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Abstract

A new class of stochastic Runge-Kutta methods for the weak approximation of the
solution of It6 stochastic differential equation systems with a multi-dimensional
Wiener process is introduced. As the main innovation, the number of stages of the
methods does not depend on the dimension of the driving Wiener process and the
number of the necessary random variables is reduced considerably. This reduces the
computational effort significantly. Order conditions for the stochastic Runge-Kutta
methods assuring weak convergence with order two are calculated by applying the
colored rooted tree analysis due to the author. Further, some coefficients for explicit
second order stochastic Runge-Kutta schemes are presented.
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1 Introduction

The development of derivative free approximation methods for solutions of
stochastic differential equations (SDEs) is subject of recent research. For ex-
ample, derivative free Runge-Kutta type schemes have been proposed for the
strong approximation of solutions of SDEs in [1,2,5,9,11,16]. On the other
hand, for the weak approximation of solutions of SDEs particular schemes
have to be developed, see e.g. [5,6,9,17]. Recently, second order stochastic
Runge-Kutta (SRK) methods for the weak approximation have been studied
by e.g. Kloeden and Platen [5], Komori et. al. [7,8], R68ler [12-14] and Tocino
and Vigo-Aguiar [19]. However, due to the knowledge of the author, up to now
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all proposed second order SRK methods suffer from an inefficiency if they are
applied to SDEs with a multi-dimensional Wiener process because the number
of stages, and thus the number of evaluations of the diffusion function per step,
depends at least linearly on the dimension m of the driving Wiener process.
This drawback becomes significant especially for high-dimensional problems.
The aim of the present paper is to overcome this drawback by introducing
a new class of efficient SRK methods. Essentially, these new SRK methods
possess two advantages: Firstly, the number of stages and thus the number
of evaluations of the drift and the diffusion functions per step is constant,
i.e. independent of the dimension m of the driving Wiener process. Secondly,
the number of random variables that have to be simulated is only 2m — 1
for each step. The paper is organized as follows: In Sections 2-4 we briefly
review the main concept of the rooted tree analysis for the weak approxima-
tion introduced in [12,15]. Then, in Section 5, a new class of SRK methods is
introduced and the rooted tree analysis provided in Sections 2—4 is applied to
calculate order conditions. Further, some coefficients for explicit second order
SRK schemes are presented. The paper closes with a numerical example in
Section 6.

Let (€, F, P) be a probability space with a filtration (F;);>¢ fulfilling the
usual conditions and let Z = [ty, T'] for some 0 < ty < T < oo. We denote by
(X¢)tez the solution of the d-dimensional It6 SDE system

t m t . .
Xt:XtO—i—/tO a(s, X,) ds—i—Z/tObJ(s,Xs) AW (1)
j=1

for d,m > 1 with an m-dimensional Wiener process (WW);>o. Suppose X;, =
1y € R? is F,-measurable with E(]|X;,||%) < oo for some | € N. Throughout
the paper we shall suppose that a,b’ : Z x R? — R? for j = 1,...,m are
at least Lipschitz continuous and satisfy a linear grwoth condition w.r.t. the
state variable z. Then the Existence and Uniqueness Theorem applies (see,
e.g., [4]). In the following, let CL(R¢, R) denote the space of all g € C*(R?, R)
with polynomial growth, i.e. there exists a constant C' > 0 and r € N, such
that [02g(z)| < C(1+]z||*") for all z € R? and any partial derivative of order
i < 1 [5]. We say that g belongs to CEY(Z x R%,R) if ¢ € C*(Z x R%,R)
and g(¢,-) € CL(R?,R) holds uniformly in ¢ € Z. Let a discretization Z; =
{to,t1,...,tn} with tp < t; < ... < ty = T of the time interval Z = [ty, T
with step sizes h, = t,.1 — t, for n = 0,1,..., N — 1 be given. Further, let
h = maxy<,<n h, denote the maximum step size.

Definition 1.1 An approzimation process Y converges weakly with order p to
X at time T as h — 0 if for each f € C’gpﬂ)(Rd,R) exist a constant Cy and
a finite 09 > 0 such that for each h €0, o[ holds:

| E(f (X)) = E(f(Y(T)))| < Cr h”. (2)



2 Stochastic Runge—Kutta Methods

In [12], a very general class of stochastic Runge-Kutta methods has been
introduced which covers the structure of well known schemes as well as of
many future schemes: Let M be a finite set of multi-indices with k = | M|
elements and let 6,(h), v € M, be some random variables. Then, a general
class of s-stage stochastic Runge-Kutta methods is given by Y; = xy and

Yo=Y, + Z Zzgo,o) a (tn + Cgo,o)hm Hi(O’O)) (3)
i=1
+>3 3> 2k (tn + I, Hi(k’”))
=1 k=1veM

forn=0,1,...,N —1 with Y, =Y (¢,), t, € I, and

(k) _ (k),(0,0) (0,0) (0,0)
H Y+ZZ (tn+cj hy,, H' )

J

+ZZ > ZEI (b + by, HY)

j=1r=1 yeM

fori=1,...,s,k=0,1,...,m and v € M U{0}. Here, let
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k,w v kw),(r,
fore,j =1,...,s and let ai,q/-m( ) Agf )’(0’0),31-(;-)( M) € R be the coeffi-

2 3

cients of the SRK method. The weights can be defined by
k) — A(kv),(0,0) (4)
k,v),(r,
withe = (1,...,1)T.1f AL = gOEM g gor 5> i then (3) is called
an explicit SRK method, otherwise it is called implicit. We assume that the
random variables 6, (h,,) satisfy the moment condition

E (9,’2(%) o Hﬁg(hn)) — O(h%p1+...+pn)/2) (5)

for all p; € Ny and v; € M, 1 < i < k. The moment condition ensures a
contribution of each random variable having an order of magnitude O(v/h).
This condition is in accordance with the order of magnitude of the increments
of the Wiener process. Remark that in the case of b = 0, the SRK method
reduces to the well known deterministic Runge-Kutta method, so the intro-
duced class of SRK methods turns out to be a generalization of deterministic
Runge-Kutta methods.



3 Colored Rooted Tree Analysis

Next, we give a short outline of the colored rooted tree analysis following
[12,15] which is applied in Section 5 for the calculation of order conditions for
the SRK method (3). Without loss of generality, we restrict our considerations
to autonomous d-dimensional It6 SDE systems with an m-dimensional Wiener
process in this section. Let T'S(A) denote the set of colored rooted trees with a
root of type v = ® and which may additionally consist of some deterministic
nodes of type 7 = @ and stochastic nodes of type o;, = O, with a variable
index ji € {1,...,m}. The variable index jj is associated with the j;th com-
ponent of the m-dimensional driving Wiener process of the considered SDE. If
not stated otherwise, each stochastic node has its own variable index. So, if we
have a tree with s stochastic nodes then to each stochastic node corresponds
exactly one of the indices ji, ..., Js.

