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Abstract

Let u be a weak solution of the Navier-Stokes equations in a domain Ω ⊆ R3

and a time interval [0, T ), 0 < T ≤ ∞, with initial value u0, and vanishing
external force. As is well known, global regularity of u for general u0 is an
unsolved problem unless we pose additional assumptions on u0 or on the
solution u itself such as Serrin’s condition ‖u‖Ls(0,T ;Lq(Ω)) < ∞ where 2

s +
3
q = 1. In the present paper we prove several new local and global regularity
properties by using assumptions beyond Serrin’s condition e.g. as follows:
If the norm ‖u‖Lr(0,T ;Lq(Ω)), with Serrin’s number 2

r + 3
q = 1 + α (α > 0)

strictly larger than 1, is sufficiently small, or if u satisfies a local leftward
Ls(Lq(Ω))–condition for every t ∈ (0, T ), where 2

s + 3
q = 1, then u is regular

in (0, T ). Further results deal with similar regularity conditions based on
energy quantities such as ‖u‖L∞(T0,T1;L2(Ω)) and ‖∇u‖L2(T0,T1;L2(Ω)).
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1 Introduction and main results

Let Ω ⊆ R3 be a domain with smooth boundary ∂Ω in the sense that ∂Ω is
uniformly of class C2,1, let [0, T ) be a time interval with 0 < T ≤ ∞, and let
u0 ∈ L2

σ(Ω) be some initial value. Then we consider the Navier-Stokes system

ut −∆u + u · ∇u +∇p = 0, div u = 0
u|∂Ω

= 0, u|t=0
= u0

(1.1)

with vanishing external force; for notational convenience the coefficient of viscos-
ity has been set to 1. Then we are interested in weak solutions u of this system
defined as follows.
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Definition 1.1 A vector field

u ∈ L∞(0, T ; L2
σ(Ω)) ∩ L2

loc([0, T ); W 1,2
0 (Ω)) (1.2)

is called a weak solution of the system (1.1) with initial value u0 ∈ L2
σ(Ω) if the

relation
−〈u, vt〉Ω,T + 〈∇u,∇v〉Ω,T − 〈uu,∇v〉Ω,T = 〈u0, v(0)〉Ω (1.3)

is satisfied for all test functions v ∈ C∞
0 ([0, T ); C∞

0,σ(Ω)).

Here we use the following notations: 〈·, ·〉Ω means the usual pairing of func-
tions on Ω, 〈·, ·〉Ω,T means the corresponding pairing on Ω × [0, T ), L2

σ(Ω) =

C∞
0,σ(Ω)

‖·‖2
with C∞

0,σ(Ω) = {v ∈ C∞
0 (Ω); div v = 0} and W 1,2

0 (Ω) = C∞
0 (Ω)

‖·‖W1,2
.

Moreover, uu = (uiuj)
3
i,j=1 for u = (u1, u2, u3) yielding u·∇u = (u·∇)u = div (uu)

when div u = 0.
Without loss of generality we may assume in the following that

u : [0, T ) → L2
σ(Ω) is weakly continuous (1.4)

in Definition 1.1, with u(0) = u0. Further, there exists a distribution p, called an
associated pressure, such that

ut −∆u + u · ∇u +∇p = 0 (1.5)

holds in the sense of distributions, see [15], Chapter V.1. Conversely, if u satisfies
(1.2), (1.4), u(0) = u0, and if (1.5) holds with some p in the sense of distributions,
then u is a weak solution in the sense of Definition 1.1.

We will use Definition 1.1 with obvious modifications if the interval [0, T ) is
replaced by any other interval [t0, T ) with 0 < t0 < T , and with u|t=t0

= u0.

A weak solution u in Definition 1.1 is uniquely determined if Serrin’s condition

u ∈ Ls(0, T ; Lq(Ω)), 2 < s < ∞, 3 < q < ∞,
2

s
+

3

q
= 1 (1.6)

is satisfied, see [14], [15], i.e.,

‖u‖Ls(0,T ;Lq(Ω)) = ‖u‖q,s =
( ∫ T

0

‖u‖s
q dt

) 1
s

< ∞, (1.7)

where ‖u‖q = ‖u(t)‖Lq(Ω) = (
∫

Ω
|u(x, t)|q dx)1/q.

Moreover, if u in Definition 1.1 satisfies (1.6), then u is regular in the sense
that

u ∈ C∞(Ω× (0, T )), p ∈ C∞(Ω× (0, T )), (1.8)

provided ∂Ω is of class C∞, see [15], Theorem V.1.8.2. Hence a weak solution u
satisfying (1.6) is called a strong solution.
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Further we know, see [5], that there exists a weak solution u as in Definition
1.1 which additionally satisfies the strong energy inequality

1

2
‖u(t)‖2

2 +

∫ t

σ

‖∇u‖2
2 dτ ≤ 1

2
‖u(σ)‖2

2 (1.9)

for almost all σ ∈ [0, T ), including σ = 0, and all t ∈ [σ, T ). This energy
inequality is needed for the local in time identification of u with strong solutions.
To prove the existence of u satisfying (1.9) for general unbounded domains, we
need only that the boundary is uniform of class C2, see [5]. However, for simplicity
we suppose uniform C2,1-regularity of ∂Ω since this is needed in our main Theorem
1.2 below for bounded domains.

Each weak solution u of (1.1) with u0 ∈ L2
σ(Ω) satisfies the condition

u ∈ Lr(0, T ; Lq(Ω)) (1.10)

for all r, q satisfying

2 ≤ q ≤ 6,
2

r
+

3

q
= 1 + α,

1

2
≤ α <

3

2
. (1.11)

The proof is based on the energy inequality (1.9) for σ = 0 and an estimate of
the norm ‖u‖q,r by the energy quantities on the left hand side of (1.9), see [15],
Theorem V.1.6.2.

Now our first main results read as follows:

Theorem 1.2 Let Ω ⊆ R3 be a bounded domain with boundary ∂Ω of class C2,1,
0 < T ≤ ∞, let u be a weak solution of the Navier-Stokes system (1.1) with
u0 ∈ L2

σ(Ω) satisfying the general energy inequality (1.9), and let 4 < s < ∞,
3 < q < 6 with 2

s
+ 3

q
= 1.

