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Abstract

Various definitions of Ck-maps on open subsets of finite-dimensional
vector spaces over a complete valued field have been proposed in the
literature. We show that the Ck-maps considered by Schikhof and
De Smedt coincide with those of Bertram, Glöckner and Neeb. By
contrast, Ludkovsky’s Ck-maps need not be Ck in the former sense,
at least in positive characteristic. We also compare various types of
Hölder differentiable maps on finite-dimensional and metrizable spaces.
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Introduction

Various concepts of Ck-maps on subsets of finite-dimensional vector spaces
have been used in the literature on non-archimedian analysis. Schikhof’s
textbook [21] gave a comprehensive discussion of the single-variable calculus
of Ck-maps over a complete ultrametric field K, and suggested a definition of
multi-variable Ck-maps (in §84), which was then elaborated by De Smedt [4].
Ludkovsky introduced a notion of Ck-map between open subsets of locally
convex spaces over a finite extension K of Qp (see [17, Definition 2.3] and [18,
Part I, Definition 2.3] for the case of Banach spaces, [18, Part II, Remark 4.4]
for the general case). Recently, Bertram, Glöckner and Neeb [2] introduced a
notion of Ck-map between open subsets of arbitrary (Hausdorff) topological
vector spaces over a (non-discrete) topological field K. While the definition
of Ck-maps by Schikhof and De Smedt is based on the existence of continuous

∗ These studies are part of the project 436 RUS 17/67/05 by the German Research
Foundation (DFG).
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extensions to certain partial difference quotients, the definition of Bertram
et al. and Ludkovsky’s definition are based on continuous extendibility of
certain iterated directional difference quotients. The primary goal of this
paper is to compare these notions of Ck-maps, and some related concepts.
To describe our main results, let E and F be topological vector spaces over a
topological field K, k ∈ N0, and f : U → F be a map on an open set U ⊆ E.
We start with a special case of Theorem 2.1, which generalizes a result for
functions of a single variable obtained in [2, Proposition 6.9].

Theorem A. If E = Kd for some d ∈ N, then f is Ck in the sense of
Bertram et al. if and only if f is Ck in the sense of Schikhof and De Smedt.

If K is a valued field, then variants of the two approaches just discussed can
be used to define k times Hölder differentiable maps with Hölder exponent
σ ∈ ]0, 1] (Ck,σ-maps, for short). As a special case of Theorem 2.1, we have:

Theorem B. If E = Kd for some d ∈ N, then f is Ck,σ in the sense of
Bertram et al. if and only if f is Ck,σ in the sense of Schikhof and De Smedt.

By contrast, the mappings introduced by S.V. Ludkovsky differ from the
preceding ones, if his definition is used for fields of positive characteristic.
We show by example (see Theorem 3.7):

Theorem C. For each local field K of positive characteristic, there is a map
f : O → K on O := {z ∈ K : |z| ≤ 1} which is C∞ in Ludkovsky’s sense, but
not C2 in Schikhof ’s sense.

We also provide alternative characterizations of Ck,σ-maps (in the sense of
Bertram et al.) on open subsets of metrizable spaces, for σ ∈ ]0, 1]. Theo-
rem 4.1 establishes the following characterization. It is our technically most
difficult result, and its proof relies heavily on a tool of convenient differential
calculus [16], which has been adapted to non-archimedian analysis in [12].

Theorem D. If K is R or an ultrametric field and E is metrizable, then
f is Ck,σ if and only if f ◦ γ : Kk+1 → F is Ck,σ, for each smooth map
γ : Kk+1 → U .

Note that neither E nor F need to be locally convex here. An analogous
characterization of Ck-maps was given earlier in [2, Theorem 12.4]. As a
consequence of Theorem D, the simplified description of Ck,σ-maps on finite-
dimensional spaces via partial difference quotients can also be used to deal
with Hölder differentiable maps on metrizable spaces. This may be useful on
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the way towards ultrametric (and non-locally convex) analogues of Boman’s
Theorem (cf. [3, Theorem 2] and [16, Theorem 12.8]), which characterizes
Ck,σ-maps on open subsets of finite-dimensional (or metrizable) real locally
convex spaces as those maps which are Ck,σ along smooth curves. While
the preceding result provided a reduction to finite-dimensional domains, our
next result (Theorem 5.6) reduces to the case of a one-dimensional range.

Theorem E. If K 6= C is locally compact, E is metrizable and F is locally
convex and Mackey complete, then f is Ck,σ if and only if f is weakly Ck,σ,
i.e., λ ◦ f : U → K is Ck,σ, for each continuous linear functional λ : F → K.

We remark that yet another approach to Ck-maps of several variables has
been proposed by De Smedt in [5]. The C1-maps in the sense of [5] coincide
with the strictly differentiable maps defined in [11]. If K is locally compact,
then such maps (on open domains in finite-dimensional spaces) coincide with
C1-maps in the sense of Bertram et al. (see [11, Lemma 3.11]).

Both the approach to Ck-maps of Schikhof and De Smedt and the approach
of Bertram et al. lead to natural topologies on the function space Ck(U, F ),
for U an open subset of E = Kd. In Appendix B, we show that the two
topologies coincide. In Appendix C, we consider maps from an open set to a
real locally convex space. We show that the Ck,σ-property can be character-
ized in terms of the existence and Hölder continuity of higher differentials in
this case (Theorem C.3).

The present studies are part of a larger project, the goal of which is to
transfer the main ideas of infinite-dimensional real differential calculus and
non-linear functional analysis into non-archimedian analysis (and analysis
over arbitrary topological fields). A survey of the results obtained so far,
with applications to Lie groups and dynamical systems, can be found in [9].

1 Main concepts, terminology and notation

In this section, we compile terminology and notation concerning differential
calculus over topological fields, together with basic facts. Most of these facts
are easy to take on faith, and we recommend to skip the proofs on a first
reading. If desired, the proofs can be looked up in Appendix A.

All topological fields occurring in this article are assumed Hausdorff and
non-discrete; all topological vector spaces are assumed Hausdorff. Given a
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field K, as usual we write K× := K \ {0} for its group of invertible elements.
A valued field is a field K, equipped with an absolute value |.| : K → [0,∞[
which defines a non-discrete topology on K. If |.| satisfies the ultrametric
inequality, we call (K, |.|) an ultrametric field. Totally disconnected, locally
compact topological fields will be referred to as local fields. It is well known
that each locally compact field admits an absolute value defining its topology.
We fix such an absolute value, and thus consider K as a valued field. On R
and C, we shall always use the usual absolute value. We write N = {1, 2, . . .}
and N0 := N ∪ {0}.

Ck-maps in the sense of Bertram, Glöckner and Neeb

We recall the approach to Ck-maps between open subsets of topological vec-
tor spaces over a topological field developed in [2] (and its extension to maps
on non-open domains from [11]). More information concerning this approach
can be found in the survey [9]. Cf. [1] for applications of the corresponding
differential calculus over topological rings in differential geometry. We are
mostly interested in mappings on open domains, but some results will hold
more generally.

Let E and F be topological vector spaces over a topological field K and
f : U → F be a map, defined on a subset U ⊆ E with dense interior. Then
the directional difference quotient

f ]1[(x, y, t) :=
f(x+ ty)− f(x)

t

makes sense for all (x, y, t) in the subset

U ]1[ := {(x, y, t) ∈ U × E ×K× : x+ ty ∈ U}

of E × E × K. To define directional derivatives, we need to allow also the
value t = 0. Hence, we consider

U [1] := {(x, y, t) ∈ U × E ×K : x+ ty ∈ U} .

Then U [1] = U ]1[ ∪ (U × E × {0}), as a disjoint union. If U is open, then
U [1] is an open subset of the topological K-vector space E[1] = E × E × K.
In the general case, U [1] ⊆ E[1] has dense interior. Recursively, we define
U [k] := (U [1])[k−1] and U ]k[ := (U ]1[)]k−1[ for 2 ≤ k ∈ N. Then U ]k[ is dense in
U [k] (see [11, Remark 1.6]).
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Definition 1.1 The map f : U → F is called C1
BGN if f is continuous (i.e.,

C0, or C0
BGN), and there exists a continuous map f [1] : U [1] → F which

extends f ]1[ : U ]1[ → F . Given k ∈ N with k ≥ 2, we say that f is Ck
BGN if f

is C1
BGN and f [1] : U [1] → F is Ck−1

BGN . We define f [k] := (f [1])[k−1] : U [k] → F
in this case. The map f is C∞

BGN if it is Ck
BGN for all k ∈ N0.

Since U ]1[ is dense in U [1], f [1] is unique if it exists (and likewise each f [k]).

1.2 For example, every continuous linear map λ : E → F is C∞
BGN with

λ[1](x, y, t) = λ(y) for all (x, y, t) ∈ E × E × K (thus also λ[1] is continuous
linear). Also each continuous multilinear map is C∞

BGN (see [2]).

1.3 (Chain Rule). If E, F and H are topological K-vector spaces, U ⊆ E
and V ⊆ F are subsets with dense interior, and f : U → V ⊆ F , g : V → H
are Ck

BGN -maps, then also the composition g ◦ f : U → H, x 7→ g(f(x))

is Ck
BGN . If k ≥ 1, we have (T̂ f)(x, y, t) := (f(x), f [1](x, y, t), t) ∈ V [1] for all

(x, y, t) ∈ U [1], and

(g ◦ f)[1](x, y, t) = g[1](f(x), f [1](x, y, t), t) . (1)

Thus (g ◦ f)[1] = g[1] ◦ T̂ f with T̂ f : U [1] → V [1] (see [2, Proposition 3.1 and
Proposition 4.5], also [11, § 1]).

We recall from [2, Lemma 4.9] and [11, § 1] that being Ck is a local property.

Lemma 1.4 Let E and F be topological K-vector spaces, and f : U → F be
a map, defined on a subset U ⊆ E with dense interior. Let k ∈ N0 ∪{∞}. If
there is an open cover (Ui)i∈I of U such that f |Ui

: Ui → F is Ck
BGN for each

i ∈ I, then f is Ck
BGN . 2

Ck-maps in the sense of Schikhof and De Smedt

In this section, we give a definition of Ck-maps of several variables based
on continuous extensions to certain partial difference quotient maps, which
generalizes special cases considered by Schikhof [21, § 84] and De Smedt [4].
Our notation differs from the one used in [4] and [21], because we find it
more convenient to use multi-indices in higher dimensions.

1.5 Until Remark 1.16, let K be a topological field, d ∈ N, U ⊆ Kd be
an open subset (where Kd is equipped with the product topology), and F
be a topological K-vector space. As usual, for i ∈ {1, . . . , d} we set ei :=
(0, . . . , 0, 1, 0, . . . , 0) ∈ Kd, with i-th entry 1.
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1.6 As usual, given a “multi-index” α = (α1, . . . , αd) ∈ Nd
0, we write |α| :=∑d

i=1 αi. The definition of a Ck-map f : U → F in the sense of Schikhof
and De Smedt will involve a certain continuous extension f<α> of a partial
difference quotient map f>α< corresponding to each multi-index α ∈ Nd

0

such that |α| ≤ k. It is convenient to define the domains U<α> and U>α<

of these mappings first. They will be subsets of Kd+|α|. It is useful to write
elements x ∈ Kd+|α| in the form x = (x(1), x(2), . . . , x(d)), where x(i) ∈ K1+αi

for i ∈ {1, . . . , d}. We write x(i) = (x
(i)
0 , x

(i)
1 , . . . , x

(i)
αi ) with x

(i)
j ∈ K for

j ∈ {0, . . . , αi}.

1.7 Given α ∈ Nd
0, we now define U<α> as the set of all x ∈ Kd+|α| such that,

for all i1 ∈ {0, 1, . . . , α1}, . . . , id ∈ {0, 1, . . . , αd}, we have

(x
(1)
i1
, . . . , x

(d)
id

) ∈ U .

We let U>α< be the set of all x ∈ U<α> such that, for all i ∈ {1, . . . , d} and

0 ≤ j < k ≤ αi, we have x
(i)
j 6= x

(i)
k . It is easy to see that U<α> and U>α<

are open in Kd+|α| and U>α< is dense in U<α>.

Example 1.8 If U = U1 × · · · × Ud with open sets Ui ⊆ K, then simply

U<α> = U1+α1
1 × U1+α2

2 × · · · × U1+αd
d . (2)

Only this case (in fact only special cases thereof) was considered in [4] and [21].

Remark 1.9 A simple induction on |α| shows that the sets U<α> can be
defined alternatively by recursion on |α|, as follows: Set U<0> := U . Given
α ∈ Nd

0 such that |α| ≥ 1, pick β ∈ Nd
0 such that α = β + ei for some

i ∈ {1, . . . , d}. Then U<α> is the set of all elements x ∈ Kd+|α| such that

(x(1), . . . , x(i−1), x
(i)
0 , x

(i)
1 , . . . , x

(i)
αi−1, x

(i+1), . . . , x(d)) ∈ U<β> holds as well as

(x(1), . . . , x(i−1), x
(i)
αi , x

(i)
1 , . . . , x

(i)
αi−1, x

(i+1), . . . , x(d)) ∈ U<β>.

We now define certain mappings f>α< : U>α< → F and show afterwards that
they can be interpreted as partial difference quotient maps.

Definition 1.10 We set f>0< := f . Given a multi-index α ∈ Nd
0 such that

|α| ≥ 1, we define f>α<(x) as the sum

α1∑
j1=0

· · ·
αd∑

jd=0

( ∏
k1 6=j1

1

x
(1)
j1
− x

(1)
k1

· . . . ·
∏

kd 6=jd

1

x
(d)
jd
− x

(d)
kd

)
f(x

(1)
j1
, . . . , x

(d)
jd

) (3)
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for x ∈ U>α<, using the notational conventions from 1.6. The products are
taken over all k` ∈ {0, . . . , α`} such that k` 6= j`, for ` ∈ {1, . . . , d}.

The map f>α< has important symmetry properties.

Lemma 1.11 Assume that α ∈ Nd
0, i ∈ {1, . . . , d} and π is a permutation of

{0, 1, . . . , αi}. Then (x(1), . . . , x(i−1), x
(i)
π(0), . . . , x

(i)
π(αi)

, x(i+1), . . . , x(d)) ∈ U>α<

for each x ∈ U>α<, and

f>α<(x(1), . . . , x(i−1), x
(i)
π(0), . . . , x

(i)
π(αi)

, x(i+1), . . . , x(d)) = f>α<(x) . (4)

The following lemma shows that f>α< can indeed be interpreted as a partial
difference quotient map.

Lemma 1.12 For each i ∈ {1, . . . , d} and x ∈ U>ei<, the element f>ei<(x)
is given by

f(x(1), . . . , x(i−1), x
(i)
0 , x

(i+1), . . . , x(d))− f(x(1), . . . , x(i−1), x
(i)
1 , x

(i+1), . . . , x(d))

x
(i)
0 − x

(i)
1

.

