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Abstract

A pro-Lie group is a projective limit of a family of finite-dimensional
Lie groups. In this note we show that a pro-Lie group G is a Lie group
in the sense that its topology is compatible with a smooth manifold
structure for which the group operations are smooth if and only if G
is locally contractible. We also characterize the corresponding pro-Lie
algebras in various ways. Furthermore, we characterize those pro-Lie
groups which are locally exponential, that is, they are Lie groups with
a smooth exponential function which maps a zero neighborhood in the
Lie algebra diffeomorphically onto an open identity neighborhood of
the group.
Keywords: pro-Lie group, locally compact group, Lie group, locally
exponential group, pro-Lie algebra.
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1 Introduction.

There are several natural ways to extend the theory of finite-dimensional
Lie groups to larger classes of groups. From a topological perspective, the
closest relatives to finite-dimensional Lie groups are locally compact groups.
According to a classical theorem of Yamabe, each locally compact group
contains an open subgroup which is a projective limit of finite-dimensional
Lie groups; let us call these groups pro-Lie groups. Hence the local structure
of a locally compact group is that of a pro-Lie group, but, as examples
such as the topological product RN show, not every pro-Lie group is locally
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compact. In the recent monograph [HoMo06] Hofmann and Morris develop
an effective Lie theory for the whole class of pro-Lie groups, which contains
in particular the Lie theory of locally compact groups. Throughout this
theory, pro-Lie groups are considered as topological groups with additional
structural features, but not as Lie groups in a differentiable setting. However,
there is a Lie functor L assigning to each pro-Lie group a pro-Lie algebra,
that is, a projective limit of finite-dimensional Lie algebras. Projective limits
of finite-dimensional Lie groups occur quite naturally under various aspects
in the literature, see f.i., Lewis [Lew39], Kuranishi [Kur59], Sternberg [St61]
and Omori [Omo80].

On the other hand, quite generally, we say that a Lie group is a group
G, endowed with the structure of a manifold modelled on a locally convex
space, such that the group operations on G are smooth. We write 1 for
the identity element of G. For any Lie group G, the tangent space T1(G)
can be identified with the space of left invariant vector fields, hence inherits
the structure of a locally convex Lie algebra, that is, a locally convex space
with a continuous Lie bracket. We write L(G) := (T1(G), [·, ·]). A smooth
map expG : L(G) → G is said to be an exponential function if for each
x ∈ L(G), the curve γx(t) := expG(tx) is a homomorphism R → G with
γ′x(0) = x. Presently, all known Lie groups modelled on complete locally
convex spaces possess an exponential function. For Banach–Lie groups, its
existence follows from the theory of ordinary differential equations in Banach
spaces. A Lie group G is called locally exponential, if it has an exponential
function mapping an open 0-neighborhood in L(G) diffeomorphically onto
an open neighborhood of 1 in G. For more details, we refer to Milnor’s
lecture notes [Mil84], the second author’s recent survey [Ne06] or his extensive
monograph with Glöckner [GN06].

It is the goal of the present paper to describe how the theory of pro-Lie
groups intersects the theory of Lie groups in this sense. Clearly, any Lie
group which is locally compact, is modelled on a finite-dimensional space,
hence is a finite-dimensional Lie group.

There are three natural questions to be answered for a pro-Lie group G:

(Q1) When does G carry a Lie group structure compatible with its topology?

(Q2) To which extent is the Lie group structure on a pro-Lie group unique?

(Q3) Suppose that the pro-Lie group G carries a Lie group structure, when
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is G locally exponential, that is, when is its exponential function a local
diffeomorphism in 0?

In the process of presenting our answers, the concept of a space to be
locally contractible plays an important role. We say that a topological group
G is locally contractible if 1 has arbitrarily small neighborhoods which are
contractible in G. Since several different definitions are possible and feasible,
we collected precise definitions in Appendix 10 below. Given this concept,
we answer question (Q1) by characterizing Lie groups among pro-Lie groups
in a purely topological fashion, as follows (Theorems 3.7 and 5.2).

Theorem 1.1 A pro-Lie group G carries a Lie group structure compatible
with its topology if and only if it is locally contractible.

However, a more accessible characterization in terms of the Lie algebra
of G would be highly desirable. Unfortunately, there might be several pro-
Lie groups G with isomorphic Lie algebras, some of which might be locally
contractible while others are not. But if a pro-Lie group G is locally con-
tractible, then it has a universal covering group which still is pro-Lie and
locally contractible. We call a topological space 1-connected if it is arcwise
connected and has a trivial fundamental group. A 1-connected pro-Lie group
is completely determined by its Lie algebra, so that a Lie algebraic answer
to question (Q1) has to characterize those pro-Lie algebras g for which the
universal 1-connected group Γ(g) attached to it by Lie’s Third Theorem for
pro-Lie groups is locally contractible.

Theorem 1.2 For a pro-Lie algebra g, the following are equivalent:

(1) g is the Lie algebra of a locally convex Lie group G with smooth expo-
nential function.

(2) g has a Levi decomposition g ∼= r o s, where only finitely many factors
in s ∼=

∏
j∈J sj are not isomorphic to sl2(R).

(3) The corresponding 1-connected universal group Γ(g) is locally contractible.

(4) The maximal compact subgroups of Γ(g) are Lie groups.

(5) There exists a locally contractible pro-Lie group G with L(G) ∼= g.
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This theorem follows from Theorem 3.7 ((3) ⇔ (4)), Theorem 4.5 ((2) ⇔
(3) ⇔ (5)) and Theorem 5.8.

In the following, we shall call pro-Lie algebras satisfying the equivalent
conditions in the preceding theorem smooth.

The uniqueness of Lie group structures can be treated in two essentially
different ways. One is to shift the focus to the corresponding pro-Lie algebra
g and ask for the uniqueness of corresponding 1-connected Lie groups. Such
uniqueness results are available under the assumption that the Lie group is
regular (see Definition 4.2 below). In this direction we shall show

Theorem 1.3 For a pro-Lie algebra g, the following assertions hold:

(1) If G is a Lie group with a smooth exponential function and L(G) = g,
then g is smooth.

(2) If g is smooth, then there exists a unique 1-connected regular Lie group,
which is isomorphic to Γ(g) as a topological group.

(3) If G is any connected regular Lie group for which g = L(G), then
G is a quotient of Γ(g) by a discrete central subgroup. A subgroup
D ⊆ Z(Γ(g)) is discrete if and only if it is finitely generated and its
intersection with the identity component Z(Γ(g))0

∼= z(g) is discrete.

Part (1) follows from Theorem 5.8; Part (2) is a consequence of Propo-
sition 5.7 and Corollary 5.5, and Part (3) is taken from Theorems 3.7 and
5.13.

Part (3) of the preceding theorem provides in particular a quite tractable
description of all connected regular Lie groups whose Lie algebra is pro-Lie.

A second strategy to address the uniqueness question is to use local expo-
nentiality instead of regularity of the Lie group under consideration. Here a
Lie group is called locally exponential if it has an exponential function which
is a local diffeomorphism. Local exponentiality is well compatible with topo-
logical group structures because continuous morphisms of locally exponential
Lie groups are automatically smooth, so that locally exponential Lie groups
form a full subcategory of the category of topological groups (cf. [GN06]).
Thus it makes sense to call a topological group locally exponential if it carries
a locally exponential Lie group structure compatible with the given topology.
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Definition 1.4 A locally convex Lie algebra g is called locally exponential
if there exists a circular convex open 0-neighborhood U ⊆ g and a smooth
map

U × U → g, (x, y) 7→ x ∗ y

satisfying:

(E1) x ∗ (y ∗ z) = (x ∗ y) ∗ z if x ∗ y, y ∗ z ∈ U .

(E2) x ∗ 0 = 0 ∗ x = x.

(E3) For x ∈ U and |s|, |t| ≤ 1, we have sx ∗ tx = (s + t)x.

(E4) The second order Taylor polynomial of ∗ in 0 is given by x+y+ 1
2
[x, y].

A locally convex Lie algebra g is called exponential if the above conditions
are satisfied for U = g. In view of (E3), this means that (g, ∗) is a Lie group
whose exponential function expg coincides with idg.

Since any local Lie group on an open subset of a locally convex space V
leads to a Lie algebra structure on V ([GN06]), condition (E4) only ensures
that g is the Lie algebra of the corresponding local group.

We have the following answer to question (Q3), which uses the concept
of a locally exponential Lie algebra, defined in Definition 1.4 (Theorem 7.11,
Corollary 7.12):

Theorem 1.5 A pro-Lie group G is locally exponential if and only if it is
locally contractible and L(G) is a locally exponential Lie algebra. A pro-Lie
algebra g is locally exponential if and only if the set of exp-regular points,
that is, the set of all x ∈ g for which

Spec(ad x) ∩ 2πiZ = {0},

is a 0-neighborhood.

In the framework of things considered here, a proof of Theorem 1.5 is
harder than one might surmise.

The structure of the paper is as follows. Section 2 surveys some key results
on pro-Lie groups, mostly cited from [HoMo06], and in Section 3 we discuss
their local contractibility. Section 4 contains various characterizations of
smooth pro-Lie algebras, whereas Lie group structures on the corresponding
groups are treated in Section 5. In Section 6 we recall some results on
locally exponential Lie algebras from [GN06] and in Section 7 we finally
prove Theorem 1.5.
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2 Pro-Lie groups and their Lie algebras

In this section, we collect some of the key results of [HoMo06] concerning
pro-Lie groups. Clearly, arbitrary products of finite-dimensional Lie groups,
such as

RJ , ZJ , SL2(R)J

for an arbitrary set J , are pro-Lie groups. The following theorem provides
an abstract characterization of pro-Lie groups:

Theorem 2.1 ([HoMo06]) A topological group G is a pro–Lie group if and
only if it is isomorphic to a closed subgroup of a product of finite-dimensional
Lie groups. In particular, closed subgroups of pro-Lie groups are pro-Lie
groups.

Since projective limits are defined as certain closed subgroups of pro-
ducts, one implication of the preceding theorem is trivial; the converse is the
interesting part.

