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Abstract

In this article we investigate the regularizing properties of Cosserat elasto-plastic
models in a geometrically linear setting. The models feature an independent mi-
crorotation field which allow the Cauchy-stress to become non-symmetric while the
contribution of the microrotations itself remains linear elastic. Extending previous
work we show that for the large class of all quasistatic models of monotone type,
solutions to the problem with microrotations are H1 well-posed. A similar result
does not hold for the classical case without microrotations. For vanishing Cosserat
effects we show also that the model with microrotations approximates the classical
Prandtl-Reuss solution in an appropriate measure valued sense.
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1 Introduction

Despite the claim to the contrary in most textbooks of mechanics, the symmetry of the
Cauchy-stresses in classical elasticity is a postulate or a constitutive assumption but not
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a theorem. In the case of hyperelasticity for simple bodies the requirement of invariance
of the free energy under superposed rigid-body motions, however, implies already the
symmetry of the Cauchy stresses. If one wants to allow the stresses to become possibly
non-symmetric in a variational context it is therefore necessary to introduce additional
degrees of freedom, the simplest way consists of introducing additional proper rotations.
Such a generalized concept of continua involving independent rotations has been intro-
duced by the Cosserat brothers [CC09].

There is a vast and thriving literature on Cosserat materials. The mathematical
analysis of Cosserat micropolar models for elastic continua in the infinitesimal case can
be found in several articles, see e.g. [Duv70, HH69, Ghe74a, Ghe74b]. Existence results
for a geometrically exact elastic Cosserat model are obtained in [Nef04, Nef05]. For an
incomplete overview of the existing literature let us refer to the introduction in [NF04].

Allowing for non-symmetric stresses one should, however, first answer the question for
what reason this undoubted complication of the theory should be endeavoured. Because
we do not want to enter here in a discussion of the physical relevance of the Cosserat
approach the reason for us for using the more complicated model consists in its ability
to provide regularizations to non-well posed classical models, notably classical Prandtl-
Reuss plasticity without hardening. It seems to be an interesting question to know exactly
how much of the problems with the missing global regularity for Prandtl-Reusss is due in
essence to the constitutive assumption of a symmetric Cauchy stress. For investigations
of the regularity for classical plasticity we refer the reader to [BF96, FM99, FS00].

In line with this view, the Cosserat models have been advocated as a means to regular-
ize the pathological mesh size dependence of localization computations where shear failure
mechanisms [CH85, MV87, Müh89, BP91, Bar94] play a dominant role, for applications
in plasticity see the non-exhaustive list [IW98, DSW93, RV96, dB91, dBS91, dB92]. The
occurring mathematical difficulties reflect the physical fact that upon localization the va-
lidity limit of the classical models is reached. In models without any internal length the
deformation should be homogeneous on the scale of a representative volume element of
the material [MA91].

The model which we will investigate is based upon a model which has been introduced
in [Nef03, Nef06b] in a finite strain framework. A geometrical linearization of this model
has been investigated in [NC05, NC06] and is shown to be well-posed also in the rate-
independent limit for both quasistatic and dynamic processes. In both articles the authors
consider the simple case where the so called vector of internal variables z consists of the
inelastic deformation tensor only. Here we study the class of all models of monotone type
(for the definition see [Alb98]).

The proposed infinitesimal elasto-plastic model has also been implemented into a
Finite-Element code [NCMW06] together with an investigation of the convergence of
the numerical algorithm based on a time-incremental variational formulation. The first
numerical results are promising and will be reported elsewhere. The finite elastic case has
been considered in [NMW05, NM06].

This contribution presents the mathematical analysis of systems of equations modelling
inelastic deformations of continua of Cosserat micropolar type.

In classical rate-independent elasto-plasticity without microrotations it is proved that
global existence for the displacement u can be shown only in a measure-valued sense, while
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the symmetric Cauchy-stresses σ can be shown to remain in L2(Ω). For results of this kind
we refer for example to [AL87, Che02, Tem86]. If the Prandtl-Reuss model is considered
with additional effects like hardening or viscosity, then global solutions u ∈ H1 exist (see
[Alb98, Che01b, Che01a]). For the general models of monotone type the existence theory
is not completely done (see the remarks in [Che02]). If additional Cosserat effects are
taken into account (the stresses σ may get non-symmetric) then the existence of global
in time H1-solutions for simple models (rate-independent and no hardening) was proved
in the quasistatic case in [NC05] and in the dynamical case in [NC06].

In this work we study the general inelastic material of monotone type with independent
microrotations in the infinitesimal setting of the problem. Similar to [NC05] we prove that
in the quasistatic case the system of equations describing inelastic deformations of such
a generalized material possesses global in time H1-solutions to general initial data and
to boundary data satisfying fairly mild regularity assumptions. Moreover, we prove that
the solution to the model of Melan-Prager with microrotations converges to a solution
for the Cosserat-Prandtl-Reuss model without loosing the H1-regularity (compare with
a similar result in the case without independent microrotations [Che01a]). In the last
section we study the limit procedure µc → 0+ of vanishing Cosserat effects in the Cosserat-
Prandtl-Reuss model and obtain another approximation result for perfect elasto-plasticity,
complementing the similar investigation in [Nef06a] for the elastic case.

2 Formulation of the problem and the main result

Let us start with the formulation of the initial boundary-value problem appearing in
the infinitesimal elasto-plasticity model with Cosserat effects. Let us denote by Ω ⊂ R3

a bounded domain with smooth boundary ∂Ω. To determine a quasistatic deformation
process of an inelastic body with microrotations in the infinitesimal setting we have to find
the displacement vector u : Ω × R → R3, the microrotation matrix A : Ω × R → so(3))1

and the vector of internal variables z : Ω× R → RN such that

Div σ = −f ,
σ = 2µ (ε− εp) + 2µc (skew(∇u)− A) + λ tr [ε] · 11 ,

−lc ∆ axl(A) = µc axl(skew(∇u)− A) , (2.1)

ż ∈ F (ε, z) ,

u|∂Ω
= ud , A|∂Ω

= Ad , z(0) = z0 .