If α ∈ Nd
0 such that |α| ≥ 2, let β ∈ Nd

0 be a multi-index such that α = β + ei

for some i ∈ {1, . . . , d}. Then f>α<(x) is given by

1

x
(i)
0 − x

(i)
αi

·
(
f>β<(x(1), . . . , x(i−1), x

(i)
0 , x

(i)
1 , . . . , x

(i)
αi−1, x

(i+1), . . . , x(d))

−f>β<(x(1), . . . , x(i−1), x(i)
αi
, x

(i)
1 , . . . , x

(i)
αi−1, x

(i+1), . . . , x(d))
)

(5)

for all x ∈ U>α<.

Definition 1.13 We say that f is C0
SDS if it is continuous, and define

f<0> := f in this case. Recursively, given an integer k ≥ 1 we say that f is
Ck

SDS if f is Ck−1
SDS and, for each multi-index α ∈ Nd

0 such that |α| = k, there
exists a continuous map f<α> : U<α> → F such that f<α>|U>α< = f>α<. As
usual, f is called C∞

SDS if f is Ck
SDS for each k ∈ N0.

Since U>α< is dense in U<α>, the continuous extension f<α> of f>α< is
unique whenever it exists. We readily deduce from Lemma 1.11:
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Lemma 1.14 Let f be a Ck-map for some k ∈ N, α ∈ Nd
0 with |α| = k,

i ∈ {1, . . . , d} and π be a permutation of {0, 1, . . . , αi}. Then

(x(1), . . . , x(i−1), x
(i)
π(0), . . . , x

(i)
π(αi)

, x(i+1), . . . , x(d)) ∈ U<α> (6)

for each x ∈ U<α>, and

f<α>(x(1), . . . , x(i−1), x
(i)
π(0), . . . , x

(i)
π(αi)

, x(i+1), . . . , x(d)) = f<α>(x) . (7)

The following variant of Lemma 1.12 is available for f<α>.

Lemma 1.15 Let f be a Ck
SDS-map for an integer k ≥ 2, α ∈ Nd

0 such that
|α| = k, and β ∈ Nd

0 such that α = β + ei for some i ∈ {1, . . . , d}. Then
f<α>(x) is given by

1

x
(i)
0 − x

(i)
αi

·
(
f<β>(x(1), . . . , x(i−1), x

(i)
0 , x

(i)
1 , . . . , x

(i)
αi−1, x

(i+1), . . . , x(d))

−f<β>(x(1), . . . , x(i−1), x(i)
αi
, x

(i)
1 , . . . , x

(i)
αi−1, x

(i+1), . . . , x(d))
)

(8)

for all x ∈ U<α> such that x
(i)
0 6= x

(i)
αi .

Remark 1.16 If U ⊆ Kd is a subset (possibly with empty interior) of the
form U = U1 × · · · × Ud, where Ui ⊆ K is a non-empty subset without
isolated points for i ∈ {1, . . . , d}, then Definition 1.13 can be used just as
well to define Ck

SDS-maps f : U → F .

If d = 1, we also write f<j> in place of f<je1>, as in [2, § 6].

Seminorms and gauges

Gauges on topological vector spaces over valued fields were introduced in [11]
as a substitute for continuous seminorms when dealing with a general topo-
logical vector space, the topology of which need not come from a family of
continuous seminorms (cf. [14, § 6.3] for the real case). We only recall some
essentials here; see [11] for further information.

Definition 1.17 Let E be a topological vector space over a valued field
(K, |.|). A gauge on E is a map q : E → [0,∞[ (also written ‖.‖q := q) which
satisfies q(tx) = |t|q(x) for all t ∈ K and x ∈ E, and such that Bq

r(0) is a
0-neighbourhood for each r > 0, where Bq

r(x) := {y ∈ E : ‖y − x‖q < r} for
all x ∈ E and r > 0. We also define B

q

r(x) := {y ∈ E : ‖y − x‖q ≤ r}. If

(E, ‖.‖) is a normed space, we relax notation and write BE
r (x) := B

‖.‖
r (x).
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In [11], only upper semicontinuous gauges q were considered, i.e., it was
required that Bq

r(0) is an open 0-neighbourhood, for each r > 0.

Remark 1.18 Typical examples of gauges are Minkowski functionals µU of
balanced, open 0-neighbourhoods U in a topological vector space E over a
valued field K; these are upper semicontinuous (see [11, Remark 1.21]). Here
U ⊆ E is called balanced if tU ⊆ U for all t ∈ K such that |t| ≤ 1. The
Minkowski functional is µU : E → [0,∞[, x 7→ inf{|t| : t ∈ K× with x ∈ tU}.

Remark 1.19 Note that gauges need not satisfy the triangle inequality. But
we still have a certain substitute: Given a gauge q : E → [0,∞[, there always
exists a gauge p : E → [0,∞[ such that

‖x+ y‖q ≤ ‖x‖p + ‖y‖p for all x, y ∈ E (9)

(cf. [11, Lemma 1.29]). We shall refer to (9) as the fake triangle inequality.

As in the case of continuous seminorms, it frequently suffices to consider a
sufficiently large set of gauges:

Definition 1.20 A set Γ of gauges on a topological K-vector space E is
called a fundamental system of gauges if each 0-neighbourhood in E contains
some finite intersection of balls of the form Bq

r(0), with q ∈ Γ and r > 0.

Cf. [11, Lemma 1.24] for the following lemma, which is useful to determine
fundamental systems of gauges.

Lemma 1.21 Let p, q : E → [0,∞[ be gauges on a topological vector space E
over a valued field K. If there exist r, s > 0 such that Bq

s(0) ⊆ Bp
r (0), then

p ≤ rs−1|a|−1q ,

for each a ∈ K× such that |a| < 1. In particular, p ≤ Cq for some C > 0. 2

Remark 1.22 Combining Remark 1.18 and Lemma 1.21, it is easy to see
that upper semicontinuous gauges form a fundamental system of gauges, for
each topological vector space over a valued field (cf. also [11, Remark 1.21]).
In the real case, continuous gauges form a fundamental system (cf. [14, § 6.4]).
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Examples 1.23 Given r ∈ ]0, 1], a gauge q : E → [0,∞[ is called an r-
seminorm if q(x + y)r ≤ q(x)r + q(y)r for all x, y ∈ E. If, furthermore,
q(x) = 0 if and only if x = 0, then q is called an r-norm (cf. [14, § 6.3] for
the real case). For examples of r-normed spaces over R and more general
non-locally convex real topological vector spaces, the reader is referred to
[14, § 6.10] and [15]. For K a valued field, the simplest examples are the
spaces `p(K) of all x = (xn)n∈N ∈ KN such that ‖x‖p := p

√∑∞
n=1 |xn|p < ∞,

for p ∈ ]0, 1[. Then ‖.‖p is a p-norm on `p(K) defining a Hausdorff vector
topology on this space (and thus {‖.‖p} is a fundamental system of gauges).

Bounded sets and bounded maps

Let E be a topological vector space over a topological field K. Recall that a
subset B ⊆ E is called bounded if, for each 0-neighbourhood U ⊆ E, there
exists a 0-neighbourhood V ⊆ K such that V B ⊆ U . If K is a valued field,
we can test boundedness using gauges.

Lemma 1.24 Let E be a topological vector space over a valued field K. Then
a subset B ⊆ E is bounded if and only if the set q(B) ⊆ R is bounded, for
each gauge q on E.

It suffices to show sup ‖B‖q <∞ for q in a fundamental system of gauges. In
Section 4, Ck-maps with bounded difference quotients will play a vital role.

Definition 1.25 Let E be a topological vector space over a topological
field K.

(a) If X is a topological space, then BC(X,E) denotes the set of all con-
tinuous maps γ : X → E whose image γ(X) is bounded in E. Then
BC(X,E) is a vector subspace of EX .

(b) If k ∈ N0 ∪ {∞} and U ⊆ K is a subset without isolated points, we
let BCk(U,E) be the space of all Ck

SDS-maps γ : U → E such that
γ<j> ∈ BC(U j+1, E) for all j ∈ N0 such that j ≤ k.

We mention that BCk(U,E) can be made a topological vector space [12,
Definition 1.2], but we shall not use this topology. If K is a valued field,
j ∈ N0 with j ≤ k and q a gauge on E, we define

‖γ<j>‖q,∞ := sup{‖γ<j>(x)‖q : x ∈ U j+1} for γ ∈ BCk(U,E). (10)
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Hölder continuity

Using gauges, we now define a version of Hölder continuous maps and record
their basic properties.

Definition 1.26 Let E and F be topological vector spaces over a valued
field K, and U ⊆ E be a subset. A map f : U → F is called Hölder continuous
of exponent σ ∈ ]0,∞[ (or C0,σ) if, for every x0 ∈ U and gauge q on F , there
exists a gauge p on E and a neighbourhood V ⊆ U of x0 such that

‖f(y)− f(x)‖q ≤
(
‖y − x‖p

)σ
for all x, y ∈ V . (11)

C0,1-maps are also called Lipschitz continuous.

We remind the reader that Hölder exponents σ > 1 are meaningful in non-
archimedian analysis (see [21, Exercise 26.B] for an instructive example). We
are mostly interested in Hölder exponents σ ∈ ]0, 1], but some of the results
are valid just as well for σ > 1.

Lemma 1.27 Let E, F and H be topological vector spaces over a valued
field K, U ⊆ E and V ⊆ F be subsets, f : U → V ⊆ F and g : V → H be
maps, and σ, τ > 0. Then the following holds:

(a) If f is C0,σ, then f is continuous.

(b) If f is C0,σ and σ ≥ τ , then f is also C0,τ .

(c) If f is C0,σ and g is C0,τ , then g ◦ f is C0,σ·τ .

(d) If U has dense interior and f is C1
BGN , then f is Lipschitz continuous.

In connection with Part (d) of the preceding lemma, note that id : K → K,
x 7→ x is C∞

BGN but not C0,σ for any σ > 1.

If f is not Hölder continuous, then pairs of points with pathological behaviour
can always be chosen in a given dense set. This will become essential later.

Lemma 1.28 Let E and F be topological vector spaces over a valued field K,
f : U → F be a continuous mapping on a subset U ⊆ E, D ⊆ U be a dense
subset, and σ > 0. If f is not C0,σ, then there exists x0 ∈ U and a gauge q
on F such that, for each neighbourhood V ⊆ U of x0 and gauge p on E, there
exist x, y ∈ V ∩D such that ‖f(x)− f(y)‖q > (‖x− y‖p)

σ.
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Two approaches to Hölder differentiable maps

We define k times Hölder differentiable maps and record some properties.

Definition 1.29 Let K be a valued field, E and F be topological K-vector
spaces, U ⊆ E be a subset with dense interior, and f : U → F be a mapping.
Let k ∈ N0 ∪ {∞} and σ > 0. We say that f is C k,σ

BGN if f is Ck
BGN and

f [j] : U [j] → F is C0,σ for all j ∈ N0 such that j ≤ k (where f [0] := f).

Remark 1.30 Note that, if σ ∈ ]0, 1], then f [j] is C1
BGN for j < k and hence

automatically C0,σ, by Lemma 1.27 (b) and (d). In particular, if σ ∈ ]0, 1],
then f is C∞,σ

BGN if and only if f is C∞
BGN . And if k is finite, then only f [k]

requires attention.

Remark 1.31 k times Lipschitz differentiable mappings (Ck,1-maps) form a
particularly nice class of maps (see [11]). Notably, [11, Theorem 5.2] provides
an implicit function theorem for Ck,1-maps from arbitrary topological vector
spaces to Banach spaces, for each valued field and k ∈ N ∪ {∞}.

We need some basic information on mappings into direct products.

Lemma 1.32 Let E be a topological K-vector space over a valued field K,
(Fi)i∈I be a family of topological K-vector spaces and f : U → F be a map
into F :=

∏
i∈I Fi, defined on a non-empty subset U ⊆ E with dense interior.

Let k ∈ N0 and σ > 0; for i ∈ I, let pri : F → Fi be the projection. Then f
is Ck,σ

BGN if and only if each of its components fi := pri ◦f : U → Fi is Ck,σ
BGN .

The Chain Rule is available in the following form.

Lemma 1.33 Let K be a valued field, E, F and H be topological K-vector
spaces, U ⊆ E and V ⊆ F be subsets with dense interior, σ ∈ ]0, 1], τ > 0,
f : U → V be C k,σ

BGN , and g : V → H be C k,τ
BGN . Then g ◦f : U → H is C k,σ·τ

BGN .

The following variant even holds if σ > 1:

Lemma 1.34 Let K be a valued field, E, F and H be topological K-vector
spaces, λ : F → H be continuous linear, U ⊆ E be a subset with dense
interior, σ > 0 and f : U → F be a C k,σ

BGN -map, where k ∈ N0. Then
λ ◦ f : U → H is C k,σ

BGN , and (λ ◦ f)[k] = λ ◦ f [k].

12



Lemma 1.35 Let E and F be topological vector spaces over a valued field K,
and f : U → F be a map, defined on a subset U ⊆ E with dense interior. Let
k ∈ N0 ∪{∞} and σ ∈ ]0, 1]. If there is an open cover (Ui)i∈I of U such that
f |Ui

: Ui → F is Ck,σ
BGN for each i ∈ I, then f is Ck,σ

BGN .

Hölder differentiable maps can also be defined using the approach of Schikhof
and De Smedt.

Definition 1.36 Let K be a valued field, d ∈ N0, F be a topological K-vector
space and f : U → F be a mapping, where U ⊆ Kd is open or U = U1×· · ·×Ud

for certain sets U1, . . . , Ud ⊆ K without isolated points. Let k ∈ N0 ∪ {∞}
and σ > 0. We say that f is C k,σ

SDS if f is Ck
SDS and f<α> : U<α> → F is C0,σ

for all α ∈ Nd
0 such that |α| ≤ k (where f<0> := f).

2 Ck
BGN-maps and Ck

SDS-maps coincide

In this section, we show that the approach of Bertram, Glöckner and Neeb
and the approach of Schikhof and De Smedt give rise to the same classes
of Ck-maps and Ck,σ-maps on open domains (and more generally). Through-
out the section, K is a topological field, d ∈ N and f : U → F a map
to a topological K-vector space F , where U ⊆ Kd is open or of the form
U = U1 × · · · × Ud for certain sets U1, . . . , Ud ⊆ K with dense interior.

Theorem 2.1 The following holds for each k ∈ N0 ∪ {∞}:

(a) f is Ck
SDS if and only if f is Ck

BGN .

(b) If K is a valued field and σ ∈ ]0, 1], then f is C k,σ
SDS if and only if f is

C k,σ
BGN .

Various lemmas are useful for the proof of Theorem 2.1.

Lemma 2.2 Let k ∈ N0.

(a) If f : Kd ⊇ U → F is C1
SDS and f<ei> is Ck

SDS for each i ∈ {1, . . . , d},
then f is Ck+1

SDS.