Theorem 2.2 ([HoMo06]) If G is a pro-Lie group, then there exists a fil-
ter basis N of closed normal subgroups N E G for which G/N is a finite-
dimensional Lie group and limN = 1.

For the equivalence of these various equivalent possible definitions of pro-
Lie groups see [HoMo06], Theorem 3.39.

The key tool to the Lie theory of pro-Lie groups is the observation that
they “have a Lie algebra” in the following sense:

Definition 2.3 ([HoMo06], Definition 2.11) Let G be a topological group
and L(G) = Homc(R, G) the set of continuous one-parameter groups, en-
dowed with the compact open topology. We define a scalar multiplication on
L(G) by

(λα)(t) := α(λt) for λ ∈ R, α ∈ Homc(R, G). (1)

We say that G is a topological group with Lie algebra if for α, β ∈ L(G) the
limits

(α + β)(t) := lim
n→∞

(
α(

t

n
)β(

t

n
)
)n

(2)
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and

[α, β](t2) := lim
n→∞

(
α(

t

n
)β(

t

n
)α(− t

n
)β(− t

n
)
)n2

. (3)

exist in the compact open topology, define elements of L(G), addition and
bracket are continuous maps L(G)× L(G) → L(G), and with respect to the
scalar multiplication (1), the addition (2), and the bracket (3), L(G) is a real
Lie algebra. This implies that L(G) is a topological Lie algebra.

For any topological group G, we define the exponential function of G by

expG : L(G) → G, α 7→ α(1).

A crucial observation is that the class of topological groups with Lie
algebra is closed under projective limits and that

L(lim
←−

Gj) ∼= lim
←−

L(Gj),

as topological Lie algebras (cf. [HoMo06], Theorem 2.25).
Let us call topological vector spaces of the form RJ , J a set, weakly com-

plete. These are the dual spaces of the vector spaces R(J), endowed with
the weak-∗-topology. This provides a duality between real vector spaces
and weakly complete locally convex spaces, which implies in particular that
each closed subspace of a weakly complete space is weakly complete and
complemented. For a systematic treatment see [HoMo06], App. 2. In partic-
ular, weakly complete spaces are nothing but the projective limits of finite-
dimensional vector spaces. These considerations lead to:

Theorem 2.4 ([HoMo06], Corollary 4.21, 4.22) Every pro-Lie group G has
a Lie algebra L(G) which is a a projective limit of finite-dimensional Lie
algebras, hence a weakly complete topological Lie algebra. The image of the
exponential function generates a dense subgroup of the identity component
G0.

In the following, we call projective limits of finite-dimensional Lie algebras
pro-Lie algebras.

In view of Theorem 2.1, the category of pro-Lie groups is closed under
products and projective limits. These remarkable closedness properties lead
to the existence of an adjoint functor Γ for the Lie functor L:
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Theorem 2.5 (Lie’s Third Theorem for Pro-Lie Groups; [HoMo06], The-
orem 2.26) The Lie functor L from the category of pro-Lie groups to the
category of pro-Lie algebras has a left adjoint Γ. It associates with each pro-
Lie algebra g a 1-connected pro-Lie group Γ(g) and a natural isomorphism
ηg : g → L(Γ(g)), such that for every morphism ϕ : g → L(G) of pro-Lie
algebras, G a pro-Lie group, there exists a unique morphism ϕ′ : Γ(g) → G
with L(ϕ′) ◦ ηg = ϕ.

Remark 2.6 If g is finite-dimensional, then Γ(g) is a 1-connected Lie group
with Lie algebra g.

One can also show that Γ preserves semidirect products ([HoMo98],
Theorem 6.11). Moreover, if g = lim

←−
gj is a general projective limit, we also

have Γ(g) ∼= lim
←−

Γ(gj), which often provides an explicit description of Γ(g)

in many cases (cf. [HoMo06], Chapters 6 and 8).

It is quite remarkable that the category of pro-Lie algebras permits us to
develop a structure theory which is almost as strong as in finite dimensions.
In particular, there is a Levi decomposition. To describe it, we call a pro-Lie
algebra g prosolvable if it is a projective limit of finite-dimensional solvable
Lie algebras:

Theorem 2.7 (Levi decomposition; [HoMo06], Theorems 7.52 and 7.77)
Each pro-Lie algebra g contains a unique maximal prosolvable ideal r =
rad(g) and s := g/r is a product

∏
j∈J sj of finite-dimensional simple Lie

algebras sj. We further have a Levi splitting g ∼= r o s, and two Levi factors
s1 and s2 are conjugate under an inner automorphism of the form ead x.

3 Locally contractible pro-Lie groups

Since local contractibility is clearly necessary for a topological group to carry
a compatible Lie group structure, we devote the present section to the topo-
logical structure of the locally contractible pro-Lie groups, the main result
being Theorem 3.7, saying that all these groups are homeomorphic to prod-
ucts of vector spaces and compact Lie groups.

In [HoMo06], the following result on connected pro-Lie groups is estab-
lished in 12.81 and 12.82:
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Theorem 3.1 Each connected pro-Lie group G is homeomorphic to a prod-
uct of a compact connected semisimple subgroup S of G, a compact connected
abelian subgroup A of G, and a family of copies of R. Moreover, A is in the
normalizer of S and SA is a maximal compact subgroup of G.

It is also shown that and every compact subgroup of G has a conjugate
contained in SA. Incidentally, this shows, among other things, that each
connected pro-Lie group is homeomorphic to a product of a compact con-
nected semisimple group and a connected abelian pro-Lie group. (For the
structure of connected abelian pro-Lie groups see [HoMo06], Chapter 5.)

If G is locally contractible, then by Lemma 10.3 (in the appendix), both S
and A are locally contractible. This causes us to discuss locally contractible
compact connected semisimple groups and locally contractible compact con-
nected abelian groups.

We summarize what is known on the contractibility of homogeneous
spaces of compact groups. The following theorem of A. Borel and its proof
is published in the appendix of [HoMs66], pp. 306-310, notably Theorem 4.3,
p. 310. Recall that a space X is called acyclic over a ring R with iden-
tity, if the Čech cohomology ring H∗(X, R) is that of a singleton space,
that is, H0(Z,R) ∼= R, and Hn(X, R) = {0} for all n > 0. Note that
H0(X, R) = C(X, R), where R is viewed with the discrete topology, whence
X is connected if and only if H0(X, R) ∼= R.

Theorem 3.2 For a compact group G and a closed subgroup H, the following
statements are equivalent:

(i) G/H is singleton.

(ii) G/H is acyclic over Q and over Z/2Z.

This applies in particular to the case H = {1} and characterizes the
degeneracy of a compact group in cohomological terms. As a corollary, we
get ([HoMo98], p. 310, 4.4)

Corollary 3.3 A homogeneous space of a compact group is contractible if
and only if it is singleton.

In particular, this applies to compact groups.
Now we address first the semisimple case:
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Proposition 3.4 Let S be a connected compact semisimple group. Then the
following statements are equivalent:

(i) S is a Lie group.

(ii) S is locally contractible.

Proof. By Remark 10.2 (in the appendix), that implication (i) implies
(ii) is trivial and we have to prove that (ii) implies (i). So assume there is
a neighborhood U of the identity which is contractible in S. Since every
compact group is a projective limit of Lie groups, there is a compact normal
subgroup N ⊆ U such that S/N is a Lie group. The structure theory of
compact connected semisimple groups in [HoMo98], Theorem 9.19(i) and (ii)
allows us to derive that N/N0 is finite and that S/N0 is a Lie group. Thus
we may assume that N is connected. From loc. cit. we deduce the existence
of a compact normal connected semisimple subgroup L such that S = NL
and N ∩ L is central finite. The morphism µ : N × L → S, µ(n, x) = nx is a
covering morphism. As such, it has the homotopy lifting property.

Since N ⊆ U and U is contractible in S, we have a a contraction
H : N × [0, 1] → S of N in S, such that H(n, 0) = n, H(n, 1) = 1 for all

n ∈ N . By the homotopy lifting property, there is a H̃ : N × [0, 1] → N × L

such that H̃(n, 0) = (n,1), H̃(n, 1) = (1,1). That is, N ×{1} is contractible
in N × L. Let j : N → N × L be the inclusion n 7→ (n, 1). Then in the
homotopy category, [j] = [1], the homotopy class of the constant function
with value 1. Now let prN : N×L → N be the projection onto N . It satisfies
prN ◦j = idN , and thus [idN ] = [1], that is, N is contractible.

Now Corollary 3.3 applies and shows that N = {1}, whence S ∼= S/N is
a Lie group.

The next step is the abelian case.

Proposition 3.5 Let A be a connected compact abelian group. Then the
following statements are equivalent:

(i) A is a Lie group.

(ii) A is locally contractible.
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Proof. Again we only have to prove that (ii) implies (i).
Let U be a neighborhood of the identity which is contractible in A. By

the Iwasawa local decomposition theorem ([Iwa49], see also [HoMo06], Corol-
lary 13.20), there is a closed subgroup N contained in U and a continuous
map f : Rn → A such that p : N × Rn → A, p(n, v) = nf(v) is a covering
morphism. Since N is contractible in A, we may argue just as in the proof
of Proposition 3.4 that N × {0} is contractible in N × Rn , which in turn
implies that N is contractible. Thus N is singleton by Corollary 3.3. Thus
we have a covering morphism Rn → A which shows that A is a Lie group, as
asserted.

Corollary 3.6 Any locally contractible connected compact group is a Lie
group.

Proof. By the Borel–Scheerer–Hofmann Splitting Theorem ([HoMo98],
Theorem 9.39), G = G′ o A with a closed abelian subgroup A ∼= G/G′. If G
is locally contractible so are G′ and A by Lemma 10.3 in Appendix 10. Then
Propositions 3.4 and 3.5 imply that G′ and A are Lie groups, and so G is a
Lie group as asserted.

Now we have the ingredients to prove

Theorem 3.7 For a connected pro-Lie group G the following are equivalent:

(1) G is locally contractible.

(2) A maximal compact subgroup C of G is a Lie group.

