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Abstract

We consider two-dimensional immersions of disc-type in R™. We focus on well
known classical concepts and study the nonlinear elliptic systems of such map-
pings. Using an Osserman-type condition we give a-priori estimates of the
principle curvatures for graphs with prescribed mean curvature fields and de-
rive a theorem of Bernstein type for minimal graphs.
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Introduction

The main result of our paper is an estimate of the principal curvatures of two-dimensional graphs
with prescribed mean curvature in Euclidean space R™ in terms of certain a-priori data.

The notations which we need to formulate this result are introduced in the first chapter: In section
1.1. a definition of differential geometric immersions with smooth sections of the normal bundle;
in section 1.2 an introduction to conformally parametrized immersions with prescribed mean cur-
vature fields; and in section 1.3 our main theorem with a brief discussion. In particular, we will
infer a theorem of Bernstein type for minimal graphs.

Before we give a detailed proof in chapter 3 we recall important concepts of the differential ge-
ometry of two-dimensional immersions in R” using the classical Ricci calculus. Among these are
the differential equations of Weingarten and Gauss, as well as the integrability conditions of Ricci
which lead us to the notion of the normal sectional curvature. While in the first chapter we in-
troduce the non-linear elliptic mean curvature systems in a more abstract way, in chapter 2 these
systems arise naturally from the differential geometric identities. A variational problem which
illustrates the appearance of mean curvature systems as minimal surfaces in certain Riemannian
spaces, and an example for our main theorem complete this second part.

Chapter 3 presents a detailed proof of our curvature estimate. Essentially we use ideas from [12]
where the author applies fundamental results on non-linear elliptic systems with quadratic growth
in the gradient which were developed in [6].

1 Basic notations and the main theorem

1.1. Basic notations

Denote by
B := {(u,v)€R2 : u2—i—v2<1} (1.1)

the open unit disc in R? and by B C R? its topological closure.



For positive integers n > 3 we consider two-dimensional immersions

X(u,0) = (2" (w,0), ..,a"(w,0)), (u,v) € B, (1.2)
of the regularity class
X € C*(B,R")NC"(B,R"), ac(0,1), (1.3)

such that
2y (u,0) - 2y(u,v)
rank 0X (u,v) = rank : : =2 forall (u,v) € B (1.4)
y(u,v) g (u, v)

where the indices © and v denote the partial derivatives w.r.t. u and v.

Definition 1. We define €(B,R™) to be the set of all immersions X = X (u,v) with the properties
(1.2) to (1.4).

We infer that the tangent vectors X, = X, (u,v) and X, = X,(u,v) are linearly independent at
any (u,v) € B and span the two-dimensional tangent plane at that point, namely

Tx (w) := Span {Xu(w),XU(w)}, w=u+iv € B. (1.5)

The normal space Nx(w) := Tx(w)* at w € B is a (n — 2)-dimensional vector space spanned by
vectors Ni(w), ..., Np—o(w) such that there hold the orthonormality relations

1 if¥=0

for all 5,0 € {1,...,n—2 1.6
0 ifs£0 O {Lon =2 (1.6)

Nx(w) - No(w)! = dxg := {
with the Kronecker symbol dxg. Here, the upper ¢t means the transposed vector.
Let X € €(B,R"™). Then there exists an orthonormal set {N;(w),..., Ny_o(w)} such that
Ny € C?T(B,S" 1) forall ¥ =1,...,n—2 (1.7)
where S"71:={Z e R" : |Z]? = 1}, and
Ng(w) - Xpe(w)' =0 forall X =1,....,.n—2, £=1,2 andall w € B. (1.8)

Definition 2. We call a set {Ny,...,N,_2} from the assumption above an orthonormal (ON-)
normal section of the immersion X = X (u,v).

Example 1. Given functions ¢1,...,pn_o € C3TQ,R) on a bounded domain Q C R2, we define
unit vectors )
Ni = ——— (10, 91, 1,0,...,0),
V1t [ Ver? : !
(1.9)
~ 1
= 0), ...

N2 1 Gl "2 7_902, 70717"'7
ﬁﬂva( @ v

which are normal to the graph (z,y, 1(x,y), ..., on(x,y)). Here, V denotes the FEuclidean gradient.
Using Gram-Schmidt orthonormalization these vectors can be transformed into an ON-normal
section {N1,...,Np_o}.



1.2. Immersions with prescribed mean curvature fields

Following [13] we introduce conformal parameters (u,v) € B into the immersion X = X (u,v) such
that there hold the conformality relations

| X (u,0)]? = W(u,v) = | Xo(u,0)|*,  Xyu(u,v) - Xp(u,v)! =0 in B. (1.10)

Here, W = W (u,v) means the area element

W(“? U) = \/gll(ua U)922 (u’ U) - 912(u’ U)Q ) Gij (u’ U) = Xul (u’ U) : Xuj (u’ U)t ’ (111)
of the surface. Note that W (u,v) > 0 for all (u,v) € B.