1 J2

tos = tos = Qi ja to.3 =

Fig. 1. Some elements of T'S(A) with ji, j2,73,74 € {1,...,m}.

Every tree t € T'S(A) can be written by a combination of three differ-
ent brackets: If t;,...,t; are colored trees then we denote by (tq,...,tx),
[t1,...,tx] and {tq,...,t;}; the tree in which ti,...,t; are each joined by a
single branch to ®, @ and Qj, respectively. Here, the order of the subtrees
ti,...,t; does not matter since any order leads to equivalent trees. Therefore,
we obtain tos = ([Oj17oj2]) = ([O'jl,sz]), tog = ({.}j17oj2) = ({T}jwajz)
and ty.13 = (O;,,{O0j5,Ojuti) = (041, {0345, 74, }4,) for the trees in Figure 1.

In the following, let I(t) be the number of nodes of t € T'S(A). Then, we
denote by d(t) the number of deterministic nodes, by s(t) the number of
stochastic nodes of t € T'S(A) and it holds I(t) = d( ) + s(t) + 1. The order

p(t) of the tree t € T'S(A) is defined as p(t) = d(t) + 5s(t) with p(y) = 0.
For example, it holds p(to.4) = p(tas) = p(ta13) = 2.

Now, let LT'S(A) denote the set of monotonically labelled trees, i.e. where
the nodes are monotonically numbered starting with number one at the root
of the tree. Then, aa(t) is the cardinality of t, i.e. the number of possibil-
ities of monotonically labelling the nodes of t with numbers 1,...,[(t). For
example for t,2 = (0j,,0/,) exists only one possible monotonically labelling
(02,02 )! and thus aa(ti2) = 1. In contrast to this, for t155 = (7, 0,) holds

Ji’ 7 g2

aa(tiss) = 2. Although (7%,02)" and (02,7%)" are equivalent trees, there

exist two different labelled trees (72,02 )" and (7°,07 ). So one has to dis-



tinguish between the labels of deterministic and stochastic nodes (see [12] for
details). Further, it holds aa(t24) =1, aa(tes) =3 and aa(tai3) = 4.

Now, we assign to each tree t € T'S(A) an elementary differential which is
defined recursively by F(y)(z) = f(z), F(7)(z) = a(z), F(o;)(z) = ¥/ (z) and

fE () - (F(t)(2),...,F(ty)(z)) fort=(ti,...,tz)
)z),...,F(ty)(z)) fort=1[t1,....ts] . (6)
® (2) - (F(t1)(z), ..., F(t)(z)) for t = {t1,... ts};

Here f® a®) and &/ *) define a symmetric k-linear differential operator, and
one can choose the sequence of subtrees ty,...,t; in an arbitrary order. For
example, the Ith component of a®) - (F(t,),..., F(t;)) can be written as

d 8kal . 3
(a® - (F(ty),...,F(ty))! = Jh%:k_l ISR (F'(t1),..., F7e(ty))

where the components of vectors are denoted by superscript indices, which are
chosen as capitals. For example, we obtain for tyg the elementary differential

F(t ) - f”(bjl,(a,) b72) - zd: a2f ( i 8b<]1,j1 a,Kl . sz,jz)
28— ’ N N Ox 710z 72 ot Oz k1 )

Definition 3.1 Let T'S(I) denote the set of trees t € T'S(A) with a root of
type v which can be build by finite many steps of the form

a) adding a deterministic node of type T, or

b) adding two stochastic nodes of type oj,, both with the same new variable
indez j for some k € N, whereas neither of the two nodes is allowed to be
directly connected by an edge with the other one.

Let LTS(I) denote the set of labelled trees t € T'S(I) with the nodes labelled
in the same order as they are added. Then, a;(t) is the number of all possible
different monotonically labels of t € T'S(I) with ar(t) =0 if t ¢ T'S(I).

For example, ({0} }?,{02,}],)" ¢ LTS(I) while ({05,}?,{0},}3,)! € LTS(I).
The following result holds due to Theorem 3.2 and Propos1t10n 5.1 1in [15].

Theorem 3.2 For p € Ny, f,a*,b% € CIZJ(HI)(]Rd,]R), i=1,...,d, j =
1,...,m, and for t € [ty,T] with h = t — to the following truncated expan-
ston holds:

Elomo(f(X) = > > Iz(s()t)ﬂ( zi)l()) WO+ Ot (7)
tETS(I) jl:'“,js(t)/2:1 p .
p(H)<p



Next, we give an expansion for the approximation process (Y (¢))iez, defined by
the SRK method (3). For t € T'S(A) let the density v(t) be defined recursively
by v(t) =1ifi(t) =1 and

[[rvt)  if t=(t,....t),
(t) ="'
I(t) H*y(ti) if t=[ty,...,ty] or t={t1,...,t2};.

Since the expansion for (Y (¢))iez, contains the coefficients and the random
variables of the SRK method, we define a coefficient function ®5 which assigns
to every tree t € T'S(A) an elementary weight:

(A

H(I)S(tz) lft:(tla:t)\)

=1

A
Dg(t) = { 2007 T 9O (¢,) if t = [t1,...,t)] (8)
z:lT N

ST AT T ok (6)  if t = {t1,...,t\}k
\veM i=1

where ®g(y) = 1, U*)(()) = e with 7 = [§], ox = {0} and

A
700 TT w0 (t,) if t = [ty,..., 5]
Tk (t) = = : (9)
Z Z(ka‘/)z("':N) H \II(T’I'L) (tZ) if t = {tl, e ,t)\}r
[J,EM =1

Here e = (1,...,1)T and the product of vectors in (9) is defined by component-
wise multiplication, i.e. (a1,...,a,) « (b1,...,b,) = (a1b1,...,anb,). Remark
that TS(I) C TS(A). Further, each tree t € T'S(A) has s(t) different variable
indices ji,...,js) while a tree u € T'S(I) has only s(u)/2 different variable
indices. Then Proposition 6.1 in [12] yields:

Proposition 3.3 Let (Y (t))icz, be defined by the SRK method (3). Assume
that for the random wvariables holds 8,(h) = vh -9, for . € M with some

bounded random variables ¥,. Then for p € Ny, f,a*, b € CIZD(HI)(Rd,R) for
i=1,...,d,j=1,...,m and fort € [to, T| with h =1t — ty holds:

aa(t) v(t) F(#)(z0) E (Ps(1))

EtosTo (f(Y(2)) = Z Z 1) - 1) + (Q(hp+1) .
teTS(A) Jisemfs(y=1 )
p(O<p+3



4 Order Conditions for Stochastic Runge—Kutta Methods

Now, we apply the rooted tree expansions of the solution and the approxima-
tion processes in order to yield order conditions for the SRK method (3).

