Local in time regularity properties
of the Navier-Stokes equations
beyond Serrin’s condition

R. Farwig, H. Kozono, H. Sohr

Abstract

Let u be a weak solution of the Navier-Stokes equations in a domain Q C R?
and a time interval [0,7), 0 < T < oo, with initial value ug, and vanishing
external force. As is well known, global regularity of u for general ug is an
unsolved problem unless we pose additional assumptions on ug or on the
solution wu itself such as Serrin’s condition ||ul|zs(o,7;r4(q)) < oo where 24
% = 1. In the present paper we prove several new local and global regularity
properties by using assumptions beyond Serrin’s condition e.g. as follows:
If the norm ||u|1r(0.719()), With Serrin’s number 2 + 3 =1+« (o > 0)
strictly larger than 1, is sufficiently small, or if w satisfies a local leftward
L#(L%(2))—condition for every t € (0,7), where %+2 =1, then w is regular
in (0,7). Further results deal with similar regularity conditions based on
energy quantities such as [|ul| oo (7 my;02(0)) and [|[Vull 2 1y502(0))-
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1 Introduction and main results

Let © C R? be a domain with smooth boundary 9 in the sense that 9Q is
uniformly of class C*!, let [0,7) be a time interval with 0 < 7' < oo, and let
up € L2(Q) be some initial value. Then we consider the Navier-Stokes system

uy—Au+u-Vu+Vp=0, divu=0

Ugg =00 U,y = Uo .
with vanishing external force; for notational convenience the coefficient of viscos-
ity has been set to 1. Then we are interested in weak solutions u of this system
defined as follows.



Definition 1.1 A vector field
u € L2(0, T3 L3 () 0 L ([0, T); W™ (€2) (1.2)

is called a weak solution of the system (1.1) with initial value ug € L2(SY) if the
relation

—(u,ve)ar + (Vu, Vo)or — (uu, Vu)ar = (ug, v(0))q (1.3)
is satisfied for all test functions v € C3°([0,T); C5%,(€2)).

Here we use the following notations: (-,-)q means the usual pairing of func-
tions on €, (-,-)o7 means the corresponding pairing on Q x [0,7T), LZ(Q) =
Coo (@) with €2, (Q) = {v € C52(); divv = 0} and W*(Q) = Cgo() 1"
Moreover, uu = (u;u;); ., for u = (uq, ug, uz) yielding u-Vu = (u-V)u = div (uu)
when divu = 0.

Without loss of generality we may assume in the following that

4,7=1

u:[0,T) — L2(Q) is weakly continuous (1.4)

in Definition 1.1, with u(0) = wy. Further, there exists a distribution p, called an
associated pressure, such that

—Au+u-Vu+Vp=0 (1.5)

holds in the sense of distributions, see [15], Chapter V.1. Conversely, if u satisfies
(1.2), (1.4), u(0) = up, and if (1.5) holds with some p in the sense of distributions,
then u is a weak solution in the sense of Definition 1.1.

We will use Definition 1.1 with obvious modifications if the interval [0, T) is

replaced by any other interval [t, T") with 0 < ¢ty < T', and with ul,_, = o
A weak solution u in Definition 1.1 is uniquely determined if Serrm s condition
s 2 3
uwe L5(0,T;LYQ)), 2<s<o0, 3<qg<oo, —+-=1 (1.6)
s g
is satisfied, see [14], [15], i.e
T i
Julletoany = lule = ([ lulldt)” < o0, (1.7
0

where [[ullg = [[u(t)llzo@) = (J;, [u(@, )| da)!/.
Moreover, if v in Definition 1.1 satisfies (1.6), then u is regular in the sense
that
ue C®Q x(0,T)), pe C®°(Qx (0,T)), (1.8)

provided 09 is of class C'*, see [15], Theorem V.1.8.2. Hence a weak solution u
satisfying (1.6) is called a strong solution.
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Further we know, see [5], that there exists a weak solution u as in Definition
1.1 which additionally satisfies the strong energy inequality

1 t 1
5 I3 + / IVull3dr < Sllu()l3 (19)

for almost all ¢ € [0,7), including ¢ = 0, and all ¢ € [¢,T). This energy
inequality is needed for the local in time identification of v with strong solutions.
To prove the existence of u satisfying (1.9) for general unbounded domains, we
need only that the boundary is uniform of class C?, see [5]. However, for simplicity
we suppose uniform C%!-regularity of 9 since this is needed in our main Theorem
1.2 below for bounded domains.