(b) Let K be a valued field and σ > 0. If f : Kd ⊇ U → F is C 1,σ
SDS and

f<ei> is C k,σ
SDS for each i ∈ {1, . . . , d}, then f is C k+1,σ

SDS .
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Proof. Given α ∈ Nd
0 such that 1 ≤ |α| ≤ k + 1, there is i ∈ {1, . . . , d} such

that αi > 0. Then β := α − ei ∈ Nd
0 and |β| = |α| − 1 ≤ k. Write β =

(β1, . . . , βd) and set β′ := (β1, . . . , βi, 0, βi+1, . . . , βd) ∈ Nd+1
0 . For x ∈ U>α<,

using the notational conventions from 1.6, we have

f>α<(x) = (f>ei<)>β′<(x(1); . . . ;x(i−1);x
(i)
0 , x

(i)
2 , . . . , x

(i)
αi

;x
(i)
1 ;x(i+1); . . . ;x(d)),

as is clear from the definitions. Thus

f<α>(x) := (f<ei>)<β′>(x(1); . . . ;x(i−1);x
(i)
0 , x

(i)
2 , . . . , x

(i)
αi

;x
(i)
1 ;x(i+1); . . . ;x(d))

for x ∈ U<α> defines a continuous (resp., C 0,σ-) extension f<α> : U<α> → F
of f>α<, whenever |α| ≤ k + 1. Therefore, f is Ck+1

SDS (resp., C k+1,σ
SDS ). 2

The next lemma establishes one implication in Theorem 2.1 (a) and (b).
Note that σ need not be ≤ 1 here.

Lemma 2.3 If f is Ck
BGN for some k ∈ N0 (resp., C k,σ

BGN if K is a valued
field and σ > 0), then f is Ck

SDS (resp., C k,σ
SDS).

Proof. The proof is by induction on k ∈ N0. The case k = 0 is trivial. If
k ≥ 1, let i ∈ {1, . . . , n}. For each x ∈ U>ei<, we then have

f>ei<(x) = f [1](x(1), . . . , x(i−1), x
(i)
1 , x

(i+1), . . . , x(d); ei; x
(i)
0 − x

(i)
1 ) .

Thus

f<ei>(x) := f [1](x(1), . . . , x(i−1), x
(i)
1 , x

(i+1), . . . , x(d); ei; x
(i)
0 − x

(i)
1 ) (12)

for x ∈ U<ei> defines a continuous extension of f>ei< and hence f is C1
SDS,

with f<ei> as just described. Note that the right hand side of (12) expresses
f<ei> as a composition of the Ck−1

BGN -map (resp., C k−1,σ
BGN -map) f [1] and the

restriction of a map Kd+1 → Kd × Kd × K which is continuous affine-linear
and hence C∞

BGN . By the Chain Rule (resp., Lemma 1.33), f<ei> is Ck−1
BGN

(resp., C k−1,σ
BGN ) and hence Ck−1

SDS (resp., C k−1,σ
SDS ), by induction. Hence f is

Ck+1
SDS (resp., C k+1,σ

SDS ), by Lemma 2.2. 2

Lemma 2.4 If f is Ck
SDS for some k ∈ N0 (resp., if K is a valued field and

f is C k,σ
SDS for some σ > 0), then f<α> is C

k−|α|
SDS (resp., C

k−|α|,σ
SDS ) for each

α ∈ Nd
0 such that |α| ≤ k.
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Remark 2.5 The proof of Lemma 2.4 will provide the following formula for
(f<α>)<β>, if α ∈ Nd

0 such that |α| ≤ k and β ∈ Nd+|α|
0 such that |β| ≤ k−|α|:

(f<α>)<β> = f<α+β̄> , (13)

where β̄ ∈ Nd
0 is defined by β̄j :=

∑sj+1−1
i=sj

βi for j ∈ {1, . . . , d}, with sj :=

j +
∑j−1

i=1 αi and sd+1 := d+ |α|+ 1.

Proof of Lemma 2.4. Given α ∈ Nd
0, we first show by induction on

` ∈ {0, . . . , k − |α|} that

(f>α<)>β< = f>α+β̄< , (14)

for each β ∈ Nd+|α|
0 such that |β| = `, where β̄ (and s1, . . . , sd+1) are as in

Remark 2.5. The case ` = 0 being trivial, let us assume now that (14) holds
for some β with |β| < k − |α|. For each i ∈ {1, . . . , d + |α|}, we have to
show that (14) holds with β replaced by γ := β + ei and β̄ replaced by the
corresponding γ̄. There is a unique j ∈ {1, . . . , d} such that sj ≤ i < sj+1.
Then γ̄ = β̄ + ej. Given x ∈ (U>α<)>γ< = (U>α<)>β+ei< ⊆ (Kd+|α|)>β+ei<,
we abbreviate y := (x(1), . . . , x(sj−1)) and z := (x(sj+1), . . . , x(d+|α|)). Define

t := x
(i)
0 − x

(i)
βi+1. Then t · (f>α<)>γ<(x) is given by

(f>α<)>β<(x(1); . . . ;x(i−1);x
(i)
0 , x

(i)
1 , . . . , x

(i)
βi

;x(i+1); . . . ;x(d+|α|))

− (f>α<)>β<(x(1); . . . ;x(i−1);x
(i)
βi+1, x

(i)
1 , . . . , x

(i)
βi

;x(i+1); . . . ;x(d+|α|))

= f>α+β̄<(x(1); . . . ;x(i−1);x
(i)
0 , x

(i)
1 , . . . , x

(i)
βi

;x(i+1); . . . ;x(d+|α|))

− f>α+β̄<(x(1); . . . ;x(i−1);x
(i)
βi+1, x

(i)
1 , . . . , x

(i)
βi

;x(i+1); . . . ;x(d+|α|))

= f>α+β̄<(y;x(sj); . . . ;x(i−1);x
(i)
0 , x

(i)
1 , . . . , x

(i)
βi

;x(i+1), . . . , x(sj+1−1); z)

− f>α+β̄<(y;x(sj); . . . ;x(i−1);x
(i)
βi+1, x

(i)
1 , . . . , x

(i)
βi

;x(i+1); . . . ;x(sj+1−1); z)

= f>α+β̄<(y;x
(i)
0 , x

(i)
1 , . . . , x

(i)
βi

;x(sj); . . . ;x(i−1);x(i+1); . . . ;x(sj+1−1); z)

− f>α+β̄<(y;x
(i)
βi+1, x

(i)
1 , . . . , x

(i)
βi

;x(sj); . . . ;x(i−1);x(i+1); . . . ;x(sj+1−1); z)

= tf>α+γ̄<(y;x
(i)
0 , x

(i)
1 , . . . , x

(i)
βi

;x(sj); . . . ;x(i−1);x(i+1); . . . ;x(sj+1−1);x
(i)
βi+1; z)

= tf>α+γ̄<(y;x(sj); . . . ;x(sj+1−1); z) = tf>α+γ̄<(x) ,

using (14) for the first equality and the symmetry properties of f>α+β̄< and
f>α+γ̄< (as in Lemma 1.11) for the third and penultimate equality. This
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completes the inductive proof of (14).

As a consequence of (14), the continuous (resp., C0,σ-) map f<α+β̄> extends

the map (f>α<)>β<. It hence also extends (f<α>)>β<, for each β ∈ Nd+|α|
0

with |β| ≤ k − |α|. Hence f<α> is C
k−|α|
SDS (resp., C

k−|α|,σ
SDS ) and (13) holds. 2

Proof of Theorem 2.1, completed. It remains to show that if f is Ck
SDS

(resp., Ck,σ
SDS with σ ∈ ]0, 1]), then f is Ck

BGN (resp., Ck,σ
BGN). We assume first

that U = U1×· · ·×Ud for certain subsets Ui ⊆ K. The proof is by induction
on k ∈ N0. The case k = 0 being trivial, assume now that f is Ck

SDS (resp.,
C k,σ

SDS) for some k ≥ 1. For each (x, y, t) ∈ U ]1[, we have

f ]1[(x, y, t)

=
f(x+ ty)− f(x)

t
=

d∑
j=1

f(x+ t
∑j

i=1 yiei)− f(x+ t
∑j−1

i=1 yiei)

t

=
d∑

j=1

yjf
<ej>(x1+ty1; . . . ;xj−1+tyj−1;xj, xj+tyj;xj+1, . . . , xd), (15)

because aj :=
f(x+t

∑j
i=1 yiei)−f(x+t

∑j−1
i=1 yiei)

t
= yj

f(x+t
∑j

i=1 yiei)−f(x+t
∑j−1

i=1 yiei)

yjt

coincides with bj :=yjf
<ej>(x1+ty1; . . . ;xj−1+tyj−1;xj, xj+tyj;xj+1, . . . , xd)

if yj 6= 0, while both aj and bj vanish if yj = 0. Since the right hand side
of (15) defines a continuous (resp., C0,σ-) map on all of U [1], we see that f is
C1

BGN (resp., C 1,σ
BGN) with

f [1](x, y, t)

=
d∑

j=1

yjf
<ej>(x1 + ty1; . . . ;xj−1 + tyj−1;xj, xj + tyj;xj+1, . . . , xd) (16)

for all (x, y, t) ∈ U [1]. Here f<ej> is a Ck−1
SDS-map (resp., a C k−1,σ

SDS -map) on
U<ej> = U1 × · · · × Uj−1 × Uj × Uj × Uj+1 × · · · × Ud by Lemma 2.4 and

hence a Ck−1
BGN -map (resp., a C k−1,σ

BGN -map), by induction. Formula (16) now
shows that f [1] is built up from f<ej> and various smooth maps, whence f [1]

is Ck−1
BGN (resp., C k−1,σ

BGN ), by the Chain Rule (resp., Lemma 1.33). Hence f is
Ck

BGN (resp., C k,σ
BGN). This finishes the proof if U = U1 × · · · × Ud.

If U is open but not necessarily of the form U1 × · · · × Ud, then every point
x ∈ U has an open neighbourhood V of the form V = V1×· · ·×Vd for certain
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open subsets V1, . . . , Vd ⊆ K. It is clear that f |V is Ck
SDS (resp., C k,σ

SDS) if
so is f . Thus f |V is Ck

BGN (resp., C k,σ
BGN) by the case already settled, and

thus f is Ck
BGN (resp., C k,σ

BGN) as these properties can be checked locally (see
Lemma 1.4, resp., Lemma 1.35). 2

In the following, we shall often simply refer to Ck
BGN -maps as Ck-maps, and

to Ck,σ
BGN -maps as Ck,σ-maps.

3 Comparison with Ludkovsky’s concepts

In this section, we give a definition of Ck-maps following an idea of Lud-
kovsky, and show that such maps need not be Ck

BGN (nor Ck
SDS) in the case

of ground fields of positive characteristic.

3.1 To define Ck-maps in Ludkovsky’s sense, we find it useful to introduce
the following notations for U an open subset of a topological vector space E
over a topological field K: We define Φ1(U) := U ]1[ and Φ1(U) := U [1]. Given
an integer k ≥ 2, we let Φk(U) be the set of all (x, ξ1, . . . , ξk, t1, . . . , tk) ∈
U × Ek ×Kk such that (x, ξ1, . . . , ξk−1, t1, . . . , tk−1) ∈ Φk−1(U) holds as well
as (x + tkξk, ξ1, . . . , ξk−1, t1, . . . , tk−1) ∈ Φk−1(U). Finally, we let Φk(U) be
the set of all (x, ξ1, . . . , ξk, t1, . . . , tk) ∈ Φk(U) such that tk 6= 0.

Definition 3.2 Let E and F be topological vector spaces over a topologi-
cal field K, and f : U → F be a map on an open subset U ⊆ E. We say
that f is C1

Lud if f is C1
BGN , i.e., if the directional difference quotient map

Φ1(f) := f ]1[ admits a continuous extension Φ1(f) := f [1] to Φ1(U) = U [1].
Recursively, having declared when f is a Ck−1

Lud -map and defined a map
Φk−1(f) : Φk−1(U) → F in this case, we say that f is Ck

Lud if f is Ck−1
Lud

and if the map Φk(f) : Φk(U) → F taking (x, ξ1, . . . , ξk, t1, . . . , tk) to

Φk−1(x+ tkξk, ξ1, . . . , ξk−1, t1, . . . , tk−1)− Φk−1(x, ξ1, . . . , ξk−1, t1, . . . , tk−1)

tk

admits a continuous extension Φk(f) : Φk(U) → F . We say that f is C∞
Lud if

f is Ck
Lud for each k ∈ N.

Remark 3.3 Ludkovsky defined Ck-maps only for certain ultrametric fields
of characteristic 0 and E, F locally convex, but of course the preceding def-
inition is meaningful in the stated generality. Furthermore, he only required
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the existence of Φ1(f) locally on a neighbourhood of (x, 0, 0) for each given
point x ∈ U (and similarly for Φk(f)). We find it more convenient to define
Φk(f) globally on Φk(U) (which is equivalent to the local existence).

Remark 3.4 If f is Ck
Lud, we define

d(j)f(x, ξ1, . . . , ξj) := Φj(f)(x, ξ1, . . . , ξj, 0, . . . , 0)

for x ∈ U , j ∈ N with j ≤ k, and ξ1, . . . , ξj ∈ E. We also write df(x, ξ) :=
d(1)f(x, ξ). Then d(j)f : U × Ej → F is continuous, being a partial map of
Φj(f) (i.e., a map obtained from Φj(f) by fixing some of its arguments).
Furthermore, f (j)(x) := d(j)f(x, •) : Ej → F is a symmetric j-linear map, by
a reasoning similar to that used to prove [2, Lemma 4.8].1 We remark that
Ludkovsky made the j-linearity of the maps f (j)(x) part of his definition of a
Ck-map; by the preceding, this requirement is redundant and can be omitted.

Remark 3.5 We mention that Definition 3.2 captures the basic idea of
Ludkovsky’s approach, but differs slightly from his actual definition which
imposes additional boundedness conditions. In the example discussed in
Theorem 3.7 below, the domain O will be an open and compact set, whence
these additional conditions will be satisfied automatically.

Remark 3.6 It is clear that each Ck
BGN -map is also Ck

Lud; a suitable partial
map of f [j] serves as the continuous extension Φj(f) of Φj(f), for each j ∈ N
such that j ≤ k. To make this more precise, let us write E[j] = E ×Hj ×K,
where Hj collects all factors in the middle. Explicitly, we have H1 := E,
Hj := Hj−1 ×K× E[j−1] if j ≥ 2. Let 0Hj

be the zero element in Hj. Then
a simple induction on k ∈ N shows that, if f is Ck

BGN , then f is Ck
Lud, with

Φk(x, ξ1, . . . , ξk, t1, . . . , tk) := f [k](x, ξ1, t1; ξ2, 0H1 , t2; . . . ; ξk, 0Hk−1
, tk)

for (x, ξ1, . . . , ξk, t1, . . . , ξk) ∈ Φk(U) providing the continuous extension of
Φk(f) to a map on Φk(U).

