed vector subspaces E
of g such that [E, g] = {0} and that therefore E ⊆ z(g). Thus z(g) is cofinite-di-
mensional as asserted.

(i) We note that f contains g′ and recall that every vector subspace of a Lie
algebra g containing g′ is an ideal. We find a closed vector subspace a of z such
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that z = a ⊕ (z ∩ f). Then g = a ⊕ f is a direct sum of pro-Lie algebras and
a ⊆ z ⊆ z(g).

(ii) This follows from (i) and Lemma 2.6. (It is also immediate from (ii) di-
rectly.) ut

The implication (B)=⇒(A) is always true while the implication (A)=⇒(B) fails
in general as is shown by the example g = R(N) × R with the bracket

[(
∞∑
n=1

un, r), (
∞∑
n=1

vn, s)] =
(
0,

∞∑
n=1

det(un, vn)
)
.

Here {0} ×R is g′ and z(g) at the same time, and the center therefore is far from
being cofinite-dimensional.

As an exercise, we verify the following

Remark. (i) Let g be a pro-Lie algebra and z an ideal contained in the center
z(g) of g. If g/z is pronilpotent, then g is pronilpotent.

(ii) The nilradical n
(
g/z(g)

)
of g/z(g) is n(g)/z(g).

[Outline of proof. (i) Let j ∈ I(g). Then (g/j)/
(
(z + j)/j

) ∼= g/(z + j) is a finite-di-
mensional quotient of g/z and is, therefore, a nilpotent Lie group. Also, (z+ j)/j is
contained in the center of g/j. Therefore g/j is nilpotent. Thus g is pronilpotent.

(ii) Let m be that ideal of g containing z(g) for which m/z(g) = n
(
g/z(g)

)
.

Since this quotient is pronilpotent, by (i) above we know that m is pronilpotent.
Hence m ⊆ n(g). Since n(g)/z(g) is pronilpotent, by Lemma 7.56(ii) and Theorem
7.57 of [9]. We have n(g) ⊆ m. Thus m = n(g).]

Lemma 2.8. (i) Let p: h → k be a surjective morphism of pro-Lie algebras. Then
p(ncored(h)) = ncored(k), and if ker p ⊆ z(h), then p

(
n(h)

)
= n(k).

(ii) Let j be an ideal of a pro-Lie algebra g and assume that it contains the
center. Then n(j)/z(j) is a quotient of an ideal of n(g)/z(g). In particular, if
n(g)/z(g) is finite-dimensional, so is n(j)/z(j).

Proof. (i) Let p: h → k be a surjective morphism of pro-Lie algebras. Then
p
(
r(h)

)
= r(k) by Proposition 7.54 of [9]. Thus p maps [h, r(h)] onto [k, r(k)].

The image of [h, r(h)] by p is closed according to Theorem A2.12(b) in Appendix
2 of [9] or [4], Proposition 3.1. Hence, in view of Theorem 7.67 of [9], we get
p(ncored(h)) = p([h, r(h)]) = [k, r(k)] = ncored(k). Moreover, p

(
n(h)

)
is a prosolvable

ideal and therefore is contained in n(k). Now assume that ker p is central; then
p−1

(
n(k)

)
/z(h) ∼= n(k) is pronilpotent and thus p−1

(
n(k)

)
is pronilpotent by the

Remark preceding this Lemma.
(ii) According to (i), the quotient map j/z(g) → j/z(j) maps n(j)/z(g) onto

n(j)/z(j). Since n(j) as a characteristic ideal of j is a prosolvable ideal of g, we have
n(j) ⊆ n(g) and thus n(j)/z(g) ⊆ n(g)/z(g) This proves the first assertion of the
(ii), and the second is an immediate consequence. ut
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If we apply 2.8(i) to the quotient morphism

p: g → g/z(g),

we obtain (
ncored(g) + z(g)

)
/z(g) = ncored(g/z(g)),

and so the full inverse image p−1(ncored(g)) agrees with ncored(g) + z(g).