Here, ε = sym(∇u) denotes the classical infinitesimal elastic strain tensor and εp denotes
the (still symmetric) inelastic strain tensor which belongs to the set of internal variables.
Hence the vector z consists of εp and other components needed to describe the deformation
process. Let us denote by B the projector Bz = εp. µ, λ are positive Lame constants,
µc > 0 is the Cosserat couple modulus and lc := µL2

c > 0 is a material parameter where
Lc with units of length defines an internal length scale. The operator skew denotes the
skew-symmetric part of a 3 × 3 tensor and axl is the standard isomorphism between

1so(3) denotes the Lie-algebra of skew-symmetric 3× 3 matrices.
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the set so(3) and R3. This means that if A = ((0, α, β), (−α, 0, γ), (−β,−γ, 0)) then
axl(A) = (α, β, γ). Moreover, F is the inelastic constitutive multifunction, ud, Ad are
given Dirichlet boundary data, z0 are given initial data and f describes external body
forces acting on the material. We refer to Div σ = −f as balance of linear momentum with
a possibly non-symmetric Cauchy stress tensor σ and the equation for the microrotations
is the statement of balance of angular momentum.

Thermodynamical considerations yield (for details see [Alb98, Appendix A, p.143])
that there exists a free energy function ψ : D(F )× so(3) → R+ such that for all (ε, z) ∈
D(F ) and for all A ∈ so(3)

ρ
∂ψ(ε, z, A)

∂ε
= σ (hyperelasticity) , (2.2)

〈w∗, ρ∂ψ(ε, z, A)

∂z
〉 ≤ 0 for all w∗ ∈ F (ε, z) , (2.3)

where ρ is the mass density which we assume to be constant. By the second equation in
system (2.1) we conclude that the free energy function has to be of the form

ρψ(ε, z, A) = µ‖ε− εp‖2 +
λ

2
(tr [ε])2 + µc‖ skew(∇u)− A‖2 + ψ1(z, A) ,

where the function ψ1 is chosen such that the dissipation inequality (2.3) holds. It is
not easy to describe all functions ψ1 for which (2.3) holds. Therefore in the inelastic
deformation theory it is usually assumed that ψ1 is a quadratic form. In this article we
additionally assume that

ψ1(z, A) = 2lc‖∇ axl(A)‖2 + 〈Lz, z〉

and L ∈ RN×N
sym is a positive semi-definite operator such that the operatorMz = 2µBTBz+

Lz is positive definite. Moreover we assume (compare with the monograph [Alb98]) that
the constitutive multifunction F is given in the form

F (ε, z) = g
(
− ρ∇zψ(ε, z, A)

)
with a multifunction g : D(g) ⊂ RN → P(RN) satisfying the monotonicity inequality

∀ z1, z2 ∈ D(g) , ∀ z∗1 ∈ g(z1) , z
∗
2 ∈ g(z2) 〈(z∗1 − z∗2), (z1 − z2)〉 ≥ 0 (2.4)

and additionally 0 ∈ g(0). All models with this structure of inelastic constitutive function
are called of monotone type.2 The models of monotone type include e.g. the Prandtl-
Ruess model, the Melan-Prager model, the Norton-Hoff model, the Ramberg-Osgood
model, special cases of the Bodner-Partom model and many others. It is easy to see that
all monotone models are thermodynamical admissible which means that the dissipation
inequality is automatically satisfied. Hence, according to all these assumptions system

2of pre-monotone type if g is monotone at the point zero only, i.e. 〈g(ξ), ξ〉 ≥ 0∀ ξ ∈ RN .
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(2.1) has the form

Div σ = −f ,
σ = 2µ (ε− εp) + 2µc (skew(∇u)− A) + λ tr [ε] · 11 ,

−lc ∆ axl(A) = µc axl(skew(∇u)− A) , (2.5)

ż ∈ g(−ρ∇zψ(ε, z, A)) ,

ρψ(ε, z, A) = µ‖ε− εp‖2+
λ

2
(tr [ε])2+µc‖ skew(∇u)−A‖2+2lc‖∇ axl(A)‖2+〈Lz, z〉,

u|∂Ω
= ud , A|∂Ω

= Ad , z(0) = z0 .

The goal of this article is to prove that system (2.5) is H1 well-posed if the given data
g, f, ud, Ad, z

0 satisfy some natural restrictions. In this article we use the following stan-
dard notation: for an open set U ⊂ Rn the symbol Wk,p(U,RN) denotes the usual Sobolev
space of vector-valued Lp-functions possessing Lp-weak derivatives up to the order k. For
p = 2 we write Wk,2(U,RN) = Hk(U,RN). The main result of this article is the following
existence and uniqueness theorem for system (2.5):

Theorem 2.1 (Main Theorem)
Suppose that the constitutive multifunction g is a maximal monotone mapping and the
given data f, ud, Ad satisfy: for all times T > 0

f ∈ C1([0, T ], L2(Ω,R3)) , f̈ ∈ L2((0, T )× Ω,R3) ,

ud ∈ C2([0, T ],H 1
2 (∂Ω,R3)) ,

...
ud∈ L2((0, T ),H 1

2 (∂Ω,R3)) ,

Ad ∈ C2([0, T ],H 3
2 (∂Ω, so(3))) ,

...

Ad∈ L2((0, T ),H 1
2 (∂Ω, so(3))) .

Moreover, assume that the initial data z0 ∈ L2(Ω,RN) are chosen such that the initial
value of ∇zψ belongs to the domain of the maximal monotone operator g. Then the
system (2.5) possesses a global in time, unique solution (u, z, A) with the regularity: for
all T > 0

u ∈ W1,∞((0, T ),H1(Ω,R3)) , z ∈ W1,∞((0, T ), L2(Ω,RN)) ,

A ∈ W1,∞((0, T ),H2(Ω, so(3))) .

Our Main Theorem implies that for all monotone models in the inelastic deformation
theory the independent microrotations have a regularizing effect: the strains remain in L2

and the solution is found in H1. This is at variance with the case without Cosserat effects
where we observe in the noncoercive case (the operator L is only positive semi-definite as
e.g. in plasticity without hardening) a lack of regularity of the strain and the inelastic
strain tensors (see for example [Che97, Che98, Che99, Che01a]).