Each weak solution u of (1.1) with uy € L2(Q) satisfies the condition

we L7(0,T; LYQ)) (1.10)

for all r, ¢ satisfying

2<q<6, =+ (1.11)

RN )
| W
NN GV]

1
=1+a, §§oz<

The proof is based on the energy inequality (1.9) for ¢ = 0 and an estimate of
the norm ||u||,, by the energy quantities on the left hand side of (1.9), see [15],

Theorem V.1.6.2.
Now our first main results read as follows:

Theorem 1.2 Let Q C R? be a bounded domain with boundary 05 of class C*!,
0 < T < oo, let u be a weak solution of the Navier-Stokes system (1.1) with
ug € L2(Q) satisfying the general energy inequality (1.9), and let 4 < s < oo,
3<q<6uwith?4+3=1

(i) Assume ug € L2(Q). Given r € [1,s) such that 2 —i—% =1l4+a, 0<a<
2(1 — %), there is a constant C' = C(ug,Q,7,s) > 0 with the following property:
If

|w|| 0,00y < C, (1.12)

then w is reqular in the sense that uw € L*(0,T; LY(£2)).

(ii) Suppose for each Ty € (0,T) there is some 0 < § = §(T1) < Ty such that
u satisfies the leftward L°®—L1—condition

w e LTy — 6,Ty; LUS)). (1.13)

Then u is reqular in the sense that u € L3 ((0,T"); LI(€2)).

loc

The proof is based on the following theorem yielding local in time regularity
results.



Theorem 1.3 Let Q C R? be a bounded domain with boundary 092 of class C**,
0 < T < oo, let u be a weak solution of the Navier-Stokes system (1.1) with
ug € L2(Q) satisfying the general energy inequality (1.9), and let 4 < s < oo,
3 < q <6 with %+% = 1. Then there is a constant C' = C(Q, q) > 0 independent
of ug and u with the following property:

IfO<Ty<Ti<T,0<a<2(1—1), and if one of the following smallness
conditions is satisfied,

n 2 3

(i) [ ol s e -1 win 242 =14a 1502
To T q

(1.14)

or, when T < o0,

I - 2 3
) / (T —t)s[Ju(t)|l; dt < C(Th —Tp)  with - + 5 =14+a 1<r<s,

To
(1.15)

then u is reqular on the interval (Ty,T) in the sense that Serrin’s condition
we LTy, T; LY(Q)) (1.16)
1s satisfied.

Remark 1.4 The time exponent 7 in (1.14) is uniquely determined by 0 < o <
2(1-1) andby%—i—%:l—i-a, it holds a = 2(3 — ).

Using (1.11) we see that each weak solution u in Theorem 1.3 satisfies (1.10) if
v is restricted by % <a<2(1- %) such that 1 <r < (i+§)*1. Of course, if 0 <
o < 3, & =2(2—1), then the condition (1.14) means the following: f;;l [u(t)][; dt
is well defined and bounded by C(T} — Ty). An analogous interpretation holds
for (1.15).

Corollary 1.5 Let u be a weak solution in 2 x [0,T) as in Theorem 1.3, and let
s,q be exponents with 2 + 32 = 1.
s ' q
(i) Let T =00, 3 <a<2(1-1),1<r<s, %—i—%zl—{—a such that (1.10)

1s satisfied. Then u is reqular for t > T with
Ty > CYullzr(o,00sn0(0)), C asin (1.14), (1.17)

in the sense that u € L* (Tl,oo;Lq(Q)). In particular the choice of T1 > 0 in
(1.17) only depends on C' and the norm ||ul|q.,.

(i) Let 0 < Ty < T < o0, choose 1 < r < s as in (i) such that u €
L7(0,T; LX), and assume that

1 (B
q:mgyaééw®mﬁ<W- (1.18)

4



Then there exists T' =T'(Cy), Ty <T' < T, such that u is regular on (T1,T") in
the sense

ue L*(Th,T'; LY(Q)).

In particular, this condition is satisfied if Ty € (0,T) is a Lebesgue point of
tlu(®)|z, t € (0,T), in the sense that

: 1 T1 T T
tin 5 [ o)l de = u(rl; (119
- Ti—6

Conversely, if Ty € (0,T) is a singular point in the sense that there is no T' > T}
such that u is contained in L® (Tl, T Lq(Q)), then

1 [
lim —/ [u(t)|]} dt = oc. (1.20)
0 Jr—s

6—0

The set of such singular points (is empty or) has Lebesgue measure zero. The
condition (1.18) is sufficient that T is not a singular point.

In the next theorem the domain 0 C R3 need not be bounded. In this case
Ay @ D(Ag) — L2(Q2), D(Ay) C L2(2), denotes the usual Stokes operator well
defined in the L2-approach, see the next section. The case that = R3, 9Q = 0,
is included; in this case the condition ”u|(99 = 0 in (1.1) is omitted. See [5]
concerning the uniformity condition of 9f2.