Definition 2.9. The pronilpotent pro-Lie algebra n(g)/z(g)
)

= n
(
g/z(g)

)
is called

the nilcore of g. It is written nilcore(g).

g∣∣
r(g)∣∣
n(g)∣∣

z(g) + ncored(g)∣∣
ncored(g)∣∣
{0}

g∣∣
r(g)∣∣
n(g)∣∣

ncored(g) + z(g)∣∣
z(g)

 = nilcore(g)

∣∣
{0}

We recall the following elementary examples showing that all containments are
proper in general. In the Heisenberg algebra span{X,Y, Z}, [X,Y ] = Z, we have

z(g) = ncored(g) = z(g) + ncored(g) = R·Z 6= g = r(g) = n(g);

in the motion algebra span{X,Y, Z}, [X,Y ] = Z, [X,Z] = −Y ,

{0} = z(g) 6= ncored(g) = span{Y, Z} = z(g) + ncored(g) = n(g) 6= r(g) = g;

in span{U,X, Y, Z}, [U,X] = Y , [U, Y ] = Z we have

{0} 6= z(g) = R·Z 6= ncored(g) = z(g) + ncored(g) = span{X,Y, Z} 6= n(g) = g;

in the direct sum of the motion algebra with R we have

z(g) 6⊆ ncored(g);

in so(3) we have
r(g) 6= g.

In the sum of all of these, all of the containments in the tall Hasse diagram are
proper.

The following Lemma deals with the case that ncored(g) ⊆ z(g).

Lemma 2.10. Let g be a pro-Lie algebra satisfying ncored(g) ⊆ z(g). Then
(i) g = r(g) ⊕ s(g) is a direct sum algebraically and topologically of the radical

and a unique finite-dimensional Levi summand s(g).
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(ii) [r(g), r(g)] = [g, r(g)] = ncored(g) ⊆ z(g) and r(g) is nilpotent of class ≤ 2, that
is r(g)[2] =

[
r(g), [r(g), r(g)]

]
= {0}. We have z(g) + ncored(g) = r(g).

(iii) [g, g] = [r(g), r(g)]⊕ s(g), and this is a reductive pro-Lie algebra. Accordingly,
ncored(g) = [r(g), r(g)] ⊆ z(g). If a is chosen so that z(g) = ncored(g)⊕ a, and
r(g) = z(g)⊕ v for a closed vector subspace v then ncored(g)⊕ v is a nilpotent
ideal of class ≤ 2 and g = s(g)⊕ a⊕ ncored(g)⊕ v.

(iv) If dim r(g)′ < ∞, then there is a finite-dimensional ideal f of g and a closed
vector subspace a of z(g) such that g is the ideal direct sum s(g)⊕ a⊕ f, and
g is very rich.

Proof. (i) By Corollary 7.75 and Theorem 7.77(i) of [9], two Levi summands
are conjugate under an inner automorphism of the form α = ead x for some x ∈
ncored(g). By our hypothesis x ∈ ncored(g) implies adx = 0 and thus α = idg.
Hence there is only one Levi summand. Thus, by Theorem 7.77(ii) of [9] we
conclude (i).

(ii) From Theorem 7.67 we know that ncored(g) = [g, g]∩ r(g) = [g, r(g)] and by
hypothesis ncored(g) is central. Conclusion (i) and Lemma 7.26 imply g′ = [g, g] =
r(g)′ + s. The factor algebra r(g)/z(g) is the center of g/z(g). Thus (ii) follows.

(iii) is now straightforward from (ii).
(iv) Since [r(g), s(g)] = {0} by (i), we have z(g) = z

(
r(g)

)
. Therefore, if r(g)′

is finite-dimensional, then Proposition 2.7 shows that r(g) = a ⊕ f with a central
ideal a and a finite-dimensional ideal f of r(g) and then also of g by (i). Then (i)
also implies g = s(g)⊕a⊕ f. Since s(g)⊕a is reductive and dim f <∞, Proposition
2.3. and Lemma 2.6 imply that g is very rich. The nilcore nilcore(g) is r(g)/z(g);
so if this algebra is finite-dimensional then r(g)′ is finite-dimensional by 11.13 of
[9]. ut

Now we are ready for the structure theorem that is the Lie algebra nucleus of
the local splitting theorems of this paper.

Theorem 2.11. (The Structure of Pro-Lie Algebras with Finite-Dimensional
Nilcore) For a pro-Lie algebra g, the following two conditions are equivalent:
(i) The nilcore nilcore(g) = n(g)/z(g) of g is finite-dimensional.
(ii) g is an ideal direct sum, algebraically and topologically, of a reductive pro-Lie

algebra and a finite-dimensional Lie algebra.