Definition 3. The functions g;; = ¢ij(u,v), 4,5 = 1,2, from (1.11) are called the coefficients of
the first fundamental form of the immersion X = X (u,v).

Given a vector valued function
H:R" — R" (1.12)

we define a scalar field H: R" x S"~! — R by
H(X,Z):=H(X)-Z' for X€R", Zec S . (1.13)
Now, we introduce the notion of prescribed mean curvature fields H (X, 7).

Definition 4. Let X € €(B,R") with an ON-normal section {Ni,...,Np_o} be given. Then
we call X = X(u,v) a conformally parametrized immersion of prescribed mean curvature field

H € CO°(R™ x S"~L R) iff there hold (1.10) and
AX = 2H(X,N\)WN;i + ...+ 2H(X, Ny_o)WN,_y in B (1.14)

with the Euclidean Laplace operator /. The immersion is called a minimal surface iff H(X,Z) = 0,
that is
AX =0 in B. (1.15)

Remark. The differential system (1.14) is invariant w.r.t. orthogonal changes of the ON-normal
section {Ny,..., N,_o}. For the proof let

O = (0x0)s,0=1,..n (1.16)

be an orthogonal matrix which in B C R? satisfies the relations

n—2 n—2
Zozg(w)Q = ZOQZ(U))2 =1 forQ=1,...,n—2,
£=1 $=1
(1.17)
n—2 n—2
osa(w)osq (w) =Y oas(w)ogs(w) =0 for Q # Q'
x=1 r=1
We introduce a new ON-normal section {Ny,..., N, _»} via
_ n—2
Ny:=) osaNa, E=1,..,n-2 (1.18)
Q=1
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Now, we calculate

n—2 n—2 n—2 n—2
> H(X,Ng)Ny = ) {H(X) > oEQNEZ} > osa Ny

=1 =1 Q=1 Q=1

\gl

n—2 /n—2 n—2 n—2
=Z<Zo%9> (M) Npbvo+ Y <20290m/> {HX) NapNo (119)
Q=1 \X=1

Q,0'=1 \5=1
QA
n—2 n—2
= Y {nx) N Na = 3 H(X, No)Ng
Q=1 Q=1
which proves the stated invariance. ]

1.3. The main theorem

We admit mean curvature fields H € CY(R™ x "~ R) which additionally satisfy the following
Holder and Lipschitz assumptions:

|H(X,Z)| < hy forall X ¢R", Zec S ! and

|H(X1, Z1) — H(X2, Z2)| < h1| X1 — Xo|* + ho|Z1 — Z5| (1.20)
for all X1, X € R, Zy,Z, € S" 1.

Theorem.
Assumptions: Let an immersion X € €(B,R"™) of prescribed mean curvature field H = H(X, Z)
be given such that (1.20) holds. Furthermore, we assume that

(A1) the immersion X = X (u,v) is a conformal reparametrization of a graph
(z,y,01(2,9),. .., 0n2(x,y), ¢z € C3T*ULR) forL=1,...,n—2, (1.21)
over a bounded and simply connected domain Q C R?;

(A2) the surface represents a geodesic disc B,.(Xo) of geodesic radius r > 0 and with center
Xo :=(0,...,0) such that with a real constant dg > 0 it holds

Area[B,(Xo)] := // W (u,v) dudv < dgr? (1.22)
B

for the area of the geodesic disc, where dy € (0,400) does not depend on r;

(A83) at every point w € B, each normal vector of the immersion makes an angle of at least w > 0
with the x1-axis.

Statement: Then, for any orthonormal basis {N1,..., N, 2} of the normal space at Xo there
exists a constant
0 = O(hgr, hyrt T, hor, dy,sinw, n, a) € (0, +00) (1.23)
such that it holds 1
l€271(0, 0)2 + HE’Q(O, 0)2 < ﬁ{(h()?“)2 + @} (1.24)
for the principal curvatures kx1 and kx 2 w.r.1. Ny forall¥X=1,...,n—2.
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Remarks.

1. The principal curvatures ky; = Ky ;(u,v) are defined as the eigenvalues of a Weingarten
form w.r.t. a unit normal vector Ny (see section 2.1 for details).

2. An estimate of the principal curvatures can be proved under the assumption Area[X| < M|
with any constant My € (0,400) instead of (A2), where O from (1.23) will depend on M.
However, (A2) leads to the following Bernstein type result:

Consider minimal graphs (z,y, ¢1, (2,Y), ..., on_2(7,y)), (z,y) € R%. Because its Gaussian curva-
ture is non-positive (see section 2.1), by a theorem of Hadamard (see [9], Theorem 3.4.16) we can
introduce geodesic discs B, (Xy) for all Xy = (zo,yo, ¥1(z0,%0), - - -, n—2(z0,%0)) and all r > 0.