3 Yosida approximation and energy estimates

In this section we present an approximation process for system (2.5) and prove the main
estimates for the approximation sequence. The idea of the approximation is very simple.
We use the fact that maximal monotone mappings can be approximated by global Lip-
schitz single-valued functions, in the literature called the Yosida approximation (see for
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example [AC84, Theorem 2, page 144]). Hence, we rewrite system (2.5) with the Yosida
approximation gη instead of g and try to pass to the limit η → 0+. Thus, for η > 0 we
study the following system of equations

Div ση = −f ,
ση = 2µ (εη − εη

p) + 2µc (skew(∇uη)− A) + λ tr [εη] · 11 ,
−lc ∆ axl(Aη) = µc axl(skew(∇uη)− Aη) , (3.1)

żη = gη(−ρ∇zψ(εη, zη, Aη)) ,

ρψ(εη, zη, Aη) = µ‖εη − εη
p‖2+

λ

2
(tr [ε]η)2+µc‖ skew(∇uη)−Aη‖2,

+2lc‖∇ axl(Aη)‖2+〈Lzη, zη〉 ,
uη
|∂Ω

= ud , Aη
|∂Ω

= Ad , zη(0) = z0

with the same data f, ud, Ad, z
0 as for the system (2.5). The next theorem presents

existence and uniqueness result for system (3.1).

Theorem 3.1 (Existence and uniqueness for approximated problem)
Let us assume that the given data possess the following regularity: for all T > 0

f ∈ C([0, T ], L2(Ω,R3)) , ud ∈ C([0, T ],H
1
2 (∂Ω,R3)) , Ad ∈ C([0, T ],H

3
2 (∂Ω, so(3)))

and the initial data z0 belong to L2(Ω,RN). Then the approximated problem has a global
in time, unique solution (uη, zη, Aη) with the regularity

uη ∈ C([0, T ],H1(Ω,R3)) , zη ∈ C1([0, T ], L2(Ω,RN)) ,

Aη ∈ C([0, T ],H2(Ω, so(3))) .

If the given data are more regular, specifically

ḟ ∈ C([0, T ], L2(Ω,R3)) , u̇d ∈ C([0, T ],H
1
2 (∂Ω,R3)) ,

Ȧd ∈ C([0, T ],H
3
2 (∂Ω, so(3))) , (3.2)

then the solution is C1 in time.

Proof. The approximated system contains only global Lipschitz nonlinearities. Hence,
the proof is standard. For more information we refer to [NC05]. �

Next, we are going to obtain some estimates for the approximate sequence (uη, zη, Aη).
The first one is the energy estimate, this means that the energy associated with the system
(3.1) is controlled in time by the given data. Let us start with the definition of the energy
function. The energy is defined as

E(u, z, A)(t) =

∫
Ω

(
µ‖ε−Bz‖2+

λ

2
(tr [ε])2+µc‖ skew(∇u)−A‖2+2lc ‖∇ axl(A)‖2+〈Lz, z〉

)
dx .

The crucial property of the energy is the coerciveness with respect to the displacement-
gradient ∇u. The next theorem recalls this crucial result.
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Theorem 3.2 (Coerciveness of the energy)
The energy function is elastically coercive with respect to ∇u. This means that

∃ CE > 0 , ∀ u ∈ H1
0(Ω,R3) , ∀ A ∈ H1(Ω, so(3)) , ∀ z ∈ L2(Ω,RN)

E(u, z, A) ≥ CE(‖u‖2
H1(Ω) + ‖A‖2

H1(Ω)) .

Moreover,
∃ CE > 0, ∀ ud ∈ H 1

2 (∂Ω,R3) , ∀ Ad ∈ H 1
2 (∂Ω, so(3)), ∃ Cd > 0, ∀ z ∈ L2(Ω,RN),

∀ u ∈ H1(Ω,R3), ∀ A ∈ H1(Ω, so(3)) with u|∂Ω
= ud and A|∂Ω

= Ad it holds that

E(u, z, A) + Cd ≥ CE(‖u‖2
H1(Ω) + ‖A‖2

H1(Ω)) .

A proof of this statement can be found in [NC05, Theorem 3.2]. �

To estimate the energy function we need initial values of the displacement uη(0) and of the
microrotations Aη(0). These values are determined by the initial value z0, more precisely
by Bz0 only. Using the continuity with respect to time we conclude that the initial values
uη(0), Aη(0) are solutions of the following linear elliptic boundary-value problem

Div ση(0) = −f(0) ,

ση(0) = 2µ (εη(0)−Bzη(0)) + 2µc (skew(∇uη(0))− Aη(0)) + λ tr [εη(0)] · 11 ,
−lc∆ axl(Aη(0)) = −µc axl(Aη(0)) + µc axl(skew(∇uη(0))) ,

uη(0)|∂Ω
= ud , Aη(0)|∂Ω

= Ad ,

(3.3)

where εη(0) = 1/2(∇uη(0) +∇Tuη(0)). The elliptic system (3.3) possesses a unique solu-
tion with the regularity uη(0) ∈ H1(Ω,R3), Aη(0) ∈ H2(Ω, so(3))) which is independent
of η. This implies that the initial energy value E(uη, zη, Aη)(0) is a constant.

Theorem 3.3 (Energy estimate for the approximate sequence)
Let us assume that the given data have the regularity (3.2) and {(uη, zη, Aη)} is the
solution of the approximate problem (3.1). Then for all T > 0 there exists a positive
constant C(T ), independent of η, such that

E(uη, zη, Aη)(t) ≤ C(T ) for all t ∈ [0, T ) . (3.4)

Proof. Calculating the time derivative of the energy and using the symmetry of the
matrix L we obtain

Ė(uη, zη, Aη)(t) =

∫
Ω

(
2µ〈εη −Bzη, ε̇η −Bżη〉+ λ tr [εη]tr [ε̇η] + 〈Lzη, żη〉

+2µc〈skew(∇uη)− Aη, skew(∇u̇η)− Ȧη〉+ 4lc〈∇ axl(Aη),∇ axl(Ȧη)〉
)
dx .

Let us observe that −〈εη−Bzη, Bżη〉+ 〈Lzη, żη〉 = −〈BT (εη−Bzη)+Lzη, żη〉. Moreover,
from the definition of the free energy we have that ρ∇ψ(εη, zη, Aη) = BT (εη−Bzη)+Lzη.
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These equalities allow us to write that

Ė(uη, zη, Aη)(t) = −
∫
Ω

〈ρ∇zψ(εη, zη, Aη), żη〉dx

+

∫
Ω

〈ση,∇u̇η〉dx− 2µc

∫
Ω

〈skew(∇uη)− Aη, Ȧη〉dx

+4lc

∫
Ω

〈∇ axl(Aη),∇ axl(Ȧη)〉dx .