If these conditions are satisfied, then all sufficiently small cofinite-dimensional
ideals of g are direct summands.

If the maximal compactly embedded ideal m(g) is cofinite dimensional in g then
dim nilcore(g) <∞.

Proof. Propositions 2.3 and Lemma 2.6 show that Condition (ii) implies that g is
very rich. If (ii) is satisfied, then g is a direct sum g1⊕g2 with a reductive ideal g1

and a finite-dimensional ideal g2. Then n(g) = n(g1)⊕n(g2) and z(g) = z(g1)⊕z(g2)
and, accordingly, nilcore(g) ∼= nilcore(g)1×nilcore(g)2. But nilcore(g)1 = {1} and
dim g2 <∞. Accordingly, dim nilcore(g) <∞.
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By Corollary 12.34(iii) of [9], m(g) ∩ r(g) = z(g). Therefore, if g/m(g) is finite-
dimensional, then r(g)/z(g) = r(g)/

(
r(g)∩m(g)

) ∼= (
r(g)+m(g)

)
/m(g) is finite-di-

mensional and thus certainly n(g)/z(g) is finite-dimensional, that is, (i) holds.

It therefore remains to prove (i)=⇒(ii): By Lemma (ii) of the Exercise preceding
Lemma 2.8, n

(
g/z(g)

)
= n(g)/z(g). So, by hypothesis, g/z(g) has a finite-dimens-

ional nilradical. Since the nilradical contains the coreductive radical (see Theorem
7.66ff. of [9]), g/n(g) is reductive. So g/z(g) is very rich by Proposition 2.3(ii)
Thus Lemma 2.6(i) applies with g/z(g) in place of g and with n(g)/z(g) in place
of f and shows that there are two closed ideals j and h of g, both containing z(g)
such that

(1) g = j + h, j ∩ h = z(g), n(g) ⊆ h, and dim h/z(h) <∞.

We notice that [j, h] ⊆ j ∩ h = z(g). Thus the commutator function (x, y) 7→
[x, y] : j× h → z(g) is a Z-bilinear continuous morphism. Thus for each b ∈ h the
morphism x 7→ [x, b]: j → z(g) vanishes on [j, j], and for each a ∈ j, the morphism
y 7→ [a, y]: h → z(g) vanishes on [h, h]. Thus

(2)
[
[j, j], h

]
+

[
j, [h, h]

]
= {0}.

Next we discuss the ideal j: The nilradical n(j) of j is a characteristic ideal and
is therefore a pronilpotent ideal of g. Hence it is contained in n(g) ⊆ h, and so it is
contained in fact in j ∩ h = z(g). Since ncored(j) ⊆ n(j) this entails ncored(j) ⊆ z(j).
Now Lemma 2.10 applies to j and shows that r(j) is nilpotent of class ≤ 2 and

(4) n(j) ⊆ z(g) and j = r(j)⊕ s(j),

a direct sum with a unique Levi summand s(j). Now s(j) ⊆ [j, j] commutes ele-
mentwise with h by (1) and with r(j) by (4). Hence it is an ideal of g = j ⊕ h.
As g is the semidirect sum of r(g) and any Levi summand s by the Levi-Mal’cev
Theorem 7.52(i) of [9]. Now s(j) ⊆ s by the Levi-Mal’cev Theorem 7.77(iv) of [9].
Since s is semisimple, s is a direct sum s(j) ⊕ t with a semisimple direct factor t
of s, and so g = s(j)⊕ g1 where the ideal direct summand g1 is r(g)⊕ t. If g1 has
the structure asserted in Statement (ii) of the Theorem, then (ii) holds for g. We
may and will therefore assume that s(j) = {0}, that is, that j is nilpotent of class
≤ 2, that is, j = n(j). But since n(j) ⊆ z(g) by (4), we conclude that j ⊆ z(g) ⊆ h.
From (1) it follows that g = j + h = h

By Proposition 2.7 applied to g where z(g) takes the place of z, there is a finite-
dimensional ideal f of g containing g′ = s+ncored(g) (where s is any Levi summand
of s), and there is a central ideal a ⊆ z(g) such that

(5) g = a⊕ f =
(
a⊕ r(f)

)
⊕ s.