Let K be a local field of positive characteristic now. Thus, up to isomorphism,
K = Fq((X)) is a field of formal Laurent series over a finite field Fq with q = p`

elements for some ` ∈ N. We let O := Fq[[X]] be the ring of formal power
series, which is an open, compact subring of K. Its elements are of the form

1In the example discussed in Theorem 3.7 below, the j-linearity will be obvious.
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x =
∑∞

k=0 akX
k, where ak ∈ Fq. Recall that if x 6= 0, then its absolute value

is given by |x| = q−k, where k ∈ N0 is chosen minimal such that ak 6= 0. We
define a mapping

f : O → K ,
∞∑

k=0

akX
k 7→

∞∑
k=0

akX
[ 3
2
k] , (17)

where [r] denotes the Gauß bracket (integer part) of a real number r ≥ 0.

Theorem 3.7 The map f : O → K defined in (17) is C∞
Lud, but not C2

BGN .

Proof. It is useful to note first that f is a homomorphism of additive groups,
i.e., f(x+ y) = f(x) + f(y) for all x, y ∈ O. For x, y ∈ O, we have

|x− y|
3
2 ≤ |f(x− y)| ≤ q|x− y|

3
2 ,

where |f(x−y)| = |f(x)−f(y)|. As a consequence, f is C1
BGN with derivative

f ′(x) = 0 for all x ∈ O (see [8, Lemma 2.1]; cf. [21, Theorem 29.12]).
Furthermore, f is not C2

BGN because it does not admit a second order Taylor
expansion (see [8, Lemma 2.2]). We now show that f is C∞

Lud. First, we note
that f is C1

Lud because it is C1
BGN , with

Φ1(f)(x, ξ, 0) = df(x, ξ) = f ′(x)ξ = 0 for all x ∈ O and ξ ∈ K. (18)

Using that f is a homomorphism, for all x ∈ O, ξ ∈ K and t ∈ K× such that
x+ tξ ∈ O, we obtain

Φ1(f)(x, ξ, t) =
f(x+ tξ)− f(x)

t
=
f(x) + f(tξ)− f(x)

t
=
f(tξ)

t
. (19)

Since the right hand side of (19) is independent of x, we obtain for all x ∈ O,
ξ1, ξ2 ∈ K and t1, t2 ∈ K× such that (x, ξ1, ξ2, t1, t2) ∈ Φ2(O):

Φ2(f)(x, ξ1, ξ2, t1, t2) =
Φ1(f)(x+ t2ξ2, ξ1, t1)− Φ1(f)(x, ξ1, t1)

t2
= 0 . (20)

By (18), we also have Φ2(f)(x, ξ1, ξ2, t1, t2) = 0 for all x ∈ O, ξ1, ξ2 ∈ K,
t1 = 0 and t2 ∈ K× such that (x, ξ1, ξ2, 0, t2) ∈ Φ2(O). Thus

Φ2(f) : Φ2(O) → F , (x, ξ1, ξ2, t1, t2) 7→ 0

is a continuous map which extends Φ2(f), and thus f is C2
Lud with Φ2(f) = 0.

It now readily follows by induction that f is Ck
Lud for each k ≥ 2, with

Φk(f) = 0. 2
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Remark 3.8 It would be interesting to clarify whether Ck
Lud-maps between

locally convex spaces over an ultrametric field K of characteristic 0 (as orig-
inally defined by Ludkovsky) coincide with Ck

BGN -maps (for k ≥ 2), notably
for K = Qp. It is also unknown whether Ck

Lud-maps into real non-locally
convex spaces are Ck

BGN . The author conjectures that neither is the case,
but has not found counterexamples so far.

4 Hölder differentiable maps on metrizable

spaces

This section is devoted to the proof of the following characterization of C`,σ
BGN -

maps on open subsets of metrizable spaces.

Theorem 4.1 Let (K, |.|) be R or an ultrametric field. Let E and F be
topological K-vector spaces and f : U → F be a map, defined on an open
subset U ⊆ E. Let ` ∈ N0 and σ ∈ ]0, 1]. If E is metrizable, then f is C `,σ

if and only if f ◦ γ : K`+1 → F is C `,σ, for each C∞-map γ : K`+1 → U .

The proof of Theorem 4.1 heavily relies on tools developed in [12], which are
variants of standard methods of differential calculus in real locally convex
spaces (cf. [16]). To describe these tools, we need the auxiliary notion of a
“calibration” on a topological vector space E over a valued field K.

Definition 4.2 A sequence (qn)n∈N0 of gauges on E is called a calibration if

(∀n ∈ N0)(∀x, y ∈ E) qn(x+ y) ≤ qn+1(x) + qn+1(y) . (21)

If q is a gauge on E, then there always exists a calibration (qn)n∈N0 such that
q0 = q (cf. Remark 1.19); we then say that q extends to (qn)n∈N0 .

Remark 4.3 If (qn)n∈N0 is a calibration, then qn ≤ qn+1 for each n ∈ N0

because qn(x) = qn(x + 0) ≤ qn+1(x) + qn+1(0) = qn+1(x) for each x ∈ E.
Also note that if q : E → [0,∞[ is a continuous seminorm, then (q)n∈N0 is
a calibration. If (qn)n∈N0 is any calibration extending the seminorm q, then
qn ≥ q for each n, by the preceding remark. Thus (q)n∈N0 is the smallest
calibration extending q.

The following two lemmas are the main results of [12]. They are variants of

[16, Lemma 12.2]. In the first lemma, O := B
K
1 (0).
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Lemma 4.4 (Ultrametric General Curve Lemma) Let E be a topolog-
ical vector space over an ultrametric field K, ρ ∈ K× with |ρ| < 1 and
(γn)n∈N be a family of smooth maps γn ∈ BC∞(ρnO, E) which become small
sufficiently fast in the sense that, for each gauge q on E, there exists a cali-
bration (qn)n∈N0 extending q such that

(∀a > 0) (∀k,m ∈ N0) lim
n→∞

an‖γ<k>
n ‖qn+m,∞ = 0 . (22)

Then there exists a smooth curve γ : K → E with im(γ) = {0}∪
⋃

n∈N im(γn),
such that γ(ρn−1 + t) = γn(t) for all n ∈ N and t ∈ ρnO. 2

Remark 4.5 Let E in Lemma 4.4 be metrizable and suppose that there
exists a calibration (pn)n∈N0 such that {pn : n ∈ N0} is a fundamental system
of gauges, and C > 0 such that

(∀k ∈ N0) (∀n ≥ k) ‖γ<k>
n ‖p2n,∞ ≤ Cn−n . (23)

Then the hypothesis (22) of Lemma 4.4 is satisfied: Given q, we can extend it
to a suitable calibration via qn := rpn+n0 for n ∈ N, with r > 0 and n0 ∈ N0

sufficiently large.

Lemma 4.6 (Real Case of General Curve Lemma) Let E be a real to-
pological vector space and (sn)n∈N as well as (rn)n∈N be sequences of positive
reals such that

∑∞
n=1 sn <∞ and rn ≥ sn + 2

n2 for each n ∈ N. Furthermore,
let (γn)n∈N be a sequence of smooth maps γn : [−rn, rn] → E which become
small sufficiently fast in the sense that, for each gauge q on E, there exists
a calibration (qn)n∈N0 extending q such that

(∀k, `,m ∈ N0) lim
n→∞

n`‖γ<k>
n ‖qn+m,∞ = 0 . (24)

Then there exists a curve γ ∈ BC∞(R, E) with im(γ) ⊆ [0, 1] ·
⋃

n∈N im(γn)
and a convergent sequence (tn)n∈N of real numbers such that γ(tn + t) = γn(t)
for all n ∈ N and t ∈ [−sn, sn]. 2

Again, (23) enables to manufacture calibrations satisfying (24).

In our applications, the maps γn are restrictions of affine-linear maps to
balls. The following simple lemma will help us to verify the hypotheses of
the General Curve Lemmas in this case.
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Lemma 4.7 Consider the map γ : B
K
r (0) → E, x 7→ xa + b, where E is a

topological vector space over a valued field K, a, b ∈ E and r > 0. Let q1 and
q2 be gauges on E such that q1(x+ y) ≤ q2(x) + q2(y) for all x, y ∈ E. Then
‖γ‖q1,∞ ≤ r‖a‖q2 + ‖b‖q2, ‖γ<1>‖q1,∞ = ‖a‖q1 and ‖γ<k>‖q1,∞ = 0 for k ≥ 2.

Proof. Since ‖γ(x)‖q1 = ‖xa+b‖q1 ≤ |x| · ‖a‖q2 +‖b‖q2 ≤ r · ‖a‖q2 +‖b‖q2 for

each x ∈ B
K
r (0), the first inequality holds. The remaining assertions follow

from the observations that γ<1>(x, y) = a for all x, y ∈ BK
r (0) and γ<k> = 0

for all k ≥ 2. 2

Another simple observation will be used.

Lemma 4.8 Let (K, |.|) be either R or an ultrametric field. Let E and F
be topological K-vector spaces and f : U → F be a map, defined on an open
subset U ⊆ E. Let `, d ∈ N0 and σ ∈ ]0, 1]. If f ◦ γ : Kd → F is C `,σ, for
each C∞-map γ : Kd → U , then also f ◦γ : V → F is C `,σ, for each C∞-map
γ : V → U defined on an open subset V ⊆ Kd.

Proof. Given x0 ∈ V , there exists a smooth map κ : Kd → V such that
κ|W = idW for some open neighbourhood W ⊆ V of x0. In fact, if K is
ultrametric, we can choose an open, closed neighbourhood W ⊆ V of x0 and
define κ(x) := x if x ∈ W , κ(x) := x0 if x ∈ V \W . In the real case, we can
manufacture κ by standard arguments, using a cut-off function. Then η :=
γ ◦κ : Kd → U is smooth and hence f ◦ η is C`,σ. Then (f ◦ γ)|W = (f ◦ η)|W
is C`,σ. Hence f ◦ γ is locally C`,σ and thus C`,σ, by Lemma 1.35. 2

Proof of Theorem 4.1. If f is C`,σ, then f ◦ γ is C`,σ for each C∞-map
γ : K`+1 → U , by Lemma 1.33 and Remark 1.30. To prove the converse
direction, we first assume that K is an ultrametric field. We start with the
case ` = 0. If f is not C0,σ, then the condition formulated in Definition 1.26
is violated by some x0 ∈ U . Hence, there exists a gauge q on F such that,
for each neighbourhood V ⊆ U of x0 and gauge p on E, there are x, y ∈ V
such that ‖f(x)− f(y)‖q > (‖x− y‖p)

σ. After a translation, we may assume
that x0 = 0. Pick a gauge q0 on E such that Bq0

1 (0) ⊆ U , and extend it to
a calibration (qn)n∈N0 on E such that {qn : n ∈ N0} is a fundamental system
of gauges. Also, pick ρ ∈ K× such that |ρ| < 1. After replacing q1, q2, . . . by
large multiples if necessary, we may assume that

q0 ≤
(

1
2

+ 1
|ρ|

)−1
q1 . (25)
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Applying the above property of q for a given n ∈ N to V := B
q2n+3
1
2
n−n|ρ|n(0) and

p := n
1
σnnq2n+2, we find xn, yn ∈ E such that

‖xn‖q2n+3 , ‖yn‖q2n+3 ≤ 1

2
n−n|ρ|n (26)

and
‖f(xn)− f(yn)‖q > n · nσn

(
‖xn − yn‖q2n+2

)σ
. (27)

Case 1. If ‖xn − yn‖q2n+2 6= 0, let kn be the unique integer such that

|ρ|kn ≤ nn‖xn − yn‖q2n+2 < |ρ|kn−1 . (28)

Since nn‖xn − yn‖q2n+2 ≤ nn(‖xn‖q2n+3 + ‖yn‖q2n+3) ≤ |ρ|n by (26), we have
kn ≥ n.

Case 2. If ‖xn − yn‖q2n+2 = 0, we choose the integer kn ≥ n so large that
‖f(xn)− f(yn)‖q ≥ n(|ρ|kn)σ.

In either case, we define

γn : B
K
|ρ|n(0) → E , γn(t) := xn +

t

ρkn
(yn − xn) .

By Lemma 4.7, we then have γ<k>
n = 0 for k ≥ 2, furthermore

‖γ<1>
n ‖q2n,∞ =

‖xn − yn‖q2n

|ρ|kn
≤

‖xn − yn‖q2n+2

|ρ|kn
<

n−n

|ρ|
by definition of kn, and finally

‖γn‖q2n,∞ ≤ |ρn|
‖xn − yn‖q2n+1

|ρ|kn
+‖xn‖q2n+1 <

n−n

|ρ| + 1
2
n−n|ρ|n <

(
1
2

+ 1
|ρ|

)
n−n ,

entailing that ‖γn‖q0,∞ < 1 (see (25)) and thus im γn ⊆ Bq0

1 (0) ⊆ U . In view
of the preceding, (23) in Remark 4.5 is satisfied by the calibration (qn)n∈N0

with C = 1
2
+ 1

|ρ| . Therefore the General Curve Lemma (Lemma 4.4) provides

a smooth map γ : K → E with γ(K) ⊆ U such that γ(t) = γn(t − ρn−1) for

each n ∈ N and t ∈ B
K
|ρ|n(ρn−1). In particular, γ(ρn−1) = γn(0) = xn and

γ(ρn−1 + ρkn) = γn(ρkn) = yn for each n ∈ N. Hence

‖f(γ(ρn))− f(γ(ρn−1 + ρkn))‖q

= ‖f(xn)− f(yn)‖q > n · nσn(‖xn − yn‖q2n+2)
σ (29)

= n · nσk

(
‖xn − yn‖q2n+2

|ρkn|

)σ

|ρkn|σ ≥ n|ρkn|σ (30)
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in Case 1, using (27) in (29) and then (28) for the final inequality. In Case 2,
we have

‖f(γ(ρn))− f(γ(ρn−1 + ρkn))‖q = ‖f(xn)− f(yn)‖q ≥ n · (|ρ|kn)σ (31)

by choice of kn. Thus (31) holds for each n, and hence f ◦ γ is not C0,σ.
In fact, if f ◦ γ were C0,σ, there would be a 0-neighbourhood J ⊆ K and a
gauge g on K such that ‖f(γ(t)) − f(γ(s))‖q ≤ (‖t − s‖g)

σ for all s, t ∈ J .
As a consequence of Lemma 1.21, there is C > 0 such that g ≤ C|.|. Hence
‖f(γ(t))− f(γ(s))‖q ≤ Cσ|t− s|σ for all s, t ∈ J , which contradicts (31).