Definition 4.1 Let |t| denote the tree which is obtained if the nodes oj, of t
are replaced by o, i.e. by omitting all variable indices. Let a tree t € T'S(I)
with variable indices ji,..., jsp2 be given and let w € TS(A) with vari-
able indices 71, . . . ,ﬁs(u) denote the tree which is equivalent to t except for the
variable indices, i.e. |t| ~ |u| with s(t) = s(u). For a fized choice of corre-
lations of type ji, = ji or jx # ji, 1 < k < 1 < s(t)/2, between the indices
Jis-- -5 Js(t)/2, let B( t) denote the number of all possible correlations between

the indices j1,. .. ,_73 y of tree u such that t ~ u holds. In the case of s(t) =0
orte TS(A)\TS(I ) define B(t) =

Note that in case of m = 1 we have B(t) =1 for all t € T'S(I). For example,
for t = (0j,,05,{0j};) € TS(I) and u = (03,,0;,,{03,};,) € TS(A), two
cases have to be considered. On the one hand we have the correlatlon J1 = Jo
for t where we get the only possible correlation j; = jo = j3 = j4 for u, i.e.
B(t) = 1. On the other hand we have J1 ;é J2 as a correlatlon for t allowing us
two different correlations j; = j3 # jo = ja and jo = j3 # j1 = Ja for u. Thus
we get 5(t) = 2 in the latter case.

The following theorem yields conditions for the coefficients and the random
variables of the SRK method (3) such that convergence with some order p in
the weak sense is assured (see Theorem 6.4 in [12]).

Theorem 4.2 Let p € N, af, b7 € CB#(T x RUR) fori = 1,....d,
j=1,...,m. Then the SRK method (3) with step size h is of weak order p,
if for all t € TS(A) with p(t) < p+ 3 and all correlations of type ji = ji or
Je # i, 1 < k <1 < s(t), between the indices jy, ..., joz € {1,...,m} of t
holds

ar(t) - (I(t) — 1)! - pP®
ax(®) - B(B)-1(8) - 2077 p(8)]

provided (4) and (5) hold and if the approzimation Y has uniformly bounded
moments w.r.t. the number N of steps.

E(®s(t) = (10)

Remark 4.3 The approzimation Y by the SRK method (3) has uniformly
bounded moments if bounded random variables are used by the method, if (5)
is fulfilled and if E(z(k’”)Te) =0 holds for 1 <k <m andv € M (see [12]).
Further, Theorem 4.2 provides uniform weak convergence with order p in the
case of a non-random time discretization Iy, [12].



5 Order Two Stochastic Runge—Kutta Methods for I1t6 SDEs

A second order SRK method for the weak approximation of the solution of the
It6 SDE (1) is analyzed in this section. Therefore, we introduce a new class
of SRK methods where the number of stages is independent of the dimension
m of the driving Wiener process. We define the d-dimensional approximation
process Y with Y, = Y (¢,) for ¢, € Z,, by the following SRK method of s
stages with Yy = x and

forn=0,1,...

fori=1,...,

Yo =Yo+ > aialt, + cgo)hn, Hz-(o)) I

i=1
+ 35 Bt + ¢ ha, HP) Iy
i=1 k=1
s m Toew
+ 33 B (b + Vb, HP) L2
i=1 k=1 han
+ 33 BP0t + b, HP) I
i=1k=1
+ 33 Bt + b, HP)
i=1k=1
, N — 1 with stage values
HY=Y, +ZA a(ty, + " hy, H) b,
7j=1
S m ! R
+ 33 B bty + Ve, HY) I
j=11=1
HY=v, +ZA(1 (tn + ¢ by H) by,
+ ZB“) b (ty + ¢ b, H) A/,
AY=v, + ZA a(ty + by, H) by,
j=1
s m j(k )
+ 35 Bty + Vb, HY) 2L
ot ] J J /h’n
I#£k
sand k=1,...,m. The random variables are defined by
) %( I(l vV h Ik)) ifk<l
I(k,l) = %(I(k I(l =+ v/ nI ) ifl<k
%(I(Qk) — hy) ifk=1

(12)



for 1 < k,l < m with independent random variables f(k), 1 < k < m, such
that
0 for ¢ € {1,3,5}
E(IA(qk)) =< (¢g—1)h?? for q € {2,4} (13)
O(ha/?) for ¢ > 6

and random variables f(k), 1 <k <m —1, possessing the moments

0 for g € {1, 3}
E(I~(qk)) =<h for g =2 . (14)
O(h/?) for ¢ > 4

Thus, only 2m — 1 independent random variables are needed for each step.
For example, we can choose I(;) as three point distributed random variables

with P(J(xy = £v/3hn) = & and P(I) = 0) = Z. The random variables Iy
can be defined by a two point distribution with P(f(k) =+vh) = %

The coefficients of the SRK method (11) can be represented by an extended
Butcher array taking the form:
0 | 40 | B
| A0 | @)
@ | 4@ | p@
o | g7 | g@7
AT | g

Applying the rooted tree analysis presented in section 3 and section 4, we can
calculate order conditions for the SRK method (11).

Theorem 5.1 Let ', b € CZ*(Z x RLR) for 1 <i<d, 1<j<m. If the
coefficients of the stochastic Runge—Kutta method (11) fulfill the equations

1. ale=1 2. B®Te=0 3. A®Te=0
4 (B0 e =1 5. AOTe=0 6. SV BWe=0
7 5(4)TA(2)6 —0 8. ,3(3)TB(2)6 -0 9. 5(4)T(B(2)e)2 =0

then the method attains order 1.0 for the weak approximation of the solution of
the Ité SDE (1). Further, if o', b7 € C3*(ITxRLR) for1<i<d,1<j<m
and if in addition the equations

10. oTAWe=1 11. oT(BOWe)? =1

12. (80 e)(a"Be) = 1 13. (B e)(BM AWe) = L
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45. BT (BO(BWe))? =0
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are fulfilled and if ¢ = A®We fori =0,1,2, then the stochastic Runge-Kutta
method (11) attains order 2.0 for the weak approximation of the solution of
the Ité SDE (1).