This completes the proof of (ii). ut

In Example 2.5(iii) we saw that for every infinite-dimensional weakly complete
topological vector space V , the class 2 nilpotent pro-Heisenberg algebra h(V ) fails
to be very rich, and its nilpotent core nilcore(h(V )) is isomorphic to V . This
example shows that Theorem 2.11 is likely to come very close to the best possible
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if one looks for a reasonably general sufficient condition for a pro-Lie algebra to
be very rich.

Splitting on the Group Level

We now return from the pure algebra level to the pro-Lie group level. Recall that
the nilradical N(G) of a connected pro-Lie group is the largest connected pronilpo-
tent normal subgroup. We notice that if G is a pro-Lie group, then N(G0)/Z(G0)0
is a pro-Lie group by Theorem 4.28(i) of [9], where it is shown that the quotient of
a connected pro-Lie group modulo a connected closed normal subgroup is a pro-Lie
group. This pro-Lie group is called the nilcore of G. It is written nilcore(G).

Proposition 3.1. Let G be a connected pro-Lie group. Then
(i) its nilcore nilcore(G) is a simply connected pronilpotent pro-Lie group.
(ii) Its Lie algebra L

(
nilcore(G)

)
is naturally isomorphic to the nilcore nilcore(g)

of its Lie algebra g = L(G).
(iii) The function exp: (nilcore(g), ∗) → nilcore(G) is a natural isomorphism of

pro-Lie groups, where ∗ denotes the Campbell-Hausdorff multiplication on the
pro-Lie algebra nilcore(g).

Proof. By Theorem 9.50 of [9], the maximal compact subgroup of N(G) is
contained in the center Z(G). From 11.26 of [9] it follows that nilcore(G) has no
nontrivial compact subgroups. Then (i) and (iii) follow from Theorem 11.27 of [9].

(ii) By Theorem 10.42 of [9] we have L
(
N(G)) = n(g), and by Proposition 9.23

we know L
(
Z(G)

)
= z(g). Now [4], Corollary 6.7(i) or Corollary 4.21(i) proves the

claim.
(iii) A combination of Theorem 8.5, Proposition 8.8, Theorem 8.15 of [9] shows,

that for a simply connected nilpotent pro-Lie Group N , the exponential function
expN : (L(N), ∗) → N is an isomorphism of topological groups. The assertion is
now a consequence of conclusion (iii) above. ut

The structure of the nilcore of a connected pro-Lie group is therefore completely
known when its Lie algebra is known. Trivially, Z(G)0 ⊆ N(G)∩Z(G). Conversely,
N(G) ∩ Z(G) ⊆ Z

(
N(G)

)
, and by Proposition 11.20(i) of [9], the center of N(G)

is connected. So

Z(G)0 ⊆ N(G) ∩ Z(G) ⊆ Z(N)0,

But Example 2.5(ii) shows that Z(G) = {0} and Z(N)0 = Z(N) 6= {0} may
occur. Since N(G)/Z

(
N(G)

)
is a quotient of nilcore(G), the finite-dimensionality

of N(G)/Z
(
N(G)

)
is a weaker condition than that of nilcore(G).

We are now ready for our general pro-Lie group version of the Iwasawa Local
Splitting Theorem.
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Theorem 3.2. (Local Splitting Theorem) Let G be a pro-Lie group whose nil-
core

nilcore(G) def= N(G0)/Z(G0)0

is finite-dimensional. Then every identity neighborhood contains a closed normal
almost connected subgroup N such that G/N is a Lie group and that there is a
morphism ϕ: G̃/N → G such that the morphism µ:N×G̃/N → G, µ(n, x) = nϕ(x)
is an open morphism having a discrete kernel. In particular, G, N × G̃/N , and
N ×G/N are locally isomorphic.

