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Abstract. To find a general framework that is suitable for applications of computation
theory, we introduce and investigate ‘computation spaces’, which correspond to certain
neighbourhood spaces or to certain ‘generalized’ metric spaces. Due to Ceitin, G.S., [3] (see
also [1], [2] or [7]), each effective operator on a metric space (which satisy weak assumptions)
is effectively continuous, i.e. has a modulus of continuity. Spreen, D., and Young, P.,
[10] have generalized that and similar results uniformly to proper topological spaces. (See
also [5] and [6].) Those results and their proofs, however, do not yet yield a convenient
method to find moduli of continuity that are useful for individual applications. Therefore,
we shall present calculus-like methods to obtain both programs to compute functions on
computation spaces (§1) and, for such functions, computable moduli of continuity, which
are suitable for individual applications (§2).

In §3 we generalize the notion of H-quasi-metric spaces (i.e. quasi-metric spaces which
satisfy the Hausdorff axiom) and show the following: Every ‘generalized’ H-quasi-metric
space ‘induces’ a neighbourhood space of a particular sort, which is similar to that of com-
putation spaces. Every neighbourhood space of that sort can be induced by a generalized
H-quasi-metric space. All generalized H-quasi-metric spaces that induce the same neigh-
bourhood space differ from each other only insignificantly. - Certain results of §1 and §2
concerning H-quasi-metric spaces can be generalized.

Contents: §0 Introduction 1
§1 Programs to compute functions on computation spaces
§2 Programs to compute moduli of continuity
§3 Generalized H-quasi-metric spaces
Appendix 1: Programs to compute ‘real functions’
Appendix 2: Moduli of continuity for ‘real functions’

§0 Introduction

Definition: A pair (X, c) is said to be an H-quasi-metric space (here “H” ab-
breviates “Hausdorff”) iff X is a set, and c : X2 → [0,∞] satisfies the following
conditions for all x, y, z ∈ X:
(c1) c(x, x) = 0
(c2) c(x, y) > 0 if x 6= y
(c3) c(x, z) ≤ c(x, y) + c(y, z)

(c4) x 6= y ⇒ ∃ε > 0. ∀z ∈ X.
(
c(z, x) > ε ∨ c(z, y) > ε

)
.
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Notes: (c2) is a consequence of (c1) and (c4). Moreover, (c4) is satisfied, if there
exists a metric d on X such that d(x, y) ≤ c(x, y) for all x, y ∈ X.

Examples for quasi-metric spaces are given in [4] and [9]. We give some further
examples of H-quasi-metric spaces which enable concrete numerical applications.

(E1) X is an interval of IR, c(x, y) = a · (x − y) if x ≥ y, c(x, y) = b · (y − x) if
x < y (where a, b ∈ IR+ ∪ {∞}). - A ‘concrete interpretation’ of this example is the
following:

(E2) X is a river, and c(x, y) is the time needed to sail with a particular boat from
x to y. (This example can also be transferred to aviation as well as to space-flight.)

(E3) X is a rising ground or a mountainous terrain, and c(x, y) is the energy needed
to go from x to y. (Here we assume that even for walking downhill one needs some
energy.)

(E4) X is the set of all spots on the streets of a town, where some streets are one-
way. c(x, y) is the length of the shortest permitted way on X from x to y. - This can
more precisely be modeled in the following form:

(E5) Let (X, d) be a metric space, and let C ⊆ X2 satisfy ∀x ∈ X. (x, x) ∈ C.
x is said to be connected with y by x0, x1, . . . , xn (n ∈ IN+) iff

x = x0, y = xn, and (xi, xi+1) ∈ C for all i = 0, . . . , n− 1.

Let S(x, y) be the set of all sums
∑n−1

i=0 d(xi, xi+1) such that x is connected with y
by x0, . . . , xn. Let c : X2 → [0,∞] be defined by

c(x, y) = inf S(x, y)

(where inf ∅ = ∞ > ξ for all ξ ∈ IR).

(E6) Let (Xi, ci) be H-quasi-metric spaces such that ci : X2
i → IR+

0 for i = 1, . . . , µ,
X = X1 × . . .×Xµ, and let c, c′ : X2 → IR+

0 be defined by

c(x, y) = max{c1(x1, y1), . . . , cµ(xµ, yµ)},

c′(x, y) =
√

c1(x1, y1)2 + . . . + cµ(xµ, yµ)2

for µ-tuples x = (x1, . . . , xµ) and y = (y1, . . . , yµ). Then (X, c) and (X, c′) are
H-quasi-metric spaces, too. (This is well-known.)

The following proposition is concerned with systems of neighbourhoods in H-quasi-
metric spaces. (This proposition will be generalized in §3.)
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0.1 Proposition: Let (X, c) be an H-quasi-metric space, α ∈ ]0, 1[ ∩ Q,
α−∞ := ∞, α∞ := 0, ZZc := ZZ ∪ {−∞,∞},

B(y, k) := {x ∈ X : c(x, y) ≤ αk} for (y, k) ∈ X × ZZc,

especially B(y,−∞) = X, B(y,∞) = {y}, and let

k ∗m := max{j ∈ ZZc : αj ≥ αk + αm} for k,m ∈ ZZc.

Then we have, for all x, y, z ∈ X and all k, m ∈ ZZc:

(B1) x ∈ B(x, k)
(B2) x ∈ B(y, k) ∧ y ∈ B(z, m) ⇒ x ∈ B(z, k ∗m)
(B3) B(x, m) ⊆ B(x, k) for m ≥ k.
(B4) x 6= y ⇒ ∃k ∈ ZZ. B(x, k) ∩B(y, k) = ∅

(∗) limm→∞(m ∗m) = ∞.

Therefore, the sets O ⊆ X satisfying ∀x ∈ O. ∃k ∈ ZZ. B(x, k) ⊆ O form a
Hausdorff topology on X. (The proof is left to the reader.)

Definition: (X, B, ∗, U, ν) is said to be a computation space, iff X is a set,
B : X × ZZc → P(X) (the power set of X), ∗ : ZZc × ZZc → ZZc is computable, the
above conditions (B1) - (B4) and (∗) are satisfied, moreover, there exists a finite
alphabet Σ such that U ⊆ Σ∗ (the set of all words over Σ), and ν : U → X is a
function (called a ‘notation’ of ν(U)).

A further motivation for the choice of the axioms (B1) - (B4) and (∗) (and thus
also for (c4)) will be given below in (A1) and (A3).

We identify ν(u) with u for u ∈ U , assume that U ⊆ X, and we briefly write
(X, B, ∗, U) for (X, B, ∗, U, ν). (Notice, however, that then for all u, v ∈ U the
equation “u = v” does not generally mean the literal equality of u and v as words.)
- If U is dense in X, then U plays in X an analogous role as Q in IR.

For applications we are especially interested in computation spaces that can be
defined in a (sufficiently extensive) language L the use of its sentences is introduced
‘predicatively’. We especially suppose that “x ∈ B(y, k)” is defined as a formula of
L.

The applicability of a simulation of the ordinary computation concept in set theory is
rather problematic since in any nonstandard model of set theory there exists a nonstandard
sequence of elements of {0, 1} (e.g.) which is nonstandard computable but the restriction
of which to the standard part of IN is not computable. Moreover, I do not know whether
if set theory is consistent, then there exists a standard model of set theory, i.e. a model
such that the set of all finite natural numbers is an element of that model. (Here we do
not discuss the question how the concept of finite natural numbers can be characterized.

3



We do also not investigate the question on which conditions the value inf S(x, y) defined
in (E5) exists in a predicative model.)

Definition: A computation space (X, B, ∗, U) is said to be induced by (X, c, α, U),
iff (X, c) is an H-quasi-metric space, α ∈ ]0, 1[ ∩ Q, and both B and ∗ are defined as
in 0.1.

Then, any element of B(x, k) can be regarded as an approximation of x to the
precision αk. We say that k is the degree of this precision. Here, we also consider
negative integers k since for several practical purposes it will be useful to admit a
precision αk that is greater than 1. (For the pure theory of computability, however,
it would be sufficient to consider positive degrees of precision only.) The choice of
α ∈ ]0, 1[ ∩ Q can be adapted to particular purposes and means. - If a computation
space (X, B, ∗, U) is given, we also say that x is an approximation of y to the degree
k of precision to mean that x ∈ B(y, k).

In this paper, we shall provide means for applications as considered in (A1) -
(A3). For their formulations we assume that two computation spaces (X, B, ∗, U)
and (X ′, B′, ∗′, U ′) are given.