(3) Γ(L(G)) is locally contractible and G ∼= Γ(L(G))/D for some discrete
central subgroup D.

If these conditions are satisfied, then G is homeomorphic to RJ × C for
a set J .

Recall that, if a locally compact topological group is an (a priori infinite-
dimensional) Lie group, then it is modelled on a locally compact, hence
finite-dimensional space and therefore it is finite-dimensional.
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Proof. By Theorem 3.1, G is homeomorphic to RJ × C, where C is a
maximal compact subgroup of G, which proves the last statement.

(1) ⇒ (2): By Lemma 10.3 (in the appendix), C is locally contractible,
so that Corollary 3.6 implies that C is a Lie group.

(2) ⇒ (1) is clear.
(3) ⇒ (2): By assumption, q : Γ(L(G)) → G is a covering map, so that

the local contractibility of G directly follows from the local contractibility of
Γ(L(G)).

(2) ⇒ (3): Let G be a locally contractible pro-Lie group with Lie alge-
bra L(G) = g. By Theorem 3.7, G is locally connected. Therefore it has a

universal covering group G̃ and G ∼= G̃/D holds for a discrete central sub-

group D. By [HoMo06], Theorem 8.21, we have G̃ ∼= Γ(g). In particular, G̃
is a pro-Lie group as well. Let U be a connected identity neighborhood of
G and H : [0, 1]× U → G a contraction of U in G. If U is sufficiently small,

then G̃ has an identity neighborhood Ũ which is mapped homeomorphically
onto U under the universal covering morphism. Then H lifts to a contraction
H̃ : [0, 1]× Ũ → G̃ of Ũ in G̃. Hence Γ(g) ∼= G̃ is locally contractible, and so
(3) is proved.

4 Smooth pro-Lie algebras

The goal of this section are various characterizations of smooth pro-Lie alge-
bras.

Definition 4.1 We call a pro-Lie algebra g smooth if the corresponding sim-
ply connected universal pro-Lie group Γ(g) is locally contractible.

We shall see in the following section that smoothness of a pro-Lie algebra
is equivalent to the existence of a Lie group structure on a corresponding
pro-Lie group; justifying the terminology.

Definition 4.2 A subalgebra k of a finite-dimensional real Lie algebra g is
said to be compactly embedded if exp(ad k) is contained in a compact subgroup
of Aut(g).

To formulate the corresponding concept for pro-Lie algebras, we call a
finite-dimensional module (V, ρV ) of a Lie algebra k compact if exp(ρV (k))
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is contained in a compact subgroup of GL(V ). A projective limit of finite-
dimensional compact modules is called pro-compact. Now, a subalgebra k of
a pro-Lie algebra g is said to be compactly embedded if g is a pro-compact
k-module.

It is shown in [HoMo06] (Theorems 12.15 and 12.27) that each compactly
embedded subalgebra is contained in a maximal one and that two maximal
ones are conjugate under (inner) automorphisms of g.

The following lemma belongs to the folklore of finite-dimensional Lie the-
ory; we recall its proof for the sake of completeness and later applications
below.

Lemma 4.3 Let G be a 1-connected finite-dimensional Lie group and k ⊆
g := L(G) a maximal compactly embedded subalgebra. Then the following are
equivalent:

(1) G is contractible.

(2) All compact subgroups of G are trivial.

(3) All simple ideals in g/ rad(g) are isomorphic to sl2(R).

(4) k is abelian.

Proof. We choose a Levi decomposition g = ros for which k = kr⊕ks holds
for kr := k∩r and ks := k∩s and recall that ks is maximal compactly embedded
in s ([Ne99], Proposition VII.1.9). Let s = s1⊕· · ·⊕sn be the decomposition
into simple ideals and observe that ks is adapted to this decomposition in the
sense that ks = k1 ⊕ · · · ⊕ kn for kj := ks ∩ sj and kj is a maximal compactly
embedded subalgebra of sj.

As G is 1-connected, we know that G ∼= R o (S1 × · · · × Sn) with the
1-connected radical R and a finite sequence of 1-connected simple Lie groups
Si. As a 1-connected solvable Lie group, R is contractible. Therefore (1) is
equivalent to

(1′) Sj is contractible for each j = 1, . . . , n.
Let Sj = KjAjNj be the Iwasawa decomposition, where L(Kj) ∼= kj.

Since the factor AjNj is always diffeomorphic to a euclidean space, it is
contractible. If follows that (1′) is equivalent to
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(1′′) Kj is contractible for each j = 1, . . . , n.
Now Kj is compactly embedded and thus is of the form Cj × Rnj with

a compact connected Lie group Cj = K ′j. Consequently Corollary 3.3 shows
that Kj is contractible if and only if Cj = {1}. This says that the maximal
compact subgroups of Sj are trivial for each j. Therefore (1) and (2) are
equivalent, that is, G is contractible if and only if the maximal compact
subgroup C := C1 × · · · × Cn is trivial. In view of C = K ′, K is abelian if
and only if C is trivial, so that (2) and (4) are equivalent.

It remains to see that (3) is equivalent to (4). Assume (4), that is, that
k is abelian. Let pj be the orthogonal complement of kj in sj with respect to
the Killing form of sj. Since kj is abelian, it is one-dimensional (cf. [Hel78],
Theorem 6.2), so that the simple kj-module pj is 2-dimensional, which implies
that dim sj = 3 and hence that sj

∼= sl2(R), because it is a non-compact
simple Lie algebra. To see that, conversely, (3) implies (4), note that sj

∼=
sl2(R) implies kj

∼= R and hence that k is abelian. This completes the proof.

Remark 4.4 If n = lim
←−

nj is a pronilpotent Lie algebra, where all nj are

nilpotent, then Γ(nj) ∼= (nj, ∗), where ∗ denotes the (polynomial) BCH mul-
tiplication on nj. Since each connecting map ϕij : nj → ni induces a homo-
morphism of groups (nj, ∗) → (ni, ∗), we obtain Γ(n) ∼= lim

←−
(nj, ∗) ∼= (n, ∗),

where ∗ is given by the BCH-series, which converges on n × n because it
converges on each finite-dimensional quotient.

Recall from Definition 4.1 that a pro-Lie algebra g is called smooth if
Γ(g) is locally contractible.

Theorem 4.5 For a pro-Lie algebra g with prosolvable radical r, the follow-
ing are equivalent:

(1) g is smooth.

(2) The semisimple Lie algebra s := g/r contains only finitely many simple
ideals not isomorphic to sl2(R).

(3) The 1-connected pro-Lie group Γ(g) is a topological manifold modelled
on g.

(4) There exists a locally contractible pro-Lie group with Lie algebra g.
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Proof. (1) ⇒ (2): In view of the Theorem 2.7, Γ(g) ∼= Γ(r) o Γ(s), where
Γ(r) is homeomorphic to r, hence contractible and Γ(s) ∼=

∏
j∈J Γ(sj).

Let U be an identity neighborhood in Γ(g) which is contractible in Γ(g).
Then there is a cofinite subset J1 ⊆ J such that

∏
j∈J1

Γ(sj) ⊆ U. For
each j ∈ J , we have morphisms of topological groups αj : Γ(sj) → Γ(g),
βj : Γ(g) → Γ(sj) with βj ◦αj = idΓ(sj) and for j ∈ J1 the contractibility of U
in Γ(g) implies that βj is homotopic to a constant map, hence that idΓ(sj) is
homotopic to a constant map, that is, Γ(sj) is contractible. From Lemma 4.3
we now derive that sj

∼= sl2(R).
(2) ⇒ (3): Let J0 := {j ∈ J : sj

∼= sl2(R)}, which is a cofinite subset of J .
Then

Γ(g) ∼= Γ(r) o Γ(s) ∼=
(
Γ(r) o Γ(s0)

)
o Γ(s1),

where s1 :=
∏

j 6∈J0
sj is finite-dimensional and s0 :=

∏
j∈J0

sj
∼= sl2(R)J0 .

Since S̃L2(R) is homeomorphic to R3, the subgroup Γ(s0) is homeomorphic
to (R3)J0 .

Let e ⊆ r be a closed vector space complement of n := [r, r] ([HoMo06],
A.2.12(a)). The Lie algebra n is pronilpotent because all images of this
subalgebra in finite-dimensional quotients of r are nilpotent. Moreover, the
map

Φ: n× e 7→ Γ(r), (x, y) 7→ expΓ(r)(x) expΓ(r)(y). (4)

is a homeomorphism ([HoMo06], Theorem 8.13). In particular, Γ(r) is home-
omorphic to n× e ∼= r.

We conclude that Γ(r), Γ(s0) and Γ(s1) are topological manifolds, which
implies the assertion.

(3) ⇒ (4) is trivial.
(4) ⇒ (1) follows from Theorem 3.7.

Remark 4.6 There is an alternative argument for the implication (1) ⇒ (2)
in the preceding theorem, based on Theorem 3.7.

The local contractibility of Γ(g) implies that its maximal compact sub-
group is finite-dimensional. Therefore at most finitely many of the groups
Γ(sj) contain non-trivial compact subgroups, which is equivalent to sj 6∼=
sl2(R).

The philosophy that the maximal compact subgroups of a finite-dimensional
Lie group determine its topological behavior carries over to pro-Lie groups.
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In the context of the preceding theorem, it leads to a formulation of smooth-
ness in terms of maximal compactly embedded subalgebras.

Proposition 4.7 Let k ≤ g be a maximal compactly embedded subalgebra.
Then the following are equivalent:

(1) g is smooth.

(2) k is smooth.

(3) k is nearly abelian, that is, its commutator subalgebra is finite-dimensional.

Proof. Let g = r o s be a Levi decomposition and ks ⊆ s a maximal
compactly embedded subalgebra. We claim that ks can be enlarged to a
maximal compactly embedded subalgebra k of g satisfying

k = kr ⊕ ks with kr ⊆ z(k). (5)

In fact, the finite-dimensional representation theory of semisimple Lie al-
gebras (Weyl’s trick) implies that g is a compact ks-module, that is, ks is
compactly embedded in g. Now [HoMo06], Theorem 12.15, implies that ks

is contained in a maximal compactly embedded subalgebra k of g. Then the
projection g = r o s → s maps k into a compactly embedded subalgebra
of s, and the maximality of ks thus shows that k ⊆ r o ks, hence that k is
adapted to the Levi decomposition of g. As kr is a prosolvable ideal of the
pro-compact Lie algebra k, it is central. This proves our claim.