(i) Assume u0 ∈ Lq
σ(Ω). Given r ∈ [1, s) such that 2

r
+ 3

q
= 1 + α, 0 ≤ α ≤

2
(
1 − 1

s

)
, there is a constant C = C(u0, Ω, r, s) > 0 with the following property:

If
‖u‖Lr(0,T ;Lq(Ω)) ≤ C, (1.12)

then u is regular in the sense that u ∈ Ls(0, T ; Lq(Ω)).
(ii) Suppose for each T1 ∈ (0, T ) there is some 0 < δ = δ(T1) < T1 such that

u satisfies the leftward Ls–Lq–condition

u ∈ Ls(T1 − δ, T1; L
q(Ω)). (1.13)

Then u is regular in the sense that u ∈ Ls
loc((0, T ); Lq(Ω)).

The proof is based on the following theorem yielding local in time regularity
results.
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Theorem 1.3 Let Ω ⊆ R3 be a bounded domain with boundary ∂Ω of class C2,1,
0 < T ≤ ∞, let u be a weak solution of the Navier-Stokes system (1.1) with
u0 ∈ L2

σ(Ω) satisfying the general energy inequality (1.9), and let 4 < s < ∞,
3 < q < 6 with 2

s
+ 3

q
= 1. Then there is a constant C = C(Ω, q) > 0 independent

of u0 and u with the following property:
If 0 < T0 < T1 < T , 0 ≤ α ≤ 2(1 − 1

s
), and if one of the following smallness

conditions is satisfied,

(i)

∫ T1

T0

‖u(t)‖r
q dt ≤ C(T1 − T0) with

2

r
+

3

q
= 1 + α, 1 ≤ r ≤ s,

(1.14)

or, when T < ∞,

(ii)

∫ T1

T0

(T − t)
r
s‖u(t)‖r

q dt ≤ C(T1 − T0) with
2

r
+

3

q
= 1 + α, 1 ≤ r ≤ s,

(1.15)

then u is regular on the interval (T1, T ) in the sense that Serrin’s condition

u ∈ Ls(T1, T ; Lq(Ω)) (1.16)

is satisfied.

Remark 1.4 The time exponent r in (1.14) is uniquely determined by 0 ≤ α ≤
2(1− 1

s
) and by 2

r
+ 3

q
= 1 + α, it holds α = 2(1

r
− 1

s
).

Using (1.11) we see that each weak solution u in Theorem 1.3 satisfies (1.10) if
α is restricted by 1

2
≤ α ≤ 2(1− 1

s
) such that 1 ≤ r ≤ (1

4
+ 1

s
)−1. Of course, if 0 ≤

α < 1
2
, α = 2(1

r
− 1

s
), then the condition (1.14) means the following:

∫ T1

T0
‖u(t)‖r

q dt
is well defined and bounded by C(T1 − T0). An analogous interpretation holds
for (1.15).

Corollary 1.5 Let u be a weak solution in Ω× [0, T ) as in Theorem 1.3, and let
s, q be exponents with 2

s
+ 3

q
= 1.

(i) Let T = ∞, 1
2
≤ α ≤ 2(1− 1

s
), 1 ≤ r < s, 2

r
+ 3

q
= 1 + α such that (1.10)

is satisfied. Then u is regular for t > T1 with

T1 > C−1‖u‖Lr(0,∞;Lq(Ω)), C as in (1.14), (1.17)

in the sense that u ∈ Ls
(
T1,∞; Lq(Ω)

)
. In particular the choice of T1 > 0 in

(1.17) only depends on C and the norm ‖u‖q,r.
(ii) Let 0 < T1 < T ≤ ∞, choose 1 ≤ r ≤ s as in (i) such that u ∈

Lr(0, T ; Lq(Ω)), and assume that

C1 := lim inf
δ→0

1

δ

∫ T1

T1−δ

‖u(t)‖r
q dt < ∞. (1.18)
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Then there exists T ′ = T ′(C1), T1 < T ′ ≤ T , such that u is regular on (T1, T
′) in

the sense
u ∈ Ls

(
T1, T

′; Lq(Ω)
)
.

In particular, this condition is satisfied if T1 ∈ (0, T ) is a Lebesgue point of
t 7→ ‖u(t)‖r

q, t ∈ (0, T ), in the sense that

lim
δ→0

1

δ

∫ T1

T1−δ

‖u(t)‖r
q dt = ‖u(T1)‖r

q . (1.19)

Conversely, if T1 ∈ (0, T ) is a singular point in the sense that there is no T ′ > T1

such that u is contained in Ls
(
T1, T

′; Lq(Ω)
)
, then

lim
δ→0

1

δ

∫ T1

T1−δ

‖u(t)‖r
q dt = ∞. (1.20)

The set of such singular points (is empty or) has Lebesgue measure zero. The
condition (1.18) is sufficient that T1 is not a singular point.

In the next theorem the domain Ω ⊂ R3 need not be bounded. In this case
A2 : D(A2) → L2

σ(Ω), D(A2) ⊆ L2
σ(Ω), denotes the usual Stokes operator well

defined in the L2-approach, see the next section. The case that Ω = R3, ∂Ω = ∅,
is included; in this case the condition ”u|∂Ω

= 0“ in (1.1) is omitted. See [5]

concerning the uniformity condition of ∂Ω.
In this case our result reads as follows:

Theorem 1.6 Let Ω ⊆ R3 be a general domain with boundary ∂Ω uniformly of
class C2,1, 0 < T ≤ ∞, and let u be a weak solution of the Navier-Stokes system
(1.1) with u0 ∈ L2

σ(Ω) satisfying the strong energy inequality (1.9). Assume that
the map t 7→ ‖∇u(t)‖2 is locally left bounded in the following sense: For each
T1 ∈ (0, T ) there is some 0 < δ = δ(T1) < T1 such that

‖∇u(·)‖2 ∈ L∞(T1 − δ, T1).

Then u is regular in the sense that

u ∈ L8
(
T1, T ; L4(Ω)

)
.