The general case: Let ` be a positive integer now. If f ◦ γ is C`,σ for each
smooth map γ : K`+1 → U , then f ◦ γ is C` in particular and hence f is
C`, by [2, Theorem 12.4]. To prove that f is C`,σ, it only remains to show
that f [`] is C0,σ. We assume that f [`] is not C0,σ and derive a contradiction.
Since U ]`[ is dense in the domain U [`] of the continuous map f [`], Lemma 1.28
shows that there exists x0 ∈ U [`] and a gauge q on F such that, for each
neighbourhood V ⊆ U [`] of x0 and gauge p on E[`], there are x, y ∈ V ∩ U ]`[

such that ‖f [`](x)−f [`](y)‖q > (‖x−y‖p)
σ. We now pick xn, yn ∈ U ]`[ as above

in the case ` = 0, applied to f [`] instead of f , and obtain a smooth curve
γ : K → U [`] such that γ(ρn−1) = xn and γ(ρn−1 + ρn) = yn. Applying [2,
Lemma 12.3] with m := 1, V := K, D := {ρn−1 : n ∈ N}∪{ρn−1+ρn : n ∈ N}
and X0 := {0}, we obtain a smooth map Γ: W → U , defined on an open
subset W ⊆ K`+1, an open neighbourhood Y of 0 in K, and a smooth map
g : Y → W [`] such that

(∀t ∈ D ∩ Y ) f [`](γ(t)) = (f ◦ Γ)[`](g(t)) . (32)

There is N ∈ N such that ρn−1 ∈ Y and ρn−1 + ρn ∈ Y for each integer
n ≥ N . The hypothesis implies that f ◦ Γ is C`,σ (see Lemma 4.8). As a
consequence, (f ◦ Γ)[`] is C0,σ and hence also (f ◦ Γ)[`] ◦ g is C0,σ. However,
by construction of γ and (32), for each n ≥ N we have

‖(f ◦ Γ)[`](g(ρn−1))− (f ◦ Γ)[`](g(ρn−1 + ρn))‖q

= ‖f [`](γ(ρn−1))− f [`](γ(ρn−1 + ρn))‖q = ‖f [`](xn)− f [`](yn)‖q

≥ n|ρn|σ ,

arguing as in (30) to pass to the last line. Hence (f ◦ Γ)[`] ◦ g is not C0,σ,
contradicting the preceding. This closes the proof in the ultrametric case.
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Now assume that K = R, and pick r ∈ ]0, 1[. If f is not C0,σ, then there exists
x0 ∈ U and a gauge q on F such that, for each neighbourhood V ⊆ U of x0

and gauge p on E, there are x, y ∈ V such that ‖f(x)−f(y)‖q > (‖x−y‖p)
σ.

After a translation, we may assume that x0 = 0. Take a gauge q0 on E
such that B

q0

1 (0) ⊆ U , and extend it to a calibration (qn)n∈N0 on E such
that {qn : n ∈ N0} is a fundamental system of gauges. We may assume
that q0 ≤ 2

7
q1. Applying the above property of q for a given n ∈ N to

V := B
q2n+3
1
2
n−nrn(0) and p := n

1
σnnq2n+2, we find xn, yn ∈ E such that

‖xn‖q2n+3 , ‖yn‖q2n+3 ≤ 1

2
n−nrn

and ‖f(xn)− f(yn)‖q > n · nσn
(
‖xn − yn‖q2n+2

)σ
.

Case 1: If ‖xn− yn‖q2n+2 6= 0, define sn := nn‖xn− yn‖q2n+2 ≤ rn. Case 2: If
‖xn− yn‖q2n+2 = 0, choose sn ∈ ]0, rn] such that ‖f(xn)−f(yn)‖q ≥ n · (sn)σ.
In either case, we define rn := sn + 2

n2 and

γn : [−rn, rn] → E , γn(t) := xn +
t

sn

(yn − xn) .

By Lemma 4.7, we then have γ<k>
n = 0 for k ≥ 2, furthermore ‖γ<1>

n ‖q2n,∞ =
‖yn−xn‖q2n

sn
≤ n−n by definition of sn, and finally ‖γn‖q2n,∞ < 7

2
n−n because

‖γn(x)‖q2n ≤ ‖xn‖q2n+1+rn

‖yn − xn‖q2n+1

sn

≤ 1
2
n−nrn+

(
rn + 2

n2

)
n−n ≤ 7

2
n−n,

entailing that ‖γn‖q0,∞ ≤ 1 and thus im γn ⊆ B
q0

1 (0) ⊆ U . In view of
the preceding, (23) in Remark 4.5 is satisfied with C = 7

2
. Therefore the

General Curve Lemma (Lemma 4.6) provides a smooth map γ : R → E with
γ(R) ⊆ [0, 1]B

q0

1 (0) = B
q0

1 (0) ⊆ U , and a convergent sequence (tn)n∈N of reals
such that γ(tn + t) = γn(t) for each n ∈ N and t ∈ R such that |t| ≤ sn. In
particular, γ(tn) = γn(0) = xn and γ(tn + sn) = γn(sn) = yn for each n ∈ N.
Hence

‖f(γ(tn))− f(γ(tn + sn))‖q

= ‖f(xn)− f(yn)‖q > n · nσn(‖xn − yn‖q2n+2)
σ

= n · nσk

(
‖xn − yn‖q2n+2

sn

)σ

(sn)σ = n · (sn)σ
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in Case 1. In Case 2, we have

‖f(γ(tn))− f(γ(tn + sn))‖q = ‖f(xn)− f(yn)‖q ≥ n · (sn)σ (33)

by choice of sn. Thus (33) holds for each n, and hence f ◦ γ is not C0,σ.

The general case: If ` is a positive integer and f is not C`,σ although f ◦ γ is
C`,σ for each smooth map γ : K`+1 → U , we reach a contradiction along the
lines of the ultrametric case. First, applying the case ` = 0 to f [`] instead
of f , we find a gauge q on F and xn, yn ∈ U ]`[, positive reals sn such that∑∞

n=1 sn <∞, a smooth curve γ : R → U [`] and a convergent sequence (tn)n∈N
of reals such that γ(tn) = xn, γ(tn + sn) = yn and ‖f [`](xn) − f [`](yn)‖q ≥
n(sn)σ for each n ∈ N. Let t∞ := limn→∞ tn. Applying [2, Lemma 12.3] with
m := 1, V := K, D := {tn : n ∈ N} ∪ {tn + sn : n ∈ N} and X0 := {t∞},
we obtain a smooth map Γ: W → U , defined on an open subset W ⊆ R`+1,
an open neighbourhood Y of t∞ in R, and a smooth map g : Y → W [`] such
that (32) holds. There is N ∈ N such that tn ∈ Y and tn + sn ∈ Y for
all n ≥ N . The hypothesis implies that f ◦ Γ is C`,σ (Lemma 4.8). As a
consequence, (f ◦Γ)[`] is C0,σ and hence also (f ◦Γ)[`] ◦g is C0,σ. However, by
construction of γ and (32), we have ‖(f ◦Γ)[`](g(tn))−(f ◦Γ)[`](g(tn+sn))‖q =
‖f [`](γ(tn)) − f [`](γ(tn + sn))‖q = ‖f [`](xn) − f [`](yn)‖q ≥ n(sn)σ for each
n ≥ N , whence (f ◦ Γ)[`] ◦ g is not C0,σ, which is absurd. 2

5 Weakly Hölder differentiable maps

If K is a topological field and E a topological K-vector space, we let E ′ be
the space of all continuous linear functionals λ : E → K.

Definition 5.1 Let E and F be topological vector spaces over a valued
field K and f : U → F be a map on a subset U ⊆ E. Let σ > 0. We say
that f is weakly C0,σ if λ ◦ f : U → K is C0,σ for each λ ∈ F ′. If U has dense
interior and k ∈ N ∪ {∞}, we say that f is weakly Ck,σ if λ ◦ f : U → K is
Ck,σ for each λ ∈ F ′.

Remark 5.2 Note that each Ck,σ-map is weakly Ck,σ (cf. Lemma 1.34).

Remark 5.3 Let f : U → F be a weakly Ck,σ-map on a subset U ⊆ E with
dense interior and g : V → U be a Ck,1-map on a subset V with dense interior
of a topological K-vector space H (e.g., a Ck+1-map). Then λ ◦ (f ◦ g) =
(λ◦f)◦g is Ck,σ for each λ ∈ F ′ (by Lemma 1.33) and thus f◦g is weakly Ck,σ.
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Recall that a topological vector space over an ultrametric field is called
locally convex if its vector topology can be defined by a family of ultrametric
seminorms (cf. [19] for further information).

Lemma 5.4 Let (E, ‖.‖) be a normed space over a locally compact field K,
F be a locally convex space over K and f : K → F be a map on a compact
set K ⊆ E. Let σ > 0. Then the following conditions are equivalent:

(a) f is a C0,σ-map.

(b) For each continuous seminorm q on F , there is C ∈ [0,∞[ such that

‖f(y)− f(x)‖q ≤ C (‖y − x‖)σ for all x, y ∈ K. (34)

(c) f is weakly C0,σ.

Proof. (a)⇒(b): Let q be as in (b). If f is C0,σ, then for each z ∈ K there
exists an open neighbourhood Uz ⊆ K of z and a gauge pz on E such that

‖f(y)− f(x)‖q ≤ (‖y − x‖pz)
σ for all x, y ∈ Uz.

Let Vz be an open neighbourhood of z in K with compact closure Vz ⊆
Uz. There exists a finite subset Φ ⊆ K such that K =

⋃
z∈Φ Vz. For each

z ∈ Φ, there exists rz > 0 such that pz ≤ rz‖.‖ (cf. Lemma 1.21). Let
r := max{rz : z ∈ Φ}. The sets Vz and K \ Uz being compact and disjoint,
we can define

s := sup {‖y − x‖−σ : z ∈ Φ, x ∈ Vz, y ∈ K \ Uz} ∈ [0,∞[ .

Then (34) holds with C := max{rσ, 2smax ‖f(K)‖q}. In fact, given x, y ∈ K,
there exists z ∈ Φ such that x ∈ Vz. If y ∈ Uz, then ‖f(y) − f(x)‖q ≤
(‖y−x‖pz)

σ ≤ (rz)
σ‖y−x‖σ ≤ C‖y−x‖σ. If y 6∈ Ux, then ‖f(y)− f(x)‖q ≤

‖f(y)‖q+‖f(x)‖q

‖y−x‖σ ‖y − x‖σ ≤ 2smax ‖f(K)‖q‖y − x‖σ ≤ C‖y − x‖σ as well.

(b)⇒(a): Given a gauge g on F , by local convexity there exists a con-
tinuous seminorm q (which can be chosen ultrametric if K is a local field)

such that g ≤ q (cf. Lemma 1.21). Let C be as in (b). Then p := C
1
σ ‖.‖ is a

gauge on E such that ‖f(y)− f(x)‖g ≤ ‖f(y)− f(x)‖q ≤ (‖x− y‖p)
σ for all

x, y ∈ K. Thus (a) holds.

(a)⇒(c): See Remark 5.2.
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(c)⇒(b): Pick ρ ∈ K× with |ρ| < 1 and define β(r) := ρk for r ∈ ]0,∞[,
where k ∈ Z is the unique integer such that |ρ|k+1 < rσ ≤ |ρ|k. Then

|ρ| · |β(r)| < rσ ≤ |β(r)| for all r ∈ ]0,∞[. (35)

If f is weakly C0,σ, define

B :=

{
f(y)− f(x)

β(‖y − x‖)
: x, y ∈ K such that x 6= y.

}
We claim that B is bounded. If this is true, then M := sup ‖B‖q < ∞ for
each continuous seminorm (or gauge) q on F (see Lemma 1.24) and hence

‖f(y)− f(x)‖q =
‖f(y)− f(x)‖q

|β(‖y − x‖)|
|β(‖y − x‖)| ≤ M |β(‖y − x‖)|

≤ M |ρ|−1‖y − x‖σ

for all x, y ∈ K such that x 6= y, using (35) for the final inequality. Hence
(34) holds with C := M |ρ|−1.

It remains to show that B is bounded, or equivalently, that λ(B) ⊆ K is
bounded for each λ ∈ F ′ (see [20, Theorem 3.18] for the real case (from
which the complex case follows) and [22, Theorem 4.21] for the case where K
is a local field). However, for each λ ∈ F ′, the map λ◦f : K → K is C0,σ and
hence, by (a)⇒(b) already established, there exists C ∈ [0,∞[ such that

|λ(f(y))− λ(f(x))| ≤ C ‖y − x‖σ for all x, y ∈ K.

But then sup |λ(B)| ≤ C (whence λ(B) is bounded), since∣∣∣∣λ(f(y)− f(x)

β(‖y − x‖)

)∣∣∣∣ =
|λ(f(y))− λ(f(x))|

|β(‖y − x‖)|
≤ |λ(f(y))− λ(f(x))|

‖y − x‖σ
≤ C (36)

for all x, y ∈ K such that x 6= y, using (35) to obtain the first inequality. 2

Remark 5.5 If K is a local field in the situation of Lemma 5.4, it suffices
to consider ultrametric continuous seminorms in (b) (as the proof shows).

Recall that a topological vector space E over a topological field K is called
sequentially complete if every Cauchy sequence in E is convergent. We say
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that E is Mackey complete if every Mackey-Cauchy sequence in E is con-
vergent. Here, a sequence (xn)n∈N in E is called a Mackey-Cauchy sequence
if there exists a bounded subset B ⊆ E and elements µn,m ∈ K such that
xn − xm ∈ µn,mB for all n,m ∈ N and µn,m → 0 in K as both n,m→∞.

Note that every Mackey-Cauchy sequence also is a Cauchy sequence; hence
every sequentially complete topological K-vector space is Mackey complete.
In the real locally convex case, Mackey completeness is a (particularly weak)
standard completeness property, which is of great usefulness for infinite-
dimensional calculus (see [16, notably §2] for an in-depth discussion).

Theorem 5.6 Let K 6= C be a locally compact field, E and F be topological
K-vector spaces, f : U → F be a map on an open set U ⊆ E, k ∈ N0 ∪ {∞}
and σ ∈ ]0, 1]. If E is metrizable and F is both Mackey complete and locally
convex, then f is Ck,σ if and only if f is weakly Ck,σ.

Proof. The other implication being trivial, we only need to show that if
f is weakly Ck,σ, then f is Ck,σ. As a consequence of Theorem 4.1, f will
be Ck,σ if we can show that g := f ◦ γ : K` → F is Ck,σ for each ` ∈ N
and each smooth map γ : K` → U . Note that g is weakly Ck,σ since so is f
(see Remark 5.3). Hence, after replacing f with g, we may assume that
U = E = K` for some ` ∈ N. We may assume that k ∈ N0; the proof is by
induction on k.

If k = 0 and f : E = K` → F is weakly C0,σ, let x ∈ E and K ⊆ E be a
compact neighbourhood of x. Then f |K is C0,σ by Lemma 5.4. Hence f is
C0,σ locally and hence f is C0,σ, by Lemma 1.35.