By the monotonicity of the Yosida approximation gη and the property 0 = gη(0) we see
that the first term on the right hand side of the last inequality is nonpositive. Next, we
integrate partially in the second and in the fourth integral. Finally, using the balance of
linear and angular momentum and the boundary conditions we arrive at the inequality

Ė(uη, zη, Aη)(t) ≤
∫
Ω

〈f, u̇η〉dx+

∫
∂Ω

〈ση.n, u̇d〉ds

+4lc

∫
∂Ω

〈∇ axl(Aη).n, axl(Ȧd)〉ds . (3.5)

Integrating (3.5) in time we have

E(uη, zη, Aη)(t) ≤ E(uη, εη, εη
p, A

η)(0) +

t∫
0

∫
Ω

〈f, u̇η〉dx

+

t∫
0

∫
∂Ω

〈ση.n, u̇d〉ds+ 4lc

t∫
0

∫
∂Ω

〈∇ axl(Aη).n, axl(Ȧd)〉ds . (3.6)

This inequality is the same as in the proof of Theorem 3.3 given in [NC05]. Hence, for
the remaining part of the proof we refer to this article. �
The result obtained in the last theorem yields some boundedness of the sequence (uη, zη, Aη).
To pass to the limit in system (3.1) we need estimates for the time derivatives of this se-
quence. In all initial boundary-value problems in the inelastic deformation theory such
an estimate is the crucial ingredient.

Theorem 3.4 (Energy estimate for time derivatives)
Suppose that the given data possess the following regularity : for all times T > 0

f ∈ C1([0, T ], L2(Ω,R3)) , f̈ ∈ L2((0, T )× Ω,R3) ,

ud ∈ C2([0, T ],H 1
2 (∂Ω,R3)) ,

...
ud∈ L2((0, T ),H 1

2 (∂Ω,R3)) ,

Ad ∈ C2([0, T ],H 3
2 (∂Ω, so(3))) ,

...

Ad∈ L2((0, T ),H 1
2 (∂Ω, so(3))) .

(3.7)

Moreover, assume that the initial data z0 are chosen such that the initial value of the
argument of the constitutive multifunction −ρ∇zψ(εη(0), z0, Aη(0)) defined by the system
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(3.3) belongs to the domain of the maximal monotone operator g. Then there exists a
positive constant C(T ), independent of the parameter η, such that

E(u̇η, żη, Ȧη)(t) ≤ C(T ) for all t ∈ [0, T ) .

Proof. For h > 0 let us denote by (uη
h(t), zη

h(t), Aη
h(t)) the shifted functions (uη(t +

h), zη(t + h), Aη(t + h)) and calculate the time derivative of the energy evaluated on
the differences (uη

h − uη, zη
h − zη, Aη

h − Aη). Then we arrive at the equality

Ė(uη
h − uη, zη

h − zη, Aη
h − Aη)(t) =

∫
Ω

2µ 〈εη
h − εη −Bzη

h +Bzη, ε̇η
h − ε̇η −Bżη

h +Bżη〉dx

+2µc

∫
Ω

〈skew(∇uη
h −∇uη)− Aη

h + Aη, skew(∇u̇η
h −∇u̇η)− Ȧη

h + Ȧη〉dx

+λ

∫
Ω

tr [εη
h − εη]tr [ε̇η

h − ε̇η] dx+ 4lc

∫
Ω

〈∇ axl(Aη
h − Aη),∇ axl(Ȧη

h − Ȧη)〉dx

+

∫
Ω

〈Lzη
h − Lzη, żη

h − żη〉dx (3.8)

where εη
h(t) = εη(t+ h). Next, using the definition of the free energy we see that

ρ∇zψ(εη
h − εη, zη

h − zη, Aη
h − Aη) = BT (εη

h − εη −Bzη
h +Bzη) + L(zη

h − zη) .

Let us define the shifted value of the stress tensor ση
h(t) = ση(t + h). Then using the

elastic constitutive relation and the linearity of the derivative of the free energy we obtain

Ė(uη
h − uη, zη

h − zη, Aη
h − Aη)(t)

= −
∫
Ω

〈−ρ∇zψ(εη
h, z

η
h, A

η
h) + ρ∇zψ(εη, zη, Aη), żη

h − żη〉dx

+

∫
Ω

〈ση
h − ση,∇u̇η

h −∇u̇η〉dx

−4µc

∫
Ω

〈axl skew(∇uη
h −∇uη)− axl(Aη

h − Aη), axl(Ȧη
h − Ȧη)〉dx

+4lc

∫
Ω

〈∇ axl(Aη
h − Aη),∇ axl(Ȧη

h − Ȧη)〉dx , (3.9)

By the monotonicity of the Yosida approximation the first term on the right hand side
of (3.9) is nonpositive. In the same manner as in the energy estimate in Theorem 3.3 we
integrate by parts in the second and in the fourth integral and use the balance of linear
momentum and the equation for the microrotations. Hence, we may conclude that

Ė(uη
h − uη, zη

h − zη, Aη
h − Aη)(t) ≤

∫
Ω

〈fh − f, u̇η
h − u̇η〉dx

+

∫
∂Ω

〈(ση
h − ση).n, u̇d,h − u̇d〉ds+ 4lc

∫
∂Ω

〈∇ axl(Aη
h − Aη).n, axl(Ȧd,h − Ȧd〉ds , (3.10)
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where fh(t) = f(t+ h), ud,h(t) = ud(t+ h) and Ad,h(t) = Ad(t+ h). Integrating (3.10) in
time we arrive at the inequality

E(uη
h − uη, zη

h − zη, Aη
h − Aη)(t) ≤ E(uη

h − uη, zη
h − zη, Aη

h − Aη)(0)

+

t∫
0

∫
Ω

〈fh − f, u̇η
h − u̇η〉dx dτ +

t∫
0

∫
∂Ω

〈(ση
h − ση).n, u̇d,h − u̇d〉ds dτ (3.11)

+4lc

t∫
0

∫
∂Ω

〈∇ axl(Aη
h − Aη).n, axl(Ȧd,h − Ȧd〉ds dτ .