Proof. Let g
def= L(G) be the Lie algebra of G. By Proposition 3.1, nilcore(g) =

g/n(g) is finite-dimensional. Then by 2.11, the Structure Theorem of Pro-Lie al-
gebras with Finite-Dimensional Nilcore, g is extremely rich (see Definition 2.4.)
Thus all sufficiently small cofinite-dimensional ideals are well-complemented. By
[4], Corollary 6.7(ii) or by Corollary 4.21(ii) of [9], {L(N) | N ∈ N (G)} con-
verges to zero. Hence for all sufficiently small N ∈ N (G), the ideal L(N) is well-
complemented. Now Theorem 1.3 of the Local Splitting of Lie Group Quotients
and its Corollary 1.4 together prove the Theorem. ut

The following discussion requires the theory of analytic subgroups of pro-Lie
groups which we expounded in Chapter 9 of [9]. By the definition of analytic
subgroups in [9] (see Definition 9.5, Proposition 9.6), im(ϕ) is an analytic subgroup
whose Lie algebra f is the direct summand for which g = n ⊕ f. We note that
(n, x) ∈ kerµ iff n = ϕ(x)−1 ∈ N ∩ imϕ = A(f). That is, x 7→ (ϕ(x)−1, x) :
ϕ−1(N) → kerµ is an isomorphism. Let L be the underlying Lie group of the
analytic group A(f). Then, the morphism (n, `) 7→ n` : N × L→ G is a surjective
morphism implementing a local isomorphism. Its kernel {(`−1, `)|` ∈ N ∩ A(f)}
is algebraically isomorphic to a discrete and hence central normal subgroup of L
and is therefore a finitely generated abelian group; it is algebraically isomorphic
to N ∩A(f).

We retain the notation of the Local Splitting Theorem 3.2 and provide addi-
tional information on the local splitting.

Proposition 3.3. (Sandwich Theorem for Local Splitting) Let G be a connected
pro-Lie group whose nilcore nilcore(G) def= N(G)/Z(G)0 is finite-dimensional. We
assume that A(f) = imϕ is a closed analytic subgroup L. Then 3.2 applies, and the
quotient map q:G→ G/D, D = N ∩L implements a covering morphism. Further,

ν:N/D × L/D → G/D, ν((nD, `D)) = n`D,

is an isomorphism. Let qN :N → N/D and πL/D : G̃/N → L/D be the quotient
morphisms, each with kernel isomorphic to D. Then the sandwich diagram

N × G̃/N
µ−−−−→ G

qN×πG/D

y yq
N/D × L/D −−−−→

ν
G/D
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commutes.

Proof. Given the information in Theorem 3.2, all of the assertions of the corollary
amount to a straightforward verification. ut

We should record, that the Structure Theorem of Pro-Lie algebras with Finite-
Dimensional Nilcore 2.11 contains some information which is not yet reflected in
the theorems that we have formulated so far.

Corollary 3.4. (The Structure Theorem for Groups with Finite-Dimensional
Nilcore) Let G be a connected pro-Lie group. Then the following statements are
equivalent:
(i) The nilcore nilcore(G) is finite-dimensional.
(ii) G is locally isomorphic to the product of a closed normal almost connected

subgroup N , whose identity component N0 is reductive, and a connected Lie
subgroup L.

Proof. (i) =⇒(ii): By the Local Splitting Theorem 3.2 we find a closed normal
subgroup N (which we may choose as small as we like) a connected Lie group L
such that N ×L and G are locally isomorphic and that g = n⊕ f where n = L(N)
and f = L(L). By Theorem 2.11, if N and then n is small enough, n is an ideal of
a reductive algebra and is, therefore, reductive itself. By Theorem 10.29(i) of [9],
this shows that N0 is reductive.

(ii)=⇒(i): If (ii) holds, then g = n ⊕ f with a reductive Lie algebra n = L(N)
and a finite-dimensional ideal f = L(L). Then nilcore(g) = nilcore(n)⊕nilcore(f) =
nilcore(f), is finite-dimensional since f is finite-dimensional. ut

Information on the structure of reductive connected pro-Lie groups is to be
found in [9] in Theorems 10.29, 10.32, 10.48, and 11.8.

Our discussion now leads back to the domain of locally compact groups, where
the original theorem of Iwasawa’s started. It was concerned with connected locally
compact groups. The following consequence of our present theory is, therefore,
more general.

Corollary 3.5. (Strong Iwasawa Local Splitting Theorem) Let G be a locally
compact pro-Lie group. Then there is an open subgroup G of G and there are
arbitrarily small compact normal subgroups N of G such that G/N is a Lie group
and G and N ×G/N are locally isomorphic.