In this case our result reads as follows:

Theorem 1.6 Let Q C R? be a general domain with boundary 092 uniformly of
class C*1, 0 < T < oo, and let u be a weak solution of the Navier-Stokes system
(1.1) with ug € L%(Q) satisfying the strong energy inequality (1.9). Assume that
the map t — ||Vu(t)|2 is locally left bounded in the following sense: For each
T, € (0,T) there is some 0 < § = 0(Ty) < Ty such that

IVu()ll2 € L=(T1 = 6,T1).
Then u s reqular in the sense that
uwe L¥(Ty,T; L*(Q)).

The proof of this theorem is based on the following more general local in time
regularity results:

Theorem 1.7 Let Q C R? be a general domain with boundary 0 uniformly of
class C*1, 0 < T < oo, and let u be a weak solution of the Navier-Stokes system
(1.1) with uy € L2(Q)) satisfying the strong energy inequality (1.9). Then there
1s an absolute constant C' > 0, not depending on €1 and ugy, with the following
property:



If 0 < Ty < Ty < T, and if one of the following smallness conditions is
satisfied,

@ | IAfuOlhd < CT - To), (1.21)
(i) [ IOl a0l dt < OTs 7o) (1.2
(i) (_sup Nult)lF) [ IVu@lae < (T - To), (1.23)

then w is regular on the interval (11,T) in the sense that u satisfies Serrin’s
condition

ue L¥(Ty,T; L)), (1.24)
and has the properties
Vue LTy, T; L*(Q)), wue L*(Ty,T; L*(9Q)). (1.25)
Note that, due to the energy inequality (1.9) with o = 0, the expressions on
the left hand side of (i), (ii), (iii) are well defined, see (3.13) below.

Corollary 1.8 Let u be a weak solution in € x [0,00) with initial value uy €
L2(Q) as in Theorem 1.7 with T = oo, let C' be the constant in (1.23), and let

Ty > C'( sup Ju(®)]2) / IVull2 dt. (1.26)
0

0<t<oo

Then the weak solution u is reqular for t > T in the sense of (1.24) and (1.25)
with T'= oco. In particular, if

1
T > 5071HU0H3; (1.27)

then w is regular in this sense for t > Ty. Therefore, the smaller ||uo||2, the
smaller the time T1 > 0 such that u is reqular for t > Tj.

The next result enables us to construct a regularity interval of the form (77, 7")
WlthO<T1<T/§T

Theorem 1.9 Let u be a weak solution in Qx [0, T) with initial value uy € L2()
as in Theorem 1.7, and let 0 < ¢ < i, 0 < T < oco. Then there is a constant
C. > 0, not depending on 2 and ug, with the following property:

If0 <1y < Ty < T, and if the smallness condition

1 T .
/ (IVul2 + Jul2)dt < Cu(T - T)~ (1.28)
T —To Jg,

is satisfied, then u is reqular on the interval (T1,T) in the sense that (1.24) and
(1.25) are valid.



Corollary 1.10 Let Q,u,uq be as in Theorem 1.7, let 0 < T} < T < oo, and
assume that

1 [N
o liminf—/ (157ll3 + [Jull2)dt < oo. (1.29)
6=0 0 Jr, s

Then there exists T = T'(Cy) € (T1,T] such that u is reqular on (T1,T") in the
sense that (1.24) and (1.25) are valid with (Ty,T) replaced by (T1,T").

2 Some preliminaries

Given a domain  C R? we use the well known spaces L4(f2), 1 < ¢ < oo,

with norm || - [[a) = || - [l and pairing (v,w) = (v,w)q = [,v - wdz for
v e LIQ), we L), ¢ = -45- Moreover, given 0 < T < oo, we need the
Bochner spaces L*(0,7; L9(£2)), 1 < s < oo, with norm || || zs0. 09y = || * |lgs =

(fOT |- ]| dt)"/* and the corresponding pairing (-, -) = (-, ") on L*(0,T; L9(2)) x
L0, T; L9(Q)), s = -*. Furthermore, we will use the smooth function spaces
C5e (), G55, () = {v € C§°(2); dive = 0} and the spaces LI(Q2) = Cgfa(Q)”'”".

In the general case of an unbounded domain 0 C R? as in Theorem 1.6, the
Stokes operator Ay = —P,A : D(Ay) — L2(Q), D(A,) C L2(Q), is defined in the
usual way by the Hilbert space approach in L2(€), together with the Helmholtz
projection P : L*(Q) — L2(€). We collect some well known properties for As,
its fractional powers A%, 0 < o < 1, and the corresponding analytic semigroup
e~42 ¢ > (. In particular we need the following estimates, see [15], III. 2.1 — 2.6,
IV. 1.5:

|ASv||2 < ]|A2v\|§|]v\|§’a for all v € D(Ay), 0 <a <1, (2.1)
1
vlly < CllASv||2 for all v e D(AS), 0 <a < 3 2<qg<oo, (22

where 2o + 2 = g and C' = C(a,q) > 0,

|Age™ 20|y < t7%||v||y for all v € L2(Q), 0 < a < 1,t >0, (2.3)
1
|Ay 2Py divo|ls < ||v]l2 for all v = (Uij)ij:l € L2(), (2.4)
1
HVEHLQ(O,T;LQ(Q)) = |’A22EHL2(O,T;L2(Q)) < ||UH2 for all v € Lg(Q), (25)
where E(t) = e 20,
Note that dive = (37, Div;j)3_; in (2.5) and that ||A§/2v||2 = ||Vo||p for v €
D(4,%).