The last inequality is the same as inequality [NC05, 3.25]. Hence, the remaining part of
the proof is the same as in [NC05]. For the convenience of the reader we add a sketch of
this part. In (3.11) in the integral term on the right hand side we shift the shift operator
onto given data. Next, we divide the result by h2 and pass to the limit h → 0+. By
assumption the initial value −ρ∇zψ(εη(0), z0, Aη(0)) belongs to the domain of the maxi-

mal monotone operator g. This implies that the sequence gη

(
− ρ∇zψ(εη(0), z0, Aη(0))

)
is bounded in L2(Ω,RN). Thus, the sequence Bżη(0) is bounded in L2(Ω, Sym(3)). Cal-
culating the initial values u̇η, Ȧη from (3.3) with Bżη instead of Bz0 we conclude that
the initial value of the energy evaluated for the time derivatives is bounded. Using the
regularity assumptions of the data and coerciveness of the energy we complete the proof. �

4 Estimate for differences of two approximation steps

and proof of the main theorem

The energy estimates proved in the last section yield that the sequence of stresses {ση}
and the sequence of their time derivatives {σ̇η} are bounded in L∞((0, T ), L2(Ω,R3×3)).
By the coerciveness of the energy the strains {εη} and the strain rates {ε̇η} are bounded in
L∞((0, T ), L2(Ω,R3×3)). Moreover, using that the operator Mz = 2µBTBz + Lz is posi-
tive definite we have that the sequences {zη}, {żη} are bounded in L∞((0, T ), L2(Ω,RN)).
Finally, the microrotations {Aη} and their time derivatives {Ȧη} are bounded in the space
L∞((0, T ), H1(Ω, so(3))). Hence, for a subsequence (again denoted using the superscript
η) we have

ση ∗
⇀ σ in L∞((0, T ), L2(Ω,R3×3)) ,

σ̇η ∗
⇀ σ̇ in L∞((0, T ), L2(Ω,R3×3)) ,

Aη ∗
⇀ A in L∞((0, T ),H1(Ω, so(3))) ,

Ȧη ∗
⇀ Ȧ in L∞((0, T ),H1(Ω, so(3))) ,

uη ∗
⇀ u in L∞((0, T ),H1(Ω,R3)) ,

u̇η ∗
⇀ u̇ in L∞((0, T ),H1(Ω,R3)) ,

zη ∗
⇀ z in L∞((0, T ), L2(Ω,RN)) ,

żη ∗
⇀ ż in L∞((0, T ), L2(Ω,RN)) ,
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for all T > 0. Hence, the sequence of strains {εη} converges weakly to ε = 1
2
(∇u+∇Tu).

Consequently, the limit functions satisfy

Div σ = −f ,
σ = 2µ (ε−Bz) + 2µc (skew(∇u)− A) + λ tr [ε] · 11 ,

−lc ∆ axl(A) = µc axl(skew(∇u)− A) , (4.1)

ż = w− lim
η→0+

gη

(
− ρ∇zψ(εη, zη, Aη)

)
,

u|∂Ω
= ud , A|∂Ω

= Ad , z(0) = z0 .

To end the existence theory we need to prove that

w− lim
η→0+

gη

(
− ρ∇zψ(εη, zη, Aη)

)
∈ g

(
− ρ∇zψ(ε, z, A)

)
. (4.2)

where w− lim denotes the weak limit in the space L∞((0, T ), L2(Ω,RN)). This can be
done if we improve the convergence of the sequence {∇zψ(εη, zη, Aη)}.

Theorem 4.1 (Estimate for difference of two approximation steps)
Let us assume that the given data satisfy all requirements of Theorem 3.4. Then E(uη −
uν , zη − zν , Aη − Aν)(t) → 0 for η, ν → 0+ uniformly on bounded time intervals.

Proof. Calculating the time derivative of the energy evaluated on the differences of two
approximation steps we obtain

Ė(uη − uν , zη
p − zν , Aη − Aν)(t) = 2µ

∫
Ω

〈εη − εν −Bzη +Bzν , ε̇η − ε̇ν −Bżη +Bżν〉dx

+λ

∫
Ω

tr [εη − εν ]tr [ε̇η − ε̇ν ] dx+ 4lc

∫
Ω

〈∇ axl(Aη − Aν),∇ axl(Ȧη − Ȧν)〉dx

+2µc

∫
Ω

〈skew(∇uη −∇uν)− Aη + Aν , skew(∇u̇η −∇u̇ν)− Ȧη + Ȧν〉dx .

= −
∫
Ω

〈−ρ∇zψ(εη, zη, Aη) + ρ∇zψ(εν , zν , Aν),

gη

(
− ρ∇zψ(εη, zη, Aη)

)
− gν

(
− ρ∇zψ(εν , zν , Aν)

)
〉dx .

(to obtain the last equality we have used that the given data for both approximation steps
are the same). Next, to estimate the integral on the right hand side we use the method
from [AC84, Theorem 1 p. 147 ]) and conclude that

−
∫
Ω

〈−ρ∇zψ(εη, zη, Aη) + ρ∇zψ(εν , zν , Aν),

gη

(
− ρ∇zψ(εη, zη, Aη)

)
− gν

(
− ρ∇zψ(εν , zν , Aν)

)
〉dx

≤ η

4
‖żν‖2

L2 +
ν

4
‖żη‖2

L2 .
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The energy estimate for the time derivatives implies that the norms ‖żν‖2
L2 , ‖żη‖2

L2 are
bounded independent of η, ν. Hence, integrating in time the last inequality completes the
proof. �
Theorem 4.1 yields that the sequence {∇zψ(εη, zη, Aη)} converges strongly to ∇zψ(ε, z, A)
in the space L∞((0, T ), L2(Ω,RN)). Thus, using the standard properties of maximal
monotone operators and the Yosida approximation we deduce that the inclusion (4.2)
holds. To end the proof of the Main Theorem we have to prove uniqueness of solutions
to system (2.5).

Theorem 4.2 (Uniqueness of solutions)
Let us assume that the given data f, ud, Ad, z

0 satisfy all requirements of Theorem 3.4
Then system (2.5) possesses a unique, global in time solution (u, z, A).

Proof. Assume that (u1, z1, A1) and (u2, z2, A2) are two solutions of (2.5) for the same
given data. Calculating the time derivative of the energy evaluated on the differences of
two solutions we arrive at the inequality

Ė(u1 − u2, z1 − z2, A1 − A2)(t) = 2µ

∫
Ω

〈ε1 − ε2 −Bz1 +Bz2, ε̇1 − ε̇2 −Bż1 +Bż2〉dx

+λ

∫
Ω

tr [εη − εν ]tr [ε̇η − ε̇ν ] dx+ 4lc

∫
Ω

〈∇ axl(A1 − A2),∇ axl(Ȧ1 − Ȧ2)〉dx

+2µc

∫
Ω

〈skew(∇u1 −∇u2)− A1 + A2, skew(∇u̇1 −∇u̇2)− Ȧ1 + Ȧ2〉dx

+

∫
Ω

〈Lz1 − Lz2, ż1 − ż2〉dx

= −
∫
Ω

〈−ρ∇zψ(ε1, z1, A1) + ρ∇zψ(ε2, z2, A2), ż1 − ż2〉dx ≤ 0 .