Next we recall from [HoMo06], Theorem 12.27, that all maximal com-
pactly embedded subalgebras are conjugate under inner automorphisms of g.
We may therefore assume that k satisfies (5).

Let s =
∏

j∈J sj be the decomposition into simple ideals and observe that
ks is adapted to this decomposition in the sense that

ks =
∏
j∈J

kj for kj := ks ∩ sj.

Then k′ = k′s
∼=

∏
j∈J k′j, where k′j is maximal compactly embedded in sj.

Therefore k′ is finite-dimensional if and only if almost all kj are abelian.
Since kj is abelian if and only if sj

∼= sl2(R) (Lemma 4.3), we see that (1)
and (3) are equivalent.

Applying Theorem 4.5 to the Lie algebra k, we see that its smoothness
is equivalent to k′ ∼= k/z(k) ∼= k/ rad(k) being finite-dimensional, which is the
equivalence between (2) and (3).
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5 Pro-Lie groups as Lie groups

In this section we show that for each smooth pro-Lie algebra g, the corre-
sponding 1-connected pro-Lie group Γ(g) carries a regular Lie group struc-
ture. From that we further derive a description of all regular Lie groups G
whose Lie algebra is a pro-Lie algebra, as quotients of some Γ(g), g smooth,
by some discrete central subgroup D. In Theorem 5.13 we further give a very
handy characterization of discrete central subgroups of Γ(g).

The Levi decomposition g ∼= ros (Theorem 2.7) is a key tool to obtain the
Lie group structure. Let us first recall that for the corresponding 1-connected
pro-Lie group Γ(g), we have

Γ(g) ∼= Γ(r) o Γ(s), where Γ(s) ∼=
∏
j∈J

Γ(sj).

Next we show that the coordinates defined by the map Φ in (4) turn Γ(r)
into a Lie group:

Proposition 5.1 If r is prosolvable, n := [r, r] and e is a closed complement
of n in r, then Γ(r) is a Lie group with respect to the manifold structure
defined by the map Φ in (4).

Proof. We have to show that multiplication and inversion are smooth
maps on Γ(r), which is equivalent to the smoothness of the corresponding
maps on n× e.

Since n is pronilpotent, the BCH series defines a smooth multiplication ∗
on n satisfying expΓ(r)(x∗y) = expΓ(r)(x) expΓ(r)(y) for x, y ∈ n (Remark 4.4).
On the other hand, r/n is abelian. Therefore, in the coordinates given by
the map Φ, the multiplication takes the form

(x, y)(x′, y′) = (x ∗ ead y.x′ ∗ f(y, y′), y + y′),

where f is the map

f : e× e → n, (y, y′) 7→ exp−1
Γ(n)

(
expΓ(r)(y) expΓ(r)(y

′) expΓ(r)(y + y′)−1
)
.

Using the description of n as a projective limit, we see that the map

e× n → n, (y, x) 7→ ead yx

17



is smooth. Therefore it remains to see that f is smooth, but this also follows
from a straightforward inverse limit argument and its validity in all finite-
dimensional Lie algebras.

For the inversion, we obtain from the formula for the product:

(x, y)−1 = (−e− ad y.(f(y,−y) ∗ x),−y),

which implies its smoothness.

We are now ready to characterize those pro-Lie algebras for which Γ(g)
carries a compatible Lie group structure:

Theorem 5.2 For a pro-Lie algebra g, the following are equivalent:

(1) Γ(g) carries a compatible Lie group structure.

(2) g is smooth.

Proof. In view of Theorem 4.5, it remains to show that (2) implies (1).
Write g ∼= r o s with s ∼=

∏
j∈J sj and put

J0 := {j ∈ J : sj
∼= sl2(R)}, s0 :=

∏
j∈J0

sj
∼= sl2(R)J0 , and s1 :=

∏
j 6∈J0

sj.

Let ϕ : sl2(R) → S̃L2(R) be a diffeomorphism and note that

ϕJ0 : s0 → Γ(s0) ∼= S̃L2(R)J0

defines on Γ(s0) a Lie group structure (cf. Remark 2.6). Since Γ(s1) is a
finite-dimensional Lie group (Theorem 4.5), Γ(s) ∼= Γ(s0) × Γ(s1) is a Lie
group.

In view of Γ(g) ∼= Γ(r) o Γ(s), it remains to see that the action of Γ(s)
on Γ(r) is smooth with respect to the Lie group structure on Γ(r).

Clearly, the action of Γ(s) on the Lie algebra n = [r, r] is smooth, because
the Γ(s)-module n is a projective limit of finite-dimensional Γ(s)-modules on
which Γ(s) acts smoothly. Similarly, it follows that the action of Γ(s) on
r/n ∼= e is smooth.

Next we claim that we may choose the closed complement e of n in r

in an s-invariant fashion. Since r is a projective limit of finite-dimensional
s-modules, its topological dual space is a direct limit of finite-dimensional
s-modules, hence a semisimple s-module. Therefore n⊥ has an s-invariant
complement m in r′, so that we may choose e := m⊥ (cf. [HoMo06], Theo-
rem 7.16ff). Then Φ is Γ(s)-equivariant, which implies the smoothness of the
Γ(s)-action on Γ(r).
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The preceding theorem provides one Lie group structure on the topo-
logical group Γ(g), but it is not clear that this is the only one. Therefore
it is a natural question to ask which additional requirements make this Lie
group structure unique. One possibility is to require regularity. Indeed the
regularity of a Lie group G, which we shall introduce in the next definition,
will secure the existence of an effective exponential function of G which then
allows us to prove the desired uniqueness of the Lie group structure.

Let I denote the unit interval [0, 1], and abbreviate the Lie algebra L(G)
of a Lie group G by g.

Definition 5.3 A Lie group G is called regular if for each ξ ∈ C∞(I, g), the
initial value problem

γ(0) = 1, γ′(t) = γ(t) · ξ(t) = T1(λγ(t)) · ξ(t)

has a solution γξ ∈ C∞(I, G), and the map

εG : C∞(I, g) → G, ξ 7→ γξ(1)

is smooth ([Mil84]). Then expG(x) := εG(x), where x ∈ g is identified with
a constant function I → g, yields an exponential function of G.

A crucial feature of regularity is the following ([Mil84], [GN06]):

Theorem 5.4 If H is a regular Lie group, G is a 1-connected Lie group,
and ϕ : L(G) → L(H) is a continuous homomorphism of Lie algebras, then
there exists a unique Lie group homomorphism f : G → H with L(f) = ϕ.

Corollary 5.5 Two 1-connected regular Lie groups with isomorphic Lie al-
gebras are isomorphic.

An important criterion for regularity is provided by the fact that it is
an extension property. To make this precise, recall that an extension of Lie
groups is a short exact sequence

1 → N
ι−−→Ĝ

q−−→G → 1

of Lie group morphisms, for which Ĝ is a smooth (locally trivial) principal
N -bundle over G with respect to the right action of N given by (ĝ, n) 7→ ĝn,

where we identify N with the subgroup ι(N) of Ĝ. We call Ĝ an extension
of G by N .
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Theorem 5.6 ([KM97], [GN06]) If Ĝ is a Lie group extension of G by N ,

then Ĝ is regular if and only if G and N are regular.

Proposition 5.7 The Lie group structure of Γ(g) from Theorem 5.2 turns
Γ(g) into a regular Lie group.

Proof. Since Γ(g) is a Lie group extension of Γ(s) by Γ(r) and Γ(r) a Lie
group extension of (e, +) by the pronilpotent group (n, ∗), it suffices to show
that (n, ∗), (e, +) and Γ(s) are regular.

In [GN06], it is shown that for each nilpotent Lie algebra m, the group
(m, ∗) is regular, where ∗ denotes the BCH multiplication. First, this implies
that (e, +) is regular. Further, n = lim

←−
nj for nilpotent Lie algebras nj, so

that the relation
C∞([0, 1], n) ∼= lim

←−
C∞([0, 1], nj)

(cf. [GN06]) easily implies that (n, ∗) is regular.
Moreover, all finite-dimensional Lie groups are regular ([KM97]), so that

a similar argument implies that Γ(s) ∼=
∏

j∈J Γ(sj) is regular.

Note that the following theorem deals with Lie groups G whose Lie alge-
bra L(G) is a pro-Lie algebra, but that we do not assume that the underlying
topological group is pro-Lie.

Theorem 5.8 A pro-Lie algebra g is the Lie algebra of a Lie group with a
smooth exponential function if and only if it is smooth.

Proof. Combining Proposition 5.7 with Theorem 5.2 shows that for each
smooth pro-Lie algebra g, the group Γ(g) carries a regular Lie group structure
with Lie algebra g, hence in particular that the Lie group Γ(g) has a smooth
exponential function.

Assume, conversely, that G is a Lie group with Lie algebra g and a smooth
exponential function expG : g → G. Let s =

∏
j∈J sj be a Levi complement

in g and J0 := {j ∈ J : sj
∼= sl2(R)}.

Since G has a smooth exponential function and each sj is locally expo-
nential with z(sj) = {0}, Theorem IV.4.9 in [Ne06] (see [GN06] for a proof)
implies the existence of a Lie group morphism αj : Γ(sj) → G for which L(αj)
is the inclusion map. From the regularity of the finite-dimensional Lie group
Γ(sj), we further obtain with Theorem 5.4 morphisms βj : G → Γ(sj), for
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which L(βj) is the projection g → sj. We then have βj ◦αj = idΓ(sj) for each
j ∈ J .

Let U ⊆ G be a contractible 1-neighborhood and ks ⊆ s a maximal
compactly embedded subalgebra. Then ks is adapted to the decomposition
of s in the sense that ks =

∏
j∈J kj for kj := ks ∩ sj.