(A1) For certain applications of geometry we have to compute rational numbers
which approximate

√
2, e.g., to any desired degree of precicion. To provide means

for similar applications we shall deal with programs to approximately compute given
elements of X by elements of U . Accordingly, an element x of X is said to be
computable iff it can effectively be approximated to any desired degree k ∈ ZZ of
precision by means of a program or a computable function p : ZZ → U , i.e. such that
pk ∈ B(x, k) for all k ∈ ZZ. (Then, due to (B4), x is uniquely determined by p. - By
(B1), all elements of U are computable.)

(A2) Given a function f : X → X ′. If we have obtained programs to com-
pute a great number of elements, x1, . . . , xn, of X and if we want to compute the
corresponding values f(x1), . . . , f(xn), then it would in general be helpful to find a
‘metaprogram’ that can be applied to any program for computing an element x of
X and produces then a program to compute f(x). Accordingly, we say that f is
computable iff there exists such a metaprogram.

(A3) Sometimes we need an approximation of a value f(a) of a given computable
function f : X → X ′ corresponding to an argument a (∈ X) for which, however, we
can obtain rough estimates only. To compute, nevertheless, f(a) to a given degree j of
precision we could try to do the following: Find a computable ‘modulus of continuity’
δ : ZZ×X → ZZ for f , i.e. satisfying

∀m ∈ ZZ. ∀x, y ∈ X. (x ∈ B(y, δ(m,x)) ⇒ f(x) ∈ B′(f(y), m)).

Choose k,m ∈ ZZ with k ∗ m ≥ j (cf. (∗) in 0.1), find then a computable b ∈
B(a, δ(m, b)), and compute f(b) to the degree k, i.e. determine a v ∈ U ′∩B′(f(b), k).
Then we obtain f(b) ∈ B′(f(a), m) and hence v ∈ B′(f(a), k ∗m) ⊆ B′(f(a), j) (by
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(B2) and (B3)). - However, there is no guarantee that we can find a computable
element b for which we can prove that b ∈ B(a, δ(m, b)). Therefore, particularly
useful for applications are moduli of continuity, whose values are not unnecessarily
large (cf. (B3)).

Since we shall particularly deal with ‘metaprograms’ for transforming programs,
our approach is similar to that of the ‘Russian school’ (see [3], [7], or also [1], [2]).
However, we shall in general argue classically. - Generalized metric spaces are in-
vestigated in [4], [8] and [9], e.g. - In [10] there is shown that all effective operators
on topological spaces (which satisfy certain assumptions) are effectively continuous.
This is a uniform generalization of former results concerning effective operators on
metric spaces (see [7, p.297], e.g.) and on cpo’s. Those results and their proofs,
however, do not yet yield a convenient method to find moduli of continuity that are
suitable for concrete applications. Our investigations in §2 are concerned with such
methods.

Some of the following propositions have the form ∀x ∃y A(x, y) or a similar one.
We shall state such a proposition to announce that its direct proof will specify a
method to find a ‘solution’ y satisfying A(x, y), if any admissible x is given. In the
following investigations, several programs and moduli of continuity will occur as such
solutions.

§1 Programs to compute functions on computation spaces

Given a finite alphabet Σ. Then, by a program we mean a program for register
machines, e.g., which operates on words over Σ. Given sets V1, . . . , Vµ, W ⊆ Σ∗ (µ ≥
1), we denote the set of all programs that compute functions of type V1×. . .×Vµ → W
by

P (V1 × . . .× Vµ → W ).

For p ∈ P (V1 × . . .× Vµ → W ), v1 ∈ V1, . . . , vµ ∈ Vµ, and w ∈ W , we write

p(v1, . . . , vµ) = w

to mean that p with the input (v1, . . . , vµ) halts with the unique output w. - We
define:

pk := p(k) for p ∈ P (ZZ → W ), k ∈ ZZ.

Since programs operating on words over Σ can be considered as words, too, there
exists another finite alphabet Σ2 ⊃ Σ such that P (V1 × . . .× Vµ → W ) ⊂ Σ∗

2 for all
V1, . . . , Vµ, W ⊆ Σ∗. Accordingly, if V1, V2, W1, W2 ⊆ Σ∗, the set P (P (V1 → W1) →
P (V2 → W2)), e.g., of ‘metaprograms’ is defined.
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Presupposition: Let

X := (X,B, ∗, U), X ′ := (X ′, B′, ∗′, U ′), and X ′′ := (X ′′, B′′, ∗′′, U ′′)

be computation spaces, and let

A ⊆ X and A′ ⊆ X ′.

Motivated by §0 (A1), we define:

Definition: Let P (A) be the set of all programs p ∈ P (ZZ → U) satisfying

∀k ∈ ZZ. pk ∈ B(]p, k),

for some ]p ∈ A. In the following, we use the corresponding abbreviation

]p := lim
k→∞

pk.

An element a ∈ X is said to be (X-) computable iff P ({a}) 6= ∅, i.e. a = ]p for
some p ∈ P (X).

According to §0 (A2), a function f : A → X ′ is (roughly) said to be computable
iff there exists a (‘meta-’) program by which, for each computable x ∈ A, we can also
compute the value f(x). We define more precisely:

Definition: For functions f : A → X ′ let P (f) be the set of all programs F ∈
P (P (A) → P (X ′)) with ]F (p) = f(]p) for all p ∈ P (A) (i.e. F (p)k ∈ B′(f(]p), k)
for all (k, p) ∈ ZZ × P (A)). f is said to be X, X ′-computable iff P (f) 6= ∅. - Let
cp.(A → A′) be the set of all X, X ′-computable functions of A into A′.

For functions f : A → U ′ with A ⊆ U , the X, X ′-computability must be distin-
guishes from the original computability of word functions. Nevertheless, for functions
considered in the following we simply say “computable” for “X, X ′-computable”, e.g.

1.1 Proposition: For any computable element b ∈ X ′, the constant function
x 7→ b, x ∈ A is computable.

“ ” at the end of a proposition or proof is to mean that the proof is left to the
reader or complete, respectively.

1.2 Lemma: A function f : A → X ′ is computable iff there exists a program
Φ ∈ P (ZZ× P (A) → U ′) such that

Φ(k, p) ∈ B′(f(]p), k) for all (k, p) ∈ ZZ× P (A).

Proof: 1. Let U ′ ⊆ Σ∗. Due to the Normal Form Theorem of Kleene there exists a
‘universal’ program Ω ∈ P (P (ZZ → Σ∗)× ZZ → Σ∗) such that, for all q ∈ P (ZZ → Σ∗)
and all k ∈ ZZ, we have

qk = Ω(q, k).
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Thus, for each F ∈ P (f) ⊆ P (P (A) → P (ZZ → U ′)) there exists
Φ ∈ P (ZZ× P (A) → U ′) such that

Φ(k, p) = Ω(F (p), k) = F (p)k for all (k, p) ∈ ZZ× P (A).

2. Due to the so called Parametrisation Theorem (see [2, p. 43], e.g.), if
Φ ∈ P (ZZ×P (A) → U ′), then there exists an F ∈ P (P (A) → P (ZZ → U ′)) such that

F (p)k = Φ(k, p) for all (k, p) ∈ ZZ× P (A).

1.3 Lemma: For any L ∈ P (ZZ×P (A) → ZZ) there exists Φ ∈ P (ZZ×P (A) → U)
such that Φ(k, p) = pL(k,p) for all (k, p) ∈ ZZ× P (A).

Proof: pL(k,p) = Ω(p, L(k, p)).

Presupposition and Definition: Let X i := (Xi, Bi, ∗i, Ui) (i = 1, . . . , µ) be
computation spaces, and let their product space

X := X1 × . . .×Xµ := (X,B, ∗,U)

be defined by

X = X1 × . . .×Xµ, U = U1 × . . .× Uµ,
B((x1, . . . , xµ), k) = B1(x1, k)× . . .×Bµ(xµ, k),
k∗m = min{k ∗1 m, . . . , k ∗µ m}.

Let the projections idi : X → Xi (i = 1, . . . , µ) be defined by

idi(x1, . . . , xµ) = xi.

Moreover, let IR be the computation space induced by (IR, d1, αIR,Q) where d1(ξ, η) =
|ξ − η| for all ξ, η ∈ IR, and αIR ∈ ]0, 1[ ∩Q. Accordingly, let

P (IR) := {r ∈ P (ZZ → Q) : ∀k ∈ ZZ. |rk − ]r| ≤ αk
IR}.