The proof of this theorem is based on the following more general local in time
regularity results:

Theorem 1.7 Let Ω ⊆ R3 be a general domain with boundary ∂Ω uniformly of
class C2,1, 0 < T ≤ ∞, and let u be a weak solution of the Navier-Stokes system
(1.1) with u0 ∈ L2

σ(Ω) satisfying the strong energy inequality (1.9). Then there
is an absolute constant C > 0, not depending on Ω and u0, with the following
property:
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If 0 < T0 < T1 < T , and if one of the following smallness conditions is
satisfied,

(i)

∫ T1

T0

‖A
1
4
2 u(t)‖2 dt ≤ C(T1 − T0), (1.21)

(ii)

∫ T1

T0

‖∇u(t)‖2 ‖u(t)‖2 dt ≤ C(T1 − T0) (1.22)

or

(iii)
(

sup
T0≤t≤T1

‖u(t)‖2
2

) ∫ T1

T0

‖∇u(t)‖2
2 dt ≤ C(T1 − T0), (1.23)

then u is regular on the interval (T1, T ) in the sense that u satisfies Serrin’s
condition

u ∈ L8
(
T1, T ; L4(Ω)

)
, (1.24)

and has the properties

∇u ∈ L4
(
T1, T ; L4(Ω)

)
, uu ∈ L4

(
T1, T ; L2(Ω)

)
. (1.25)

Note that, due to the energy inequality (1.9) with σ = 0, the expressions on
the left hand side of (i), (ii), (iii) are well defined, see (3.13) below.

Corollary 1.8 Let u be a weak solution in Ω × [0,∞) with initial value u0 ∈
L2

σ(Ω) as in Theorem 1.7 with T = ∞, let C be the constant in (1.23), and let

T1 > C−1
(

sup
0≤t<∞

‖u(t)‖2
2

) ∫ ∞

0

‖∇u‖2
2 dt . (1.26)

Then the weak solution u is regular for t > T1 in the sense of (1.24) and (1.25)
with T = ∞. In particular, if

T1 >
1

2
C−1‖u0‖4

2, (1.27)

then u is regular in this sense for t > T1. Therefore, the smaller ‖u0‖2, the
smaller the time T1 > 0 such that u is regular for t > T1.

The next result enables us to construct a regularity interval of the form (T1, T
′)

with 0 < T1 < T ′ ≤ T .

Theorem 1.9 Let u be a weak solution in Ω×[0, T ) with initial value u0 ∈ L2
σ(Ω)

as in Theorem 1.7, and let 0 < ε < 1
4
, 0 < T < ∞. Then there is a constant

Cε > 0, not depending on Ω and u0, with the following property:
If 0 < T0 < T1 < T , and if the smallness condition

1

T1 − T0

∫ T1

T0

(
‖∇u‖2

2 + ‖u‖2
2

)
dt ≤ Cε(T − T0)

− ε
4 (1.28)

is satisfied, then u is regular on the interval (T1, T ) in the sense that (1.24) and
(1.25) are valid.
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Corollary 1.10 Let Ω, u, u0 be as in Theorem 1.7, let 0 < T1 < T ≤ ∞, and
assume that

C1 := lim inf
δ→0

1

δ

∫ T1

T1−δ

(
‖∇u‖2

2 + ‖u‖2
2

)
dt < ∞ . (1.29)

Then there exists T ′ = T ′(C1) ∈ (T1, T ] such that u is regular on (T1, T
′) in the

sense that (1.24) and (1.25) are valid with (T1, T ) replaced by (T1, T
′).

2 Some preliminaries

Given a domain Ω ⊆ R3 we use the well known spaces Lq(Ω), 1 < q < ∞,
with norm ‖ · ‖Lq(Ω) = ‖ · ‖q and pairing 〈v, w〉 = 〈v, w〉Ω =

∫
Ω

v · w dx for

v ∈ Lq(Ω), w ∈ Lq′(Ω), q′ = q
q−1

. Moreover, given 0 < T ≤ ∞, we need the

Bochner spaces Ls(0, T ; Lq(Ω)), 1 < s < ∞, with norm ‖·‖Ls(0,T ;Lq(Ω)) = ‖·‖q,s =

(
∫ T

0
‖·‖s

q dt)1/s and the corresponding pairing 〈·, ·〉 = 〈·, ·〉Ω,T on Ls(0, T ; Lq(Ω))×
Ls′(0, T ; Lq′(Ω)), s′ = s

s−1
. Furthermore, we will use the smooth function spaces

C∞
0 (Ω), C∞

0,σ(Ω) = {v ∈ C∞
0 (Ω); div v = 0} and the spaces Lq

σ(Ω) = C∞
0,σ(Ω)

‖·‖q
.

In the general case of an unbounded domain Ω ⊂ R3 as in Theorem 1.6, the
Stokes operator A2 = −P2∆ : D(A2) → L2

σ(Ω), D(A2) ⊆ L2
σ(Ω), is defined in the

usual way by the Hilbert space approach in L2
σ(Ω), together with the Helmholtz

projection P2 : L2(Ω) → L2
σ(Ω). We collect some well known properties for A2,

its fractional powers Aα
2 , 0 ≤ α ≤ 1, and the corresponding analytic semigroup

e−tA2 , t ≥ 0. In particular we need the following estimates, see [15], III. 2.1 – 2.6,
IV. 1.5:

‖Aα
2 v‖2 ≤ ‖A2v‖α

2‖v‖1−α
2 for all v ∈ D(A2), 0 ≤ α ≤ 1, (2.1)

‖v‖q ≤ C‖Aα
2 v‖2 for all v ∈ D(Aα

2 ), 0 ≤ α ≤ 1

2
, 2 ≤ q < ∞, (2.2)

where 2α +
3

q
=

3

2
and C = C(α, q) > 0,

‖Aα
2 e−tA2v‖2 ≤ t−α‖v‖2 for all v ∈ L2

σ(Ω), 0 ≤ α ≤ 1, t > 0, (2.3)

‖A− 1
2

2 P2 div v‖2 ≤ ‖v‖2 for all v = (vij)
3
i,j=1 ∈ L2

σ(Ω), (2.4)

‖∇E‖L2(0,T ;L2(Ω)) = ‖A
1
2
2 E‖L2(0,T ;L2(Ω)) ≤ ‖v‖2 for all v ∈ L2

σ(Ω), (2.5)

where E(t) = e−tA2v.