If @ C R? is a smooth bounded domain as in Theorem 1.2, then we use
the Stokes operator A, = —P,A : D(4,) — L%(Q2), D(4,) € L%(R), and the
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Helmholtz projection P, : L1(Q)) — L%(Q2) in L%-spaces; see, e.g., [1], [3] — [8],
concerning these operators. In particular the following estimates hold, see [4]:

vll, < Cl|AJv]ly forallv e D(A7), 1<q<7, 0<a <], (2.6)
where 2a + § = §,
7oq
HA;‘e’tAquq < Ce™ 7 ||v]|, for all v € LL(Q), t >0, (2.7)
where 6 = §(€,¢) >0 and 0 < a <1,
14,7 Pydivoll, < Cllofly for all v = (v5)? ., € LL(Q), (2.8)
vl zs0.msr9) < CllfllLsomnacy forall f e L*(0,T; L)), (2.9)

¢
where v(t) = Aq/ e~ "4 (1) dr.
0

The constants C'in (2.6)—(2.9) depend on §2 and ¢, s, «, but are independent of v.
Further note that the norms ||A;/Qv||q and [|Vv||, are equivalent for v € D(AY?).

To prove our main results we have to identify the given weak solution u
locally in time with strong solutions, i.e. with weak solutions satisfying Serrin’s
regularity condition. There are many results on the existence of such solutions
for some given interval [0,7), 0 < T' < oo, if the initial value g satisfies a certain
smallness condition, see, e.g., [9] — [13], [16]. However, we need some particular
weak assumption on ug and will apply Theorem 1 in [4] for bounded domains,
and Theorem 4.2.2, V, [15] for the general case. The restriction 4 < ¢ < 6 in
Lemma 2.1, needed for technical reasons in the proof, is not important for our
application.

Lemma 2.1 Let Q C R3 be a bounded domain with boundary 092 of class C*!,
4 <s<o00,3<q<6, % + g =1, and let ug € LL(2). Then there is a constant
C =C(Q,q) > 0 independent of uy with the following property: If

T
‘/HewmﬁﬁgC (2.10)
0

for some T € (0,00], then there exists a unique weak solution u in € x [0,T) of
the Navier-Stokes system (1.1) satisfying Serrin’s condition

we L°(0,T; L)) (2.11)

and the energy inequality

1 t 1
5 I3 + / IVull3dr < Sluoll3, 0< ¢ <T. (2.12)



Proof. The existence result of Theorem 1 in [4] yields — under the smallness
condition (2.10), see [4], p. 133, (4.23) — a unique solution u in the following
(so-called very weak) sense: It holds (2.11) and the relation

—(u,ve)ar — (u, Av)gr — (uu, Vo)or = (up, v(0))q (2.13)

for all v € C§°([0,T); C5%(2)). In order to prove that u is a weak solution
satisfying (2.11) we have to show several regularity properties.

We start with the case that 4 < s < 8 and hence 4 < ¢ < 6. Due to the proof
n [4], p. 132, (4.19), we know that u satisfies the relation

t 1 1
u(t) = u(t) — E(t) = —/ AZe A AP div (uu)dr, 0<t < T, (2.14)
0

with E(t) = e"*ayy. Using (2.8) and Hélder’s inequality we obtain that
||Aq/2 02 div (ut) g0 < Chlluullgyz < Collull; (2.15)

with C; = C;(Q,q) > 0, j = 1,2. By (2.14)

1 t 1
AZa(t) = — A, / e A2 Podiv (uu) dr, 0 <t <T, (2.16)
0

and using (2.9) we get the estimate

Vil 5 < CollAZ il 5 < Culluully 3 < Collul, <00, (217)
C; =C;(,q) >0, j =3,4,5. This shows that
Vi e L¥Y?(0,T; LY*(Q)) (2.18)
and, since 4 < ¢ < 6, 4 < s <8, that
Vie (0.7 1), 1€ B (0.7 WEAQ).  (219)