Since the exponential function of G is continuous, V := exp−1
G (U) is a

0-neighborhood in g, and we conclude that ks ∩ V contains a subalgebra of
the form

∏
j∈J1

kj, where J1 ⊆ J is a cofinite subset.
For each j ∈ J , the group expΓ(sj)

(kj) is a maximal compactly embedded
subgroup Kj of Γ(sj) and the inclusion Kj ↪→ Γ(sj) is a homotopy equivalence
by [Ho65], p. 180, Theorem 3.1. For j ∈ J1, we have

αj(expΓ(sj)
kj) = expG(kj) ⊆ U,

so that the contractibility of U in G implies that the map αj : Γ(sj) → G is
homotopic to a constant map, hence that idΓ(sj) = βj ◦ αj is also homotopic
to a constant map, that is, Γ(sj) is contractible. In view of Lemma 4.3, this
implies sj

∼= sl2(R), hence that J1 ⊆ J0, so that J0 is cofinite, that is, g is
smooth (Theorem 4.5).

Corollary 5.9 If G is a regular Lie group for which g = L(G) is a pro-Lie
algebra, then g is smooth and G is isomorphic to a quotient of the regular
Lie group Γ(g) by a discrete central subgroup. In particular, G is a pro-Lie
group.

Proof. If G is any connected regular Lie group whose Lie algebra L(G) is a

pro-Lie algebra, then its universal covering group G̃ is a regular 1-connected
Lie group with Lie algebra g, and Theorem 5.8 implies that g is smooth.
Hence Proposition 5.7 and Corollary 5.5 imply that G̃ ∼= Γ(g). Now the

assertion follows from the fact that the universal covering map qG : G̃ → G
has discrete central kernel (see [HoMo06], Lemma 3.32(ii)).

In view of the preceding corollary, it is of crucial importance to understand
the discrete central subgroups of the groups Γ(g), provided this group carries
a Lie group structure.

Lemma 5.10 Any discrete central subgroup Γ of a pro-Lie group G is finitely
generated.
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Proof. Let U ⊆ G be an open identity neighborhood with U ∩ Γ = {1}.
After shrinking U , if necessary, we may further assume that there exists a
closed normal subgroup N E G with NU = UN = U such that G/N is a
finite-dimensional Lie group (Theorem 2.2). Then U/N is an open identity
neighborhood of G/N intersecting ΓN/N trivially. Hence Γ ∼= ΓN/N is a
discrete central subgroup of G/N , and therefore finitely generated.1

For an abelian topological group A, we write comp(A) for the subgroup,
generated by all compact subgroups of A.

Lemma 5.11 If g is smooth and Z := Z(Γ(g)), then comp(Z) = tor(Z) is
a finite group.

Proof. We have seen in (4) that Γ(r) is an extension of the additive group
(e, +) by the 1-connected pronilpotent group (n, ∗). Since both these groups
are compact free, Γ(r) is compact free.

As in the proof of Theorem 5.2, we write s = s0× s1, where s0
∼= sl2(R)J0

and s1 is finite-dimensional semisimple. Then

Z(Γ(s)) = Z(Γ(s0))× Z(Γ(s1)) ∼= ZJ0 × Z(Γ(s1)), (6)

where Z(Γ(s1)) is a finitely generated abelian group.
If C ⊆ Z is a compact subgroup, then C ∩ Γ(r) = {1} (Γ(r) is compact

free) implies that C injects into Z(Γ(s)), and since Z(Γ(s0)) is compact free,
C injects into Z(Γ(s1)). As Z(Γ(s1)) is finitely generated, comp(Z(Γ(s1))) =
tor(Z(Γ(s1))) is a finite group. We conclude that C consists of torsion ele-
ments, which already implies that comp(Z) = tor(Z). As tor(Z) intersects
Γ(r) trivially, it also injects into Z(Γ(s)), hence into Z(Γ(s1)), which implies
its finiteness.

Lemma 5.12 For an arbitrary set J , a finitely generated subgroup of ZJ is
discrete.

1To see that any discrete central subgroup Γ of a connected finite-dimensional Lie group
G is finitely generated, we first recall from [Ho65] that Z(G) is contained in a connected
abelian Lie subgroup A of G. Since Ã ∼= Rn for some n, it suffices to observe that discrete
subgroups of Rn are finitely generated because they are isomorphic to Zm for some m ≤ n.
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Proof. Let Γ ⊆ ZJ be a finitely generated subgroup. Then Γ is torsion
free, hence isomorphic to Zd for some d ∈ N0. Let χj : ZJ → Z, j ∈ J ,
denote the coordinate projections. Then the restrictions χj : Γ → Z separate
the points, hence generate a subgroup of full rank in Hom(Γ, Z) ∼= Zd. We
conclude that there exists a finite subset F ⊆ J such that the kernel of the
projection

χF := (χj)j∈F : ZJ → ZF

intersects Γ trivially. Since ker(χF ) is an open subgroup, Γ is discrete.

The following theorem provides a very nice characterization of the dis-
crete central subgroups of Γ(g) for a smooth pro-Lie algebra g and hence
a description of all regular Lie groups G with pro-Lie algebras as Lie alge-
bras L(G).

Theorem 5.13 Assume that g is smooth. Then a subgroup Γ of Z :=
Z(Γ(g)) is discrete if and only if it is finitely generated and Γ∩Z0 is discrete.

Proof. In view of Lemma 5.10, each discrete subgroup of Z is finitely
generated.

Conversely, assume that Γ ⊆ Z is finitely generated and that Γ ∩ Z0 is
discrete. Then Theorem 5.32(iv) in [HoMo06] implies that the pro-Lie group
Γ (cf. Theorem 2.1) is a direct product Γ ∼= Rm × comp(Γ) × Zn for some
m, n ∈ N0. Since comp(Z) is finite (Lemma 5.11), π0(Γ) is discrete and
Γ0

∼= Rm. As Γ0 is contained in Z0
∼= z(g), it is contained in the closure

of Γ ∩ Z0, which is discrete by assumption, hence closed. Since Γ ∩ Z0 is
countable, we get m = 0, so that Γ is discrete.

6 Locally exponential Lie algebras

In this section, we recall some basic definitions and properties concerning
locally exponential Lie algebras. In particular, we introduce the Maurer–
Cartan form and derive a spectral condition from the invertibility properties
of the Maurer–Cartan form. This section prepares the following one, where
we characterize the locally exponential pro-Lie algebras, respectively, pro-Lie
groups.
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Definition 6.1 A Lie group G is called locally exponential if it has a smooth
exponential function expG : L(G) → G mapping some open 0-neighborhood
in L(G) diffeomorphically onto an open 1-neighborhood in G.

Remark 6.2 (a) The Lie algebra L(G) of a locally exponential Lie group G
is locally exponential ([GN06]; [Ne06], Lemma IV.2.2).

(b) All Banach–Lie algebras and therefore all finite-dimensional Lie alge-
bras are locally exponential because the BCH series defines a smooth local
group structure on some 0-neighborhood in g, satisfying all requirements of
Definition 1.4.

Lemma 6.3 ([GN06]) If g is locally exponential, then all operators ad x gen-
erate a smooth R-action (t, y) 7→ et ad xy on g by automorphisms of topological
Lie algebras.

Definition 6.4 Now let g be locally exponential and U as in Definition 1.4.
Then, for each x ∈ U , the left multiplication λ∗−x : y 7→ (−x) ∗ y is defined in
a neighborhood of x with λ−x(x) = (−x) ∗ x = 0, and

κU(x) := Tx(λ−x) : g → g

defines a g-valued 1-form on U , called the Maurer–Cartan form. In [GN06]
it is shown that the Maurer–Cartan form can be expressed by an operator-
valued integral:

(κU)x = κg(x) :=

∫ 1

0

e−t ad x dt,

interpreted in the pointwise sense. If g is complete, the integral κg(x) is
defined for each x ∈ g, but for x ∈ U , the interpretation in terms of the
Maurer–Cartan form implies that the linear operator κg(x) is invertible.

We call a point x ∈ g exp-regular if the operator κg(x) is invertible.
This terminology is justified by the fact that if expG : L(G) → G is the
exponential function of a Lie group, then Tx(expG) is invertible if and only
if x is exp-regular.

Remark 6.5 If g is a pro-Lie algebra, we write g = lim
←−

gj with gj
∼= g/nj

for closed ideals nj E g of finite codimension ([HoMo06], Definition 3.6 and
Proposition 3.9). Then κg(x) preserves each ideal nj and induces an operator
on the quotient g/nj. Since all these quotients are finite-dimensional, κg(x)
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is invertible if and only if all operators induced on the quotients g/nj are
invertible, which is equivalent to

Spec(ad x) ∩ 2πiZ = {0}. (7)

Remark 6.6 If G is a locally exponential Lie group and L(G) its Lie algebra,
then the exponential function induces a one-to-one map L(G) → L(G), x 7→
γx which is also a homeomorphism ([GN06]). If, in addition, G is a pro-
Lie group, we conclude that L(G) ∼= L(G) are topological Lie algebras, and
hence that g := L(G) is a locally exponential pro-Lie algebra. This further

implies that G̃ ∼= Γ(g) ([HoMo06], Theorem 8.21). Hence G ∼= Γ(g)/D for
some discrete central subgroup D of Γ(g).

If, conversely, g is a locally exponential pro-Lie algebra, then Γ(g) is a lo-
cally exponential Lie group and for each discrete central subgroup D ⊆ Γ(g),
the quotient Γ(g)/D is a locally exponential Lie group with Lie algebra g.

7 Locally exponential pro-Lie algebras

The main result of this section is a characterization of locally exponential pro-
Lie algebras as those for which the exp-regular points form a 0-neighborhood.
Moreover, we shall see that this condition implies that g is smooth and
that the corresponding simply connected regular Lie group Γ(g) is locally
exponential.

7.1 Exponential pro-Lie algebras

We start with a discussion of exponential Lie algebras.

Theorem 7.1 For a pro-Lie algebra g the following are equivalent:

(1) g satisfies the spectral condition

(SC) (∀x ∈ g) Spec(ad x) ∩ iR = {0}.