Note that div v = (
∑3

i=1 Divij)
3
j=1 in (2.5) and that ‖A1/2

2 v‖2 = ‖∇v‖2 for v ∈
D(A

1/2
2 ).

If Ω ⊆ R3 is a smooth bounded domain as in Theorem 1.2, then we use
the Stokes operator Aq = −Pq∆ : D(Aq) → Lq

σ(Ω), D(Aq) ⊆ Lq
σ(Ω), and the
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Helmholtz projection Pq : Lq(Ω) → Lq
σ(Ω) in Lq-spaces; see, e.g., [1], [3] – [8],

concerning these operators. In particular the following estimates hold, see [4]:

‖v‖γ ≤ C‖Aα
q v‖q for all v ∈ D(Aα

q ), 1 < q ≤ γ, 0 ≤ α ≤ 1, (2.6)

where 2α +
3

γ
=

3

q
,

‖Aα
q e−tAqv‖q ≤ Ce−δtt−α‖v‖q for all v ∈ Lq

σ(Ω), t > 0, (2.7)

where δ = δ(Ω, q) > 0 and 0 ≤ α ≤ 1,

‖A− 1
2

q Pqdiv v‖q ≤ C‖v‖q for all v = (vij)
3
i,j=1 ∈ Lq

σ(Ω), (2.8)

‖v‖Ls(0,T ;Lq(Ω)) ≤ C‖f‖Ls(0,T ;Lq(Ω)) for all f ∈ Ls(0, T ; Lq(Ω)), (2.9)

where v(t) = Aq

∫ t

0

e−(t−τ)Aqf(τ) dτ.

The constants C in (2.6)–(2.9) depend on Ω and q, s, α, but are independent of v.

Further note that the norms ‖A1/2
q v‖q and ‖∇v‖q are equivalent for v ∈ D(A

1/2
q ).

To prove our main results we have to identify the given weak solution u
locally in time with strong solutions, i.e. with weak solutions satisfying Serrin’s
regularity condition. There are many results on the existence of such solutions
for some given interval [0, T ), 0 < T ≤ ∞, if the initial value u0 satisfies a certain
smallness condition, see, e.g., [9] – [13], [16]. However, we need some particular
weak assumption on u0 and will apply Theorem 1 in [4] for bounded domains,
and Theorem 4.2.2, V, [15] for the general case. The restriction 4 ≤ q < 6 in
Lemma 2.1, needed for technical reasons in the proof, is not important for our
application.

Lemma 2.1 Let Ω ⊆ R3 be a bounded domain with boundary ∂Ω of class C2,1,
4 < s < ∞, 3 < q < 6, 2

s
+ 3

q
= 1, and let u0 ∈ Lq

σ(Ω). Then there is a constant

C = C(Ω, q) > 0 independent of u0 with the following property: If∫ T

0

‖e−tAqu0‖s
q dt ≤ C (2.10)

for some T ∈ (0,∞], then there exists a unique weak solution u in Ω × [0, T ) of
the Navier-Stokes system (1.1) satisfying Serrin’s condition

u ∈ Ls
(
0, T ; Lq(Ω)

)
(2.11)

and the energy inequality

1

2
‖u(t)‖2

2 +

∫ t

0

‖∇u‖2
2 dτ ≤ 1

2
‖u0‖2

2 , 0 ≤ t < T. (2.12)
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Proof. The existence result of Theorem 1 in [4] yields – under the smallness
condition (2.10), see [4], p. 133, (4.23) – a unique solution u in the following
(so-called very weak) sense: It holds (2.11) and the relation

−〈u, vt〉Ω,T − 〈u, ∆v〉Ω,T − 〈uu,∇v〉Ω,T = 〈u0, v(0)〉Ω (2.13)

for all v ∈ C∞
0 ([0, T ); C∞

0,σ(Ω)). In order to prove that u is a weak solution
satisfying (2.11) we have to show several regularity properties.

We start with the case that 4 < s ≤ 8 and hence 4 ≤ q < 6. Due to the proof
in [4], p. 132, (4.19), we know that u satisfies the relation

ũ(t) ≡ u(t)− E(t) = −
∫ t

0

A
1
2
q e−(t−τ)AqA

− 1
2

q Pq div (uu) dτ, 0 ≤ t < T, (2.14)

with E(t) = e−tAqu0. Using (2.8) and Hölder’s inequality we obtain that

‖A− 1
2

q/2Pq/2 div (uu)‖q/2 ≤ C1‖uu‖q/2 ≤ C2‖u‖2
q (2.15)

with Cj = Cj(Ω, q) > 0, j = 1, 2. By (2.14)

A
1
2
q ũ(t) = −Aq

∫ t

0

e−(t−τ)AqA
− 1

2
q Pq div (uu) dτ, 0 ≤ t < T, (2.16)

and using (2.9) we get the estimate

‖∇ũ‖ q
2
, s
2
≤ C3‖A

1
2

q/2ũ‖ q
2
, s
2
≤ C4‖uu‖ q

2
, s
2
≤ C5‖u‖2

q,s < ∞, (2.17)

Cj = Cj(Ω, q) > 0, j = 3, 4, 5. This shows that

∇ũ ∈ Ls/2
(
0, T ; Lq/2(Ω)

)
(2.18)

and, since 4 ≤ q < 6, 4 < s ≤ 8, that

∇ũ ∈ L2
loc

(
[0, T ); L2(Ω)

)
, ũ ∈ L2

loc

(
[0, T ); W 1,2

0 (Ω)
)
. (2.19)

Applying (2.7) to (2.14), using (2.8), Hölder’s inequality and the properties of q
and s we obtain from (2.14) the estimate

‖ũ(t)‖2 ≤ C6

∫ t

0

1

(t− τ)
1
2

e−δ(t−τ)‖uu‖2 dτ

≤ C7

∫ t

0

1

(t− τ)
1
2

e−δ(t−τ)‖uu‖ q
2
dτ (2.20)