Applying (2.7) to (2.14), using (2.8), Holder’s inequality and the properties of ¢
and s we obtain from (2.14) the estimate

t
_ 1 _§(t—r
la@®)llz < 06/ e uully dr
0o (t—1)2

t
Cy / ! - e w4 dr (2.20)
(t— )
|

< Gslluullgs < Collullg,

S
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with C; = C;(Q,q) >0, j =6,...,9. Hence (2.19) and (2.20) imply that

i€ L=([0,7); L2() N LY ([0,T); W, 2(9)). (2.21)

loc

Next we use (2.3) with a = 0 and (2.5) to obtain that

1
IE@®)2 < lluoll2, [[VE22 = [[AF Ell22 < [luol|2- (2.22)
With the help of (2.21) and (2.22) we conclude that

we L®([0,7); L2(2)) N LY ([0,T); W,y 2(9)). (2.23)

loc
Since u € L*(0,T"; L7(Q2)) for all 0 < 7" < T, Hélder’s inequality yields

wu € L2, (10,7); L3(9), (2.24)
cf. [15], p. 275. Using (2.23) and (2.24), a calculation shows that (2.13) implies
(1.3), and that the energy inequality (2.12) is satisfied; see also [15], Theorem
V.1.4.1, concerning the last property. Consequently u is a weak solution of (1.1)
satisfying (2.11) and (2.12). Hence it is also a strong solution. The uniqueness of
u with these properties follows from Serrin’s uniqueness argument, see [14], [15].
This completes the proof in the case that 4 < s < 8.

In the second case we assume that 8 < s < oo and 3 < ¢ < 4. Now we need
several steps. First let s; = s, ¢; = ¢. Then we get as in (2.14)—(2.18) that Va €
L#/2(0,T; L7/%(Q)). Defining s, = % and ¢» > ¢; such that 1 + q% = ﬁ, % +
q% = 1, we obtain by Sobolev’s embedding theorem that o € L*2 (O,T; Lq2(Q)).
Moreover, using (2.6), (2.7) we see that E € L*2(0,T; L%({2)) which leads to
u € L*? (O, T; Lq2(Q)). Proceeding in the same way, let s, = %% and qp > qp_1

1 11 2, 3 _ ; 1_ 1 _9k-1(1_ 1
such that 3 +-- = ——, =+ 2 =1, for k € N. Since 3 — .- =2 (3 ql),we
choosekeNsuchthat%—qk%l<%g%—i,leadingto4§qk<6,4<sk§8.

Now ¢i/2 > 2, and using (2.17), (2.20) with ¢, s replaced by gy, sk, we obtain the
properties (2.19), (2.21). This yields the result in the same way as in the first
case. Now the proof of the lemma is complete. [ ]

Corollary 2.2 Let uy € L1(Q2) and g, s be given as in Lemma 2.1, and let T =
00. Then there is a constant C' = C(,q) > 0 with the following property: If

[uolly < C, (2.25)

then there exists a unique weak solution u in € x [0,00) of the Navier-Stokes
system (1.1) satisfying (2.11) and (2.12) with T = oc.

Proof. Using (2.7) with @ = 0 we obtain that
> — S S > — O S
| et ol < iluoly [ e dt < S uol;

0 0
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with C = C1(Q, q) > 0. Now the result follows from Lemma 2.1. u

The next lemma is totally based on the Hilbert space approach in L2(().
This is needed since 2 C R?® may be a completely general domain. Note that
the smallness constant C' > 0 in the next lemma does not depend on €2 and wuy.
Thus we obtain the same existence interval [0,7), 0 < T' < oo, for all domains €2
and all initial values ug = uo(Q2) € L2(f2) if the smallness condition (2.26) below
holds. Put e=2742 = ( in (2.26) if T = cc.

Lemma 2.3 Let Q C R? be a general domain, i.e. a connected open subset, let
0<T < o0, and uy € D(A;M). Then there is an absolute constant C' > 0, not
depending on Q,'T" and uy with the following property: If

1 1 1 z
I(Z = e7*T%2) Ao 13 | A3 uoll5 < C, (2.26)

then the Navier-Stokes system (1.1) possesses a unique weak solution u on the
interval [0,T) satisfying Serrin’s condition

ue L*(0,T; L*(9)), (2.27)
the properties
Vu € L*(0,T; L)), uu € L*(0,T; L*(R)) (2.28)
and the energy inequality
1 2 ' 2 1 2
IO+ [ 19ular < Sl o<t <. (229)

Proof. The existence result together with (2.27) and (2.28) is a special case of
Theorem V.4.2.2 in [15]. Then the energy inequality (2.29) follows, using (2.28),
from Theorem V.1.4.1 in [15]. This proves the lemma. n

Corollary 2.4 Let Q,T,up € D(A;M) be as in Lemma 2.3. Then there is an ab-
solute constant C' > 0, not depending on 2, T and ug, with the following property:

If
|43 uoll2 < C, (2.30)

then the Navier-Stokes system (1.1) possesses a unique weak solution u in € X
[0, T) satisfying (2.27), (2.28), and (2.29).