Induction step. If k ≥ 1 and f : E = K` → F is weakly Ck,σ, given x, y ∈ E
choose a sequence (tn)n∈N of pairwise distinct elements in B

K
1 (0) \ {0} such

that tn → 0. Set

B :=
{f ]1[(x, y, tm)− f ]1[(x, y, tn)

β(|tm − tn|)
: n,m ∈ N

}
,

where β : ]0,∞[→ K× is as in the proof of Lemma 5.4 (as well as ρ used
to define β). Then λ(B) ⊆ K is bounded for each λ ∈ F ′ and hence B is
bounded (by [20, Theorem 3.18], resp., [22, Theorem 4.21]). In fact, since
λ ◦ f is C1,σ, it follows that (λ ◦ f)[1] is C0,σ. Applying now Lemma 5.4 to

the restriction of (λ ◦ f)[1] to the compact set {x} × {y} × B
K
1 (0), we find
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C ∈ [0,∞[ such that

|(λ ◦ f)[1](x, y, t)− (λ ◦ f)[1](x, y, s)| ≤ C|t− s|σ for all s, t ∈ BK
1 (0).

Repeating the calculation in (36), we find that sup |λ(B)| ≤ C. Hence B is
indeed bounded.

Since f ]1[(x, y, tm) − f ]1[(x, y, tn) ∈ β(|tm − tn|)B, where B is bounded and
β(|tm − tn|) → 0 as both n,m → ∞, we deduce that (f ]1[(x, y, tn))n∈N is a
Mackey-Cauchy sequence in F and thus convergent; we let g(x, y, 0) be its
limit. Then λ(g(x, y, 0)) = limn→∞(λ ◦ f)]1[(x, y, tn) = (λ ◦ f)[1](x, y, 0) for
each λ. Furthermore, trivially λ(g(x, y, t)) = (λ ◦ f)[1](x, y, t) for g(x, y, t) :=
f ]1[(x, y, t) = t−1(f(x + ty) − f(x)) if (x, y, t) ∈ E × E × K×. Thus λ ◦ g =
(λ ◦ f)[1] is Ck−1,σ for each λ, whence g is Ck−1,σ, by induction. Hence f
is C1,σ, with f [1] = g a Ck−1,σ-map. As a consequence, f is Ck,σ. 2

A Details for Section 1

In this appendix, proofs are provided for the lemmas of Section 1.

Proof of Lemma 1.11. The assertions are obvious from our definitions of
U>α< and f>α<. 2

Proof of Lemma 1.12. The 1-dimensional case of this lemma is well known
(see [21, Exercise 29.A]). Having done this exercise (or not), the reader should
not have difficulties to work out the details of the following sketch: We start
with formula (3) for f>α<(x), and split the sum

∑αi

ji=0 occurring there into

the sum
∑βi

ji=1, plus the two remaining summands with ji = 0 and ji = αi,

respectively. In the sum
∑βi

ji=1, rewrite the factor 1

x
(i)
ji
−x

(i)
0

· 1

x
(i)
ji
−x

(i)
αi

of the

product involved in the summands as

1

x
(i)
0 − x

(i)
αi

·

(
1

x
(i)
ji
− x

(i)
0

− 1

x
(i)
ji
− x

(i)
αi

)
.

Finally, take 1

x
(i)
0 −x

(i)
αi

out of the sum and combine the summands to

f>β<(x(1), . . . , x(i−1), x
(i)
0 , . . . , x

(i)
βi
, x(i+1), . . . , x(d))

−f>β<(x(1), . . . , x(i−1), x
(i)
1 , . . . , x

(i)
αi
, x(i+1), . . . , x(d)) .
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After a reordering of the arguments in the second term with the help of
Lemma 1.11, we obtain (5). 2

Proof of Lemma 1.14. The validity of (6) is clear from the definition of
U<α>. Since U>α< is dense in U<α>, if suffices to check (7) for x ∈ U>α<.
But then (7) holds by Lemma 1.11. 2

Proof of Lemma 1.15. We let W be the set of all x ∈ U<α> such that
x

(i)
0 6= x

(i)
αi , and define h(x) by (8) for x ∈ W . Then both f<α>|W and

h : W → F are continuous and coincide with f>α< on U>α<, by Lemma 1.12.
Since U>α< is dense in W , it follows that f<α>|W = h. 2

Proof of Lemma 1.24. If B ⊆ E is bounded and q is a gauge, then there
exists t ∈ K× such that tB ⊆ Bq

1(0). Thus |t| · ‖x‖q = ‖tx‖q < 1 for all
x ∈ B and thus sup q(B) ≤ |t|−1. Conversely, suppose that q(B) is bounded
for each gauge q. If U ⊆ E is a 0-neighbourhood, there exists a gauge q
on E such that Bq

1(0) ⊆ U . Choose r > 0 such that r sup q(B) < 1. Then
BK

r (0) ·B ⊆ Bq
1(0) ⊆ U , showing that B is bounded. 2

Proof of Lemma 1.27. (a) Given x0 ∈ U , a gauge q on F , and ε > 0,
we choose a gauge p on E and a neighbourhood W ⊆ U of x0 such that
‖f(y) − f(x)‖q ≤ (‖y − x‖p)

σ for all x, y ∈ W . Define δ := ε
1
σ . Then

f(W ∩Bp
δ (x0)) ⊆ Bq

δσ(f(x0)) = Bq
ε(f(x0)), as ‖f(y)−f(x0)‖q ≤ (‖y−x0‖p)

σ

for all y ∈ W . Hence f is continuous at x0 (see [11, Lemma 1.27 (b)]).
(b) Since f is C0,σ, given x0 ∈ U and a gauge q on F , we find a gauge

p on E and a neighbourhood W ⊆ U of x0 such that ‖f(y) − f(x)‖q ≤
(‖y − x‖p)

σ for all x, y ∈ W . Let s be a gauge on E such that p(x + y) ≤
s(x)+s(y) for x, y ∈ E. After replacingW withW∩Bs

1/2(x0), we may assume

that ‖y − x‖p < 1 for all x, y ∈ W . Then ‖f(y) − f(x)‖q ≤ (‖y − x‖p)
σ =

(‖y − x‖p)
σ−τ (‖y − x‖p)

τ ≤ (‖y − x‖p)
τ for all x, y ∈ W , whence f is C0,τ .

(c) Let x0 ∈ U . Given a gauge q on H, there exists a gauge p on F and
a neighbourhood R ⊆ V of f(x0) such that ‖g(y) − g(x)‖q ≤ (‖y − x‖p)

τ

for all x, y ∈ R. There exists a gauge s on E and a neighbourhood S ⊆
f−1(R) of x0 such that ‖f(y)− f(x)‖p ≤ (‖y − x‖s)

σ for all x, y ∈ S. Then
‖g(f(y))− g(f(x))‖q ≤ (‖f(y)− f(x)‖p)

τ ≤ (‖y − x‖s)
σ·τ for all x, y ∈ S.

(d) See [11, Lemma 2.5 (c)]. 2

Proof of Lemma 1.28. If f is not C0,σ, then there exists x0 ∈ U and a
gauge q0 on F such that, for each neighbourhood V ⊆ U of x0 and gauge p
on E, there are x, y ∈ V such that ‖f(y)− f(x)‖q0 > (‖y−x‖p)

σ. Let q be a

31



gauge on F such that q0(u+v) ≤ q(u)+q(v) for all u, v ∈ F . After replacing q
with a larger gauge, we may assume that q is upper semicontinuous (cf.
Remark 1.18 and Lemma 1.21). We now verify that x0 and q have the
desired properties. To see this, let V ⊆ U be a neighbourhood of x0 and p0

be a gauge on E. Let p ≥ p0 be an upper semicontinuous gauge. Then there
are x, y ∈ V such that ε := ‖f(y) − f(x)‖q0 − (‖y − x‖p)

σ > 0. Choose
r > ‖y − x‖p such that rσ ≤ (‖y − x‖p)

σ + ε
2
. Since Bp

r (0) and Bq
ε/2(0) are

open and the relevant maps are continuous, we find x′, y′ ∈ V ∩D such that
‖y′−x′‖p < r and ‖f(y)−f(x)−f(y′)+f(x′)‖q <

ε
2
. Using the fake triangle

inequality, we now obtain

‖f(y′)− f(x′)‖q ≥ ‖f(y)− f(x)‖q0 − ‖f(y)− f(x)− f(y′) + f(x′)‖q

> ‖f(y)− f(x)‖q0 −
ε

2
= (‖y − x‖p)

σ +
ε

2
≥ (‖y′ − x′‖p)

σ ≥ (‖y′ − x′‖p0)
σ ,

as desired. 2

Proof of Lemma 1.34. If k = 0, then λ ◦ f is C0,σ by Lemma 1.27 (c),
exploiting that λ, being continuous linear, is C∞

BGN and hence Lipschitz con-
tinuous. If f is Ck+1,σ

BGN , then λ◦f is Ck,σ
BGN by induction, with (λ◦f)[k] = λ◦f [k].

Furthermore, λ ◦ f is Ck+1
BGN , by 1.3. Now (λ ◦ f)[k+1] = ((λ ◦ f)[k])[1] =

λ[1] ◦ T̂ (f [k]) = λ ◦ (f [k])[1] = λ ◦ f [k+1] is C0,σ, using 1.3 for the second equal-
ity, 1.2 for the third (cf. also [11, Remark 1.7]). Hence λ ◦ f is Ck+1,σ

BGN with
(λ ◦ f)[k+1] = λ ◦ f [k+1] of the desired form. 2

Proof of Lemma 1.32. If f is Ck,σ
BGN , then also fi = pri ◦f is Ck,σ

BGN ,
since pri is continuous linear (Lemma 1.34). Conversely, assume that each
component fi of f : U →

∏
i∈I Fi = F is Ck,σ

BGN . We proceed by induction.

The case k = 0. Given a gauge q on F , there exists a finite subset J ⊆ I
and balanced, open 0-neighbourhoods Wj ⊆ Fj for j ∈ J such that W :=⋂

j∈J pr−1
j (Wj) ⊆ Bq

1(0). We let s := µW : F → [0,∞[ be the Minkowski
functional of W (see Remark 1.18), and sj : Fj → [0,∞[ be the Minkowski
functional of Wj, for j ∈ J . Then s(x) = max{sj(xj) : j ∈ J} holds for each
x = (xi)i∈I ∈ F . Furthermore, q(x) ≤ s(x). In fact, given x ∈ F and t ∈ K×

such that x ∈ tW , we have q(x) = q(t(x/t)) = |t| · q(x/t) ≤ |t| (using that
W ⊆ Bq

1(0)). Letting |t| → µW (x), we see that q(x) ≤ µW (x) = s(x). For
each j ∈ J , there is a gauge pj on E and a neighbourhood Vj of x0 in U such
that ‖fj(y) − fj(x)‖sj

≤ (‖y − x‖pj
)σ for all x, y ∈ Vj. Set V :=

⋂
j∈J Vj
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and p(x) := max{pj(x) : j ∈ J} for x ∈ E. Then p is a gauge on E such
that ‖f(y) − f(x)‖q ≤ ‖f(y) − f(x)‖s = max{‖fj(y) − fj(x)‖sj

: j ∈ J} ≤
(‖y − x‖p)

σ for all x, y ∈ V .

Induction step. Assume that each component fi is Ck,σ
BGN , where k ≥ 1. Then

f is C1
BGN , with f [1] = (f

[1]
i )i∈I (cf. [2, Lemma 10.2]). The components f

[1]
i of

this map are Ck−1,σ
BGN , whence f [1] is Ck−1,σ

BGN , by induction. Hence f is Ck,σ
BGN .2

Proof of Lemma 1.33. We proceed by induction on k ∈ N0. If k = 0, then
Lemma 1.33 is a special case of Lemma 1.27 (c).

Induction step: If f is Ck,σ
BGN and g is Ck,τ

BGN with k ≥ 1, then g ◦ f is Ck
BGN

and (g ◦ f)[1] = g[1] ◦ T̂ f with T̂ f : U [1] → V [1] ⊆ F × F × K, T̂ f(x, y, t) :=

(f(x), f [1](x, y, t), t) (see 1.3). Here the second component of T̂ f is Ck−1,σ
BGN ;

the final component is continuous linear and hence C∞,σ
BGN (since σ ≤ 1); and

the first component is a composition of the Ck,σ
BGN -map f and (a restriction

of) the continuous linear (and hence C∞,σ
BGN -) mapping E × E × K → E,

(x, y, t) 7→ x, whence also the first component is Ck−1,σ
BGN , by the case k − 1

(valid by induction). Now Lemma 1.32 shows that T̂ f is Ck−1,σ
BGN , and thus

(g ◦ f)[1] = g[1] ◦ T̂ f is Ck−1,σ·τ
BGN , by induction. Hence g ◦ f is Ck,σ·τ

BGN . 2

Proof of Lemma 1.35. We may assume that k ∈ N0; the proof is by
induction. If k = 0 and f |Ui

is C0,σ for each i ∈ I, then f is C0,σ, as is
obvious from the definition. Induction step: If f |Ui

is Ck+1,σ
BGN , then f is Ck,σ

BGN

by induction, and furthermore f is C1
BGN (by Lemma 1.4). The sets U

[1]
i

together with U ]1[ form an open cover for U [1], and f [1]|
U

[1]
i

= (f |Ui
)[1] is

Ck,σ
BGN for each i ∈ I. For (x, y, t) ∈ U ]1[, we have f [1](x, y, t) = f(x+ty)−f(x)

t
;

since f is Ck,σ
BGN , we deduce with Lemma 1.33 from the preceding formula

that f [1]|U ]1[ is Ck,σ
BGN . Applying the inductive hypothesis, we see that f [1] is

Ck,σ
BGN . Hence f is Ck+1,σ

BGN . 2

B Topologies on function spaces

Let K be a topological field, F be a topological K-vector space, d ∈ N,
k ∈ N0 ∪ {∞} and U ⊆ Kd be a subset which is open or of the form U =
U1 × · · · × Ud for certain subsets U1, . . . , Ud ⊆ K with dense interior. Since
Ck

BGN -maps and Ck
SDS-maps U → F coincide (by Theorem 2.1), as before

we shall simply refer to them as Ck-maps. Now both the definition of Ck
BGN -
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maps and the definition of Ck
SDS-maps suggest a natural definition of a vector

topology on the space Ck(U, F ) of all Ck-maps U → F . The first of these
has been used in [10]; the second one has been used in [21] and further works
by Schikhof, in the case of functions of a single variable. In this section, we
show that the two topologies coincide.

Definition B.1 We write Ck(U, F )BGN for the space Ck(U, F ), equipped
with the initial topology with respect to the maps

τj : Ck(U, F ) → C(U [j], F ) , f 7→ f [j] (37)

for j ∈ N0 such that j ≤ k, where C(U [j], F ) is equipped with the compact-
open topology (which coincides with the topology of uniform convergence on
compact sets). We write Ck(U, F )SDS for Ck(U, F ), equipped with the initial
topology with respect to the maps

κα : Ck(U, F ) → C(U<α>, F ) , f 7→ f<α> (38)

for α ∈ Nd
0 such that |α| ≤ k, where C(U<α>, F ) is equipped with the

compact-open topology.