Consequently

E(u1 − u2, z1 − z2, A1 − A2)(t) ≤ E(u1 − u2, z1 − z2, A1 − A2)(0) = 0

and get the result using the coerciveness of the energy function. �

5 Cosserat perfect elasto-plasticity as a limit of Melan-

Prager models

In [Che01a] it is proved that in the case without independent microrotations solutions
of the Melan-Prager problem converge to a solution of perfect elasto-plasticity if the
evolution of the additional kinematic hardening “tends to zero”. Now we are able to prove
a similar result for inelastic continua with Cosserat effects. Let us recall the structure of
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the Melan-Prager model and of the perfect elasto-plasticity model. Following [Che01a],
the system of equations modeling perfect elasto-plasticity belongs to the class of simple
models of monotone type. This means that the vector of internal variables z consists of
εp only and the inelastic constitutive equation is of monotone type:

Div σ = −f ,
σ = 2µ (ε− εp) + 2µc (skew(∇u)− A) + λ tr [ε] · 11 ,

−lc ∆ axl(A) = µc axl(skew(∇u)− A) , (5.1)

ε̇p ∈ ∂IK

(
2µ (ε− εp)

)
.

Here K denotes the set of admissible stresses, which we assume to be of the form Kd×R
and Kd ⊂ dev Sym(3) is closed, convex, bounded set with 0 ∈ int(Kd). dev Sym(3)
denotes the subspace of Sym(3) consisting of deviatoric (trace-free) parts of symmetric
matrices. The function IK : Sym(3) → R+ is the indicator function of the set K, this
means that

IK(τ) =

{
0 for τ ∈ K ,
∞ for τ /∈ K .

Finally, ∂IK denotes the subgradient of the convex function IK . It is easy to see that the
constitutive multifunction ∂IK is maximal monotone and the existence theory presented
in this article (for simple models without Cosserat effects see also [NC05]) yields H1 well-
posedness of this model.

The Melan-Prager model is a modification of the perfect elasto-plasticity. In this
model the vector z contains εp and additionally the backstress b ∈ Sym(3). The system
of equations has now the form

Div σ = −f ,
σ = 2µ (ε− εp) + 2µc (skew(∇u)− A) + λ tr [ε] · 11 ,

−lc ∆ axl(A) = µc axl(skew(∇u)− A) , (5.2)

ε̇p ∈ ∂IK

(
2µ (ε− εp)− b

)
,

ḃ = γε̇p ,

where γ > 0 is a material parameter and the set of admissible stresses K is defined in
the same manner as in system (5.1). Similar to perfect elasto-plasticity the Melan-Prager
model is also H1 well-posed:

Theorem 5.1
Let us assume that {(uγ, εγ

p , b
γ, Aγ)} is a sequence of solutions to the Melan-Prager model

for γ > 0 with boundary data independent of γ. Suppose that the initial value b0,γ for
the backstress is equal to γε0

p where ε0
p is the initial value of the inelastic strain tensor.

Moreover, assume that the initial data is chosen such that the initial value of the argument
of the constitutive multifunction satisfies 2µ(εγ(0)− ε0

p)− b0,γ ∈ D(∂IK) for each γ. Then
the sequence {(uγ, εγ

p , A
γ)} converges to the solution of the perfect elasto-plasticity model

considered with the same boundary data as for the Melan-Prager model and with the
initial inelastic strain equal to ε0

p.

13



Proof. The proof is a simple consequence of the Main Theorem. The free energy function
associated with the Melan-Prager model has the form

E(uγ, εγ
p , b

γ, Aγ)(t)

=

∫
Ω

(
µ‖εγ − εγ

p‖2 +
λ

2
(tr [εγ])2 + µc‖ skew(∇uγ)− Aγ‖2 + 2lc ‖∇ axl(Aγ)‖2 +

γ

2
|bγ|2

)
dx .

Hence, the operator L is defined by Lzγ = L(εγ
p , b

γ) = (0, γ
2
bγ) and the operatorM(εγ

p , b
γ) =

(2µεγ
p ,

γ
2
bγ) is positive definite. By Theorem 3.2 the energy function is coercive with re-

spect to variable εγ and the coerciveness constant does not depend on γ. Consequently,
the energy is coercive with respect to variable εγ

p independent of γ. This observation
implies that the constants in Theorems 3.3 and 3.4 do not depend on γ. Hence, going
to a subsequence if necessary we conclude that the sequence {(uγ, εγ

p , b
γ, Aγ)} converges

weakly to (u, ε, b, A) in the space W1,∞(L2). By assumption the sequence of the initial
data {b0,γ} converges strongly to zero and consequently the sequence bγ converges strongly
to zero. To prove that functions (u, εp, A) satisfy (5.1) we use Theorem 4.1. This theorem
gives that {2µ(εγ − εγ

p) − bγ} converges strongly. Hence, the limit function is equal to
2µ(ε−εp) where ε is the symmetric part of the gradient of u. Using standard properties of
maximal monotone operators we conclude that (u, εp, A) is a solution to (5.1). Theorem
4.2 immediately yields that the whole approximating sequence {(uγ, εγ

p , b
γ, Aγ)} converges

to (u, εp, 0, A). �
Note, that our result yields that the inelastic deformation theory with independent mi-
crorotations is stable under limit procedures involving some parameters appearing in the
components Bz of the vector z. This result differs from similar limit procedures in the clas-
sical inelastic deformation theory (compare with [Che97, Che98, Che99, Che00, Che01a,
CN02]).

6 Approximation of perfect elasto-plasticity

In this section we are going to study the limit process µc → 0+ of vanishing Cosserat effects
in the Cosserat-Prandtl-Reuss model (5.1). The same investigation for pure elasticity has
been done in [Nef06a]. Let us denote by (uµc , εµc , Aµc) the global in time L2-solution of
the model. This means that these functions satisfy

Div σµc = −f ,
σµc = 2µ (εµc − εµc

p ) + 2µc (skew(∇uµc)− Aµc) + λ tr [εµc ] · 11 ,
−lc ∆ axl(Aµc) = µc axl(skew(∇uµc)− Aµc) , (6.3)

ε̇µc
p ∈ ∂IK

(
2µ (εµc − εµc

p )
)
,

uµc

|∂Ω
= ud , Aµc

|∂Ω
= Ad , εµc

p (0) = ε0
p .