(2) Γ(g) is an exponential Lie group.

(3) g is exponential.

Any such Lie algebra is prosolvable.
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Proof. (1)⇒ (2): Assume the spectral condition (SC). We observe that it
implies that for each closed ideal n E g and the quotient map q : g → q := g/n
we have

Spec(adq(q(x))) ∩ iR ⊆ Spec(adg(x)) ∩ iR = {0}.

Hence q is exponential and therefore solvable by the Dixmier–Saito Theorem
([Dix57], [Sai57]).

We thus have g ∼= lim
←−

gj, where each gj is exponential, so that g is in

particular prosolvable.
If ϕij : gj → gi is a homomorphism of exponential Lie algebras, then the

corresponding homomorphism ϕ̃ij : (gj, ∗) → (gi, ∗) of simply connected Lie
groups satisfies

ϕ̃ij ◦ exp(gj ,∗) = exp(gi,∗) ◦ϕij,

which shows that ϕ̃ij = ϕij also respects the ∗-product, so that we obtain
a ∗-product on any projective limit g = lim

←−
gj of exponential Lie algebras,

showing that g is exponential. This implies in particular that Γ(g) ∼= (g, ∗)
is an exponential Lie group.

(2) ⇒ (3) follows from g ∼= L(Γ(g)) ∼= L(Γ(g)) if Γ(g) is an exponential
Lie group.

(3) ⇒ (1): To see that (SC) is satisfied if g is exponential, we simply

observe that if g is exponential, the operator κg(x) =
∫ 1

0
e−t ad x dt is invertible

for each x ∈ g, that is, Spec(ad x) ∩ 2πiZ ⊆ {0}, and this implies (SC)
(Remark 6.5).

For finite-dimensional solvable Lie algebras, it is quite convenient to have
Saito’s testing device ([Sai57], see also [Bou89], Ch. III, Ex. 9.17), character-
izing the exponential Lie algebras as the solvable Lie algebras not containing
a subalgebra isomorphic to mot2, the Lie algebras of the motion group of
the euclidean plane, or its four-dimensional central extension osc, the oscil-
lator algebra. These Lie algebras can be described in terms of commutator
relations as follows. The 3-dimensional Lie algebra mot2 has a basis U, P,Q
with

[U, P ] = Q, [U,Q] = −P and [P, Q] = 0,

whereas osc has a basis U, P,Q, Z, where Z is central with

[U, P ] = Q, [U,Q] = −P and [P, Q] = Z.
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One implication of Saito’s result is trivial, because in both Lie algebras we
have i ∈ Spec(U), so that the occurence of any such subalgebra in a Lie
algebra g implies that g is not exponential.

Conversely, any finite-dimensional non-exponential Lie algebra g contains
a triple (U, P,Q) satisfying

[U, P ] = Q and [U,Q] = −P. (8)

One finds more such pairs as follows: Put P1 := P , Q1 := Q and Z1 := [P, Q]
and, recursively, Pi+1 := [Zi, Pi], Qi+1 := [Zi, Qi], Zi+1 := [Pi+1, Qi+1]. If g

is solvable, then it is easy to see that for some n the elements U, Pn, Qn, Zn

span a subalgebra either isomorphic to mot2 or osc ([Sai57]). Here the main
point is that Zi ∈ Di(g) vanishes if i is large enough.

One might expect that similar testing devices exist for prosolvable Lie
algebras. However, the following example shows that the situation becomes
more complicated.

Example 7.2 Choose a basis

P :=
1

2

(
0 1
1 0

)
, Q :=

1

2

(
1 0
0 −1

)
, U :=

1

2

(
0 1
−1 0

)
in sl2(R), which satisfies the commutator relations

[U, P ] = Q, [U,Q] = −P and [P, Q] = U.

Let A := XR[[X]] be the pronilpotent algebra of formal power series in
one variable vanishing in 0. We observe that A is formally real in the sense
that for (f, g) 6= (0, 0) in A2 we have f 2 + g2 6= 0. Then A⊗ sl2(R) ∼= sl2(A)
is a pronilpotent Lie algebra with respect to the bracket defined by

[a⊗ x, a′ ⊗ x′] = aa′ ⊗ [x, x′].

Define

g := (A⊗ sl2(R)) o (R⊗ U) ⊆ R[[X]]⊗ sl2(R) ∼= sl2(R[[X]])

and note that g ∼= sl2(A)oRU is a prosolvable Lie algebra with a pronilpotent
hyperplane ideal and i ∈ Spec(ad U), so that g is not exponential. For any
nonzero pair P, Q ∈ g satisfying (8), we then have

P = a⊗ P + b⊗Q and Q = −b⊗ P + a⊗Q,
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and therefore
Z := [P, Q] = (a2 + b2)⊗ U 6= 0.

Moreover, [Z, P ] and [Z,Q] are nonzero, so that the recursive construction
from above produces infinitely many nonzero elements and Saito’s method to
find subalgebras isomorphic to mot2 or osc breaks down. We also note that
for 0 6= c ∈ XR[[X]] the element U ′ := (1 + c)⊗ U ∈ g satisfies i ∈ Spec(U ′)
but the operator (ad U ′)2 + 1 is injective.

7.2 Locally exponential pro-Lie algebras

As we shall see below, it requires some work to characterize the locally ex-
ponential pro-Lie algebras, but it is easy to find a strong necessary condition
which already provides the key hint on how to approach the problem.

Proposition 7.3 If the pro-Lie algebra g is locally exponential, then it con-
tains a closed exponential ideal of finite codimension. In particular, g/ rad(g)
is finite-dimensional.

Proof. If g is locally exponential, then Definition 6.4 implies the existence
of a 0-neighborhood U ⊆ g such that κg(x) is invertible for each x ∈ U . Since
g is a projective limit of finite-dimensional Lie algebras, U contains a closed
ideal n of finite codimension. From Remark 6.5 we further see that this
implies that Spec(ad x) ∩ 2πiZ = {0} for each x ∈ U .

For each x ∈ n, we derive from

Spec(adg(x)) = Spec(adn(x)) ∪ {0}

and Rx ⊆ U that Spec(adn tx) ∩ 2πiZ = {0} for each t ∈ R, so that
Spec(adn(x)) ∩ iR = {0}, and Theorem 7.1 implies that n is exponential
and hence prosolvable.

Remark 7.4 If g has a closed exponential ideal of finite codimension, then
g/ rad(g) is finite-dimensional, which implies in particular that g is smooth
and hence that Γ(g) carries a regular Lie group structure (Proposition 5.7).

Next we describe an example of a pro-Lie algebra with an abelian hyper-
plane ideal which is not locally exponential, so that the condition in Propo-
sition 7.3 is not sufficient for local exponentiality.
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Example 7.5 Let α : R → GL(E) be a smooth representation of R on a
complete locally convex space E with the infinitesimal generator D = α′(0).
Then the semi-direct product group

G := E oα R, (v, t)(v′, t′) = (v + α(t)v′, t + t′)

is a Lie group with Lie algebra g = E oD R and exponential function

expG(v, t) =
(
β(t)v, t

)
, β(t) =

∫ 1

0

α(st) ds =

{
idE for t = 0

1
t

∫ t

0
α(s) ds for t 6= 0.

From this formula it follows that (w, t) ∈ im(expG) is equivalent to w ∈
im(β(t)). We conclude that expG is injective on some 0-neighborhood if
and only if β(t) is injective for t close to 0, and it is surjective onto some
1-neighborhood in G if and only if β(t) is surjective for t close to 0.

Note that the eigenvector equation Dv = λv for tλ 6= 0 implies that

β(t)v =

∫ 1

0

estλv ds =
etλ − 1

tλ
v,

so that β(t)v = 0 is equivalent to tλ ∈ 2πiZ \ {0}.
(a) For the weakly complete space E = CN and the diagonal operator D

given by D((zn)n∈N) = (2πinzn)n∈N, we see that β( 1
n
)en = 0 holds for en =

(δmn)m∈N, and en 6∈ im
(
β( 1

n
)
)
. We conclude that (en,

1
n
) is not contained in

the image of expG, and since (en,
1
n
) → (0, 0), the identity of G, im(expG)

does not contain any identity neighborhood of G. Hence the exponential
function of the Lie group G = E oα R is neither locally injective nor locally
surjective in 0.

(b) For the Fréchet space E = RN and the diagonal operator D given by
D((zn)n∈N) = (nzn)n∈N, it is easy to see that all operators β(t) are invertible
and that R × E → E × E, (t, v) 7→ (β(t)v, β(t)−1v) is a smooth map. This
implies that expG : g → G is a diffeomorphism.

Definition 7.6 Let g be a prosolvable Lie algebra. A root of g is a con-
tinuous linear functional α : gC → C with the property that there exist two
closed ideals n1 ⊆ n2 of gC with dimC(n2/n1) = 1 such that

(∀x ∈ g) (ad x− α(x)1)(n2) ⊆ n1.

We write ∆(g) ⊆ HomC(gC, C) for the set of roots of g.
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Lemma 7.7 The roots of a prosolvable Lie algebra g vanish on the commu-
tator subalgebra, hence can be interpreted as homomorphisms of Lie algebras.
For each element x ∈ g, we have

Spec(ad x) = ∆(g)(x).

Proof. Let α ∈ ∆(g), choose n1 and n2 as in the definition, then we have
a representation δ of g into gl(n2/n1), given by δ(x)(v + n1) = [x, v] + n1.
Since n2/n1 is one-dimensional, the Lie algebra gl(n2/n1) is abelian, and thus
δ(g′) = {0}. But by Definition 7.6, we have δ(x)(v + n1) = α(x) · (v + n1),
and thus α(g′) = {0}.

For each x ∈ g and each root α, we clearly have α(x) ∈ Spec(ad x).
Conversely, each spectral value λ of ad x is contained in Spec(adq q(x)) for
some quotient map q : g → q onto some finite-dimensional Lie algebra q.
Applying Lie’s Theorem to the finite-dimensional solvable Lie algebra qC, we
see that there exist ideals nq

1 ⊆ nq
2 and a root αq of q with αq(q(x)) = λ.