It is clear that both Ck(U, F )BGN and Ck(U, F )SDS are (Hausdorff) topo-
logical vector spaces over K. Information concerning basic properties of
Ck(U, F )BGN (like completeness, metrizability, and local convexity) can be
found in [10, Proposition 4.19], for U an open subset of a topological K-vector
space (or more generally a Ck-manifold modelled on a topological K-vector
space). Our goal is the following theorem.

Theorem B.2 Ck(U, F )BGN = Ck(U, F )SDS as a topological K-vector space.

It is essential for the proof of Theorem B.2 that the maps f [j] and f<α> can
be expressed in terms of each other. We do not need explicit formulas; the
information provided by the next two lemmas is sufficient for our purposes,
and easy to work with.

B.3 To prepare the proof of following lemma, consider a continuous affine-
linear map θ : X → Y between topological K-vector spaces X and Y , say
θ(x) = λ(x) + y0 with y0 ∈ Y and a continuous linear map λ : X → Y . Then

θ[1](x, y, t) = λ(y) (cf. 1.2), entailing that T̂ θ : X [1] → Y [1] (as in 1.3) is given

by (T̂ θ)(x, y, t) = (θ(x), λ(y), t) and hence is a continuous affine-linear map.
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Lemma B.4 For each α ∈ Nd
0 such that j := |α| ≤ k, there exists an affine-

linear map θα : (Kd)<α> → (Kd)[j] such that θα(U<α>) ⊆ U [j] and

f<α> = f [j] ◦ θα|U<α>

for each Ck-map f : U → F .

Proof. The proof is by induction on j := |α|. If j = 0, then U [j] = U<α> = U
and f<α> = f = f [j] = f [j] ◦ θα|U<α> with θα := id: Kd → Kd, x 7→ x linear.

Induction step. If j := |α| ≥ 1, then α = β + ei for some β ∈ Nd
0 and some

i ∈ {1, . . . , d}. Define h : (Kd)<α> → ((Kd)<β>)[1] via

h(x) := (x(1), . . . , x(i−1), x
(i)
0 , . . . , x

(i)
βi
, x(i+1), . . . , x(d), eα1+···+αi−1+i, x

(i)
αi
− x

(i)
0 )

for x ∈ (Kd)<α>, where eα1+···+αi−1+i is the indicated unit vector in (Kd)<β>.
Given x ∈ U>α< (resp., x ∈ U<α>), it is clear from the definitions that
h(x) ∈ (U<β>)]1[ (resp., h(x) ∈ (U<β>)[1]), and

f<α>(x) = (f<β>)[1](h(x)) for all x ∈ U>α<. (39)

Hence f<α>(x) = (f<β>)[1](h(x)) for all x ∈ U<α>, by continuity of the
functions involved and density of U>α< in U<α>. Here f<β> = f [j−1]◦θβ|U<β>

by induction, with θβ : (Kd)<β> → (Kd)[j−1] an affine-linear map. Then

(f<β>)[1] = f [j] ◦ (T̂ θβ)|(U<β>)[1] , (40)

where T̂ θβ : ((Kd)<β>)[1] → (Kd)[j] is affine-linear by B.3. Combining (39)

and (40) gives f<α> = f [j] ◦ θα|U<α> with θα := (T̂ θβ) ◦h : (Kd)<α> → (Kd)[j]

an affine-linear map. 2

B.5 We recall that a function p : Kd → F to a topological K-vector space F
is called a polynomial function if there exists N ∈ N0 and elements aα ∈ F
for each multi-index α ∈ Nd

0 with |α| ≤ N , such that

f(x1, . . . , xd) =
∑
|α|≤N

aα x
α1
1 · · ·xαd

d for all x1, . . . , xd ∈ K.

It is easy to see that each polynomial function p : Kd → F is C∞, and that p[1]

and T̂ p : (Kd)[1] → F [1] are polynomial functions if so is p.
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Lemma B.6 Let U = U1 × · · · × Ud for certain subsets U1, . . . , Ud ⊆ K
with dense interior. Let j ∈ N0 such that j ≤ k. Then there exists ` ∈ N,
polynomial functions p1, . . . , p` : (Kd)[j]→K, multi-indices α(1), . . . , α(`) ∈ Nd

0

and polynomial functions qi : (Kd)[j] → (Kd)<α(i)> for i ∈ {1, . . . , `} such that

qi(U
[j]) ⊆ U<α(i)> for each i and

f [j](x) =
∑̀
i=1

pi(x) · f<α(i)>(qi(x)) (41)

for each f ∈ Ck(U, F ) and each x ∈ U [j], i.e.,

f [j] =
∑̀
i=1

pi|U [j] · (f<α(i)> ◦ qi|U [j]) . (42)

Proof. The proof is by induction on j. If j = 0, then U<0> = U = U [0] and
f<0> = f = f [0], whence f [0] = (p|U [0]) · (f<0> ◦ q|U [0]) with p(x) := 1 and
q := id: Kd → Kd.

Now suppose that f [j] is of the form (42) for some j ∈ N0 such that j+1 ≤ k.
Using the Product Rule [2, § 3.3], we deduce from (42) that

f [j+1](x, y, t) =
∑̀
i=1

(
(pi)

[1]|U [j+1](x, y, t) · f<α(i)>(qi(x))

+ pi(x) · (f<α(i)> ◦ qi|U [j])[1](x, y, t)

+ t · (pi)
[1](x, y, t) · (f<α(i)> ◦ qi|U [j])[1](x, y, t)

)
(43)

for all (x, y, t) ∈ U [j+1] ⊆ U [j] × E[j] ×K. By 1.3, we have

(f<α(i)> ◦ qi|U [j])[1] = (f<α(i)>)[1] ◦ (T̂ qi)|U [j+1] (44)

here. By B.5, (pi)
[1] and T̂ qi : (Kd)[j+1] → ((Kd)<α(i)>)[1] are polynomial

functions. In view of (43) and (44), and exploiting the fact that compositions
of polynomial functions are polynomial, f [j+1] will be of the desired form
(analogous to (42)) if we can show that (f<α(i)>)[1](x) for x ∈ (U<α(i)>)[1] is
a sum of terms of the form

Qm(x)f<α(i)+em>(Pm(x))
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for m ∈ {1, . . . , d+ |α(i)|} and polynomial functions Qm : ((Kd)<α(i)>)[1] → K
and Pm : ((Kd)<α(i)>)[1] → (Kd)<α(i)+em> with Pm(U<α(i)>)[1]) ⊆ U<α(i)+em>,

where em ∈ Kd+|α(i)| is a standard unit vector and em ∈ Kd as in Remark 2.5.
For simplicity of notation, write g := f<α(i)> and N := d + |α(i)|. Since

U<α(i)> = (U1)
α

(i)
1 ×· · ·× (Ud)

α
(d)
d ⊆ KN is a product of subsets of K, we have

g[1](x, y, t)

=
N∑

m=1

ym · g<em>(x1 + ty1, . . . , xm−1 + tym−1;xm, xm + tym;xm+1, . . . , xN)

for all (x, y, t)∈(U<α(i)>)[1] with x=(x1, . . . , xN)∈KN , y=(y1, . . . , yN)∈KN

and t ∈ K (cf. proof of Theorem 2.1). Since g<em> = (f<α(i)>)<em> =

f<α(i)+em> with notation as in Remark 2.5, we deduce that (f<α(i)>)[1] = g[1]

is a sum of terms of the desired form. 2

B.7 We recall: If X,Y, Z are Hausdorff topological spaces and g : X → Y is
a continuous map, then

C(Z, g) : C(Z,X) → C(Z, Y ) , f 7→ g ◦ f

and
C(g, Z) : C(Y, Z) → C(X,Z) , f 7→ f ◦ g

are continuous maps, using the compact-open topology on all function spaces
(see [6, p. 157, Assertions (1) and (2)]). If X is a Hausdorff topological space
and F a topological K-vector space, then C(X,F ) is a topological C(X,K)-
module with pointwise operations (by continuity of C(X,α) and C(X,µ),
where µ : K×F → F , µ(t, x) := tx is scalar multiplication and α : F×F → F ,
α(x, y) := x+ y). This implies that the multiplication operator

mh : C(X,F ) → C(X,F ) , f 7→ h · f

is a continuous linear map for each h ∈ C(X,K).

We also need to understand maps of the form Ck(g, F ).

Lemma B.8 Let d, e ∈ N, U ⊆ Kd be an open subset of the form U =
U1 × · · · × Ud for certain open sets U1, . . . , Ud ⊆ K, V ⊆ Ke be open and
g : U → V be a Ck

SDS-map, where k ∈ N0 ∪ {∞}. Then the map

Ck(g, F )SDS : Ck(V, F )SDS → Ck(U, F )SDS , f 7→ f ◦ g

is continuous and linear, for each topological K-vector space F .
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Proof. It is clear that Ck(g, F )SDS is linear. The map Ck(g, F )SDS will be
continuous if we can show that κα◦Ck(g, F )SDS is continuous for each α ∈ Nd

0

such that |α| ≤ k, where κα is as in (38). Set j := |α|. Using Lemma B.4,
Lemma B.6 and the notation introduced there, we obtain

(κα ◦ Ck(g, F )SDS)(f) = (f ◦ g)<α> = (f ◦ g)[j] ◦ θα|U<α>

= f [j] ◦ (T̃ jg) ◦ θα|U<α>

=
∑̀
i=1

fi · (f<α(i)> ◦ gi) (45)

with fi := (pi|U [j]) ◦ (T̃ jg) ◦ θα|U<α> and gi := (qi|U [j]) ◦ (T̃ jg) ◦ θα|U<α> .
Using the continuous maps ηβ : Ck(V, F )SDS → C(V <β>, F ), f 7→ f<β>,
the multiplication operator mfi

: C(U<α>, F ) → C(U<α>, F ) by fi for i in

{1, . . . , e} and the maps C(gi, F ) : C(V <α(i)>, F ) → C(U<α>, F ) (which are
continuous linear by B.7), we can rewrite (45) in the form

κα ◦ Ck(g, F )SDS =
∑̀
i=1

mfi
◦ C(gi, F ) ◦ ηα(i) .

The right hand side being composed of continuous maps, we deduce that
κα ◦ Ck(g, F )SDS is continuous. 2

B.9 Let X and Y be Hausdorff topological spaces and (Ui)i∈I an open cover
of X. Then each compact set K ⊆ X can be written as K =

⋃
i∈ΦKi for a

certain finite subset Φ ⊆ I and compact sets Ki ⊆ Ui. As a consequence, the
compact-open topology on C(X, Y ) is the initial topology with respect to the
restriction maps C(X, Y ) → C(Ui, Y ), f 7→ f |Ui

for i ∈ I, where C(Ui, Y ) is
equipped with the compact-open topology.

Proof of Theorem B.2. The topology on C∞(U, F )BGN is initial with
respect to the inclusion maps C∞(U, F )BGN → Ck(U, F )BGN for k ∈ N0, as
is clear from the definitions. Also, the topology on C∞(U, F )SDS is initial
with respect to the inclusion maps C∞(U, F )SDS → Ck(U, F )SDS for k ∈ N0.
As a consequence, C∞(U, F )BGN = C∞(U, F )SDS will hold if Ck(U, F )BGN =
Ck(U, F )SDS for each k ∈ N0. The proof is by induction on k.

If k = 0, then both C0(U, F )BGN = C0(U, F )SDS = C(U, F ), equipped with
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the compact-open topology.

Now let k ∈ N and suppose that the topologies on spaces of Cj-maps coincide,
for all j < k. To establish the equality Ck(U, F )BGN = Ck(U, F )SDS, we
prove that both of the following maps are continuous:

Φ: Ck(U, F )BGN → Ck(U, F )SDS , f 7→ f

and
Ψ: Ck(U, F )SDS → Ck(U, F )BGN , f 7→ f .

If we want to emphasize k, we also write Ψk instead of Ψ.

Continuity of Φ: The topology on Ck(U, F )SDS being initial with respect to
the maps κα (from (38)) for α ∈ Nd

0 such that |α| ≤ k, the map Φ will be
continuous if we can show that κα ◦ Φ is continuous for each α. Set j := |α|
and let τj be as in (37). By Lemma B.4, we have (κα ◦ Φ)(f) = f<α> =
f [j] ◦ θα|U<α> for each f ∈ Ck(U,E). Hence κα ◦ Φ = C(θα|U<α> , F ) ◦ τj is
continuous by continuity of τj and continuity of the map C(θα|U<α> , F ) (see
B.7). Thus Φ is continuous.

Continuity of Ψ. We have to show that τj ◦Ψ is continuous for each j ∈ N0

such that j ≤ k. For j = 0, we have τ0◦Ψ = κ0, which is continuous. We can
therefore assume now that j ≥ 1. Let us assume first that U = U1×· · ·×Ud,
where U1, . . . , Ud ⊆ K are subsets with dense interior. For each f ∈ Ck(U, F ),

we have (τj ◦ Ψ)(f) = f [j] =
∑`

i=1(pi|U [j]) · (f<α(i)> ◦ qi|U [j]), with notation
as in Lemma B.6. Abbreviating fi := (pi|U [j]), we can rewrite the preceding
formula as

τj ◦Ψ =
∑̀
i=1

mfi
◦ C(qi|U [j] , F ) ◦ κα(i) , (46)

where mfi
: C(U [j], F ) → C(U [j], F ), g 7→ fi · g is the multiplication opera-

tor by fi. Since all mappings on the right hand side of (46) are continuous
by B.7, we deduce that τj ◦Ψ is continuous and hence also Ψ.