1.4 Proposition: X is a computation space.

1.5 Proposition: If p ∈ P (X) and i = 1, . . . , µ, then idi(pk) ∈ Bi(idi(]p), k).
Hence, idi is computable.

1.6 Proposition: Let (X, c) be an H-quasi-metric space satisfying c : X2 → IR+
0

and
c(]p, u) ≤ Λ(p) · c(u, ]p) for all (p, u) ∈ P (X)× U

where Λ ∈ P (P (X) → Q+), and let X be induced by (X, c, α, U). Assume that there
exists a program Γ ∈ P (ZZ× U × U → Q) such that

|c(u, v)− Γ(m, u, v)| ≤ αm for all (m, u, v) ∈ ZZ× U × U.
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Then c is (X ×X), IR-computable.

Proof: Let p, q ∈ P (X); k, m ∈ ZZ; and λ := max{Λ(p), Λ(q)}. Then we easily
obtain

|c(]p, ]q)− c(pm, qm)| ≤ αm · (1 + λ)

and hence
|c(]p, ]q)− Γ(m, pm, qm)| ≤ αm · (2 + λ) ≤ αk

IR,

if m = min{n ∈ ZZ : αn ·(2+λ) ≤ αk
IR}. By 1.3 and 1.2 it follows that c is computable.

1.7 Proposition: If fi ∈ cp.(A → Xi) for i = 1, . . . , µ, then
(f1, . . . , fµ) : A → X is X,X-computable.

Proof: Let Fi ∈ P (fi) for i = 1, . . . , µ, and let F ∈ P (P (A) → P (ZZ → U))
satisfy F (p)k = (F1(p)k, . . . , Fµ(p)k) for all (p, k) ∈ P (A)× ZZ. Because of
Fi(p)k ∈ Bi(fi(]p), k) for i = 1, . . . , µ we obtain F (p)k ∈ B((f1(]p), . . . , fµ(]p)), k).
Accordingly, F ∈ P (f1, . . . , fµ).

1.8 Proposition: If f ∈ cp.(A → A′) and g ∈ cp.(A′ → X ′′), then
g ◦ f ∈ cp.(A → X ′′).

Proof: Let F ∈ P (f) and G ∈ P (g). Then, for all p ∈ P (A), we have ]F (p) =
f(]p) ∈ A′, hence F (p) ∈ P (A′), and hence ]G(F (p)) = g(]F (p)) = g(f(]p)). There-
fore, G ◦ F ∈ P (g ◦ f) (where ◦ also denotes the composition of programs.)

Definition: Let us supply IN with the discrete topology. Accordingly, let (for
k > −∞) BIN(n, k) := {n} and IN := (IN, BIN, minIN×IN, IN). A function f : IN× A →
X ′ is simply said to be computable iff it is (IN ×X), X ′-computable, i.e. iff there
exists a program F ∈ P (IN × P (A) → P (X ′)) such that f(n, ]p) = ]F (n, p) for all
(n, p) ∈ IN × P (A). Accordingly, let then P (f) be the set of all programs of this
kind. - Moreover, let us identify a sequence of functions fn : A → X ′ with the
corresponding function f : IN× A → X ′ satisfying f(n, x) = fn(x).

1.9 Proposition: If f ∈ cp.(A → A′), g ∈ cp.(IN× A× A′ → A′), and if
h : IN× A → A′ is recursively defined by

h(0, x) = f(x), h(n + 1, x) = g(n, x, h(n, x))

for all (n, x) ∈ IN× A, then h is computable.

Proof: Let F ∈ P (f) and G ∈ P (g). Then there exists
H ∈ P (IN× P (A) → P (A′)) such that

H(0, p) = F (p), H(n + 1, p) = G(n, p,H(n, p)).

Thus we have h(0, ]p) = ]H(0, p), and the inductive hypothesis h(n, ]p) = ]H(n, p)
implies h(n + 1, ]p) = ]H(n + 1, p). Accordingly, H ∈ P (h).
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1.10 Proposition: Let f ∈ cp.(IN × A → X ′), g : A → X ′ and M ∈ P (ZZ ×
P (A) → IN) such that

∀p ∈ P (A). ∀k ∈ ZZ. f(M(k, p), ]p) ∈ B′(g(]p), k).

Then g is computable.

Proof: There exist σ′, τ ′ ∈ P (ZZ → ZZ) such that σ′k ∗′ τ ′k ≥ k for all k ∈ ZZ.
(Example: σ′k = τ ′k = min{m ∈ ZZ : m ≥ k ∧ m ∗′ m ≥ k}, cf. §0 (∗).) Since f is
computable and due to 1.2, there exists Φ ∈ P (ZZ× IN× P (A) → U ′) such that, for
all (k, n, p) ∈ ZZ× IN× P (A), we especially have Φ(σ′k, n, p) ∈ B′(f(n, ]p), σ′k).
Setting n := M(τ ′k, p) we obtain f(n, ]p) ∈ B′(g(]p), τ ′k), and hence, by (B2) and
(B3), Φ(σ′k, n, p) ∈ B′(g(]p), σ′k ∗′ τ ′k) ⊆ B′(g(]p), k). So, by 1.2, g is computable.

1.11 Corollary: Let f ∈ cp.(IN × A → X ′) and K ∈ P (IN × P (A) → ZZ) such
that limn→∞ K(n, p) = ∞ for all p ∈ P (A). Assume that the function sequence f
converges pointwise to g : A → X ′ such that

∀n ∈ IN. ∀p ∈ P (A). f(n, ]p) ∈ B′(g(]p), K(n, p)).

Then g is computable.

Proof: Let m := min{n ∈ IN : K(n, p) ≥ k}. Then we have f(m, ]p) ∈
B′(g(]p), K(m, p)) ⊆ B′(g(]p), k) by (B3). Thus we can apply 1.10.

1.12 Corollary: Let X ′ be induced by (X ′, c′, β, U ′) (β ∈ ]0, 1[ ∩Q).
Let f ∈ cp.(IN× A → X ′), and let η : IN× A → IR+

0 be (IN×X), IR-computable and
satisfy

∀p ∈ P (A). lim
n→∞

η(n, ]p) = 0.

Let the function sequence f converge pointwise to g : A → X ′ such that

∀n ∈ IN. ∀p ∈ P (A). c′
(
f(n, ]p), g(]p)

)
≤ η(n, ]p).

Then g is computable.

Proof: Since η is computable, by 1.2 there exists E ∈ P (ZZ × IN × P (A) → Q)
such that

|η(n, ]p)− E(k, n, p)| ≤ αk
IR.

Let K(n, p) := max
{
k ∈ ZZ : βk ≥ E(n, n, p) + αn

IR

}
. Then we easily obtain

c′
(
f(n, ]p), g(]p)

)
≤ βK(n,p) < β−1 ·

(
η(n, ]p) + 2αn

IR

)
→ 0 as n →∞.

Thus, by 1.11, g is computable.

1.13 Corollary: Let X i be induced by (Xi, ci, α, Ui) where ci ∈ cp.(X2
i → IR+

0 )
(i = 1, . . . , µ). Then the H-quasi-metrics c, c′ : X2 → IR+

0 defined in §0 (E6) are
computable, and X is induced by (X, c, α,U).
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Proof: The both functions of (IR+
0 )µ into IR+

0 , (ξ1, . . . , ξµ) 7→ max{ξ1, . . . , ξµ} and

(ξ1, . . . , ξµ) 7→
√

ξ2
1 + . . . + ξ2

µ, are computable (see Appendix 1: Proposition A1.1

and the subsequent remark). Therefore, the computability of c and c′ follows by 1.5,
1.7, and 1.8. - The proof of the remainder is left to the reader.

§2 Programs to compute moduli of continuity

With respect to applications as described in §0 (A3) we define:

Definition: Given f : A → X ′, a program ∆ ∈ P (ZZ× P (A) → ZZ) is said to be
a B, B′-modulus of continuity for f iff

∀k ∈ ZZ. ∀p ∈ P (A). ∀y ∈ A.
(
]p ∈ B(y, ∆(k, p)) ⇒ f(]p) ∈ B′(f(y), k)

)
Let M(f, B, B′) be the set of all B, B′-moduli of continuity for f .