Then α := αq ◦ q is a root of g with α(x) = λ.

Lemma 7.8 Let g be a finite-dimensional solvable Lie algebra and ∆(g) ⊆
Hom(gC, C) its set of roots. If g ∈ Γ(g) satisfies

Γ(α)(g) 6∈ 2πiZ \ {0} for each α ∈ ∆(g),

then there exists a unique x ∈ g with g = expG(x).

Proof. This lemma follows from Theorem 2 in [Dix57]. We reproduce the
argument for the sake of completeness. Put G := Γ(g). First we show that
x is unique. If x, y ∈ g satisfy expG(x) = expG(y) = g, then the assumption
on g implies that x is exp-regular, so that [x, y] = 0 and expG(x − y) = 1
([HHL89], Lemma V.6.7; see also [GN06] for the infinite-dimensional case).
Since G is simply connected and solvable, we get x − y = 0, because all
compact subgroups of G are trivial ([Ho65]).

Let Dk(g) E g be the last nonzero term of the derived series of g and
q : g → q := g/Dk(g) the quotient map. Then Dk(g) E g is an abelian ideal
of g and q is a solvable Lie algebra of length k, whereas the length of g is k+1.

If g is abelian, then G ∼= (g, +) implies that the exponential function
of G is surjective. We now argue by induction on the solvable length of
g. The abelian case corresponds to solvable length ≤ 1. As g is finite-
dimensional, there exists a 1-connected Lie group Q with L(Q) = q and a
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quotient morphism qG : G → Q of Lie groups. As Q is 1-connected, the
subgroup Dk(G) := ker qG is connected.

Since all characters of G vanish on D1(G), they vanish in particular on
Dk(G), so that each character χ factors through a homomorphism χQ : Q →
C with χQ◦qG = χ. As χQ(qG(g)) never is a nonzero integral multiple of 2πi,
the same holds for the values of the characters of Q on qG(g). We now apply
our induction hypothesis to Q to derive that qG(g) ∈ expQ(q). This means
that there exists some x ∈ g with g ∈ expG(x)Dk(G), so that it remains to
show that the subset expG(x)Dk(G) of G is contained in the image of the
exponential function.

The group Dk(G) is abelian and connected, so that its exponential func-
tion is surjective. We may therefore assume that g 6∈ Dk(G), which implies
that x 6∈ Dk(g). Then b := Dk(g) + Rx is a subalgebra of g, isomorphic to
Dk(g) oD R, where D := ad x|Dk(g). We conclude that with α(t) := etD we
obtain a simply connected group B := Dk(g) oα R with Lie algebra b. The
exponential function of B is given by

expB(v, t) = (β(t)v, t), where β(t) =

∫ 1

0

e−stD ds =
1− e−t ad x

t ad x
.

From the spectral condition on g we conclude that the operator β(1) is in-
vertible, which immediately implies that Dk(g)× {1} ⊆ im(expB).

Now let jB : B → G be the unique Lie group homomorphism for which
L(jB) : b → g is the natural inclusion map. Then

g ∈ Dk(G) expG(x) = jB(Dk(g)× {1}) ⊆ jB(im(expB)) = expG(b)

implies that g ∈ expG(g).

Proposition 7.9 Let g be a prosolvable pro-Lie algebra and ∆(g) its set of
roots. If g ∈ Γ(g) satisfies

Γ(α)(g) 6∈ 2πiZ \ {0} for each α ∈ ∆(g), (9)

then there exists a unique x ∈ g with g = exp(x).

Proof. We write g = lim
←−

gj for a family of finite-dimensional solvable Lie

algebras gj. We may assume that the corresponding maps qj : g → gj are
quotient maps ([HoMo06], Theorem A2.12).
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On the group level, by [HoMo06], Theorem 6.8, we obtain quotient maps
Γ(qj) : Γ(g) → Γ(gj) of the corresponding 1-connected Lie groups. Viewing
gj as a g-module, we can think of the roots of gj as obtained by factorization
of certain roots of g. Hence gj := Γ(qj)(g) satisfies for each j condition (9). In
view of Lemma 7.8, there exists a unique xj ∈ gj with expΓ(gj)

(xj) = gj, and
the uniqueness implies that the family (xj)j∈J ∈

∏
j∈J gj defines an element

x of g = lim
←−

gj with expΓ(g) x = g. The uniqueness assertion of Lemma 7.8

also implies the uniqueness of x.

Proposition 7.10 Let f : G → H be a continuous homomorphism of regular
Lie groups whose Lie algebras g, respectively, h are pro-Lie algebras. Then
f is smooth.

Proof. Since smoothness is a local property, we may without loss of gen-
erality assume that G and H are 1-connected; otherwise we replace them
by the simply connected covering of their identity component and f by the
induced homomorphism of these 1-connected groups.

Now Corollary 5.9 implies that G ∼= Γ(g) and H ∼= Γ(h) are regular Lie
groups. The homomorphism f is uniquely determined by the relation

f ◦ expΓ(g) = expΓ(h) ◦L(f).

Since the group Γ(h) is a regular Lie group, the continuous homomorphism
of Lie algebras L(f) : g → h integrates to a unique smooth morphism of Lie
groups h : Γ(g) → Γ(h) ([Mil84]) with L(h) = L(f), also satisfying

h ◦ expΓ(g) = expΓ(h) ◦L(f).

This implies that f = h and hence that f is smooth.

Theorem 7.11 For a pro-Lie algebra g, the following are equivalent:

(1) g is locally exponential.

(2) There exists a 0-neighborhood U ⊆ g consisting of exp-regular points.

(3) Γ(g) is a locally exponential Lie group.
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Proof. (1) ⇒ (2) is a direct consequence of the discussion in Remark 6.5.
(2) ⇒ (3): Let n E g be a closed ideal of finite-codimension for which

U contains an n-saturated 0-neighborhood and recall from Proposition 7.3
that n is exponential and prosolvable. We consider the regular Lie group
G := Γ(g) with Lie algebra g.

Let e ⊆ g be a vector space complement of g and Ue := U ∩ e. For each
x ∈ Ue and y ∈ n, we then have x + y ∈ U , so that

Spec(adg(x + y)) ∩ 2πiZ ⊆ {0}.

For x ∈ g, the Lie algebra gx := n+Rx is closed and of finite codimension, so
that for each z ∈ gx we have the relation Spec(adgx z) ⊆ Spec(adg z). Since
gx is prosolvable, for each root Γ(α) : Γ(gx) → C we have

Γ(α)(expG y expG x) = Γ(α)(expG y)Γ(α)(expG x) = α(x) + α(y)

= α(x + y) ∈ C \ (2πiZ \ {0}).

Now Proposition 7.9 implies that

expG y expG x ∈ expG(n + x).

We conclude that

expG(n) expG(Ue) ⊆ expG(n + Ue).

Since n E g is an ideal, we also have for each x ∈ g the relation

expG(x + n) ⊆ expG x expG(n),

which leads to expG(n+Ue) ⊆ expG(n) expG(Ue), and therefore to the equality

expG(n + Ue) = expG(n) expG(Ue).

The quotient map g → g/n integrates to a morphism of Lie groups

q : G = Γ(g) → Γ(g/n)

whose kernel is isomorphic to Γ(n) ([HoMo06], Theorem 6.7), hence equal to
expG(n) because the exponential map of Γ(n) is surjective.
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We consider the open subset V := n + 1
2
Ue of g. From the preceding

considerations it follows that

exp(V ) = exp(n) exp(
1

2
Ue).

In view of ker q = expG(n), this is the inverse image of an open identity
neighborhood in Γ(g/n), hence an open identity neighborhood in G.

For x, y ∈ V , we further know that expG x = expG y implies [x, y] = 0 and
expG(x− y) = 1. Since x− y ∈ n+Ue is regular, we further get x− y ∈ z(g),
and since expG is injective on z(g), we see that expG |V is injective. Therefore
we have an inverse map Ψ := (exp |V )−1 : exp(V ) → V .

We want to show that Ψ is smooth. To this end, we write g as a projective
limit g = lim

←−
gj with gj

∼= g/nj, where nj are closed ideals contained in n.

Let Ψj := qj ◦ Ψ: exp(V ) → gj, where qj : g → g/nj is the quotient map.
Then it suffices to show that all maps Ψj are smooth.

The image qj(U) consists also of regular elements of gj and Vj := qj(V )
satisfies Vj + Vj ⊆ qj(U), so that

expΓ(gj)
: Vj → expΓ(gj)

(Vj)

is a diffeomorphism onto an open subset of Γ(gj) and Ψj factors through the
inverse map

(expΓ(gj)
|Vj

)−1 : expΓ(gj)
(Vj) = Γ(qj)(exp(V )) → Vj.

Since Γ(qj) is smooth (Proposition 7.10), we conclude that

Ψj = (expΓ(gj)
|Vj

)−1 ◦ Γ(qj)

is smooth and hence that the Lie group Γ(g) is locally exponential.
(3) ⇒ (2) has already been observed in Remark 6.2(a).

In view of Theorem 3.7 we now have

Corollary 7.12 For a pro-Lie group G the following are equivalent:

(1) G is locally exponential.

(2) G is locally contractible and G̃0
∼= Γ(L(G)) is locally exponential.
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(3) G is locally contractible and L(G) is locally exponential.

Remark 7.13 Let g be a prosolvable Lie algebra of the form g = n oD R,
where D ∈ der(n). We assume that n is exponential, which is equivalent to

α(n) ∩ iR = {0}

for each root α of g. For each nonzero root α of g, we put Lα := α(n), which
is either {0} or a one-dimensional real subspace of C intersecting iR trivially.

The Lie algebra g is exponential if and only if we have for each root α
the stronger condition α(g) ∩ iR = {0} (Theorem 7.1), which is equivalent
to α(D) ∈ Lα for Lα 6= {0} and α(D) 6∈ iR for Lα = {0}.

The condition that all elements in n+[−1, 1]D are regular is much weaker,
it means that for each root α, we have

2πi 6∈ Lα + [−1, 1]α(D).