Proof. The result follows from Lemma 2.3 since
PV VINDE SEN SR . ,o 1 117 L1
(I — e ) Aguolls [|Azuolls < 25[|AJuollS [[Azuolls = 28[| Az uolle,
see (2.3) with w = 0. This completes the proof. n
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3 Proof of the theorems

First we have to prove Theorem 1.3.

Proof of Theorem 1.3. Given the bounded domain Q CR* 0 < Ty < T} < T
and u, q,r, s as in this theorem, we have to prove the existence of some constant
C = C(9,q) > 0 yielding regularity of u on (71, T) if (i) or (ii) is satisfied.

Using the weak continuity of the weak solution u : [0,T) — L2(£2), see (1.4),
we know that wu(ty) € L2(Q) is well defined for all ¢, € [0,7). Since Vu €
L(0,T; L*(Q)), see (1.9) for o = 0, and since 3 < ¢ < 6, the embedding inequality
lu(®)]ly < Chllu(t)]le < Co||Vu(t)]|2 with C; = C;(Q,q) > 0, j = 1,2, implies that
u € L*(0,T;L4(€2)). Then the Lebesgue point argument shows that there is a
null set N C (0,7) such that |[u(to)||, is well defined by the property

1 to+0
lim—/ lu(®)]? dt = Juto) |2, 0 < to < T. (3.1)

for all o € (0,7)\N. Moreover, since the energy inequality (1.9) holds for a.a.
o € [0,T), we may assume in the following that the null set N C (0,7) is chosen
in such a way that both (3.1) and the energy inequality

1 ¢ 1
Sl + [ IVulidr < Su)l3 0 <t <7 (3.2
to

hold for all ¢ty € (0, 7)\N.

Let to € (0,7)\N. Then u(ty) € LL(2), and we are able to apply the local
existence results of Lemma 2.1 and Corollary 2.2, replacing the existence inter-
val [0,7") by the interval [tyg,T), and using u(ty) as initial value. Hence, if the
smallness condition

T—to
[ e atolar < (33)
0
or the condition
[u(to)lly <C (3.4)

is satisfied with C' as in Lemma 2.1 or in Corollary 2.2, respectively, then we
obtain a unique weak solution @ on the interval [to, T'), corresponding to Definition
1.1, of the Navier-Stokes system

Gy — Aii+0-Vi+Vp=0, divi=0,

- - 3.5
U, = 0, u’t:to = u(ty), (3:5)

o
satisfying

i€ L™ (to, T; L2(Q)) N L2 ([0,T); Wy ?(Q)), (3.6)
i € L*(t, T; L)),

12



and the energy inequality

1, . ¢ . 1
SN+ [ IValEdr < Suw)l3, <t <. (3.7
to

By Serrin’s uniqueness argument, see [14], [15], V, Theorem 1.5.1, we obtain that
u =1 on [ty,T).

This yields the properties (3.6) with @ replaced by u, and we get the desired result
of Theorem 1.3. Thus it remains to prove the existence of some ¢y € (0,7)\N as
above with Tj <ty < T} such that (3.3) or (3.4) is satisfied.

First suppose that the condition (i) in Theorem 1.3 holds with any constant
Cy > 0. Then there is at least one ty € (T, 71)\ NV such that

T

1
Juttol; < 7 [ lu@)lde < Cu 33)

To

Therefore, setting C; = C” with C' as in Corollary 2.2, the condition (3.4) is
satisfied and we obtain the desired result of Theorem 1.3.
Next assume that condition (ii) is satisfied, i.e.,

T
/ (T — )% u(®)|] dt < C\(Ty — Ty) (3.9)
To
with any constant C; > 0. Then we find at least one ¢y € (7, 71)\N such that
: 1 n .
T —tg)s to)||" < T—1t)s Ik <. 1
T =10 )l < e [ @ -0F ;<0 610

Further we obtain, using (2.7) with a = 0 and (3.9), (3.10), that
T—tg El
/ le™u(to) |5 dr < Co(T — to) [|u(to) |5 < C2CY
0

holds with some constant Co = C5(f,q) > 0. Setting C; = (C/Cy)"/* with C
from Lemma 2.1 we see that (3.3) is satisfied. This completes the proof. |

Proof of Theorem 1.2 (i) By Lemma 2.1 there exists some 0 = §(ug,$2,s) >0
such that v € L*(0,0; L9(Q2)). Next we choose 0 < Ty < Ty < T with Ty <
6, Ty = Ty + 5%, and assume that [l 2 0.7 na0)) < $(C is satisfied with C' from
(1.14). Using Theorem 1.3 (i), we conclude that v € L*(T},T; L%(2)) and hence
u € L*(0,T; LY(R)).