Then the limit r — oo yields the
Corollary 1. Let X = X (z,y), (z,y) € R?, be a complete minimal graph with the properties

(i) there exists Xo = (x0,Y0,%1(20,Y0);---,¥n—2(T0,Y0)) and a radius ro > 0 such that all
geodesic discs B,(Xg) with center Xo and radius r > 1o satisfy

Area[B,(Xo)] < dor®  for all v > 1 (1.25)
with a constant dy € (0,+00) which does not depend on r;
(ii) each normal vector of the graph makes an angle of at least w > 0 with the x1-azis.
Then X = X (z,y) is a linear mapping.
Proof. For any point X1 = (x1,y1,¢1(x1,¥1),s - - -, Yn—2(z1,y1)) on the graph we have
Area[B,(X1)] < 4dor? for all r > max{ro, d(Xo, X1)} (1.26)

where d(Xo, X1) > 0 is the inner distance between Xy and X; on the surface. This holds because
of the inclusion

B (X1) C B (Xp) for all r > max{ro,d(Xo, X1)} (1.27)
and assumption (i).

Since K < 0 for the Gaussian curvature we can consider geodesic discs B,.(X1) for all r € (0, +00)
on account of Hadamard’s theorem. With the aid of [13] we introduce conformal parameters into
such a geodesic disc.

Using the curvature estimate (1.24) and letting » — oo shows that all principal curvatures at X
vanish which proves the Corollary (note that © does not depend on r since hg, hy, hy = 0). U

Remarks.

1. In [11] Osserman proved that a complete two-dimensional minimal surface in R™ is a plane
if all of its normal vectors make a certain positive angle with a fixed axis in space (compare
with assumption (A3)). The method of his proof is based essentially on results of complex
analysis and it does not need a growth condition of the form (1.22).

2. In [7] a Bernstein type result for minimal submanifolds is proved. The methods established
there were generalized in [8] to prove curvature estimates for submanifolds with parallel mean
curvature fields. Due to the higher dimension of the manifolds itself the authors assume a-
priori bounds for the gradients.



3. Curvature estimates and related Bernstein type result for minimal submanifolds can also
be found in [17] where the authors extend methods from [15] for minimal immersions with
vanishing normal sectional curvature (see also [18], and (2.13) below).

4. Our method of proof uses essentially results from [6], and follows [12] where curvature esti-
mates for two-dimensional immersions of mean curvature type in R? where established.

2 Differential geometry of surfaces in R"

2.1. Mean and Gaussian curvature fields and principal curvatures
Let the immersion X € €(B,R") be given with an ON-normal section {Ny,..., N,_2}.
Consider the forms
(L8 Dik=12 = (Lxij¢ )ip—12 €RP?, S =1,...,n-2, (2.1)

with the coefficients g%/ = g% (u,v) of the inverse of the first fundamental form, i.e. gl-jgjk = 5f
with the Kronecker symbol 5f using the summation convention.

Definition 5. The mean curvature Hy, = Hx(u,v) and the Gaussian curvature Ks, = Kx(u,v)
in direction Ny, X =1,...,n — 2, are defined as

Ly 11911 — 2Lx 12912 + Ly 22922

1
Hy = = trace Lk i k=12 = 2.2
2 (Ex)ik=1, 2(g11922 — 912) 22
and 2
Ly 11Lx 20 — L5, ¢,
KZ -— det Lk Vi kel = > ) s 2.3
( E,Z)Z, ) 911922 —_ 9%2 ( )
The principal curvatures k1, Ky 2 w.r.t. Ny are the eigenvalues of (Lg i)ik=1,2, that is
HEZW’ Ky, = kyiky2, Y¥=1,...,n—2. (2.4)

Definition 6. Let X € €(B,R") be given with an ON-normal section {Ni,...,Nn_o}. The
Gaussian curvature of X = X (u,v) is defined by

n—2
K(u,v) := Z Ky (u,v), (u,v)€ B. (2.5)
=1

Remarks.
1. Similarly to the proof of the invariance of the mean curvature system w.r.t. changes of the
ON-normal section in 1.2, one can show the invariance of the Gauss curvature K = K (u,v).

2. For minimal surfaces we have Ky < 0 for all ¥ =1,...,n — 2, therefore K < 0.

3. Up to sign, K = K(u,v) is the non-trivial component of the Riemannian curvature tensor
Ruijie = Rijpgom = (Ffj,uk — T + DT — TR ) 9en (2.6)
with the Christoffel symbold I’fj defined in (2.11). In particular, evaluating the tangent
components of X iy, — Xyive = 0 yields

n—2

Rong = Z KsW?. (2.7)
n=1

This is the so-called theorema egregium.