In H-quasi-metric spaces, a similar concept in place of the B, B′-moduli of conti-
nuity is more convenient:

Definition: Let (X, c, α, U) and (X ′, c′, β, U ′) induce X and X ′, respectively.
Given f : A → X ′, a function δ : IR+ × A → IR+ is said to be a c, c′-modulus of
continuity for f , iff δ is (IR×X), IR -computable (for IR see §1) and satisfies

∀ε > 0. ∀x, y ∈ A.
(
c(x, y) ≤ δ(ε, x) ⇒ c′(f(x), f(y)) ≤ ε

)
.

Particularly suitable for concrete applications are c, c′-moduli of continuity whose
values are not unnecessarily small. - By the following proposition, each c, c′-modulus
of continuity can be replaced by a B, B′-modulus of continuity.

2.1 Proposition: If δ ∈ cp.(IR+ × A → IR+) and α, β, γ ∈ ]0, 1[ ∩ Q, then there
exists ∆ ∈ P (ZZ× P (A) → ZZ) such that, for all k ∈ ZZ and all p ∈ P (A),

α1+γ · δ(βk, ]p) < α∆(k,p) ≤ δ(βk, ]p).

Proof: Let n ∈ IN such that αn
IR ≤ γ

2
< αn−1

IR . Then there exists a program
Θ ∈ P (P (IR) → ZZ) such that Θ(r) = min{j ∈ ZZ : j ≥ rn + αn

IR} for all r ∈ P (IR).
We easily obtain

]r ≤ Θ(r) < ]r + 1 + γ for all r ∈ P (IR).

Now, let logα be the logarithm to the base α (which is computable due to Appendix 1:
the remark following A1.1), let D ∈ P (logα ◦δ), and define ∆ ∈ P (ZZ×P (A) → ZZ) by
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∆(k, p) = Θ(D(π(βk), p)) with π ∈ P (Q → P (Q)), π(t)m = t for all (m, t) ∈ ZZ× Q.
Then we have ]D(π(βk), p) = logα(δ(βk, ]p)), hence

logα(δ(βk, ]p)) ≤ ∆(k, p) < logα(δ(βk, ]p)) + 1 + γ

and hence δ(βk, ]p) ≥ α∆(k,p) > α1+γ · δ(βk, ]p).

Definition: For any c : X2 → [0,∞] let c2 : X2 × X2 → [0,∞] be defined by
c2((x1, x2), (y1, y2)) = max{c(x1, y1), c(x2, y2))}.

2.2 Proposition: Let c : X2 → IR+
0 be a quasi-metric which satisfies

∀x, y ∈ X. c(y, x) ≤ λ(x) · c(x, y)

where λ ∈ cp.(X → IR+). Let δc : IR+ ×X2 → IR+ be defined by

δc(ε, (x1, x2)) =
ε

1 + max{λ(x1), λ(x2)}
.

Then δc is a c2, d1-modulus of continuity for c (where d1(ξ, η) = |ξ − η|).

By the following propositions we have calculus-like rules to produce moduli of
continuity of type (B, B′) or of an analogous type. - If we say that a modulus of
continuity (which is a program) is defined by a given equation, we mean that a
modulus of continuity which satisfies that equation can be defined by means of a
well-known procedure.

2.3 Proposition: A B, Bi-modulus of uniform continuity for idi : X → Xi

(i = 1, . . . , µ) is defined by ∆idi
(k, p) = k (for all (k, p) ∈ ZZ× P (X)).

2.4 Proposition: Let fi : A → Xi and ∆i ∈M(fi, B, Bi) for i = 1, . . . , µ. Then
a B,B-modulus of continuity for (f1, . . . , fµ) is defined by

∆(k, p) = max{∆1(k, p), . . . , ∆µ(k, p)}.

2.5 Proposition: Let f ∈ cp.(A → A′), g : A′ → X ′′, ∆f ∈M(f, B, B′),
∆g ∈ M(g,B′, B′′), and F ∈ P (f). Then a B, B′′-modulus of continuity for g ◦ f is
defined by

∆g◦f (k, p) = ∆f (∆g(k, F (p)), p).
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2.6 Proposition: Let f ∈ cp.(A → A′), g ∈ cp.(IN × A × A′ → A′), and let
h : IN× A → A′ be recursively defined by

h(0, x) = f(x), h(n + 1, x) = g(n, x, h(n, x)).

Let, moreover, ∆f ∈ M(f, B, B′), ∆g ∈ M(g,B × B′, B′) (where (B × B′) :
((y, z), k) 7→ B(y, k)×B′(z, k) ), and let ∆h ∈ P (ZZ× IN× P (A) → ZZ) satisfy

∆h(k, 0, p) = ∆f (k, p)
∆h(k, n + 1, p) = max{ϑ, ∆h(ϑ, n, p)}

where ϑ := ∆g(k, n, p, H(n, p)) with H ∈ P (h). Then ∆h ∈M(h,B,B′).

Proof: We have to show that

(i) ∀k ∈ ZZ.∀p ∈ P (A).∀y ∈ A.
(
]p ∈ B(y, ∆h(k, n, p)) ⇒ h(n, ]p) ∈ B′(h(n, y), k)

)
holds for all n ∈ IN. For n = 0, (i) holds obviously. Moreover, for every n ∈ IN, (i)
implies by (B3) that the following holds for all k ∈ ZZ, p ∈ P (A), and all y ∈ A:

]p ∈ B(y, ∆h(k, n + 1, p)) ⇒
{

]p ∈ B(y, ϑ) (see above)
h(n, ]p) ∈ B′(h(n, y), ϑ)

}
⇒

⇒ h(n + 1, ]p) = g(n, ]p, h(n, ]p)) ∈ B′(g(n, y, h(n, y)), k) = B′(h(n + 1, y), k).

Presupposition: In the following let σ′, τ ′ ∈ P (ZZ → ZZ) satisfy σ′k ∗′ τ ′k ≥ k for
all k ∈ ZZ (cf. proof of 1.10), and so

(B2’) x ∈ B(y, σ′k) ∧ y ∈ B(z, τ ′k) ⇒ x ∈ B(z, k).

2.7 Proposition: Let f : IN × A → X ′ converge pointwise to g : A → X ′ such
that

∀x ∈ A. ∀k ∈ ZZ. ∃m ∈ IN. ∀n > m.[
g(x) ∈ B′(f(n, x), k) ∧ f(n, x) ∈ B′(g(x), k)

]
.

Let ∆f ∈M(fn, B, B′) for all n ∈ IN, and let ∆g : ZZ× P (A) → ZZ be defined by
∆g(k, p) = ∆f (τ

′(σ′k), p). Then ∆g ∈M(g,B,B′).

Proof: Let y ∈ A, k ∈ ZZ, p ∈ P (A), x := ]p ∈ B(y, ∆f (τ
′(σ′k), p)). Then for some

sufficiently large n ∈ IN we have

g(x) ∈ B′(f(n, x), σ′(σ′k))
f(n, x) ∈ B′(f(n, y), τ ′(σ′k))
f(n, y) ∈ B′(g(y), τ ′k),

hence g(x) ∈ B′(f(n, y), σ′k), and hence g(x) ∈ B′(g(y), k).

Now we show that for certain functions the concept of computability can be
simplified.
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2.8 Proposition: Let A be open and A∩U be decidable on U. Let f : A → X ′.
Assume that there exists a program Γ ∈ P (ZZ× (A ∩ U) → ZZ) satisfying

(ii) ∀k ∈ ZZ. ∀u ∈ A ∩ U. ∀x ∈ A.
(
u ∈ B(x, Γ(k, u)) ⇒ f(u) ∈ B′(f(x), k)

)
,

(iii) ∀k ∈ ZZ. ∀r ∈ P (ZZ → A ∩ U). ∃n ∈ ZZ. n ≥ Γ(k, rn).

Then f is computable if and only if there exists a program F ∈ P (ZZ× (A∩U) → U ′)
such that

(iv) F (k, u) ∈ B′(f(u), k) for all (k, u) ∈ ZZ× (A ∩ U).

Notes: 1. Γ and F do not operate on programs.
2. Assume that f has a modulus ∆ ∈ P (ZZ → ZZ) of uniform continuity. If we define
Γ ∈ P (ZZ× (A ∩ U) → ZZ) by Γ(k, u) = ∆(k), then Γ satisfies both (ii) and (iii).

For the proof of 2.8 we show at first:

2.9 Lemma: If A is open and A ∩ U is decidable on U , then there exists a
program Q ∈ P (P (A) → P (A)) such that ]Q(p) = ]p and Q(p)n ∈ A ∩ U for all
(n, p) ∈ ZZ× P (A).