Remark 5.2 Due to Theorem 5.1 we have to solve 59 equations for m > 1.
However in the case of m = 1 the 59 conditions reduce to 28 conditions (see
also [13]). For an explicit SRK method of type (11) s > 3 is needed.

Proof. Firstly, we have to prove that the SRK method (11) is contained in
the general class of SRK methods (3). Therefore, we choose M = {(k), (k,1) :
0 < k,l <m} and define

(,B-(l)f(k) ifOo<e=k,v=0
B an ey — (8 k)0 < kv =0
% 0he) = 8Py HfO<i=k,v=1
B b, if0=1<kv=1

0 otherwise

AOh, ifk=v=0
1) : _
A(E’U)(O’O)h _ Az’j h, iftk>0v=0
2] n (2) . _
A h, ifk>0rv=1
0 otherwise
BZ(](-))IA(T) itk=v=p=0,L=r
Bi(;)\/hn f0=1<k=rv=p=0
Bz(f)l(’“\/hf’: ifo=(k,r),0<k#rv=1u=0
0 otherwise

() (k)(rs)

fork=0,1,...,m,r=1,...,m and ¢, v, u € M. As a result of this we get

Zi(o’o) = a; by, ZZ(Ic,O) _ 51'(1) f(k) i Bi(2) I\%: Zzgk,l) _ 51_(3) f(k) 4 51(4) /h'n

20000 _ A0 ZRO00 _ 40y 000 _ 40y
(0,0)(k,0) _ (0) 7 (k,0)(k,0) _ p(1) (k1)(10) _ @) e,
Zij =By Iy 7 =B Vha  Zi T = By

for 1 <k, < m with k # [. Further, we have Hi(o,o) = HZ-(O), Hi(k’o) = Hi(k) and
H®Y = A® Now, apply Theorem 4.2 for all t € T'S(A) with p(t) < 2.5. We
refer to [12] for all necessary trees and corresponding parameters a;(t), aa(t)
or f(t). Apart from (13) and (14), the following moments are helpful in the
subsequent calculations: E(IA(Q,C,C)) = Zh?, E(IA(Qk)IA(kyk)) = h?, E(f(:”kk)) = 1h?,

E(f(k)f(l)f(k,l)) = %hz’ E(f(Qk,l)) = %hQa E(ng,z)) = 0, E(f(Zk)j(Qk,l)) = h* and
E(Ignlqr)) = 0 for ¢ = 1,3 and k # [. In the following holds §(t) = 1 if not

11



stated otherwise.

Order 0.5 trees. . .
tos1 = (05,): @s(t) = 20007 4 20D
With a;(t) = 0 follows E(®s(t)) = 0 < 8@ e VA = 0.

In the following, we assume that condition 2. of Theorem 5.1 holds.

Order 1.0 trees. -
t11 = (7): s(t) = 200" ¢
With a;(t) = aa(t) = 1 follows E(®s(t)) = h < a'eh = h.

t10 = (0j,,0,): Ps(t) = (z(jl’O)Te + z(jl’l)Te)(z(jz’O) e+ 22D 7Te

For j1 = jo with ar(t) = aa(t) = 1 follows E(®5(t)) = h & (80" e)> (17, )+
(B2 e)? B, )b + (B9 e)? B(IZ,)) + (807 e) (80 €) B(I,)) = h.

t1.3 — ({Jj2}]1) (bs(t) — z(]l ,O)TZ(jlyo)(j270)e —+ Z(jlvl)TZ(jl,l)(jZaO)e
It holds «;(t) = 0 and E(®s(t)) = 0.

Now, we additionally assume that condition 1. of Theorem 5.1 holds.

Order 1.5 trees.
ti52 = ({7};,): Ps(t) = 20107 71,000 ¢ 4 ,01LDT Z(71,1)(0,0)¢
With a;(t) = 0 follows E(®g(t)) = 0 & BB A@e p3/2 = 0.

tis54 = (Uju Ojys ajs):

¢S(t‘) — (z(jl;O)Te + Z(jlal)Te) (Z(jZaO)Te + Z(j211)T€) (Z(js,O)Te + Z(j3’1)T€)

For j% = Jo :723 with ozTI(t) = 0 follows E(®g(t)) =0 <:>

(B0 e + B0 o) (807 ) E(12, L go)h V2 + (BT e)? B(ES, ;A2 = 0
& B@Te = 0. In the following, due to t,» we assume (317¢)2 = 1 and
5O = 0.

ti55 = ({O'j2 }jl’UjB):

Dy (t) = (20107 2010020 4 01D ZG1DG20)e) (20T ¢ 4 2T ¢)

Case A): For j; = jo = j3 with a;(t) = 0 follows E(®5(t) =0 &

(BD%e) (BT BWe) E(I7, ))\/E = 0. Case B): For ji # ja = j3 with az(t) =0

A

T 7 7 —
follows E(®s(t)) = 0 < (81" e) (80" B®e) B(lj) Lo L) )02 = 0.
tise = ({Uj27 O-js}jl):
Bg(t) = 20107 ((Z010020)0)(Z(01:0020)))

4 2D T (Z01D020)¢) (71D00) )

12



For j; # jo = js with a;(t) = 0 follows E(®g(t)) =0 &
T A A
5(4) (3(2)6)2 E(I(le,p))h 1/2 _ .

For the trees t151 = ([0},]), ti53 = (7,05,) and t157 = ({{0j;},};) holds
ar(t) =0 and E(®g(t)) = 0.

Order 2.0 trees: .
ty1 = ([1]): Bs(t) = 2007 20000,
With O![(t) = a/A(t) =1 follows E(CI)S(t)) — %h? o oTAOep2 — %hz.

t2.2 = (7_, 7'): (1)5(t) = (z(O’O)Te)Q
With a7(t) = aa(t) = 1 follows E(®g(t)) = h? & (ale)? h? = h2.

a4 = ([0, 73]): Ds(t) = 200 (ZONG0e) (709020¢))
For ji = j, with ar(t) = aa(t) =1 follows E(®s(t)) = 3h* <
ol (BOU)e)? E(f(le))h = 1h%

tos = (aﬂ, [0,]): ®s(t) = (2010 e + 20107 e) (2007 ZO0G20))
For 31 = jo with a;(t) = 2 and aa(t) = 3 follows E(®s(t)) = ihr? &

(807 ¢) (a7 BOe) B(IZ,)h = 1h.

b2 = (05, 73 ) Bs(t) = (2007 4 20007 ) (50207 4 LG g) (007
For j1 = jp with a;(t) = 2 and aa(t) = 3 follows E(®5(t)) = h? &
(507 0)2(aTe) B(I%, )h = b

tog = (Gj1: {T}jz):

Bg(t) = (20007 e + 20107 ) (20207 702000 4 HG2)T Z(2:)(0.0)¢)
For j1 = jo With aI( ) = 2 and aa(t) = 3 follows E(®s(t)) = 3% &
(BW ) (B0 AVe + 53" ADe ) (IO h=5h.