The goal of this section is to prove that under the so called safe load condition for
the forces acting on the material the sequence of solutions converges to a solution in
the measure-valued sense of the Prandtl-Reuss model for µc → 0+. Moreover, we show
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that the field of microrotations Aµc converges to the unique harmonic function A which
satisfies the boundary condition A|∂Ω

= Ad . In other words, in the limit of vanishing
Cosserat effects the microrotations are decoupled from the equations of perfect elasto-
plasticity.
Let us denote by M3×3

sym(Ω) the Banach space containing all bounded Radon measures
in Ω with values in Sym(3), by devM3×3

sym(Ω) the subspace of M3×3
sym(Ω) consisting of

measures with values in dev Sym(3) and by BD(Ω) the space of bounded deformations
{u ∈ L1(Ω,R3) : 1/2(∇u + ∇Tu) ∈ M3×3

sym(Ω)} (for more details see [EG92, Tem83]).
Moreover, let us denote with L∞w ((0, T ), X) the space of bounded and weakly measurable
functions defined on the interval (0, T ) with values in the Banach space X. Now we can
define solutions in the measure-valued sense of the perfect elasto-plasticity model.

Definition 6.1 (measure-valued solutions)
Let f be a given external force and ud be a given Dirichlet boundary data. We say that
a pair (u, εp) satisfies the equations of the Prandtl-Reuss model in the sense of measures
if u ∈ W1,∞

w ((0, T ),BD(Ω)), εp ∈ W1,∞
w ((0, T ), devM3×3

sym(Ω)) ,

1

2
(∇u+∇Tu)− εp ∈ W1,∞((0, T ), L2(Ω, Sym(3))) ,

the balance of linear momentum

−Div σ = −Div(2µ(ε− εp) + λtr [ε] · 11) = f

is satisfied in the L2-sense (here ε = 1/2(∇u + ∇Tu)) and the inelastic constitutive
equation

ε̇p ∈ ∂IK(σ)

is satisfied in the measure sense. This means that for all τ ∈ L2(Ω, Sym(3)), such that
Div τ ∈ L2(Ω,R) and τ(x) ∈ K for a.e. x ∈ Ω the expression

〈ε̇p, (σ − τ)〉 is a nonnegative measure .

Moreover, the Dirichlet boundary condition is satisfied in the normal direction, this means
that u|∂Ω

· n = ud · n, where n is the normal unit vector to the boundary ∂Ω.

Next we define a condition for the given force f . This is the so called safe-load condition.

Definition 6.2 (safe-load condition)
We say that the given force f satisfies the safe-load condition if there exists a function
u∗d ∈ W1,∞((0, T ),H1(Ω,R3)) such that the following linear elastic problem

−Div σ∗(x, t) = f(x, t) ,

σ∗(x, t) = 2µ ε(u∗(x, t)) + λtr [ε(u∗(x, t))] · 11 ,
u∗(x, t)|∂Ω = u∗d(x, t)|∂Ω

possesses a solution u∗ ∈ W1,∞((0, T ),H1(Ω,R3)) such that σ∗(x, t) ∈ K for a.e. (x, t) ∈
Ω× (0, T ) and

∃ c∗ > 0 dist(σ∗(x, t), ∂K) ≥ c∗ for a.e.(x, t) ∈ Ω× (0, T ) ,

where ε(u∗) = 1/2(∇u∗ +∇Tu∗).
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Theorem 6.3 (Cosserat-plasticity and µc → 0+)
Let us assume that f ∈ C1([0, T ], L2(Ω,R3)), f̈ ∈ L2((0, T ) × Ω,R3) and f satisfies
the safe load condition. Moreover, assume that the Dirichlet data possess the regularity
ud ∈ C2([0, T ],H 1

2 (∂Ω,R3)) ,
...
ud∈ L2((0, T ),H 1

2 (∂Ω,R3)) ,

Ad ∈ C2([0, T ],H 3
2 (∂Ω, so(3))) ,

...

Ad∈ L2((0, T ),H 1
2 (∂Ω, so(3))) .

Further, suppose that the initial data ε0
p ∈ L2(Ω, dev Sym(3)) are chosen such that the

initial value of εµc belongs to L2(Ω, Sym(3)) and 2µ (εµc(x, 0) − ε0
p(x)) ∈ K for a.e

(x, t) ∈ Ω× (0, T ).
Then for µc → 0+ the sequence {(uµc , εµc

p )} of solutions to the problem (6.3) possesses
a subsequence which converges weakly to a solution in the measure sense of the perfect
elasto-plasticity and the sequence {Aµc} converges strongly in the space C([0, T ],H1(Ω, so(3)))
to a harmonic (with respect to x) function, which satisfies the Dirichlet boundary condi-
tion A|∂Ω = Ad.

Proof. The energy associated with the problem (6.3) has the form

E(uµc , εµc
p , A

µc)(t)

=

∫
Ω

(
µ‖εµc − εµc

p ‖2 +
λ

2
(tr [εµc ])2 + µc‖ skew(∇uµc)− Aµc‖2 + 2lc ‖∇ axl(Aµc)‖2

)
dx .

We see that in this case the operator L ≡ 0 and the operator Mzµc = Mεµc
p = 2µεµc

p is
positive definite. Hence, we can use the Main Theorem and obtain that for all µc > 0 the
energy E(uµc , εµc

p , A
µc) and the energy evaluated for the time derivatives E(u̇µc , ε̇µc

p , Ȧ
µc)

are both bounded on bounded time intervals. If µc → 0+ we loose the coerciveness of the
energy and can conclude only that the sequence

{εµc − εµc
p } is bounded in the space W1,∞((0, T ), L2(Ω, Sym(3))) ,

{tr [εµc ]} is bounded in the space W1,∞((0, T ), L2(Ω,R)) ,

{Aµc} is bounded in the space W1,∞((0, T ),H1(Ω, so(3))) ,

{√µc(skew(∇uµc)− Aµc)} is bounded in the space W1,∞((0, T ), L2(Ω, so(3))) .