Proof: Let p ∈ P (A). Since A is open, there exists j ∈ ZZ such that B(]p, j) ⊆ A.
Then, for all k ≥ j, we have pk ∈ B(]p, k) ⊆ A. Accordingly, there exists
K ∈ P (ZZ × P (A) → ZZ) such that K(n, p) = min{k ≥ n : pk ∈ A}. Due to 1.3 and
the proof of 1.2 there exists Q ∈ P (P (A) → P (ZZ → U)) such that

Q(p)n = pK(n,p) ∈ A ∩B(]p, K(n, p)) ⊆ B(]p, n).

Proof of 2.8: Let Γ satisfy (ii) and (iii), and define N ∈ P (ZZ×P (ZZ → A∩U) → ZZ)
by the condition that, for all (k, r) ∈ ZZ×P (ZZ → A∩U), N(k, r) is the first member
m of the sequence 0,−1, 1,−2, 2,−3, 3, . . . (e.g.) such that m ≥ Γ(k, rm).
Assume now that k ∈ ZZ, p ∈ P (A), and q := Q(p) (with Q as above). For n :=
N(τ ′k, q) we successively obtain n ≥ Γ(τ ′k, qn), qn ∈ B(]p, n) ⊆ B(]p, Γ(τ ′k, qn)),
and hence f(qn) ∈ B′(f(]p), τ ′k) (by (ii)). From the additional assumptum (iv) we
especially obtain F (σ′k, qn) ∈ B′(f(qn), σ′k) and so, by (B2’), F (σ′k, qn) ∈ B′(f(]p), k)
where qn = Ω(Q(p), N(τ ′k, Q(p))) (for Ω as in the proof of 1.2). So, by 1.2, f is
computable. - The converse holds obviously.
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§3 Generalized H-quasi-metric spaces

Definition: (X, c,⊕) is said to be a generalized H-quasi-metric space iff X is
a set, c : X2 → [0,∞], ⊕ : [0,∞]2 → [0,∞], for all x, y, z ∈ X we have

(c1) c(x, x) = 0
(c2) c(x, y) > 0 if x 6= y
(c3)* c(x, z) ≤ c(x, y)⊕ c(y, z)

(c4) x 6= y ⇒ ∃ε > 0. ∀z ∈ X.
(
c(z, x) > ε ∨ c(z, y) > ε

)
,

and ⊕ satisfies the following conditions:

(1) ⊕ is monotonic increasing in both arguments.
(2) limξ→0(ξ ⊕ ξ) = 0.

Example: Let ‖.‖ be a norm of IRµ. Define c(x, y) = ‖x−y‖
‖y‖ for all x, y ∈ IRµ

with y 6= θ (where ‖θ‖ = 0), c(θ, θ) = 0, and c(x, θ) = ∞ if x 6= θ. Define, moreover,
ξ ⊕ η = ξ + ξη + η for ξ, η ∈ [0,∞]. Then (IRµ, c,⊕) is a generalized H-quasimetric

space. (For the proof of (c4) consider ε = ‖x−y‖
3·max{‖x‖,‖y‖} .)

For the following we fix a number α ∈ ]0, 1[ ∩ Q.

Definition: (X, B, ∗) is said to be induced by (X, c,⊕), iff the latter is a gen-
eralized H-quasi-metric space, and B : X × ZZc → P(X) as well as ∗ : (ZZc)2 → ZZc

are defined by

(3) B(y, k) = {x ∈ X : c(x, y) ≤ αk}
(4) k ∗m = max{n ∈ ZZc : αn ≥ αk ⊕ αm}.

3.1 Proposition: If (X, B, ∗) is induced by (X, c,⊕), then (X, B, ∗) satisfies
(B1) - (B4) (see §0) and the following conditions:

(5) ∗ is monotonic increasing in both arguments.
(6) limm→∞(m ∗m) = ∞. (This is the same as (∗) in §0.)

Proof: Obviously, B satisfies (B1), (B3), and (B4).
Ad (B2): Due to (3), (c3)*, (1), and (4), we have

x ∈ B(y, k) ∧ y ∈ B(z, m) ⇒
⇒ c(x, y) ≤ αk ∧ c(y, z) ≤ αm

⇒ c(x, z) ≤ αk ⊕ αm ≤ αk∗m

⇒ x ∈ B(z, k ∗m).

Ad (5): If k ≤ l we have αk ≥ αl, αk∗m ≥ αk⊕αm ≥ αl⊕αm and hence k ∗m ≤ l ∗m
by (4). In the same way, ∗ is monotonic increasing in the second argument.
Ad (6): By (2), for all k ∈ ZZ there exists ξ > 0 such that ξ ⊕ ξ < αk. For all m ∈ ZZ
with αm ≤ ξ we obtain α(m∗m)+1 < αm⊕αm ≤ ξ⊕ξ < αk, and hence m∗m ≥ k.
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Presupposition: In the following, let (X, B, ∗) satisfy (B1) - (B4), B(y,−∞) =
X for all y ∈ X, and (5) - (6). - Then we can define a generalized H-quasi-metric
space (X, ĉ, ⊕̂) that induces (X, B, ∗):

Definition: Let the functions λ : X2 → ZZc, ĉ : X2 → [0,∞], ϕ : [0,∞] → [0, 1],
and ⊕̂ : [0,∞]2 → [0,∞] be defined by

(7) λ(x, y) = max{k ∈ ZZc : x ∈ B(y, k)}
(8) ĉ(x, y) = αλ(x,y)

(9) αk⊕̂αm = αk∗m

(10) ϕ(ξ) = ξ
1+ξ

if 0 ≤ ξ < ∞, ϕ(∞) = 1

(11) ξ 7→ ϕ(ξ⊕̂αm) is affinely linear in [αk, αk−1] for all k ∈ ZZ, m ∈ ZZc.
(12) η 7→ ϕ(ξ⊕̂η) is affinely linear in [αm, αm−1] for all ξ ∈ [0,∞], m ∈ ZZ.

Notes: Due to the Hausdorff axiom (B4), λ(x, y) exists for all x, y ∈ X. -
In the definition of ⊕̂ : [0,∞]2 → ∞ by (9), (11) and (12) we should use a function
like ϕ in case αk⊕̂αm = ∞ for some k,m ∈ ZZ.

We easily obtain:

3.2 Lemma: For all x, y ∈ X and all k ∈ ZZc,

x ∈ B(y, k) ⇔ ĉ(x, y) ≤ αk.

3.3 Proposition: (X, ĉ, ⊕̂) is a generalized H-quasi-metric space.

Proof: First we show that ⊕̂ satisfies (1) - (2):
Ad (1): Let αk ≤ αl. Then k ≥ l, k ∗m ≥ l ∗m by (5), and hence αk⊕̂αm = αk∗m ≤
αl∗m = αl⊕̂αm. Similarly, if αm ≤ αn, then we obtain αk⊕̂αm ≤ αk⊕̂αn. By (10) -
(12) it follows that ⊕̂ is monotonic increasing in both arguments.
Ad (2): In case k ∗ k ≥ n (cf. (6)) and 0 < ξ ≤ αk we have 0 ≤ ξ⊕̂ξ ≤ αk⊕̂αk ≤ αn.

By definition, ĉ satisfies (c1). By (B4) and 3.2 it is easily seen that ĉ satisfies
(c4). (c2) follows from (c1) and (c4).
Ad (c3)*: Let k := λ(x, y) and m := λ(y, z). Then we successively obtain:

ĉ(x, y) = αk, ĉ(y, z) = αm,
x ∈ B(y, k), y ∈ B(z, m), x ∈ B(z, k ∗m),
ĉ(x, z) ≤ αk∗m = αk⊕̂αm = ĉ(x, y)⊕̂ĉ(y, z).