Here, we claim that (5( Te) (BT AWe) = 5 and BAOTA®e = 0,

132.11 = (Uj17 O34y 03,y Uj4):

x (20807 ¢ 4 3D e) (000 ¢ 4 ,GaDTe)

Case A): For j; = jo = js = js with oz(t) = aa(t) = B(t) = 1 fol-
lows E(®g(t)) = 3h2 < (807 e) E(f,) = 3h% Case B): For ji = j, #
J3 = 34 with a7(t) = aa(t) = 1 and B(t) = 3 follows E(®5(t)) = h? &
(B )2 (80" e)? B(IZ,)12,) = 1.

13



to.12 = (0j1 » Ojas {%'4 }js):

Dg(t) = (20107 e 4 20107 e) (207 ¢ 1 L02DT¢)
x (2807 72000 4 (3T Zi21)(a0))

Case A): For j; = jo = j3 = j4 with ay(t) ( ) = 6 and S(t) =

= 4,
follows E(®g(t)) = h2 & (807 e)2(8@T BWe) E f Ity j) = h2. Case B).
For j1 = j3 # jo = ]4 with oq( ) =4, aa(t) = 6 and S(t) = 2 follows

A A

E(®s(t)) = 1h2 & (807 )20 BRe) E(fol) G L) = 31°
to.13 = (O-jl’ {sta Uj4}j2):

By(t) = (20007 ¢ 4 L0107 0) (G207 ((7(2002.0)¢) (7(2.0)(0) )
+ 20207 (202020 ¢) (7G2)40)¢)))

Case A): For j; = j, = j3 = j4 with a7(t) = 2 and aa(t) = 4 follows

E(®s(t)) = lhz & (B¢ 6)(ﬁ(1 (B(1 e)?) E(Ia))h = %hz. Case B): For

Ju=J2 F Js = Ja w1th ay(t) = 2 and aA( ) = 4 follows E(®g(t)) = 1h?
T T - _

& (BN e) (8O (BMe)?) E(I7,) 13, j)h™" = 3h*.

to14 = (051, {{05u }is }in):

B (to10) = (2010 e 4 2007 o) (0207 (7(2:0)52.0) ( Z(3.0)(i5.0) )

Case A): For j; = jo, = j3 = j4 with az(t) = 0 follows E(®s(t)) = 0 <
(B0 e) (VT (BW(BWe))) E(f(]l))h = 0. Case B): For j; = j; = j4 # j, with
ar(t ) = 0 follows (@S(t)) =0&

(BD ) (B (BA(BWe))) Bl I

to15 = ({0j2 }]'1’ {0j4}j3):

I(J'z,jl)) = 0.

Dg(t) = (20107 1060 4 10T ZG1DG20)) (i30T 702080
+ 2T ZUsD00))

Case A): For ji = jo = j3 = js with a;(t) = 2 and aa(t) = 3 follows
E(@s(t) = 302 & (80 BDe)? B, )h + (59" BUe)? B, ) = 5h*
Case B): For J1 = Js # jo = ja with as(t) = 2 and aa(t) = 3 follows
B(®s(t) = 3h” & (897 BPe)? E(I7, ) + (B9 BOe)? BT, It )b =
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to17 = ({sza {0j4}j3}j1):

(bs(t) — Z(jlaO)T((Z(jlaO)(j270)e) (Z(jlao)(jSaO) (Z(ijO)(jél;O)e)))
+ 200D T (200)020) ) (70D0) (73080 ) )

For ji # jo = ja = ju with ay(t) = 0 follows E(®s(t)) =0 &
BY(B®e)(B® (BWe))) E(IF, ;,)) = 0.

too0 = ({[Gj2]}j1):

(Ds(t) = Z(jlaO)T(Z(jhO)(O!O) (Z(an)(j%o)e)) + Z(jlyl)T(Z(jlzl)(O’O) (Z(():O)(jZ:O)e))

For j; = j with oz (t) = 0 follows E(®g(t)) = 0 < 8T (A (BO¢)) E(ffjl))+
BOT(AD(BOe)) E(f(ZJl)) = 0. Here, we claim that 8®7 (4@ (Be)) = 0 and
BOT(AD(BOe)) = 0,

For all correlations between 7jq,...,js which have not been considered ex-
plicitly holds a;(t) = 0 and E(®g(t)) = 0. Further, for the trees to3 =
([{sz}jl])ﬂ tos = ({Oj2}j1’T)’ tog = ({{T}jz}jl): to10 = ({szaT}j1)a to.16 =

({Uj2’0j370j4}j1)7 to1s = ({{Uj3’0j4}j2}jl) and ty19 = ({{{Jj4}j3}j2}j1) holds
ar(t) =0 and E(®g(t)) = 0.

Finally, we have to consider all trees t € T'S(A) with p(t) = 2.5 for which due
to ay(t) = 0 the condition E(®g(t)) = 0 has to be fulfilled. Since the calcula-
tions are analogous to the ones already performed, repetition is avoided (see
[12] for all trees up to order 2.5). Leaving out the trees which don’t supply
any new restrictions, we calculate the following conditions:

Table 1: Conditions from t € T'S(A) with p(t) = 2.5.

t correlation condition
{7 7}i) 24,
({l1}) 25.
(Hoja}inls 04s) =J2=17Js 26.
(lojis {05 }s)) =J2=17Js 47.

({7} 042, 0js) J1=1J2=173 27. + 7.
J1# Ja =173 7.
({7, 05, }j15055) Nh=J2=17Js 28.
J1# J2=J3 29.

({loj]}iis 0js) JL=1J2=17Js 30. + 31.
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t correlation condition
J1# J2=7J3 30.
({7, 0jas Tja } i) J1# J2=7J3 32.
({lojs), o5 } 1) J1=1J2=17Js 48.
J1# Ja =173 49.

({lojas 75s1}0) J1=1J2=17Js 33. + 34.
J1# J2 =173 33.