The last observation yields that the sequence {µc(skew(∇uµc)−Aµc)} converges strongly
to zero in the space W1,∞((0, T ), L2(Ω, so(3))). Using the standard elliptic estimate

‖Aµc‖H2(Ω) + ‖Ȧµc‖H2(Ω) ≤ C
(
‖Ad‖H

3
2 (∂Ω)

+ ‖Ȧd‖H
3
2 (∂Ω)

+µc‖ skew(∇uµc)− Aµc‖L2(Ω) + µc‖ skew(∇u̇µc)− Ȧµc‖L2(Ω)

)
we obtain that from the sequence {Aµc} we can select a subsequence (further on denoted
with the same symbol) which converges weakly in the space W1,∞((0, T ),H2(Ω, so(3))) and
consequently strongly in the space C([0, T ],H1(Ω, so(3))). The limit function A satisfies
the boundary value problem

−∆A(x, t) = 0 , A|∂Ω = Ad .
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Uniqueness of such harmonic functions immediately yields the last statement of the theo-
rem. Next, we want to prove that the sequence {(uµc , εµc

p )} possesses a weak accumulation
point, which solves, in the measure-valued sense, the (symmetric) Prandtl-Reuss system.
According to the safe load condition we conclude that

|ε̇µc
p | ≤

1

c∗
〈ε̇µc

p , (S
µc − σ∗)〉

where Sµc = 2µ(εµc − εµc
p ) +λtr [εµc ] · 11, the stress tensor σ∗ and the constant c∗ are from

the Definition 6.2. Hence, using that (skew(∇uµc)− Aµc) ∈ so(3) we obtain∫
Ω

|ε̇µc
p | dx ≤

1

c∗

∫
Ω

〈ε̇µc
p , (S

µc − σ∗)〉 dx

=
1

c∗

∫
Ω

〈(ε̇µc
p − ε̇µc), (Sµc − σ∗)〉 dx+

1

c∗

∫
Ω

〈ε̇µc , (σµc − σ∗)〉 dx

=
1

c∗

∫
Ω

〈(ε̇µc
p − ε̇µc), (Sµc − σ∗)〉 dx+

1

c∗

∫
Ω

〈∇u̇µc , (σµc − σ∗)〉 dx

−µc

c∗

∫
Ω

〈skew(∇u̇µc)− Ȧµc , skew(∇uµc)− Aµc〉 dx− µc

c∗

∫
Ω

〈Ȧµc , skew(∇uµc)− Aµc〉 dx

≤ C(E(u̇µc , ε̇µc
p , Ȧ

µc) + E(uµc − u∗, εµc
p , A

µc)) +
1

c∗

∫
∂Ω

〈u̇d, (σ
µc − σ∗) · n〉 ds

+‖Ȧµc‖L2(Ω)‖µc/c
∗(skew(∇uµc)− Aµc)‖L2(Ω)

≤ C(E(u̇µc , ε̇µc
p , Ȧ

µc) + E(uµc − u∗, εµc
p , A

µc)) +
1

c∗
‖u̇d‖H

1
2 (∂Ω)

‖σµc − σ∗‖L2(Ω)

+‖Ȧµc‖L2(Ω)‖µc/c
∗(skew(∇uµc)− Aµc)‖L2(Ω)

(note that Div(σµc − σ∗) = 0) where the constant C > 0 do not depend on µc. Using
the boundedness of the energy and regularity of the solution u∗ we conclude that the
sequence {ε̇µc

p } is bounded in the space L∞((0, T ), L1(Ω, Sym(3))). The energy estimate
yields also that the sequence {ε̇µc−ε̇µc

p } is bounded in the space L∞((0, T ), L2(Ω, Sym(3)))
and consequently the sequence {ε̇µc} is bounded in the space L∞((0, T ), L1(Ω, Sym(3))).
These results allow us to select a subsequence (further on denoted with the same symbol)
such that

εµc ⇀ ε in W1,∞
w ((0, T ),M3×3

sym(Ω)) ,

εµc
p ⇀ εp in W1,∞

w ((0, T ), devM3×3
sym(Ω)) .

The energy estimate implies that the function σ = 2µ(ε − εp) + λtr [ε] · 11 belongs to
the space W1,∞((0, T ), L2(Ω, Sym(3))). The boundedness of the sequence {tr [εµc ]} in the
space W1,∞((0, T ), L2(Ω,R)) implies that the Dirichlet boundary condition is satisfied in
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the normal direction to the boundary. The proof that 〈ε̇p, (σ− τ)〉 is a nonnegative mea-
sure for all τ ∈ L2(Ω, Sym(3)), such that Div τ ∈ L2(Ω,R) and τ(x) ∈ K for a.e. x ∈ Ω
is the same as in the article [Tem86] or [Che01a]. �

Remark 6.4
(a) In the same manner as in the proof of Theorem 6.3 we can prove that the sequence
{(uµc , εµc

p , b
µc , Aµc)} of solutions to the Melan-Prager model with microrotations converges

for µc → 0+ to a global in time H1-solution of the Melan-Prager model without Cosserat
effects. Existence of such solutions in the quasistatic case can be found in [AC04, AC07].

(b) For simplicity we study in this article the Dirichlet boundary value problem only. The
presented theory works well if the mixed boundary value problem for the displacement
and the Dirichlet boundary value problem for microrotations is required. We use in the
existence theory the H2-regularity for microrotations only.

7 Remarks and open problems

In this contribution we have shown that all models of monotone type from the inelastic
deformation theory are H1 well-posed if Cosserat effects are taken into account. Thus,
the following question appears: is the regularizing effect of Cosserat media so strong that
the Main Theorem can be improved to hold for some non-monotone models as well? For
example, inelastic deformations described by Armstrong-Frederick inelastic constitutive
relation with independent microrotations are solutions of the following system of equations

Div σ = −f ,
σ = 2µ (ε− εp) + 2µc (skew(∇u)− A) + λ tr [ε] · 11 ,

−lc ∆ axl(A) = µc axl(skew(∇u)− A) , (7.1)

ε̇p ∈ ∂IK

(
2µ (ε− εp)− b

)
.

ḃ = cε̇p − d|ε̇p|b

where c, d > 0 are material parameters and the set of admissible stresses K has the
same properties as in (5.1). System (7.1) without Cosserat effects was studied in [Che03].
There it is shown that the Armstrong-Frederick flow rule is thermodynamically admissible,
belongs to the class of pre-monotone models, but does not belong to the class of monotone
models and the initial boundary-value problem possesses “weak-type admissible solutions”
only. Hence, the following open problem is stated:

Open problem: For which given boundary and initial data does system (7.1) possess
global in time H1 solutions?
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tifique A. Hermann et Fils (Translation: Theory of deformable bodies, NASA
TT F-11 561, 1968), Paris, 1909.

[CH85] B.D. Coleman and M.L. Hodgdon, On shear bands in ductile materials., Arch.
Rat. Mech. Anal. 90 (1985), 219–247.
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