≤ C8‖uu‖ q
2
, s
2
≤ C9‖u‖2

q,s

9



with Cj = Cj(Ω, q) > 0, j = 6, . . . , 9. Hence (2.19) and (2.20) imply that

ũ ∈ L∞(
[0, T ); L2

σ(Ω)
)
∩ L2

loc

(
[0, T ); W 1,2

0 (Ω)
)
. (2.21)

Next we use (2.3) with α = 0 and (2.5) to obtain that

‖E(t)‖2 ≤ ‖u0‖2, ‖∇E‖2,2 = ‖A
1
2
2 E‖2,2 ≤ ‖u0‖2. (2.22)

With the help of (2.21) and (2.22) we conclude that

u ∈ L∞(
[0, T ); L2

σ(Ω)
)
∩ L2

loc

(
[0, T ); W 1,2

0 (Ω)
)
. (2.23)

Since u ∈ Ls1(0, T ′; Lq1(Ω)) for all 0 < T ′ < T , Hölder’s inequality yields

uu ∈ L2
loc

(
[0, T ); L2(Ω)

)
, (2.24)

cf. [15], p. 275. Using (2.23) and (2.24), a calculation shows that (2.13) implies
(1.3), and that the energy inequality (2.12) is satisfied; see also [15], Theorem
V.1.4.1, concerning the last property. Consequently u is a weak solution of (1.1)
satisfying (2.11) and (2.12). Hence it is also a strong solution. The uniqueness of
u with these properties follows from Serrin’s uniqueness argument, see [14], [15].
This completes the proof in the case that 4 < s ≤ 8.

In the second case we assume that 8 < s < ∞ and 3 < q < 4. Now we need
several steps. First let s1 = s, q1 = q. Then we get as in (2.14)–(2.18) that ∇ũ ∈
Ls1/2

(
0, T ; Lq1/2(Ω)

)
. Defining s2 = s1

2
and q2 > q1 such that 1

3
+ 1

q2
= 1

q1/2
, 2

s2
+

3
q2

= 1, we obtain by Sobolev’s embedding theorem that ũ ∈ Ls2
(
0, T ; Lq2(Ω)

)
.

Moreover, using (2.6), (2.7) we see that E ∈ Ls2
(
0, T ; Lq2(Ω)

)
which leads to

u ∈ Ls2
(
0, T ; Lq2(Ω)

)
. Proceeding in the same way, let sk = sk−1

2
and qk > qk−1

such that 1
3
+ 1

qk
= 1

qk−1/2
, 2

sk
+ 3

qk
= 1, for k ∈ N. Since 1

3
− 1

qk
= 2k−1

(
1
3
− 1

q1

)
, we

choose k ∈ N such that 1
3
− 1

qk−1
< 1

12
≤ 1

3
− 1

qk
, leading to 4 ≤ qk < 6, 4 < sk ≤ 8.

Now qk/2 ≥ 2, and using (2.17), (2.20) with q, s replaced by qk, sk, we obtain the
properties (2.19), (2.21). This yields the result in the same way as in the first
case. Now the proof of the lemma is complete.

Corollary 2.2 Let u0 ∈ Lq
σ(Ω) and q, s be given as in Lemma 2.1, and let T =

∞. Then there is a constant C = C(Ω, q) > 0 with the following property: If

‖u0‖q ≤ C, (2.25)

then there exists a unique weak solution u in Ω × [0,∞) of the Navier-Stokes
system (1.1) satisfying (2.11) and (2.12) with T = ∞.

Proof. Using (2.7) with α = 0 we obtain that∫ ∞

0

‖e−tAqu0‖s
q dt ≤ C1‖u0‖s

q

∫ ∞

0

e−δt dt ≤ C1

δ
‖u0‖s

q

10



with C1 = C1(Ω, q) > 0. Now the result follows from Lemma 2.1.

The next lemma is totally based on the Hilbert space approach in L2
σ(Ω).

This is needed since Ω ⊆ R3 may be a completely general domain. Note that
the smallness constant C > 0 in the next lemma does not depend on Ω and u0.
Thus we obtain the same existence interval [0, T ), 0 < T ≤ ∞, for all domains Ω
and all initial values u0 = u0(Ω) ∈ L2

σ(Ω) if the smallness condition (2.26) below
holds. Put e−2TA2 = 0 in (2.26) if T = ∞.

Lemma 2.3 Let Ω ⊆ R3 be a general domain, i.e. a connected open subset, let
0 < T ≤ ∞, and u0 ∈ D(A

1/4
2 ). Then there is an absolute constant C > 0, not

depending on Ω, T and u0 with the following property: If

‖(I − e−2TA2)A
1
4
2 u0‖

1
8
2 ‖A

1
4
2 u0‖

7
8
2 ≤ C, (2.26)

then the Navier-Stokes system (1.1) possesses a unique weak solution u on the
interval [0, T ) satisfying Serrin’s condition

u ∈ L8
(
0, T ; L4(Ω)

)
, (2.27)

the properties

∇u ∈ L4
(
0, T ; L2(Ω)

)
, uu ∈ L4

(
0, T ; L2(Ω)

)
(2.28)

and the energy inequality

1

2
‖u(t)‖2

2 +

∫ t

0

‖∇u‖2
2 dτ ≤ 1

2
‖u0‖2

2, 0 ≤ t < T. (2.29)

Proof. The existence result together with (2.27) and (2.28) is a special case of
Theorem V.4.2.2 in [15]. Then the energy inequality (2.29) follows, using (2.28),
from Theorem V.1.4.1 in [15]. This proves the lemma.

Corollary 2.4 Let Ω, T, u0 ∈ D(A
1/4
2 ) be as in Lemma 2.3. Then there is an ab-

solute constant C > 0, not depending on Ω, T and u0, with the following property:
If

‖A
1
4
2 u0‖2 ≤ C, (2.30)

then the Navier-Stokes system (1.1) possesses a unique weak solution u in Ω ×
[0, T ) satisfying (2.27), (2.28), and (2.29).