({H{oss}l}in) Ji=1J2=17Js 50. + 51.
({H{r}i s 05) hL=1J2=17Js 35.
J1# Jo = J3 36.
({{7}s2s 055 3) J1FJ2 =173 52.
({{lozs]}2 }1) J1=1J2=17Js 53.
J1# J2=7J3 o4.
(@515 T2y {05 955 } 1) J1=J2 = Js = Ja = Js 37.
J1=Ja # J3, Ja = Js # J3 9.
(051,555 {{0js }ia s n=J2=Js=Jj1=1Js 39.
h=JsFJj2=Ja=1Js 38.
({952, 95> ja }ir» 9s) N=Je=Js=J1=1Js 40.
J1# J2 = Jss 1 F Ja = Js, J3 7 Ja 41.
NFJe=J3=J1=1Js 41.
({0525 {7 }sa b 05s) J1=J2 = Js =Ja=Js 55.
NN=JsFJ2=1J3=Ja 56.
({{ojs> 7ja }io }irs 03s) n=J2=Js=Jja=1Js 42.
NFJe=Js=Ja=1Js 43.
({{{oia}is }inYirs 05s) J1=Ja=J3 = Ja = Js 57.
JFJ2=17J3=Ja=1Js 21.
({95, 953> Tjas 755 }i) g1 # J2 = s, 1 # Ja = Js 44,
({752, {54, s }s } ) g1 # Jo = J3 = Ja = Js 58.
({05, s Yia}is Fan) Ji # 2 = J3 = ja = Js 59.
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t correlation condition

({{0j3}j2’ {Uj5}j4}j1) J1 7£ J2=J3=Ja=175 45.

Now, we just have to summarize the calculated conditions in order to ar-
rive at the conditions in Theorem 5.1. Finally, the approximation Y by the
SRK method (11) has uniformly bounded moments due to E(z(k”’)Te) = 0 for
1<k<mandve{01}. 0

Considering the order conditions 1.-9. of Theorem 5.1, we can easily calculate
SRK schemes converging with order 1.0 in the weak sense. For example, the
well known Euler-Maruyama scheme (see, e.g., [5]) belongs to the introduced
class of SRK methods having order 1.0 with s = 1 stage and with coefficients
or =) =1, 87 = g1 = piY = 0, AY = A}) = 0.and BY = BY =0.
Further, if we calculate order 2.0 SRK schemes with s > 3 stages then there are
some degrees of freedom in choosing the coefficients. Especially, it is possible
to calculate a SRK scheme converging with some higher order if it is applied
to a deterministic ordinary differential equation. For example, if the weights
a; and the coefficients Ag-)) are chosen such that the conditions of Theorem 5.1
and additionally the conditions o (A®(A®e)) = ¢ and a”(4AVe)? = § are
fulfilled (see, e.g. [3]), then the SRK scheme is of order three in the case of
b = 0 in SDE (1). Therefore, let (pp,ps) with pp > ps denote the order of
convergence of the SRK scheme if it is applied to a deterministic or stochastic
differential equation, respectively. Thus, the scheme converges at least with or-
der p = pg in the weak sense and we suppose better convergence for schemes
with pp > pg, particularly for SDEs with small noise. The SRK schemes

0 0
21 2 3—2V6
2| 2 1 11 5\[
2 1 111 1 6+v6
3731 |00 2121 | O
0 0
1] 1 1 11 1
111 0 |=10 1110 1 0
0 0
0l 0 1 0l0 1
00 0 |-10 0(0 0 1 0
111|111l _1 112 1 11|gl_1
4 2 4| 2 4 4 2 2 6 6 3 2 4 4 2 2
11 1)1 _1 1 1 1lg 1l _1
2 4 4 2 2 2 4 4 2 2

Table 2
SRK scheme RI1 and RI3 of order pp = 3.0 and pg = 2.0.
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0 0
1|1 3 1)1
5125 35 5
S| 35 |5 000 |0 0
0 0
1(1 1
11 1 11 1
1({1 1
1Ll g -1 110 [-10
0 0
00 1 0[0 1
0olo o |[-10 000 |-10
1 3 24 1 1 1 1 1 1 1
0 14 3+ —1-1]01 -1 2203 711/035—3
T 1 _1]gL _1 11 1(gl_1
2 4 4 2 2 2 4 4 2 2

Table 3
SRK scheme RI5 of order pp = 3.0 and ps = 2.0 and RI6 of order pp = pg = 2.0.

RI1, RI3 and RI5 presented in Table 2 and Table 3, respectively, are of or-
der ps = 2.0 and pp = 3.0, and the SRK scheme RI6 in Table 3 is of order
pp = ps = 2.0. Remark, that the schemes RI1, RI3, RI5 and RI6 coincide with
the SRK schemes RITW1, RI3W1, RI5W1 and PL1W1, respectively, presented
in [13] in the case that they are applied to SDEs with scalar noise, i.e. in the
case of d > 1 and m = 1, due to the choice of Ag) = 0.

6 Numerical Example

In order to verify the theoretical results, we compare the SRK scheme (RI6)
with the order one Euler-Maruyama scheme (EM), with the second order
SRK scheme (PLIWM) due to Platen [5] which is also contained in the class
of SRK methods proposed in [19] and with the extrapolated Euler-Maruyama
scheme (ExEu) due to Talay and Tubaro [18] attaining order two. The extra-
polated Euler-Maruyama approximation is given by 2 E( f (Zéf/ ) = E(f(Zh)
based on the Euler-Maruyama approximations Z;i/ % and Zh calculated with
step sizes h and h/2. In the following, we approximate the values E(f(X7))
with f(z!,2%) = 2! and f(z!, 2%) = ' 22 or f(2',2?) = (2')? by Monte Carlo
simulation. Therefore, we estimate E(f(Y7r)) by the sample average of M inde-
pendent simulated realizations of the approximations f(Yrx), ¥ =1,..., M,
with Y7, calculated by the scheme under consideration. Then, the error is
denoted by i = E(f(Xr)) — 15 Li~: f (Y1x). The empirical variance 62 of the
error /i is calculated following [5] based on M; batches with M, trajectories in
each, i.e., M = M, - M,. Since we want to investigate the systematic error of
the considered schemes, we have to minimize the statistical error by choosing
M very large [5], i.e. much larger than usually necessary for an approxima-
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tion in practice. The obtained errors at time 7' = 1.0 are plotted versus the
corresponding step sizes with double logarithmic scale in order to analyze the
empirical order of convergence. In the presented figures, reference lines with
slope 1.0 and 2.0 are plotted for comparison.