Proof. We recall from [11], p. 175, that a locally compact group is automatically a
pro-Lie group if it is almost connected. So let G be an open almost connected sub-
group of G which always exists because every locally compact totally disconnected
group (such as for instance G/G0) has compact open subgroups.

Let g = L(G) = L(G). By Corollary 12.88 of [9], g/m(g) the factor algebra
modulo the largest compactly embedded ideal is finite-dimensional. Hence from
the Structure of Pro-Lie Algebras with Finite-Dimensional Nilcore 2.11 and from
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Proposition 3.1(ii), we know that nilcore(g) = L(nilcore(G)) is finite-dimensional.
So the Local Splitting Theorem 3.2 applies to G and proves the assertion. ut

Additional Structural Information

The hypotheses of the Local Splitting Theorem 3.2 allow us to draw additional
structural conclusions which are important.

In Chapter 12 of [9] we have discussed the special structure of centrally supple-
mented groups: see [9], Definition 12.72ff. We recall that every connected pro-Lie
group G has a unique characteristic largest compact normal abelian and hence
central subgroup KZ(G), and that G/KZ(G) has no nontrivial compact central
subgroups (see [9], Definition 9.47ff., notably Theorem 9.50). Recall from Theo-
rem 3.1 that we denote by A(g) the unique smallest analytic subgroup of G having
g as its Lie algebra.

Theorem 4.1. (Theorem on Central Supplementation) Let G be a connected pro-
Lie group whose nilcore nilcore(G) def= N(G)/Z(G)0 is finite-dimensional. Then

G = KZ(G)A(g).

In particular, G is centrally supplemented.

Proof. We factor KZ(G) and assume KZ(Z) = {1}; we must show G = A(g). Let
g = j⊕ h where j is a reductive ideal and h is a finite-dimensional ideal according
to Theorem 2.10. Since {L(N)|N ∈ N (G)} converges to 0 in g by [4], Corollary
6.7(ii) or [9], 4.21(ii), there is an N ∈ N (G) such that L(N) ⊆ j. Since j is
a product of simple Lie algebras and copies of R by the Structure Theorem of
Reductive Pro-Lie algebras 7.27 in [9], we have j = L(N)⊕ f with a finite-dimens-
ional semisimple ideal f and so we have g = L(N)⊕ f⊕ h. It is therefore no loss of
generality if we assume henceforth that there is an N ∈ N (G) such that L(N) = j.
Then G/N is a Lie group and thus

(1) G = NA(g)

by [4] Corollary 6.8(iii) or by Corollary 4.22(iii) of [9].
The analytic subgroup A(g) is the product of the normal analytic subgroups

A(j) and A(h) which commute elementwise. By [4], 6.8(i)or by [9], 4.22(i), N0 =
A(j). Then A(h) ⊆ Z(N0, G) and thus G = N0Z(N0, G) and Z(N0) ⊆ Z(G).
Further, N0 is reductive by Theorem 10.48 of [9], and therefore satisfies N0 =
KZ(N0)A(j, N0) and is centrally supplemented in its own right. Since KZ(N0) ⊆
KZ(G) = {1}, we have

(2) N0 = A(j) ⊆ A(j)A(h) = A(g).

Then (1) implies

(3) G = NA(h).
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Now L(G/N0) = L(G)/L(N0) = L(G)/L(N) = g/j ∼= h by Corollary 6.7(i) of [4]
or Corollary 4.21(i) of [9]. Therefore G/N0 is finite-dimensional by Definition (see
[9], 9.43). Then G/N0 is locally compact metric by [9], Theorem 9.44, and we
may assume that N/N0 is compact totally disconnected. Let ϕ: G̃/N = Γ(h) → G

be a morphism such that imϕ = A(h). Then Z
def= ϕ−1(N) is a discrete central

subgroup Z of G̃/N and is therefore finitely generated. Thus Theorem 5.32(iv) of
[9] applies to A def= ϕ(Z) and shows that A ∼= comp(A)×Zn for some nonnegative
integer. However, A ⊆ Z(G) whence comp(A) ⊆ KZ(G) = {1}. Thus A is free
discrete and therefore agrees with ϕ(Z) = N ∩ A(h). Then the map i:A(h)/A →
G/N , i(aA) = aN is a bijective morphism by (3). Let ψ be the corestriction of ϕ
to its image. Then the composition