3.4 Proposition: (X, ĉ, ⊕̂) induces (X, B, ∗).
Proof: By 3.2, B and ĉ satisfy (3). - By (9), ∗ and ⊕̂ satisfy (4).

3.5 Proposition: If (X, B, ∗) is induced by (X, c,⊕), and if ĉ, ⊕̂ are defined as
above, then we have, for all x, y ∈ X and all m ∈ ZZ,

c(x, y) ≤ ĉ(x, y) < α−1 · c(x, y), if 0 < c(x, y) < ∞,
ĉ(x, y) = c(x, y), if c(x, y) ∈ {0,∞},
αk ⊕ αm ≤ αk⊕̂αm < α−1 · (αk ⊕ αm) if 0 < αk ⊕ αm < ∞,
αk⊕̂αm = αk ⊕ αm, if αk ⊕ αm ∈ {0,∞}.
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Proof: Ad c, ĉ: By (3) and the definitions of λ and ĉ we have
c(x, y) ≤ αλ(x,y) = ĉ(x, y).
If 0 < c(x, y) < ∞, then λ(x, y) ∈ ZZ and hence α · ĉ(x, y) = αλ(x,y)+1 < c(x, y).
If c(x, y) = 0, then x = y, x ∈ B(y,∞), λ(x, y) = ∞, and hence ĉ(x, y) = 0.
If c(x, y) = ∞, then ĉ(x, y) = ∞.

Ad ⊕, ⊕̂: By the definition of ⊕̂ and (4) we have αk⊕̂αm = αk∗m ≥ αk ⊕ αm.
If 0 < αk ⊕ αm < ∞, then k ∗m ∈ ZZ and hence α · (αk⊕̂αm) = α(k∗m)+1 < αk ⊕ αm.
If αk ⊕ αm = 0, then k ∗m = ∞, αk⊕̂αm = 0.
If αk ⊕ αm = ∞, then αk⊕̂αm = ∞.

Definition: Let Q := Q+
0 ∪ {∞}. A generalized H-quasimetric space (X, c,⊕)

and its function ⊕ are said to be nice iff the restriction of ⊕ to Q×Q maps this set
into Q and is computable in the original sense for word functions.

Notes: 1. If (X,B, ∗, U) is a computation space, then (by the definition of this
concept in §0) ∗ is computable. If, moreover, ∗ satisfies (5), and ⊕̂ is defined as
above, then ⊕̂ is obviously nice.
2. ‘Conversely’, if (X, B, ∗) is induced by a nice generalized H-quasi-metric space
(X, c,⊕), then ∗ is computable so that, for any set U ⊆ X of words over a common
finite alphabet, (X, B, ∗, U) is a computation space.
3. 1.12 also holds in case we have a nice generalized H-quasi-metric space (X ′, c′,⊕′).
4. The definition of c, c′-moduli of continuity (see §2) can also be applied to func-
tions of type A → X ′ (A ⊆ X) if generalized H-quasi-metric spaces (X, c,⊕) and
(X ′, c′,⊕′) are given. For the corresponding ‘generalized’ c, c′-moduli of continuity
there also hold propositions which are analogous to 2.3 - 2.6, and, for nice spaces
(X ′, c′,⊕′), 2.7.

∗ ∗ ∗

In §1 and §2 we have used the existence of a computable function ∗ : ZZc×ZZc → ZZc

with the properties (B2) and (∗) (of §0, i.e. (6) of §3) for no other purpose than to
prove the existence of computable functions σ, τ : ZZ → ZZ satisfying

(B2’) x ∈ B(y, σk) ∧ y ∈ B(z, τk) ⇒ x ∈ B(z, k).

(see the proof of 1.10). So we obtain all corresponding results of §1 and §2 if we
only presuppose the existence of such functions σ and τ in place of ∗. On the other
hand, a computation space (X, B, ∗, U) can in general be applied more ‘elastically’
than a corresponding space (X, B, σ, τ, U) with particular functions σ, τ . We shall
show that every space of this kind that satisfies certain additional conditions can be
considered as ‘induced’ by a computation space.

To this end we now suppose that we have computable functions σ, τ : ZZ → ZZ
satisfying (B2’) and, of course, that we have X,B satisfying (B1) and (B3). Does
there exist a computable ∗ : ZZc × ZZc → ZZc satisfying (B2) such that σ and τ can
be characterized by means of ∗?
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By (B2’) and (B3) we have B(y, σk) = B(y, max{k, σk}) and
B(z, τk) = B(z, max{k, τk}) for all y, z ∈ X and k ∈ ZZ. So we may assume that

(13) σk, τk ≥ k for all k ∈ Z.

In the following we use the abbreviations

σ−∞ := inf
k∈ZZ

σk, τ−∞ := inf
k∈ZZ

τk,

Kmn := {k ∈ ZZ : σk ≤ m ∧ τk ≤ n}.

3.6 Proposition: Given X,B satisfying (B1) and (B3), and functions σ, τ : ZZ →
ZZ, which are computable, monotonic increasing, and satisfy both (B2’) and (13).
Assume, moreover, that the values of σ−∞ and τ−∞ have been computed. Define
∗ : ZZc × ZZc → ZZc by

m ∗ n = sup Kmn.

Then ∗ is computable and satisfies (5), (6), and (B2). The functions σ and τ can be
characterized by means of ∗:

σk = min{m ∈ ZZ : ∃n ∈ ZZ. m ∗ n ≥ k},

τk = min{n ∈ ZZ : ∃m ∈ ZZ. m ∗ n ≥ k}.

Proof: At first we show that {(m, n) ∈ (ZZc)2 : Kmn = ∅} is decidable. Given
m, n ∈ ZZc. If m = −∞ or n = −∞ then Kmn = ∅. Now let m,n > −∞. If
σ−∞ ≤ m and τ−∞ ≤ n then there exist k1, k2 ∈ ZZ with σk1 ≤ m and τk2 ≤ n.
Setting k := min{k1, k2} we obtain σk ≤ σk1 , τk ≤ τk2 , so k ∈ Kmn, and so Kmn 6= ∅.
Now let σ−∞ > m or τ−∞ > n. Then, for all k ∈ ZZ, σk > m or τk > n, i.e. k /∈ Kmn.
So Kmn = ∅.

Computability of ∗: Given m, n ∈ ZZc. We consider the case m ≤ n, e.g. If
m = −∞ then Kmn = ∅ so that m ∗ n = −∞. If m = ∞, then n = ∞, so Kmn = ZZ,
and so m ∗ n = ∞. Now let m ∈ ZZ. Because of (13), the set Kmn has an upper
bound (namely m). So in case Kmn 6= ∅, Kmn has a greatest element, namely m ∗ n,
which we can compute. In case Kmn = ∅ we have m ∗ n = −∞. (Note that we can
decide whether Kmn = ∅.
Ad (5): Let m ≤ m′ and n ≤ n′. Then Kmn ⊆ Km′n′ . So m′ ∗ n′ is an upper bound
of Kmn and so m ∗ n ≤ m′ ∗ n′.
Ad (6): For all m ≥ max{σk, τk} we have k ∈ Kmm and hence m ∗m ≥ k.
(B2) easily follows by means of (B3), (B2’) and the fact that m ≥ σm∗n, n ≥ τm∗n
in case m ∗ n ∈ ZZ.

Characterization of σ: Let Mk := {m ∈ ZZ : ∃n ∈ ZZ. m ∗ n ≥ k}. Because of
σk ≤ σk and τk ≤ τk we have k ∈ Kσkτk

, so k ≤ σk ∗ τk, and so σk ∈ Mk. Moreover,
for all m ∈ Mk there exists n ∈ ZZ such that m ∗n ≥ k, and hence m ≥ σm∗n ≥ σk.
So we have σk = min Mk. - τ can be characterized similarly by means of ∗. .
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Notes: 1. By the first part of the latter proof, {(m, n) ∈ (ZZc)2 : Kmn = ∅} is
at any rate decidable in the classical sense of the word, but if we do not know the
values of σ−∞ and τ−∞, we can perhaps not find a corresponding decision procedure.
2. Now we only suppose that σ, τ are computable and satisfy (B2’) and (13). Then
we can define similar functions σ+, τ+ : ZZ → ZZ by

σ+
k = σk0 , τ+

k = τk0 , if k ≤ k0

σ+
k = max{σk, σ

+
k−1}, τ+

k = max{τk, τ
+
k−1}, if k > k0.

Of course, σ+, τ+ are computable and monotonic increasing. As easily seen, they
also satisfy (B2’), (13), σ+

−∞ = σk0 , τ+
−∞ = τk0 , and so all assumptions of 3.6.

(Regard that for individual applications we need not consider sentences of the form
x ε B(z, k) with ‘very small’ degrees k of approximation.)

Appendix 1: Programs to compute ‘real functions’

In the following, let µ ∈ IN+ and let IRµ be the computation space induced by
(IRµ, dµ, α,Qµ) where α ∈ ]0, 1[ is given and dµ : (IRµ)2 → IR+

0 is defined by

dµ(x, y) := |x− y| := max
i=1,...,µ

|xi − yi|.