As the first test equation, we consider for d = m = 2 the linear SDE sys-
tem with commutative noise

1 1

1
0
2 dt+ | 07" | aw} + dw?, (15)

0 LX?

3
¥ = 2
X7 2 Xi

with initial value Xy = (15, 15)" - Then, the moments of the solution are given
as BE(X]) = sexp(3t) and E((X})?) = 155 exp(35t) for i = 1,2. Here, we
choose M; = 20 batches with M, = 5 x 10° trajectories in each and consider
the step sizes 2°,...,277. The errors |/i| and empirical variances &7, with cor-

responding step sizes are presented in Fig. 2 and Tab. 4-5.

Fig. 2. Step size vs. error for the approximation of E(X}.) in the left and of E((X})?)
in the right figure for SDE (15).

-2 1 -2t
_4t
6t

8o

5 5
k) k)
I-10r °
—12t
-14t
—16" ‘ ‘ ‘ ‘ L= SRK ] ; ‘ ‘ ‘ ‘ L= SRK ]|
7 -6 -5 -4 -3 -2 A 0 7 -6 -5 -4 -3 -2 0
Id(step size) Id(step size)
Table 4
Results for the approximation of E(X}) for SDE (15).
RI6 EM ExEu PL1IWM
h | 2] o |4 oa |42] op |3 op

8.57e-2  1.21e-10 | 1.98e-1  1.95e-11 | 8.57e-2  1.19e-10 | 8.57e-02 1.21e-10
3.56e-2  1.85e-10 | 1.42e-1  4.40e-11 | 3.95e-2  1.72e-10 | 3.56e-02  1.85e-10
1.18e-2  3.43e-10 | 9.07e-2  1.33e-10 | 1.48e-2  3.27e-10 | 1.18e-02  3.43e-10
3.40e-3  1.71e-10 | 5.27e-2  9.67e-11 | 4.67e-3  1.64e-10 | 3.40e-03 1.71le-10
9.08e-4 4.41e-10 | 2.87e-2  3.25e-10 | 1.33e-3  4.35e-10 | 9.08e-04 4.41e-10
2.32e-4  8.51e-10 | 1.50e-2  7.25e-10 | 3.52e-4  8.43e-10 | 2.32e-04 8.5le-10
6.0le-5 6.18e-10 | 7.69e-3  5.71e-10 | 9.23e-5 6.16e-10 | 6.01e-05 6.18e-10
1.43e-5 4.18e-10 | 3.89e-3  4.02e-10 | 2.27e-5 4.17e-10 | 1.43e-05 4.18e-10

NN NNNNDNN
|
N oUW N =g

As a second test equation, we consider for d = m = 2 the linear SDE system
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Table 5

Results for the approximation of E((X})?) for SDE (15).

RI6 EM ExEu PL1IWM
h | ] a2 Id &2 || 62 | a2
2-0 7.08e-2 6.32e-11 1.40e-1 4.84e-12 7.73e-2 5.13e-11 7.08e-02 6.32e-11
-1 3.14e-2 1.31e-10 1.09e-1 1.69e-11 4.01e-2 1.05e-10 3.14e-02 1.31e-10
2-2 1.07e-2 2.72e-10 7.44e-2 6.97e-11 1.64e-2 2.40e-10 1.07e-02 2.72e-10
2-3 | 3.12e-3 1.48¢-10 | 4.54e-2 6.50e-11 | 5.50e-3 1.38e-10 | 3.12e-03  1.48e-10
24 | 8.37e-4 3.74e-10 | 2.54e-2 2.40e-10 | 1.62¢-3 3.65¢-10 | 8.37e-04  3.74e-10
2—5 2.14e-4 7.26e-10 1.35e-2 5.76e-10 4.39e-4 7.17e-10 2.14e-04 7.26e-10
26 | 5.55¢-5 5.06e-10 | 6.99e-3 4.51e-10 | 1.16e-4 5.04e-10 | 5.55¢-05  5.06e-10
27 | 1.36e-5 3.40e-10 | 3.55e-3  3.21e-10 | 2.92e-5 3.39e-10 | 1.36e-05  3.40e-10
with non-commutative noise
X\ _(-axiexr)(exe-g) (A
d = dt+ dW;+
2 1 1 1
X; §Xt 0 X,

with initial value Xy = (

X! as BE(X7))

107 10
%e%t and the second moment as well as the mixed second
moment of X} and X7 as E((X})?) = E(X} X}?)
approximation, we choose M; = 20 and M, = 5 x 107. The results for step

1

= ¢ for i = 1,2. For the

100

sizes 2°,...,27° are presented in Figure 3 and Tables 6-7.

Fig. 3. Step size vs. error for the approximation of E(X1) in the left and of E(X .} X2)

in the right figure for SDE (16).

-6

)T. Then, we can calculate the first moment of

th2 ’

5 5
§-12/ 1 5
§ 5_10,
—14} ]
16} i T
Euler x Euler
Ji¢ -2 ExEu L -2~ ExEu ||
-181 — SRK | -4 : ‘ ‘ ‘ —— SRK.
-5 -4 -3 -2 -1 0 -5 -4 -3 -2 -1 0
Id(step size) Id(step size)
Table 6
Results for the approximation of E(X}) for SDE (16).
RI6 EM ExEu PL1IWM
h | ] oa Al p |4 oh |4 oh
20 2.37e-3  8.12e-10 1.49e-2  3.82e-10 2.37e-3  8.90e-10 2.37e-03  8.12e-10
2-1 7.12e-4  5.48e-10 8.62e-3  4.57e-10 7.60e-4  4.19e-10 7.12e-04  5.48e-10
2-2 1.91e-4  6.40e-10 | 4.69e-3 4.97e-10 2.12e-4  7.57e-10 1.91e-04  6.40e-10
2-3 4.59e-5  1.08e-09 2.45e-3  8.8%e-10 5.24e-5 1.10e-09 | 4.59e-05 1.08e-09
24 5.15e-6  8.81e-10 1.25e-3  7.57e-10 5.32e-6  9.40e-10 5.15e-06  8.81e-10
2-5 5.45e-6  1.24e-09 6.38e-4  1.12e-09 4.28e-6 1.38e-09 5.45e-06 1.24e-09

The third test equation is a non-linear SDE system for d = m = 2 with
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Table 7

Results for the approximation of E(X} X?) for SDE (16).