(ii) In this case we use Theorem 1.3 (ii) with & = 0, r = s. Let T} € (0,7T) and
choose 0 < § < Tj such that u € L*(T1—6,T1; L4(S2)) and 2||u|| or (1, —s,my:09(0)) < C
with C' from (1.15). Moreover, let 7" =T} + §, To = 11 — 6. Then

1 T ) T
T —t)|u(t)||dt <2 u(t)||2dt < C.
e OB FOT L R POTE
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Now Theorem 1.3 (ii), implies that v € L*(Ty — 9,11 + §; L9(£2)). Since we find
such a 6 > 0 for each T} € (0,7), we obtain the result. n

Proof of Corollary 1.5 (i) Condition (1.17) implies (1.14) for some sufficiently
small 1o > 0.

(ii) Assume that (1.18) holds. Then there is a sequence (6;) C (0, 00) such
that lim; . 0; = 0 and

1 [
lim —/ Ju(t)|} dt = Ci. (3.11)

J—00 J Tl*é.j

Moreover, for given ¢ > 0 and 77 < T" < T, T" < o0, there is some k € N
satisfying

[
5 (T" = t)=[Ju(t)||; at
J JT1—6;

r
s

< ((T" = (Ty = 6;))*(C1 +¢) < (T" =Ty + )5 (Cy +¢)

for ;7 > k. Therefore, choosing ¢ > 0 sufficiently small and k£ € N sufficiently
large, we find 7" = T'(Cy), Ty < T" < T, such that

(T' =Ty +€)5(CL+e) < C

with C' from (1.15). Now (1.15) is satisfied with T replaced by 7", and Theorem
1.3 (ii) shows that u is regular on (T3, T"), i.e., u € L* (T3, T"; L7(S2)). n

Proof of Theorem 1.7. Let Q C R? 0 < Ty < 77 < T < oo and ug,u be
as in Theorem 1.7. We have to prove the existence of some absolute constant
C' > 0 such that each of the conditions (1.21), (1.22), (1.23) implies the result.
In principle we argue as in the proof of Theorem 1.3 for bounded domains, using
now Corollary 2.4 instead of Corollary 2.2.

Since u : [0,T) — L2(f2) is weakly continuous, u(ty) € L2(f2) is well defined
for all ¢ty € [0,7), and there is a null set N C (0,7") such that

1 [t 2 2
lim —/ Vu(t) |5 dt = ||Vul(t 3.12
s ) [Vu(t)]|z [Vu(to)lls (3.12)

to—

is well defined for all ty € (0,7)\N. Further we can choose the null set N C (0,7")
in such a way that both (3.12) and the energy inequality (3.2) are satisfied for
all to € (0,T7)\N.

Let ty € (0,7)\N. Using the interpolation inequality (2.1) with A, replaced
by A;/z we obtain since A;Mu(to) = (A;/Q)l/Qu(to) that

1 1 1 1 1 1
145 u(to)ll2 < [[Aulto)lls [[uto)ll3 = [IVulto)l3 [[uto)ll3- (3.13)

14



Therefore, A;/ *u(ty) € L2(9Q) is well defined. Thus if the smallness condition

|43 u(to)ll2 < € (3.14)

is satisfied with C' from (2.30), we obtain a weak solution @ of the system
(3.5) with initial value a(ty) = u(ty) € D(AY™), satistying (3.6), Serrin’s con-
dition @ € L%(to,T; L*()), and the conditions Va € L*(ty, T; L*(0)), aa €
L*(to, T; L*(2)) and (3.7). Using Serrin’s uniqueness argument as in the proof
of Theorem 1.3 we conclude that u = @ on [tg,T). Hence, since to < Tj, the
conditions (1.24), (1.25) are satisfied.

Now assume the smallness condition

[ 1akutla < o -y (315)

To

with the same constant C' as in (3.14). Then we argue as in (3.8) and obtain at
least one to € (0,T)\N, Ty < to < T4, such that

1 1 LRt
A5 ulto)l]2 < / [ A5 u(t)|l2dt < C. (3.16)
Tl - TO To

Thus (3.14) holds, and Theorem 1.7 is proved in the case (i) with C' from (2.30).
Using (3.13) and the inequality of Cauchy-Schwarz we obtain the estimates

T 1 T 1 1 1 T 1
[ 1adulede < [ 19l i de < -1} ( [ 190l )
To To To
(3.17)
and
Ty L Ty %
| IVl lulad < 2=z ( [ Ivulg g ) (318)
TO TO
1 T !
< (-1} s fulls ([ IValar)’.
To<t<Ty To
Assume that .
1
|19l e < ¢z - ) .19
To

holds with C' from (2.30). Then (3.17) implies (3.15), the smallness condition (i)
is satisfied, and it follows the desired result.
Finally assume that