G̃/N
ψ−−−−→ A(h)

quot−−−−→ A(h)/A i−−−−→ G/N

is a surjective morphism between locally isomorphic Lie groups and is, therefore,
open and implements itself a local isomorphism. This implies that ψ is open and
H

def= A(h) is a Lie group and G = NH, N ∩ H = A. Thus N/A ∼= G/H is
connected and is locally isomorphic to N and is, therefore a connected pro-Lie
group. By (2) N0 = 〈expN j〉 and by [4] Corollary 6.8(iii) or by Corollary 4.22(iii)
of [9], 〈im expN/A〉 = N0A. Therefore N0A/N0 is a connected space which is
completely regular as a Hausdorff topological group. Its cardinality is therefore 1
or at least 2ℵ0 . Since A is countable, it follows that N∩H = A ⊆ N0. By Theorem
9.44 of [9], AN0/N0 = ϕ(Z)N0/N0 is dense in N/N0 and therefore N = N0, that
is N = A(j). Now (1) shows that G = A(g) which is what we had to show. ut

From [2], Theorem 8.20(i) it follows that every compact abelian group K con-
tains a compact totally disconnected subgroup D such that K = KaD (see also [2],
Theorem 9.41). Therefore, in the circumstances of Theorem 4.1, we find a compact
zero-dimensional central subgroup D of G such that G = DA(g) = D〈expG g〉. We
can therefore write

Corollary 4.2. Let G be a pro-Lie group with a finite-dimensional nilcore. Then
there is a compact totally disconnected central subgroup D of G and an open sur-
jective morphism

µ:D × G̃→ G, µ(d, x) = dπG(x)

with a prodiscrete kernel.

Proof. We recall that we have a universal morphism πG: G̃ → G whose image
is exactly A(g) = 〈im expG〉. The existence of the surjective morphism µ then
follows from the preceding remarks in view of Theorem 4.1. The Open Mapping
Theorem 9.55 of [9] finally shows that µ is open. ut

Since every connected locally compact group is a pro-Lie group by Yamabe’s
Theorem, and since the nilcore of a locally compact group is always finite dimen-
sional, Corollary 4.2 implies at once the following consequence:
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Corollary 4.3. Let G be a connected locally compact group. Then there is a
compact totally disconnected central subgroup D of G and an open surjective mor-
phism

µ:D × G̃→ G, µ(d, x) = dπG(x)

with a prodiscrete kernel. ut

We should recall that G̃, while being a simply connected pro-Lie group, is
in general not locally compact. This is illustrated by any infinite dimensional
compact connected abelian group G, for which G̃ is the additive group of the
pro-Lie algebra L(G) ∼= RJ , card J = dimG. (See [2], Chapter 8, notably 8.20.)

Some Comments on Connectedness

We observe that, classically, the Iwasawa Local Splitting Theorem 3.5 required the
hypothesis of connectivity. The presentation of the local splitting theory in the
framework of pro-Lie group theory, culminating in Theorem 3.2 does not require
this hypothesis, as long as we are dealing with pro-Lie groups. This is plausible
because the conclusion is a local one. The global version concludes the existence
of an open morphism N × G̃/N → G, and not a surjective one. We should
recall that by the definition of the universal group H̃ of a pro-Lie group H (see
[9], Theorem 6.6ff.) it is always a connected, indeed simply connected group
regardless of whether H is connected or not. We distinguish “universal group”
of H from “universal covering group” of H. Indeed if the underlying space of H
has a universal covering space, then the two concepts agree (see Theorem 8.21 of
[9]). In particular, if H is a Lie group (such as in the case for G/N whenever
N ∈ N (G)), then H̃ is the universal covering group of H0.

In the case of a locally compact group G, by the results of Yamabe, there is
always an open subgroup G of G which is a pro-Lie group. Then the pro-Lie group
result applies to G and produces arbitrarily small normal subgroups N of G such
that G and N × G/N are locally isomorphic. But since G and G trivially are
locally isomorphic, one can still say that a locally compact group, quite generally,
is locally isomorphic to the product of an arbitrarily small compact subgroup (not
necessarily normal!) and some Lie group.

In [3] this was argued directly from the “connected” version of Iwasawa’s Local
Splitting Theorem for Locally Compact Groups; but that required some technical
ad hoc arguments.
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