Proof. The result follows from Lemma 2.3 since

‖(I − e−2TA2)A
1
4
2 u0‖

1
8
2 ‖A

1
4
2 u0‖

7
8
2 ≤ 2

1
8‖A

1
4
2 u0‖

1
8
2 ‖A

1
4
2 u0‖

7
8
2 = 2

1
8‖A

1
4
2 u0‖2,

see (2.3) with α = 0. This completes the proof.
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3 Proof of the theorems

First we have to prove Theorem 1.3.

Proof of Theorem 1.3. Given the bounded domain Ω ⊂ R3, 0 < T0 < T1 < T
and u, q, r, s as in this theorem, we have to prove the existence of some constant
C = C(Ω, q) > 0 yielding regularity of u on (T1, T ) if (i) or (ii) is satisfied.

Using the weak continuity of the weak solution u : [0, T ) → L2
σ(Ω), see (1.4),

we know that u(t0) ∈ L2
σ(Ω) is well defined for all t0 ∈ [0, T ). Since ∇u ∈

L2(0, T ; L2(Ω)), see (1.9) for σ = 0, and since 3 < q < 6, the embedding inequality
‖u(t)‖q ≤ C1‖u(t)‖6 ≤ C2‖∇u(t)‖2 with Cj = Cj(Ω, q) > 0, j = 1, 2, implies that
u ∈ L2(0, T ; Lq

σ(Ω)). Then the Lebesgue point argument shows that there is a
null set N ⊆ (0, T ) such that ‖u(t0)‖q is well defined by the property

lim
δ→0

1

2δ

∫ t0+δ

t0−δ

‖u(t)‖2
q dt = ‖u(t0)‖2

q, 0 < t0 < T, (3.1)

for all t0 ∈ (0, T )\N . Moreover, since the energy inequality (1.9) holds for a.a.
σ ∈ [0, T ), we may assume in the following that the null set N ⊆ (0, T ) is chosen
in such a way that both (3.1) and the energy inequality

1

2
‖u(t)‖2

2 +

∫ t

t0

‖∇u‖2
2 dτ ≤ 1

2
‖u(t0)‖2

2, t0 ≤ t < T, (3.2)

hold for all t0 ∈ (0, T )\N .
Let t0 ∈ (0, T )\N . Then u(t0) ∈ Lq

σ(Ω), and we are able to apply the local
existence results of Lemma 2.1 and Corollary 2.2, replacing the existence inter-
val [0, T ) by the interval [t0, T ), and using u(t0) as initial value. Hence, if the
smallness condition ∫ T−t0

0

‖e−τAqu(t0)‖s
q dτ ≤ C (3.3)

or the condition
‖u(t0)‖q ≤ C (3.4)

is satisfied with C as in Lemma 2.1 or in Corollary 2.2, respectively, then we
obtain a unique weak solution ũ on the interval [t0, T ), corresponding to Definition
1.1, of the Navier-Stokes system

ũt −∆ũ + ũ · ∇ũ +∇p̃ = 0, div ũ = 0,
ũ|∂Ω

= 0, ũ|t=t0
= u(t0),

(3.5)

satisfying

ũ ∈ L∞(
t0, T ; L2

σ(Ω)
)
∩ L2

loc

(
[0, T ); W 1,2

0 (Ω)
)
, (3.6)

ũ ∈ Ls
(
t0, T ; Lq(Ω)

)
,

12



and the energy inequality

1

2
‖ũ(t)‖2

2 +

∫ t

t0

‖∇ũ‖2
2 dτ ≤ 1

2
‖u(t0)‖2

2 , t0 ≤ t < T. (3.7)

By Serrin’s uniqueness argument, see [14], [15], V, Theorem 1.5.1, we obtain that

u = ũ on [t0, T ).

This yields the properties (3.6) with ũ replaced by u, and we get the desired result
of Theorem 1.3. Thus it remains to prove the existence of some t0 ∈ (0, T )\N as
above with T0 ≤ t0 ≤ T1 such that (3.3) or (3.4) is satisfied.

First suppose that the condition (i) in Theorem 1.3 holds with any constant
C1 > 0. Then there is at least one t0 ∈ (T0, T1)\N such that

‖u(t0)‖r
q ≤

1

T1 − T0

∫ T1

T0

‖u(t)‖r
q dt ≤ C1. (3.8)

Therefore, setting C1 = Cr with C as in Corollary 2.2, the condition (3.4) is
satisfied and we obtain the desired result of Theorem 1.3.

Next assume that condition (ii) is satisfied, i.e.,∫ T1

T0

(T − t)
r
s ‖u(t)‖r

q dt ≤ C1(T1 − T0) (3.9)

with any constant C1 > 0. Then we find at least one t0 ∈ (T0, T1)\N such that

(T − t0)
r
s ‖u(t0)‖r

q ≤
1

T1 − T0

∫ T1

T0

(T − t)
r
s ‖u(t)‖r

q ≤ C1. (3.10)

Further we obtain, using (2.7) with α = 0 and (3.9), (3.10), that∫ T−t0

0

‖eτAqu(t0)‖s
q dτ ≤ C2(T − t0) ‖u(t0)‖s

q ≤ C2C
s
r
1

holds with some constant C2 = C2(Ω, q) > 0. Setting C1 = (C/C2)
r/s with C

from Lemma 2.1 we see that (3.3) is satisfied. This completes the proof.

Proof of Theorem 1.2 (i) By Lemma 2.1 there exists some δ = δ(u0, Ω, s) > 0
such that u ∈ Ls(0, δ; Lq(Ω)). Next we choose 0 < T0 < T1 < T with T0 <
δ, T1 = T0 + δ−T0

2
, and assume that ‖u‖r

Lr(0,T ;Lq(Ω)) ≤
δ
2
C is satisfied with C from

(1.14). Using Theorem 1.3 (i), we conclude that u ∈ Ls(T1, T ; Lq(Ω)) and hence
u ∈ Ls(0, T ; Lq(Ω)).