This condition is satisfied in particular if

|α(D)| < dist(Lα, 2πi).

Example 7.14 Our characterization of the locally exponential Lie algebras
seems to suggest that a pro-Lie algebra g is locally exponential if and only if
its radical r = rad(g) is locally exponential and the representation of s on r

is “bounded” in the sense that its dual contains only finitely many types of
simple modules.

The following example shows that this is not the case. For each n ∈ N
we consider the 5-dimensional real Lie algebra

rn := C2 oDn R, where Dn =

(
1 + ni 0

0 1 + ni

)
∈ gl2(C).

Then each rn is exponential, so that r :=
∏∞

n=1 rn is an exponential solvable
pro-Lie algebra.

Next we put s := sl2(C) and let it act on each factor C2 in the canonical
fashion, which leads to the semidirect product pro-Lie algebra g := r o s,
whose radical is r and for which the representation of s on r is “bounded”.

For

xn :=
(2π

n
Dn,−

2π

n

(
1 0
0 −1

) )
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one eigenvalue of ad xn on the n-th factor space C2 is

2π

n

(
(1 + in)− 1

)
= 2πi,

so that xn is not exp-regular. But in g we have xn → 0, so that g is not
locally exponential.

8 Additional remarks

Remark 8.1 Let g be a smooth pro-Lie algebra. We have seen above that
G := Γ(g) is a regular Lie group, hence has a smooth exponential function. In
view of Example 7.5, we cannot expect the group G to be locally exponential,
that is, of the first kind in the sense of Robart ([Rob97]).

But we have a class of groups which are still well-behaved and which
Robart [Rob97] calls groups of the second kind. Indeed, he defines a group
to be of the second kind if there exist two closed subspaces a, b ⊆ L(G) such
that the map

a× b → G, (x, y) 7→ expG(x) expG(y)

is a local diffeomorphism in (0, 0). Considering the differential in this point,
this requires in particular that a⊕ b ∼= L(G) as topological vector spaces.

Let us assume that g contains a closed ideal n of finite codimension which
is exponential and pick a complementary subspace e ⊆ g (cf. Proposition 7.3).
We claim that the smooth map

Φ: n× e → G, (x, y) 7→ expG x expG y

is a local diffeomorphism in (0, 0), hence that G is a Lie group of the second
kind, regardless of whether it is locally exponential or not.

Let q := g/n be the finite-dimensional quotient Lie algebra, q : g → q the
quotient map, and σ : q → e a linear isomorphism. Further, let U ⊆ q be an
open 0-neighborhood such that

ϕ := expΓ(q) |U : U → V := expΓ(q)(U)

is a diffeomorphism.
The corresponding homomorphism of groups

Γ(q) : G = Γ(g) → Q := Γ(q)
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is smooth (Proposition 7.10) and Theorem 6.7 in [HoMo06] implies that
ker Γ(q) coincides with the image of the natural map Γ(n) → Γ(g), which is
injective. In view of the exponentiality of n, it follows in particular that

N := ker Γ(q) = expG(n)

and that expG |n : n → N is a bijective smooth map. Next we use Glöckner’s
Implicit Function Theorem ([Gl03]) to see that ker Γ(q) is a smooth subman-
ifold of G, hence a Lie group whose regularity follows from the regularity of
G (Theorem 5.6) with the Lie algebra ker q = n (cf. [KM97], 38.7). Corol-
lary 5.9 now implies that N ∼= Γ(n) as regular Lie groups and hence that
expG |n : n → N is a diffeomorphism. Let logN := (expG |n)−1 : N → n denote
its inverse.

For (x, y) ∈ n× σ(U), we then have

Φ(x, y) = expG(x) expG(σ(q(y)),

and
Γ(q)(Φ(x, y)) = expΓ(q)(q(y)) = ϕ(q(y)).

Hence
y = σ(q(y)) = σ(ϕ−1(Γ(q)(Φ(x, y))))

implies that Φ|n×U is invertible with the inverse

Φ−1(g) = (logN(g exp(−σ ◦ ϕ−1 ◦ Γ(q)(g))), σ ◦ ϕ−1 ◦ Γ(q)(g)),

and this implies that Φ|n×U is a diffeomorphism.

Remark 8.2 (Regular pro-Lie groups as “pro-manifolds”)
Let G = Γ(g) be the regular Lie group associated to the smooth pro-Lie

algebra g.
We write g = lim

←−
gj as a projective limit of finite-dimensional Lie al-

gebras gj for which the maps qj : g → gj are surjective. We have seen in
Proposition 7.10 that the corresponding maps Γ(qj) : G → Gj := Γ(gj) are
smooth. From that it follows in particular, that for each map f : M → G, M
a smooth manifold, the smoothness of f implies the smoothness of the maps
fj := Γ(qj) ◦ f .

We claim that the converse also holds, that is, that G ∼= lim
←−

Gj also

holds in the category of smooth manifolds. To this end, we have to show
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that the smoothness of all maps fj implies the smoothness of f . In Section
3 we have constructed the Lie group structure on G by writing it as R o S
and R ∼= n × e, hence as a product of three smooth manifolds. Accordingly
we write f as f = (expG ◦fn) · (expG ◦fe) · fS, and it suffices to show that fn,
fe and fS are smooth of the corresponding maps into the finite-dimensional
quotients are smooth.

For fS, this follows from the decomposition of S as S̃L2(R)J0 ×S1, where
S1 is finite-dimensional. The assertion is obviously true if g is abelian, which
takes care of the map fe, and, by a straightforward projective limit argument,
also of fn.

Remark 8.3 (More automatic smoothness) An important consequence of
Remark 8.2 is that if H is a Lie group and f : H → G = Γ(g) is a homomor-
phism of Lie groups, then the smoothness of f follows if the corresponding
homomorphisms fj : H → Gj are smooth. If, for instance, H is locally ex-
ponential, the continuity of f implies the continuity of all fj, and the local
exponentiality of the finite-dimensional groups Gj implies that fj is smooth
([GN06]), hence that f is smooth.

9 Problems

Problem 9.1 Under which assumptions does continuity of a morphism of
pro-Lie groups which are Lie groups imply smoothness? Does the existence
of a smooth exponential function suffice?

We have the manifold decomposition Γ(g) ∼= r × e × Γ(s) and further

Γ(s) ∼= S0×S1 with S1 finite-dimensional and S0
∼= S̃L2(R)J0 . In view of the

Iwasawa decomposition KB of S̃L2(R), we moreover get a diffeomorphism

S0
∼= ks,0 × b0,

which leads to
Γ(g) ∼= r× e× ks,0 × b0 × S1

as smooth manifolds.
If f : Γ(g) → H is a continuous homomorphism into a Lie group H and

H has a smooth exponential function, then smoothness of f will follow as
soon as we have it on each of the five factors above. For this it suffices to
have a continuous linear map ϕ : g → h with f ◦ expΓ(g) = expH ◦ϕ, but the
existence of this map is not obvious in this context.
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Problem 9.2 Let G be a Lie group whose Lie algebra L(G) is a pro-Lie
algebra. Show that G has a (smooth) exponential function.

We know already that for each x ∈ g := L(G) we have a smooth R-action
on g generated by the derivation ad x. Therefore the main point is to lift this
one-parameter group of Aut(g) through the adjoint action Ad: G → Aut(g).

An important special case is g = RN and G abelian; but even in this case
it is not clear how to attack the problem.

10 Appendix. Local contractibility

Definition 10.1 (i) A topological space X is called contractible if the iden-
tity map of X is homotopic to some constant selfmap of X. A subspace Y
of X is said to be contractible in X to a point y ∈ Y if the inclusion map
Y → X is homotopic to the constant map Y → X with value y.

(ii) A topological space X is said to be locally contractible at x ∈ X if
there is a neighborhood U of x such that U is contractible to x in X.

(iii) A homogeneous space X is locally contractible if it is locally con-
tractible at one, and hence at any point.

A contractible space is aspherical (that is, has trivial homotopy in all
dimensions) and is acyclic (that is, has trivial homology and cohomology with
respect to all homology or cohomology theories that satisfy the Homotopy
Axiom). In particular, X is arcwise connected, and is contractible in X to
every point x ∈ X. If z ∈ Z ⊆ Y ⊆ X and Y is contractible to z in X then
Z is contractible to z in X.

A space is ostensibly locally contractible at a point x if x has a contractible
neighborhood.

Remark 10.2 Every convex subset of a locally convex topological vector
space is contractible, and so every open subset of a locally convex topological
vector space is locally contractible. Every manifold modelled on a locally
convex space is locally contractible.

Lemma 10.3 Let X and Y be spaces. If X × Y is locally contractible at
(x0, y0), then Y is locally contractible in y0. If X is contractible and Y is
locally contractible at y0, then X × Y is locally contractible at (x0, y0) for all
x0 ∈ X.
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Proof. First assume that W is a neighborhood of (x0, y0) in X × Y that
is contractible in X × Y . Let let gt : W → X × Y , t ∈ [0, 1] be a homotopy
such that g0(x, y) = (x, y) and g1(x, y) = (x0, y0) for all (x, y) ∈ W . The set
WY = {y ∈ Y : (x0, y) ∈ W} is a neighborhood of y0 in Y ; let ht : WY → Y
be defined by ht(w) = prY (gt(x0, w)). Then (w, t) 7→ ht(w) : W × [0, 1] → Y
is continuous and h0(w) = w while h1(w) = y0. Thus WY is contractible in
Y to y0.

Now assume that X is contractible. Let U be a neighborhood of y0 in Y
that is contractible in Y to y0. Then X × U is a neighborhood of (x0, y0)
in X × Y for each x ∈ X which is contractible in X × Y . Indeed, let
fs : X → X and gs : U → Y , s ∈ [0, 1], be homotopies such that f0(x) = x
and f1(x) = x0 for all x ∈ X, moreover g0(u) = u and g1(u) = y0 for all
u ∈ U . Then (x, u) 7→ (fs(x), gs(u)) : X × U → X × Y , s ∈ [0, 1], is the
required contraction of X × U to (x0, y0) in X × Y .
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