The proofs of the Lemmata and of the Propositions of §1 (except 1.4) yield very
general ‘calculus-like’ rules to construct programs for computing functions. To obtain
more rules for this purpose we further deal with programs for computing functions
of type A → IR with A ⊆ IRµ. Such a function is simply said to be computable iff it
is IRµ, IR-computable.

A1.1 Proposition: The following functions are computable: Addition, subtrac-
tion, multiplication, and division of real numbers, the functions max, min: IR2 → IR,
hence the usual norm |.| : IR → IR, and hence the distance d1.

By the 1.2 and 1.3 it is sufficient to show that the following holds for all r, s ∈
P (IR):

|(]r ± ]s)− (rk ± sk)| ≤ αn for k = n + min
{

j ∈ ZZ : 2αj ≤ 1
}

|]r · ]s− rk · sk| ≤ αn for k = min
{

j ∈ ZZ : αj ≤ αn

|rj|+ |sj|+ αj

}
∣∣∣ 1

]r
− 1

rk

∣∣∣ ≤ αn for ]r 6= 0, k = min
{

j ∈ ZZ : αj ≤ αn(|rj| − αj)|rj|}

|max(]r, ]s)−max(rn, sn)| ≤ αn∣∣∣|]r| − |rn|
∣∣∣ ≤ αn.
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,

Remark: By applying the proofs of the Propositions A1.1, 1.1, 1.5, 1.7 - 1.9, and
1.12 we can now construct programs to compute functions like exp, sin, tan, ln,
arctan

∣∣] − 1, 1[, arcsin
∣∣ ] − 1, 1[ , and the square-root, e.g. - To generalize this we

define:

Definition: For λ = (λ1, . . . , λµ) ∈ INµ and x = (x1, . . . , xµ) ∈ IRµ let

|λ| := λ1 + . . . + λµ, and xλ := xλ1
1 · · ·xλµ

µ .

We easily obtain:

A1.2 Proposition (Corollary): For each µ ∈ IN+ and each (aλ)λ∈INµ ∈
cp.(INµ → IR), the following function sequence is computable:

(n, x) 7→
∑
|λ|≤n

aλx
λ :=

n∑
λ1=0

n−λ1∑
λ2=0

. . .

n−λ1−...−λµ−1∑
λµ=0

aλx
λ.

Concerning the computability of power series we have:

A1.3 Proposition (Corollary): Let f : ]− r, r[µ → IR,

f(x) =
∑

λ∈INµ

aλx
λ := lim

n→∞

∑
|λ|≤n

aλx
λ for all x ∈ ]− r, r[µ,

where (aλ)λ∈INµ ∈ cp.(INµ → IR); r, c ∈ cp.IR+, and
∑

|λ|=n |aλ| ≤ c
rn for all n.

Then f is computable

Proof: For x ∈ ]− r, r[µ we have∣∣∣∣∣∣
∑
|λ|≥k

aλx
λ

∣∣∣∣∣∣ ≤
∑
n≥k

∑
|λ|=n

|aλ|

 |x|n ≤∑
n≥k

c

rn
|x|n = c ·

(
|x|
r

)k

· 1

1− |x|
r

→ 0

as k →∞. By 1.12 and A1.2 it follows that f is computable.

The following proposition is concerned with the computability of inverse func-
tions.

A1.4 Proposition: If a, b ∈ cp.IR, a < b, and if f ∈ cp.([a, b] → IR) is strictly
monotonic, then the inverse function f−1 is computable. (Cf. [5], Chap.5, §4.)

Proof: Assume that f is strictly monotonic increasing, for instance. Let F ∈
P (f), and q ∈ P (f [a, b]). We recursively define two sequences p∗, r∗ : IN → P ([a, b])
such that ]pn ≤ f−1(]q) ≤ ]rn and

f−1(]q) = lim
n→∞

]pn = lim
n→∞

]rn.
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Let p0 ∈ P ({a}), r0 ∈ P ({b}), and if pn, rn ∈ P ([a, b]) have been defined, let

p+
n :=

2

3
pn +

1

3
rn, r−n :=

1

3
pn +

2

3
rn

(i.e., for all k ∈ ZZ, p+
nk = 2

3
pnk + 1

3
rnk, e.g.)

kn := min
{
k ∈ ZZ : F (p+

n )k + 2αk ≤ qk ∨ qk ≤ F (r−n )k − 2αk
}

(for the existence of kn see below),

An := F (p+
n )kn + 2αkn , Bn := F (r−n )kn − 2αkn ,

(pn+1, rn+1) :=


(p+

n , r−n ), if An ≤ qkn ≤ Bn,
(p+

n , rn), if An ≤ qkn > Bn,
(pn, r

−
n ), if An > qkn ≤ Bn.

(A distinction of 5 corresponding cases would be more suitable for actual computa-
tions of f−1(]q).) We use, moreover, the abbreviations

an := ]pn, bn := ]rn, a+
n := ]p+

n , b−n := ]r−n .

Inductive hypothesis: Assume that

(IH) pn, rn ∈ P ([a, b]), an < bn, f(an) ≤ ]q ≤ f(bn), bn − an ≤
(

2
3

)n
(b− a).

Then we have f(a+
n ) < f(b−n ), and hence

]F (p+
n ) = f(a+

n ) < ]q ∨ ]q < f(b−n ) = ]F (r−n ).

Accordingly, kn exists, and thus pn+1 and rn+1 are defined as elements of P([a,b]). It
follows that

an ≤ an+1 < bn+1 ≤ bn, bn+1 − an+1 ≤
(

2

3

)n+1

(b− a).

If An = F (p+
n )kn + 2αkn ≤ qkn , we have

f(an+1) = f(a+
n ) ≤ F (p+

n )kn + αkn ≤ qkn − αkn ≤ ]q,

for instance. Accordingly, in every case,

f(an+1) ≤ ]q ≤ f(bn+1).

We have shown that (IH) holds for all n. Thus an ≤ f−1(]q) ≤ bn, hence

|f−1(]q)− an| ≤
(

2

3

)n

(b− a) ≤
(

2

3

)n

(r0n − p0n + 2αn)
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and hence (by the triangle inequality), for all m ∈ ZZ,

|f−1(]q)− pnm| ≤
(

2

3

)n

(r0n − p0n + 2αn) + αm.

Setting nk := min
{
n ∈ IN :

(
2
3

)n
(r0n − p0n + 2αn) ≤ 1

2
αk
}

, and
mk := min{m ∈ ZZ : αm ≤ 1

2
αk}, we obtain

|f−1(]q)− pnk,mk
| ≤ αk.

However, p∗ and r∗ depend on q. Accordingly, we we can specify a program G ∈
P (ZZ× P (f [a, b]) → Q) such that

|f−1(]q)−G(k, q)| ≤ αk.

It follows by 1.2 that f−1 is computable.

In Appendix 2 we also show that certain integral functions are computable (see
A2.5).

Appendix 2: Moduli of continuity for ‘real functions’

By 2.1 - 2.7 or their proofs we can specify ‘calculus-like’ rules to construct moduli
of continuity. To obtain more rules for this purpose, we shall especially deal with
dµ, d1-moduli of continuity for functions of type A → IR (A ⊆ IRµ, µ ∈ IN+). (For dµ

see Appendix 1.)

A2.1 Proposition: The functions δh described by the following equations are
moduli of continuity (or even of uniform continuity) for the cited funtions h of type
IR2 → IR or (⊆) IR → IR, respectively:

δadd(ε) = ε
2

(add(x, y) = x + y)
δsub(ε) = ε

2
(sub(x, y) = x− y)

δmul(ε, x, y) = 1
2

(√
(|x|+ |y|)2 + 4ε− (|x|+ |y|)

)
(mul(x, y) = xy)

δdiv(ε, x) = εx2

1+ε|x| (div(x) = 1/x, x 6= 0)

δmax(ε) = ε (max : IR2 → IR)
δnorm(ε) = ε (norm(x) = |x|).
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A2.2 Proposition: If a, b ∈ cp.IR, a < b, and if f ∈ cp.([a, b] → IR) is strictly
monotonic increasing and continuous, then the function δ : IR+× [a, b] → IR+ defined
as follows is a modulus of continuity for f :

δ(ε, x) =



min{x− f−1(f(x)− ε̂), f−1(f(x) + ε̂)− x},
if f−1(f(a) + ε̂) < x < f−1(f(b)− ε̂),

min
{
f−1(f(a) + ε̂)− a, f−1(f(x) + ε̂)− x

}
if a ≤ x ≤ f−1(f(a) + ε̂),

min
{
x− f−1(f(x)− ε̂), b− f−1(f(b)− ε̂)

}
,

if f−1(f(b)− ε̂) ≤ x ≤ b

where ε̂ := min{ε, 1
2
(f(b)− f(a))}.