(ii) In this case we use Theorem 1.3 (ii) with α = 0, r = s. Let T1 ∈ (0, T ) and
choose 0 < δ < T1 such that u ∈ Ls(T1−δ, T1; L

q(Ω)) and 2‖u‖Lr(T1−δ,T1;Lq(Ω)) ≤ C
with C from (1.15). Moreover, let T ′ = T1 + δ, T0 = T1 − δ. Then

1

T1 − T0

∫ T1

T0

(T ′ − t)‖u(t)‖s
q dt ≤ 2

∫ T1

T0

‖u(t)‖s
q dt ≤ C.
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Now Theorem 1.3 (ii), implies that u ∈ Ls(T1 − δ, T1 + δ; Lq(Ω)). Since we find
such a δ > 0 for each T1 ∈ (0, T ), we obtain the result.

Proof of Corollary 1.5 (i) Condition (1.17) implies (1.14) for some sufficiently
small T0 > 0.

(ii) Assume that (1.18) holds. Then there is a sequence (δj) ⊂ (0,∞) such
that limj→∞ δj = 0 and

lim
j→∞

1

δj

∫ T1

T1−δj

‖u(t)‖r
q dt = C1. (3.11)

Moreover, for given ε > 0 and T1 < T ′ ≤ T, T ′ < ∞, there is some k ∈ N
satisfying

1

δj

∫ T1

T1−δj

(T ′ − t)
r
s‖u(t)‖r

q dt

≤
(
(T ′ − (T1 − δj)

) r
s (C1 + ε) ≤ (T ′ − T1 + ε)

r
s (C1 + ε)

for j > k. Therefore, choosing ε > 0 sufficiently small and k ∈ N sufficiently
large, we find T ′ = T ′(C1), T1 < T ′ ≤ T , such that

(T ′ − T1 + ε)
r
s (C1 + ε) ≤ C

with C from (1.15). Now (1.15) is satisfied with T replaced by T ′, and Theorem
1.3 (ii) shows that u is regular on (T1, T

′), i.e., u ∈ Ls
(
T1, T

′; Lq(Ω)
)
.

Proof of Theorem 1.7. Let Ω ⊂ R3, 0 < T0 < T1 < T ≤ ∞ and u0, u be
as in Theorem 1.7. We have to prove the existence of some absolute constant
C > 0 such that each of the conditions (1.21), (1.22), (1.23) implies the result.
In principle we argue as in the proof of Theorem 1.3 for bounded domains, using
now Corollary 2.4 instead of Corollary 2.2.

Since u : [0, T ) → L2
σ(Ω) is weakly continuous, u(t0) ∈ L2

σ(Ω) is well defined
for all t0 ∈ [0, T ), and there is a null set N ⊆ (0, T ) such that

lim
δ→0

1

2δ

∫ t0+δ

t0−δ

‖∇u(t)‖2
2 dt = ‖∇u(t0)‖2

2 (3.12)

is well defined for all t0 ∈ (0, T )\N . Further we can choose the null set N ⊆ (0, T )
in such a way that both (3.12) and the energy inequality (3.2) are satisfied for
all t0 ∈ (0, T )\N .

Let t0 ∈ (0, T )\N . Using the interpolation inequality (2.1) with A2 replaced

by A
1/2
2 we obtain since A

1/4
2 u(t0) = (A

1/2
2 )1/2u(t0) that

‖A
1
4
2 u(t0)‖2 ≤ ‖A

1
2
2 u(t0)‖

1
2
2 ‖u(t0)‖

1
2
2 = ‖∇u(t0)‖

1
2
2 ‖u(t0)‖

1
2
2 . (3.13)
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Therefore, A
1/4
2 u(t0) ∈ L2

σ(Ω) is well defined. Thus if the smallness condition

‖A
1
4
2 u(t0)‖2 ≤ C (3.14)

is satisfied with C from (2.30), we obtain a weak solution ũ of the system

(3.5) with initial value ũ(t0) = u(t0) ∈ D(A
1/4
2 ), satisfying (3.6), Serrin’s con-

dition ũ ∈ L8
(
t0, T ; L4(Ω)

)
, and the conditions ∇ũ ∈ L4

(
t0, T ; L2(Ω)

)
, ũũ ∈

L4
(
t0, T ; L2(Ω)

)
and (3.7). Using Serrin’s uniqueness argument as in the proof

of Theorem 1.3 we conclude that u = ũ on [t0, T ). Hence, since t0 ≤ T1, the
conditions (1.24), (1.25) are satisfied.

Now assume the smallness condition∫ T1

T0

‖A
1
4
2 u(t)‖2 dt ≤ C(T1 − T0) (3.15)

with the same constant C as in (3.14). Then we argue as in (3.8) and obtain at
least one t0 ∈ (0, T )\N , T0 ≤ t0 ≤ T1, such that

‖A
1
4
2 u(t0)‖2 ≤

1

T1 − T0

∫ T1

T0

‖A
1
4
2 u(t)‖2 dt ≤ C. (3.16)

Thus (3.14) holds, and Theorem 1.7 is proved in the case (i) with C from (2.30).
Using (3.13) and the inequality of Cauchy-Schwarz we obtain the estimates∫ T1

T0

‖A
1
4
2 u‖2 dt ≤

∫ T1

T0

‖∇u‖
1
2
2 ‖u‖

1
2
2 dt ≤ (T1 − T0)

1
2

( ∫ T1

T0

‖∇u‖2 ‖u‖2 dt
) 1

2

(3.17)
and ∫ T1

T0

‖∇u‖2 ‖u‖2 dt ≤ (T1 − T0)
1
2

( ∫ T1

T0

‖∇u‖2
2 ‖u‖2

2 dt
) 1

2
(3.18)

≤ (T1 − T0)
1
2 sup

T0≤t≤T1

‖u‖2

( ∫ T1

T0

‖∇u‖2
2 dt

) 1
2
.

Assume that ∫ T1

T0

‖∇u‖2 ‖u‖2 dt ≤ C2(T1 − T0) (3.19)

holds with C from (2.30). Then (3.17) implies (3.15), the smallness condition (i)
is satisfied, and it follows the desired result.

Finally assume that

sup
T0≤t≤T1

‖u‖2
2

( ∫ T1

T0

‖∇u‖2
2 dt

)
≤ C4(T1 − T0) (3.20)
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is satisfied with C from (2.30). Then (3.18) implies (3.19), and it follows again
the desired result.

Now the proof is complete.