Now assume that U ⊆ Kd is an arbitrary open set. Then there exists an
open cover (Ui)i∈I of U by sets of the form Ui = Ui,1 × · · · × Ui,d, where
Ui,1, . . . , Ui,d ⊆ K are open. Now (U [j−1])]1[, together with the sets (Ui)

[j] for
i ∈ I, forms an open cover for U [j]. Given a subset V ⊆ U , let λV : V → U
and µV : V [j] → U [j] be the inclusion maps. Then, by B.9, the map τj ◦ Ψ
will be continuous if we can show that Ck(µV , F ) ◦ τj ◦Ψ, f 7→ τj(Ψ(f))|V [j]
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is continuous for each set V in our open cover of U [j]. For V = Ui, we have
Ck(µUi

, F ) ◦ τj ◦ Ψ = τj,i ◦ ψi ◦ Ck(λUi
, F )SDS, where Ck(λUi

, F )SDS is con-
tinuous by Lemma B.8, the mapping ψi : C

k(Ui, F )SDS → Ck(Ui, F )BGN ,
f 7→ f is continuous by what has already been shown, while the map
τj,i : C

k(Ui, F )BGN → C((Ui)
[j], F ), f 7→ f [j] is continuous by definition of

the topology on Ck(Ui, F )BGN . Thus Ck(µUi
, F )◦τj ◦Ψ is continuous. It only

remains to see that also Ck(µV , F )◦τj ◦Ψ is continuous with V := (U [j−1])]1[.
For f ∈ Ck(U, F ) and (x, y, t) ∈ (U [j−1])]1[ ⊆ U [j−1] × (Kd)[j−1] ×K, we have

(Ck(µV , F ) ◦ τj ◦Ψ)(f)(x, y, t)

= f [j](x, y, t) = 1
t
(f [j−1](x+ ty)− f [j−1](x)) . (47)

The map g : (U [j−1])]1[ → K, (x, y, t) 7→ 1
t

is continuous, and both of the
maps s : (U [j−1])]1[ → U [j−1], s(x, y, t) := x + ty and p : (U [j−1])]1[ → U [j−1],
(x, y, t) 7→ x are C∞. With the help of the multiplication operator
mg : C(V, F ) → C(V, F ) by g, we can rewrite (47) in the form

Ck(µV , F )◦ τj ◦Ψ = mg ◦
(
(C(s, F )◦ τj−1 ◦Ψj−1) − (C(p, F )◦ τj−1 ◦Ψj−1)

)
.

Here τj−1 is continuous, Ψj−1 is continuous by induction, and all of the
maps mg, C(s, F ) and C(p, F ) are continuous by B.7. Therefore the map
Ck(µV , F ) ◦ τj ◦Ψ is continuous, which completes the proof. 2

C Hölder differentiable maps into real locally

convex spaces

For mappings from open sets into real or complex locally convex spaces, we
provide a simpler characterization of Ck,σ-maps now in terms of the existence
and Hölder continuity of higher differentials. They turn out to be the Ck,σ-
maps arising in the approach to Ck-maps by Michal and Bastiani.

C.1 Throughout this section, K ∈ {R,C}, F is a locally convex topological
K-vector space, E a topological K-vector space, U ⊆ E open, and σ ∈ ]0, 1].

Definition C.2 We say that a map f : U → F is C0,σ
MB if it is C0,σ. The map

f : U → F is C1,σ
MB if d0f := f is C0,σ, the directional (real, resp., complex)

derivative

d1f(x, y) := df(x, y) := (Dyf)(x) := d
dt

∣∣
t=0
f(x+ ty)
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exists for each x ∈ U and y ∈ E, and the map df : U × E → F so obtained
is C0,σ. The map f is C2,σ

MB if both f and df are C1,σ
MB; we then define

d2f := d(df) : U × E3 → F . Recursively, having defined Ck−1,σ
MB -maps for

some k ∈ N ∪ {∞}, we say that f is Ck,σ
MB if f is C1,σ

MB and df is Ck−1,σ
MB ; we

then define dkf := dk−1(df) : U × E2k−1 → F .

Replacing C0,σ-maps by continuous maps in the preceding definition, we
obtain the usual definition of Ck

MB-maps (also known as Keller’s Ck
c -maps);

see [7] and [13] for further information. Apparently, every Ck,σ
MB-map is Ck

MB.

Our goal is the following result:

Theorem C.3 In the situation of C.1, a map f : U → F is Ck,σ
BGN if and

only if f is Ck,σ
MB.

Before we prove Theorem C.3, let us mention an alternative description of
Ck,σ

MB-maps which some readers may find more natural.

Remark C.4 If f is Ck,σ
MB, then the iterated directional derivatives

d(j)f(x, v1, . . . , vj) := (Dv1 · · ·Dvj
f)(x)

exist for all j ∈ N such that j ≤ k, x ∈ U and v1, . . . , vj ∈ E. Also, d(j)f is a
partial map of djf (see [7, Claim 2 on p. 50] or [13, § 1]) and hence C0,σ. If,
conversely, d(j)f exists for each j ∈ N0 such that j ≤ k and is C0,σ, then f
is Ck (see [7, Lemma 1.14] or [13, § 1]) and formulas are available which
express djf in terms of the maps d(i)f with i ≤ j (see [7, Claim 1 on p. 49] or
[13, § 1]). Inspecting these formulas, we readily see that djf is C0,σ for each
j ∈ N0 such that j ≤ k and thus f is Ck,σ

MB. Although this second description
involving the higher differentials d(j)f may look more palatable, it is much
more convenient for our inductive proofs below to use Definition C.2 and the
(somewhat unfamiliar) iterated differentials djf .

The proof of Theorem C.3 is based on two lemmas concerning parameter-
dependent integrals. Recall that, given a continuous map γ : [0, 1] → F to
a real or complex locally convex space F , an element z ∈ F is called the
weak integral of γ if λ(z) =

∫ 1

0
λ(γ(t)) dt for all continuous linear functionals

λ ∈ F ′. Then z is uniquely determined, and we write
∫ 1

0
γ(t) dt := z. If F is

complete (or at least sequentially complete), then the weak integral
∫ 1

0
γ(t) dt

always exists (see [13]).
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Lemma C.5 Let k ∈ N0, W ⊆ K be an open subset such that [0, 1] ⊆ W
and h : U ×W → F be a Ck,σ

MB-map. Suppose that the weak integral

g(x) :=

∫ 1

0

h(x, t) dt

exists in F for each x ∈ U , and suppose that the weak integrals∫ 1

0

dj
1h(x, y, t) dt

exist for all j ∈ {1, . . . , k}, x ∈ U and y ∈ E2j−1, where dj
1h(x, y, t) :=

dj(h(•, t))(y) for x ∈ U , y ∈ E2j−1 and t ∈ W denotes the j-th iterated
partial differential of h with respect to the first variable. Then g : U → F is
a Ck,σ

MB-map, and

djg(x, y) =

∫ 1

0

dj
1h(x, y, t) dt (48)

for all j ∈ {1, . . . , k}, x ∈ U , and y ∈ E2j−1.

Proof. The proof is by induction on k.

The case k = 0: To see that g is C0,σ, let q be a continuous seminorm on F
and x0 ∈ U . Given t ∈ [0, 1] and r > 0, set Br(t) := {s ∈ [0, 1] : |s− t| < r}.
Since h|U×[0,1] is C0,σ, for each t ∈ [0, 1] we find a neighbourhood Vt ⊆ U
of x0, rt > 0, a gauge pt on E and Ct ∈ [0,∞[ such that

‖h(x, s)− h(y, r)‖q ≤ max{(‖x− y‖pt)
σ, Ct|s− r|σ} (49)

for all x, y ∈ Vt and r, s ∈ B2rt(t) (compare Lemma 1.21 and the proof
of Lemma 1.32). Since h and q are continuous and [0, 1] is compact, after
shrinking Vt we may assume that

st := sup{‖h(x, s)− h(y, r)‖q : x, y ∈ Vt, s, r ∈ [0, 1]} < ∞ .

There is a finite subset Φ ⊆ [0, 1] such that [0, 1] ⊆
⋃

t∈ΦBrt(t). We define
V :=

⋂
t∈Φ Vt, p(x) := max{pt(x) : t ∈ Φ} for x ∈ E and let C be the

maximum of the numbers Ct and st

(rt)σ for t ∈ Φ. Then

‖h(x, s)− h(y, r)‖q ≤ max{(‖x− y‖p)
σ, C|s− r|σ} (50)
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for all x, y ∈ V and r, s ∈ [0, 1]. In fact, there is t ∈ [0, 1] such that r ∈ Brt(t).
If s ∈ B2rt(t), then (50) holds as a consequence of (49). Otherwise, |s−r| ≥ rt

and hence ‖h(x, s)−h(y, r)‖q ≤ st = st

(rt)σ (rt)
σ ≤ C(rt)

σ ≤ C|s−r|σ, entailing

that (50) also holds in this case. For all x, y ∈ V , using (50) we obtain

‖g(x)− g(y)‖q =

∥∥∥∥∫ 1

0

(h(x, t)− h(y, t)) dt

∥∥∥∥
q

≤
∫ 1

0

‖h(x, t)− h(y, t)‖q dt

≤
∫ 1

0

(‖x− y‖p)
σ dt = (‖x− y‖p)

σ .

Hence g is C0,σ, as required.

Induction step. Assume that k ∈ N and assume that the assertion of
the lemma holds if k is replaced with k − 1. By hypothesis, φ(x, y) :=∫ 1

0
d1h(x, y, t) dt exists in F for all x ∈ U , y ∈ E, and g as well as the

map φ : U × E → F so obtained is C0,σ, by the case k = 0. The map
d1h : (U×E)×W → F is Ck−1,σ

MB and satisfies analogous conditions as h, with
k − 1 in place of k, because dj

1(d1h) = dj+1
1 h for each j ∈ {0, 1, . . . , k − 1}.

Hence φ is Ck−1,σ
MB , by induction. We claim that the directional derivative

dg(x, y) exists for all x ∈ U and y ∈ E, and is given by dg(x, y) = φ(x, y).
Since φ is Ck−1,σ

MB , this entails that g is C1,σ
MB with dg = φ a Ck−1,σ

MB -map,
and thus g is Ck,σ

MB. Furthermore, djg(x, y) = dj−1(dg)(x, y) = dj−1φ(x, y) =∫ 1

0
dj−1

1 (d1h)(x, y, t) dt =
∫ 1

0
dj

1h(x, y, t) dt for x ∈ U and y ∈ E2j−1, using
the induction hypothesis for the third equality. Therefore (48) holds. To
complete the inductive proof, it remains to verify the claim. To this end, fix
(x, y) ∈ U × E and pick ε > 0 such that x+BK

2ε(0)y ⊆ U . Then

R : BK
ε (0)×W ×BK

2 (0) → F , R(s, t, r) := d1h(x+ rsy, y, t)

is a C0,σ-map. The weak integral K(s, t) :=
∫ 1

0
R(s, t, r) dr exists in F for

all (s, t) ∈ BK
ε (0) ×W . In fact, K(s, t) = h(x+sy,t)−h(x,t)

s
satisfies the defin-

ing property of the weak integral if s 6= 0, by the Fundamental Theorem of
Calculus [7, Theorem 1.5]. For s = 0, the integrand is constant and hence co-
incides with the weak integral; thus K(0, t) = d1h(x, y, t). By the case k = 0,

the map K : BK
ε (0)×W → F is C0,σ. The weak integral L(s) :=

∫ 1

0
K(s, t) dt

exists in F for each s ∈ BK
ε (0) since L(s) = g(x+sy)−g(x)

s
satisfies the defining

property of the weak integral if s 6= 0, while L(0) =
∫ 1

0
d1h(x, y, t) dt exists

by hypothesis. Hence L : BK
ε (0) → F is C0,σ be the case k = 0 and therefore
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continuous. As a consequence, dg(x, y) = lims→0
g(x+sy)−g(x)

s
= lims→0 L(s) =

L(0) =
∫ 1

0
d1h(x, y, t) dt = φ(x, y) exists and is of the desired form. 2

Lemma C.6 Let h : U ×W → F be a C1,σ
MB-map, where W ⊆ K is an open

neighbourhood of [0, 1]. Suppose that the weak integral

g(x) :=

∫ 1

0

h(x, t) dt

exists in F for each x ∈ U , and defines a map g : U → F which is C1,σ
MB.

Then the weak integral
∫ 1

0
d1h(x, y, t) dt exists in F for all x ∈ U and y ∈ E,

and it is given by ∫ 1

0

d1h(x, y, t) dt = dg(x, y) .

Proof. We consider g and h as maps into the completion F̃ of F . The weak
integral in question exists in F̃ . By the preceding lemma, it coincides with
dg(x, y) and therefore is an element of F . 2

Proof of Theorem C.3. We may assume that k ∈ N0. It is clear that
each Ck,σ

BGN -map is Ck,σ
MB (noting that djf is a partial map of f [j], for each

j ≤ k). The converse direction is proved by induction on k. If k = 0, then
C0,σ

BGN -maps and C0,σ
MB-maps coincide by definition. Now suppose that f is

a Ck,σ
MB-map, where k ∈ N, and suppose that each Ck−1,σ

MB -map is Ck−1,σ
BGN .

Then f is Ck−1,σ
BGN , by induction. If we can show that the map

g : U [1] → F , (x, y, t) 7→
{

f(x+ty)−f(x)
t

if t ∈ K×;
df(x, y) if t = 0

is Ck−1,σ
BGN , then f will be C1,σ

BGN with f [1] = g a Ck−1,σ
BGN -map, and thus f will be

Ck,σ
BGN , as required. To see that g is Ck−1,σ

BGN , note first that g|U ]1[ takes (x, y, t)

to f(x+ty)−f(x)
t

. Since f is Ck−1,σ
BGN , it follows that g|U ]1[ is Ck−1,σ

BGN . Furthermore,
by the Fundamental Theorem of Calculus [7, Theorem 1.5], we have

f(x+ ty)− f(x)

t
=

∫ 1

0

df(x+ sty, y) ds
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for (x, y, t) in the open neighbourhood V := {(x, y, t) ∈ U [1]: x+Kty ⊆ U}
of U ×E×{0} in U [1], with K ⊆ K a compact neighbourhood of [0, 1]. Thus

g(x, y, t) =

∫ 1

0

df(x+ sty, y) ds =

∫ 1

0

h((x, y, t), s) ds (51)

for all (x, y, t) ∈ V , where h : V × K0 → F , h((x, y, t), s) := df(x + sty, y)

is Ck−1,σ
BGN since so is df . Set d

(j)
1 h(v; y1, . . . , yj; s) := (Dy1 · · ·Dyj

h(•, s))(v) for

j ∈ {1, . . . , k − 1}, v ∈ V , y1, . . . , yj ∈ E[1] and s ∈ K0. In the proof of
[2, Proposition 7.4], it was shown that the weak integral∫ 1

0

d
(j)
1 h(v; y1, . . . , yj; s) ds (52)

exists in F . We now use that dj
1h(v, y, s) with v ∈ V , y = (y1, . . . , y2j−1) ∈

(E[1])2j−1, s ∈ K0 can be expressed in the form

dj
1h(v, y, s) =

j∑
i=1

∑
`

n
(i)
` d

(i)
1 h(v; y`1 , . . . , y`i

; s) ,

where the second summation is over all ` = (`1, . . . , `i) ∈ {1, . . . , 2j−1}i, and

n
(i)
` ∈ N0 (cf. [7, p. 49, Claim 1]). As a consequence, also the weak integrals∫ 1

0
dj

1h(v, y, s) ds exists for all j ∈ {1, . . . , k − 1}, v ∈ V and y ∈ (E[1])2j−1

(since they are linear combinations of those in (52)). Thus h satisfies the

hypotheses of Lemma C.5 with k− 1 in place of k, and hence g is Ck−1,σ
MB and

thus Ck−1,σ
BGN , by induction. This completes the proof. 2
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