To prove the computability of δ, we show:

Lemma: If f ∈ cp.(A1 → IR), g ∈ cp.(A2 → IR), A1 ⊆ ]−∞, a], A2 ⊆ [a,∞[,
a ∈ cp.IR ∩ A1 ∩ A2, f(a) = g(a), and if h : A1 ∪ A2 → IR is defined by

h(x) =

{
f(x), if x ∈ A1,
g(x), if x ∈ A2,

then h is computable. (Here, Ai can also be replaced by Ai ×B (i = 1, 2).)

Proof: h(x) = f(min(x, a)) + g(max(x, a))− f(a).

In many cases we can find moduli of continuity by the following proposition in
which we use the definition B(x, r) := {y ∈ IRµ : |y − x| ≤ r} (for x ∈ IRµ, r ≥ 0).

A2.3 Proposition: Let A ⊆ IRµ be open, and f : A → IR be partially differen-
tiable. Let % ∈ cp.(A → IR+) satisfy B(x, %(x)) ⊆ A for all x ∈ A. Let, moreover,
g ∈ cp.(A → IR) such that

g(x) ≥
µ∑

i=1

|Dif(y1, . . . , yi−1, zi, xi+1, . . . , xµ)|, g(x) > 0

for all x ∈ A, y, z ∈ B(x, %(x)) with xi < zi < yi or yi < zi < xi. Let δ : IR+×A → IR+

be defined by

δ(ε, x) = min

{
%(x),

ε

g(x)

}
.

Then δ is a modulus of continuity for f .

Proof: For all x, y ∈ A such that |x− y| ≤ δ(ε, x), ε > 0 we have

|f(x1, . . . , xµ)− f(y1, . . . , yµ)|
≤ |f(x1, x2, . . .)− f(y1, x2, . . .)|+ |f(y1, x2, x3, . . .)− f(y1, y2, x3, . . .)|+ . . .

+|f(y1, . . . , yµ−1, xµ)− f(y1, . . . , yµ−1, yµ)|
≤ |x1 − y1| · |D1f(z1, x2, . . .)|+ |x2 − y2| · |D2f(y1, z2, x3, . . .)|+ . . .

+|xµ − yµ| · |Dµf(y1, . . . , yµ−1, zµ)|
≤ δ(ε, x) · g(x) ≤ ε
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for proper z1, . . . , zµ such that zi between xi and yi.

Moduli of continuity for power series:

A2.4 Proposition: Let f : ]− r, r[µ → IR,

f(x) =
∑

λ∈INµ

aλx
λ for x ∈ ]− r, r[µ

where r ∈ cp.IR+ and aλ ∈ IR for all λ ∈ INµ. Let, moreover, c ∈ cp.IR+ and∑
|λ|=n |aλ| ≤ c

rn for all n ∈ IN+. Assume that δ ∈ cp.(IR+× ]− r, r[µ → IR+) satisfies

δ(ε, x) = min

{
r − |x|

2
,

ε

cr

(
r − |x|

2

)2
}

.

Then δ is a modulus of continuity for f . If even
∑

|λ|=n |aλ| ≤ c
nrn−1 for all n ∈ IN+,

then δ(ε, x) can be replaced by r−|x|
2
·min

{
1, ε

cr

}
.

Proof: Let x, y ∈ ]− r, r[µ and |x− y| ≤ %(x) := r−|x|
2

. Then we have

|y| ≤ |x|+ |y − x| ≤ |x|+ r − |x|
2

=
|x|+ r

2
< r.

Let, moreover, ξ := |x|+r
2

and q := ξ
r

(hence 0 < q < 1), and
∑

|λ|=n |aλ| ≤ c
rn . It

follows that

|Dif(y)| ≤
∑
n≥1

∑
|λ|=n

λi|aλy
λy−1

i | ≤
∑
n≥1

∑
|λ|=n

λi · |aλ|ξn−1,

µ∑
i=1

|Dif(y)| ≤
∑
n≥1

∑
|λ|=n

n|aλ|ξn−1 ≤
∑
n≥1

n · c

rn
ξn−1 =

c

r
·
∑
n≥1

nqn−1 =
c

r(1− q)2
.

It follows by A2.3 that a modulus of continuity δ for f is defined by

δ(ε, x) = min{%(x),
εr

c
(1− q)2} = min

{
r − |x|

2
,

ε

cr

(
r − |x|

2

)2
}

.

The remainder can be proved similarly.

Now we investigate integrals:
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A2.5 Proposition: Let f ∈ cp.(I × A → IR), where I is a (finite or infinite)
intervall, I ⊆ [a,∞[⊆ IR, a ∈ cp.I, A ⊆ IRµ (e.g.), and let g : I ×A → IR be defined
by

g(x, y) =

∫ x

a

f(t, y)dt.

Assume that there exists a modulus of continuity, δf , for f such that, for all ε ∈
IR+, x0 ∈ I, y, y0 ∈ A, and all s, t ∈ I, we have

a ≤ s, t ≤ x0 ∧ |(t, y)− (s, y0)| ≤ δf (ε, x0, y0) =⇒ |f(t, y)− f(s, y0)| ≤ ε.

Then g is computable (cp. [5], p.226) and has a modulus of continuity of the same
kind. (This proposition can also successively be applied to proper multiple integrals).

Proof: 1. Computability of g: By 2.1 there also exists a modulus ∆f : ZZ×P (I)×
P (A) → ZZ such that, for all k ∈ ZZ, p ∈ P (I), q ∈ P (A), y ∈ A and all s, t ∈ I, we
have

a ≤ s, t ≤ ]p ∧ |(t, y)− (s, ]q)| ≤ α∆f (k,p,q) =⇒ |f(t, y)− f(s, ]q)| ≤ αk.

We may assume that a = 0. Let p ∈ P (I), q ∈ P (A), k ∈ ZZ, φ(p) := pm + αm

(for some m ∈ ZZ),

k′ := min{i ∈ ZZ : αi ≤ αk

φ(p)
}, n := min

{
j ∈ IN :

φ(p)

j
≤ α∆f (k′,p,q)

}
,

and si := i · ]p
n

(for i = 0, . . . , n). We successively obtain for i = 0, . . . , n− 1:

0 ≤ si+1 − si =
]p

n
≤ φ(p)

n
≤ α∆f (k′,p,q),

|f(t, ]q)− f(si, ]q)| ≤ αk′ ≤ αk

φ(p)
≤ αk

]p
for si ≤ t ≤ si+1,∣∣∣∣∫ si+1

si

f(t, ]q)dt− (si+1 − si) · f(si, ]q)

∣∣∣∣ ≤ αk

n
,∣∣∣∣∣

∫ ]p

0

f(t, ]q)dt− ]p

n
·
∑
i<n

f(si, ]q)

∣∣∣∣∣ ≤ αk.

It follows by 1.10 that g is computable.
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2. Now we specify a modulus of continuity, δg, for g. Let M : IR+ × I ×A → IR+

be defined by

M(ε, x0, y0) = |f(0, y0)|+

(
x0

δf (
ε

2x0
, x0, y0)

+ 1

)
· ε

2x0

.

M is computable, and it can be shown that M(ε, x0, y0) ≥ |f(t, y)| for all ε ∈ IR+,
x0 ∈ I, y, y0 ∈ A, 0 ≤ t ≤ x0 and |y − y0| ≤ δf (

ε
2x0

, x0, y0). - Now we assume,
moreover, that 0 ≤ s, x ≤ x0 and

|(x, y)− (s, y0)| ≤ δg(ε, x0, y0) := min

{
ε

2 ·M(ε, x0, y0)
, δf (

ε

2x0

, x0, y0)

}
.

Then we obtain

|g(x, y)− g(s, y0)| ≤ |g(x, y)− g(s, y)|+ |g(s, y)− g(s, y0)|
≤

∣∣∫ x

s
f(t, y)dt

∣∣+ ∣∣∫ s

0
(f(t, y)− f(t, y0))dt

∣∣
≤ |x− s| ·M(ε, x0, y0) + x0 · ε

2x0
≤ ε.
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