Proof of Corollary 1.8 Choosing T0 with 0 < T0 < T1 sufficiently small, the
result follows from Theorem 1.7 (iii). Note that (1.27) implies (1.26) which can
be shown by (1.9) with σ = 0.

Proof of Theorem 1.9. Consider u0 ∈ L2
σ(Ω), a weak solution u on Ω× [0, T )

with T < ∞ and 0 < ε < 1
4

as in this theorem. Then we have to find some
constant Cε > 0 such that the smallness condition (1.28) implies the desired
result. In this case we will apply directly Lemma 2.3. For this purpose we have
to prepare several estimates.

First we use the same argument as in (3.16), with ‖A1/4
2 u(t)‖2 replaced by

‖(I−e−2(T−t)A2)A
1/4
2 u(t)‖1/8

2 ‖A1/4
2 u(t)‖7/8

2 , and obtain at least one t0 ∈ (0, T )\N ,
T0 ≤ t0 ≤ T1, with N as in (3.16), satisfying the estimate

‖(I − e−2(T−t0)A2)A
1
4
2 u(t0)‖

1
8
2 ‖A

1
4
2 u(t0)‖

7
8
2 (3.21)

≤ 1

T1 − T0

∫ T1

T0

‖(I − e−2(T−t)A2)A
1
4
2 u(t)‖

1
8
2 ‖A

1
4
2 u(t)‖

7
8
2 dt.

Since d
dτ

e−2(T−τ)A2 = 2A2e
−2(T−τ)A2 we get that

(I − e−2(T−t)A2)A
1
4
2 u(t) = 2

∫ T

t

A1−ε
2 e−2(T−τ)A2A

ε+1/4
2 u(t) dτ,

and using (2.3) with α = 1− ε we conclude that

‖(I − e−2(T−t)A2)A
1
4
2 u(t)‖2 ≤ 2

∫ T

t

‖A1−ε
2 e−2(T−τ)A2A

ε+1/4
2 u(t)‖2 dτ (3.22)

≤ 2
( ∫ T

t

(
2(T − τ)

)−(1−ε)
dτ

)
‖Aε+1/4

2 u(t)‖2 ≤
2ε

ε
(T − t)ε‖Aε+1/4

2 u(t)‖2

Next we use (2.1) with A2 replaced by A
1
2
2 and obtain the interpolation inequality

‖Aε+1/4
2 u(t)‖2 = ‖(A

1
2
2 )

1
2
+ε′u(t)‖2 (3.23)

≤ ‖A
1
2
2 u(t)‖

1
2
+ε′

2 ‖u(t)‖
1
2
−ε′

2 ≤ C(ε)
(
‖A

1
2
2 u(t)‖2 + ‖u(t)‖2

)
with ε′ = 2ε; by analogy a similar result holds when ε = ε′ = 0.

By (3.21) - (3.23) there are constants C1(ε), . . . , C4(ε) > 0 such that the
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following inequalities hold:

‖(I − e−2(T−t0)A2)A
1
4
2 u(t0)‖

1
8
2 ‖A

1
4
2 u(t)‖

7
8
2

≤ C1(ε)(T1 − T0)
−1

∫ T1

T0

(T − t)
ε
8‖Aε+ 1

4
2 u(t)‖

1
8
2 ‖A

1
4
2 u(t)‖

7
8
2 dt

≤ C2(ε)(T1 − T0)
−1(T − T0)

ε
8

∫ T1

T0

(
‖A

1
2
2 u(t)‖2 + ‖u(t)‖2)

)
dt

≤ C3(ε)(T1 − T0)
− 1

2 (T − T0)
ε
8

( ∫ T1

T0

(
‖(A

1
2
2 u(t)‖2

2 + ‖u(t)‖2
2

)
dt

) 1
2

= C3(ε)(T1 − T0)
− 1

2 (T − T0)
ε
8

( ∫ T1

T0

(
‖∇u(t)‖2

2 + ‖u(t)‖2
2

)
dt

) 1
2
.

Therefore, if Cε = C2
(
C3(ε)

)−2
in (1.28) with C from Lemma 2.3, then we

conclude from the last estimates that the smallness condition

‖(I − e−2(T−t0)A2)A
1
4
2 u(t)‖

1
8
2 ‖A

1
4
2 u(t)‖

7
8
2 ≤ C (3.24)

is satisfied.
Similarly as explained in the proof of Theorem 1.3 concerning the Lemma 2.1,

we can apply Lemma 2.3 also to the case that the existence interval [0, T ) and the
initial value u0 are replaced by [t0, T ) and u(t0). Then T and u0 in the smallness
condition (2.26) have to be replaced by T − t0 and u(t0), respectively, yielding
the condition (3.24). Therefore, applying Lemma 2.3 in this situation we obtain
a unique weak solution ũ of the system (3.5) satisfying (3.6), and the properties
ũ ∈ L8(t0, T ; L4(Ω)), ∇ũ ∈ L4(t0, T ; L2(Ω)), ũũ ∈ L4(t0, T ; L2(Ω)), and (3.7).
Then, by Serrin’s argument, u = ũ and u satisfies (1.24), (1.25). This completes
the proof.

Proof of Corollary 1.10 Replacing T in (1.28) by a sufficiently small T ′ =
T ′(C1) ∈ (T1, T ) we get the assertion from Theorem 1.9.

Proof of Theorem 1.6. Choose 0 < T0 < T1 < T ′ < T such that ‖∇u(·)‖2 ∈
L∞(T0, T1) and that

ess supT0≤t≤T1

(
‖∇u(t)‖2 + ‖u(t)‖2

)
≤ Cε(T

′ − T0)
− ε

4

holds with Cε from (1.28). Then we obtain the estimate

1

T1 − T0

∫ T1

T0

∥∥∇u‖2 + ‖u‖2

)
dt ≤ C(T ′ − T0)

− ε
4 ,

and from Theorem 1.9 we conclude that u ∈ L8(T1, T
′; L4(Ω)). A well known

embedding argument implies that u ∈ L8(T0, T
′; L4(Ω)). Thus for each T1 ∈ (0, T )

we find some 0 < δ < T1 with u ∈ L8(T1 − δ, T1 + δ; L4(Ω)). Now the theorem is
proved.
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