RI6 EM ExEu PL1WM
h Al op ) i | op |2 op
2701 2.00e-2 2.51e-10 | 4.14e-2 3.25e-11 | 2.13e-2  2.35e-10 | 2.00e-02 2.51e-10
271 | 8.98¢-3 7.43e-10 | 3.14e-2 5.53e-11 | 1.09e-2  3.84e-10 | 8.98e-03  7.43e-10
272 | 3.14e-3 1.89e-09 | 2.11e-2  1.75e-10 | 4.43e-3  1.28e-09 | 3.14e-03  1.89e-09
273 | 9.4le-4 4.41e-09 | 1.28e-2 1.24e-09 | 1.50e-3 4.01e-09 | 9.41e-04 4.41e-09
274 | 2.21e-4 3.70e-09 | 7.12e-3  1.46e-09 | 4.10e-4  3.90e-09 | 2.21e-04  3.70e-09
275 | 4.68e-5 7.70e-09 | 3.78e-3  4.33e-09 | 9.69e-5 7.61e-09 | 4.68e-05  7.70e-09

non-commutative noise given by

o[ X [ e VI = 3X07 + 5002 + 55
o t
Xp) o\ 5Xi =X 0
[ VEGD? XX+ R 5|
t
VX2 —2XIXE + X2 + 1
(17)

with initial value X; = (55,15)"- Then, the corresponding moments of the

solution are E(X}) = ;5 exp(t), E((X})?) = & exp(2t) — 15 exp(—t) + 55 and
E(X} X?) = 2 exp(2t) + £ exp(—t) — + for ¢ = 1,2. Here, we choose M; = 20
and M, = 5 x 107. The results are presented in Figure 4 and Tables 8-9.

Fig. 4. Step size vs. error for the approximation of E(X1) in the left and of E(X} X2)
in the right figure for SDE (17).

—— SRK ||
-5 -4 - - -1 0
Id(step size) Id(step size)
Table 8
Results for the approximation of E(X}) for SDE (17).
RI6 EM ExEu PL1WM
h lia & i o lia &2 li1| o
270 | 2.18e-2 3.88¢-09 | 7.18e-2 2.98e-09 | 2.18¢-2 1.31e-08 | 2.18e-02 4.57e-09
2=1 | 7.74e-3  9.00e-09 | 4.68e-2 6.80e-09 | 8.53e-3 1.33e-08 | 7.76e-03  1.05e-08
272 | 2.33e-3 1.41e-08 | 2.77e-2 1.07e-08 | 2.80e-3  1.64e-08 | 2.33e-03  1.50e-08
2-3 | 6.41e-4  5.40e-09 | 1.53e-2 5.71e-09 | 8.28e-4 6.13e-09 | 6.38e-04  7.05e-09
274 | 1.54e-4 6.57e-09 | 8.0le-3  6.95e-09 | 2.11le-4  7.79e-09 | 1.49e-04  7.53e-09
275 | 3.67e-5 3.73e-09 | 4.12e-3 4.79e-09 | 5.77e-5 5.29e-09 | 3.16e-05  4.50e-09

For the SDEs (15) and (16), the results of SRK method RI6 coincide with
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Table 9

Results for the approximation of E(X} X?) for SDE (17).

RI6 EM ExEu PL1WM
h Al &p I i | o |2 p
270 ] 5.03e-2 4.34e-09 | 3.27e-1 8.15e-10 | 2.43e-1  6.46e-09 | 3.92e-02  2.83e-09
271 | 2.98¢-2 6.24e-09 | 2.85e-1 4.33e-09 | 4.85e-2 1.45e-08 | 2.73e-02  5.34e-09
272 | 1.1le-2 1.76e-08 | 1.67e-1  6.23e-09 | 6.60e-3  2.84e-08 | 1.12e-02  9.88e-09
273 | 3.03e-3 7.73e-08 | 8.67e-2 2.19e-08 | 1.75e-3  1.05e-07 | 3.36e-03  8.05e-08
274 | 7.09e-4 1.37e-07 | 4.42e-2 3.46e-08 | 4.63e-4 1.85e-07 | 8.18e-04  1.86e-07
275 | 3.8le-4 3.16e-07 | 2.24e-2 1.31e-07 | 3.07e-4  3.08e-07 | 4.05e-04 3.07e-07

the results of the SRK scheme PL1WM since both schemes coincide for linear
drift and diffusion functions. However, this is not the case for nonlinear SDEs
like (17). It turns out that the SRK method RI6 yields often better results
than the extrapolated Euler-Maruyama scheme while the empirical variances
are assimilable.

7 Conclusion

The main advantage of the introduced class of SRK methods (11) is the sig-
nificant reduction of the computational costs. Considering for example the
order two SRK schemes proposed in [5] p.486 and in [19] for It6 SDEs with a
multi-dimensional Wiener process, then at least 2 evaluations of the drift func-
tion a and 2m + 1 evaluations of each diffusion function ¥/, j =1,...,m, are
necessary for each step. Further, m(m + 1)/2 independent random variables
have to be simulated for the schemes in [5,19] for each step. Nearly the same
holds for the class of SRK schemes recently proposed in [7] for Stratonovich
SDEs which need 4 evaluations of the drift a and 3m + 1 evaluations of each
diffusion function ¥/, j = 1,...,m, in each step. Due to the dependence of the
computational costs on the dimension m of the driving Wiener process, these
SRK methods are not of much relevance in practice, especially for high dimen-
sional problems. In contrast to this, e.g., the new SRK scheme RI6 needs 2
evaluations of the drift function a and only 5 evaluations the diffusion function
b, j=1,...,m, for each step due to s = 3 stages and Hl(k) = fIl(k). Further,
only 2m — 1 independent random variables have to be simulated for each step.
The computational effort of the new SRK schemes is even similar to the one
of the extrapolated Euler-Maruyama scheme where 3 evaluations of the drift
a and 3 evaluations of the diffusion functions &, j = 1,...,m, are necessary,
and which needs the simulation of 2m independent random variables at each
step. However, there are situations where extrapolation methods, especially
based on the Euler-Maruyama scheme, have only limited value [9]. This is
the case e.g. for stiff problems due to the restricted stability regions of the
Euler-Maruyama method [6]. Thus, as in the deterministic setting, higher or-
der one-step methods like the introduced SRK methods are of independent
relevance.
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As a result of this, the introduced class of SRK methods is of considerable
importance, now also for high dimensional problems like e.g. in mathematical
finance or physics. Future research may be done by developing efficient SRK
schemes of some higher order than order two. Further, a stability analysis and
the investigation of implicit SRK methods is of particular interest. Similar to
the deterministic setting, embedded SRK schemes can be easily implemented
which can be applied with a step size control algorithm, see also [10].
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