Ty
sup [uly ([ " IVulde) < 07, - T (3.20)

To<t<Ty To

15



is satisfied with C' from (2.30). Then (3.18) implies (3.19), and it follows again
the desired result.
Now the proof is complete. [ ]

Proof of Corollary 1.8 Choosing Ty with 0 < Ty < T} sufficiently small, the
result follows from Theorem 1.7 (iii). Note that (1.27) implies (1.26) which can
be shown by (1.9) with o = 0. u

Proof of Theorem 1.9. Consider ug € L2(2), a weak solution u on Q x [0,7)
1

with 7" < oo and 0 < ¢ < 7 as in this theorem. Then we have to find some
constant C. > 0 such that the smallness condition (1.28) implies the desired
result. In this case we will apply directly Lemma 2.3. For this purpose we have
to prepare several estimates.

First we use the same argument as in (3.16), with HAé/ *u(t)||2 replaced by
(I — e~ 2T=042) AT (1) |13/ || AY*u(t)||7/®, and obtain at least one to € (0, T)\N,
To <ty < T, Wlth N as in (3.16), satisfying the estimate

A 1 1 1 7
(7 — e 2T=042) AZu(to) |15 [| A3 ulto) 15 (3.21)

1 ! 1 7
< I — e—Q(T—t)Az 1 A 8 t.
< g [N JASu(t) 5 A5 u(e);

Since L e=2T=7)A2 — 9 4,e=2(T=7)42 we get that

dr

-

T
(I — e_Q(T_t)AQ)AQZu(t) = 2/ Aé_ae_z(T_T)AzA;HMu(t) dr,
t
and using (2.3) with o = 1 — ¢ we conclude that
i g 1/4
(7 =208 afu < 2 [ A5 e TR e (322
¢

T
(e . 2¢ e
<2( [ @ -n) " ar) a5 uolls < 2T - 0745 uto) s
t

1
Next we use (2.1) with A, replaced by A3 and obtain the interpolation inequality

H£W4umwu>% ult)|) (3.23)
< A2u@) |2 a2~ < ) (|AZu(t)]ls + u(t)]]2)

with &’ = 2e; by analogy a similar result holds when ¢ = &’ = 0.
By (3.21) - (3.23) there are constants Ci(¢),...,Cy(e) > 0 such that the
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following inequalities hold:

1 11 7
I(1 — e 2T %) AZu(to) |15 | A u(t)|13

< Q@M=" [ @ =045 el §aju 1
< GEMG =TT =T [ (1AfuOll+ (o))
< Co(e)(Ty = To) H(T = T / (ICAF () + [lu(r) B)dr)

= GEMO-T) =T [ (IVu)I+ [uB)ar)

Therefore, if C. = 02(03<€))_2 in (1.28) with C from Lemma 2.3, then we
conclude from the last estimates that the smallness condition

[ — e 2T=t0)d2y Ay (1| 5| AZu(t) |5 < C 3.24
11 —e JAzu(@)|5 Az u(®)]ls < (3.24)

is satisfied.

Similarly as explained in the proof of Theorem 1.3 concerning the Lemma 2.1,
we can apply Lemma 2.3 also to the case that the existence interval [0,7) and the
initial value uq are replaced by [tg, T') and u(ty). Then T and ug in the smallness
condition (2.26) have to be replaced by T' — t, and u(ty), respectively, yielding
the condition (3.24). Therefore, applying Lemma 2.3 in this situation we obtain
a unique weak solution @ of the system (3.5) satisfying (3.6), and the properties
u € L3(tg, T; LX), Va € L(to, T; L*(2)), ua € L*(to, T; L*(2)), and (3.7).
Then, by Serrin’s argument, v = 4 and u satisfies (1.24), (1.25). This completes
the proof. [ ]

Proof of Corollary 1.10 Replacing 7" in (1.28) by a sufficiently small 77 =
T'(Cy) € (Th,T) we get the assertion from Theorem 1.9. [

Proof of Theorem 1.6. Choose 0 < Ty < T} < T" < T such that ||Vu(-)|2 €
LOO(T(], Tl) and that

ess supg, <p<ry (| Vu(t)ll2 + Ju(®)2) < C(T" —Ty) "
holds with C. from (1.28). Then we obtain the estimate

1
T, — Ty

/T1 HVUHQ + Hqu) dt < C(T' —Ty)" 1,
To

and from Theorem 1.9 we conclude that w € L8(Ty,T"; L*(2)). A well known
embedding argument implies that u € L3(Ty, T"; L*(Q2)). Thus for each Ty € (0,7)
we find some 0 < 6 < Ty with u € L¥(Ty — 8, Ty + &; L*(2)). Now the theorem is
proved. [ ]
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