2.2. The differential equations

We want to express Ny, and X,i,; in terms of the moving frame {Xy, Xy, N1,..., Ny 2}

Proposition 1. Let X € €(B,R") be given with an ON-normal section {N1,...,Np_2}. Then
there hold the Weingarten equations

Ny i = =Ly ;0" X! + o9 ;No, i=12 S=1,...,n-2, (2.8)

with the torsion coefficients

o Nz,ui‘N(% ifX#£0
%+ = N (2.9)
0 ifX =0
as well as the Gauss equations
n—2
Xy =T X+ Ly Ny, i,j=1.2, (2.10)
T=1
with the Christoffel symbols
1
Ffj == g"(gjei + i — Gije)s  Gijk = Gijuk - (2.11)

2
For the proofs of these equations we refer to [3].

The agi = agi(u,v) are also called the coefficients of the normal connection. This notation
becomes clear from the next result:

Corollary 2. Let X € €(B,R") be given with an ON-normal section {N1,...,N,_2}. Then there
hold the Ricci equations

Q Q e o 0 ik
OS24~ 0510 T 052001~ 051002 = (Ly2jLox — Ly Lo ke)g’ (2.12)

for3,Q=1,...,n—2.
These identities follow by evaluating Ny, — Ny 4, =0 for ¥ =1,...,n — 2 (see e.g. [3]).
Note the similarity of the left hand side in (2.12) with the Riemannian curvature tensor in (2.6).

Definition 7. The normal curvature tensor of the ON-normal section {N1,..., N,_o} is given by
Q . Q Q e O e QO
5% = Oy iui ~ Oy jui T 0506, = 05,06, - (2.13)

Remark. Consider the two-dimensional plane o := Span { Ny, No} C R™. Then S;;(o) := ngij is
invariant w.r.t. changes of the orthonormal basis of o. Thus S;;(co) represents a sectional curvature
in the normal bundle.

2.3. The mean curvature system
Using conformal parameters (u,v) € B, the Christoffel symbols satisfy
T+ T3 =0, TF+T3=0. (2.14)

Together with (2.2) and (2.10) we calculate

n—2 n—2

AX = (T} +T5) Xy + (T +T5) X, + Y (Ixa1 + Luge)Ne =2 HeWNg.  (2.15)
=1 Y=1

This is exactly the mean curvature system from (1.14).



Corollary 3. Under the assumptions |Hy|,...,|Hp—2| < ho with a real constant hy € [0,+00)
there holds the estimate

IAX]| < 2(n — 2)ho| Xu||Xo| < (n —2)ho|VX|* in B. (2.16)
The quadratic growth in the gradient allows e.g. the following enclosure principle (see [5]):

Corollary 4. Let the conformally parametrized immersion X € €(B,R"™) be given with an ON-
normal section {N1,...,Np_o}. Let furthermore |Hyl,...,|Hpn—2| < hg for the associated mean
curvature field of X = X (u,v) with a real constant hg such that

1
0<hy sup |X(u,v)|< . (2.17)
(u,v)EB n—2

Then it holds

sup [X(wv)2 = sup [ X(uv)? (2.18)

(u,v)EB (u,v)€0B
where we set OB = {(u,v) € R? : u? 4+ v? = 1}.
Proof. Using (2.16) and (2.17) we estimate
AIXP =2VXP +2AX - X! > 2 {1 —(n— 2)|X\h0} VX2 > 0. (2.19)

The maximum principle yields the statement. U

2.4. An example from the calculus of variations

We want to discuss a variational problem (see [2] for n = 3) whose critical points X = X (u,v)
satisfy the above mean curvature system together with the continuity assumptions (1.20).

Proposition 2. Let the conformally parametrized immersion X € €(B,R™) be critical for

FX] = / / (X)W dudv (2.20)
B

with a positive weight function T € C1TY(R™ R). Let {Ny,..., N, 2} be an ON-normal section.
Then X = X (u,v) satisfies the mean curvature system

n—2
AX =23 HsWNy in B (2.21)
=1
with the mean curvatures
Tx(X)- Ny
Hy, =H(X,Ny)=—7'—, X=1,....,n—2. 2.22
2 ( ) E) QF(X) b b ,TL ( )
Proof. (i) We introduce the unit normal field
n—2 n—2
N(u,v) = 7 (w,v)Ns(u,v), Y (%) =1, (2.23)
¥=1 r=1

with coefficients v* € C?T*(B,R) and consider the variation

X(u,v) = X(u,v) + ep(u, v)N(u, v) (2.24)



(i)

(iv)

with a test function ¢ € C§°(B,R) and € € (—¢eq, +¢¢). We calculate
Xu=Xu+epMN+epNy, Xy =X, +epN+epN,,

and therefore _
X2 =W +2ep Xy, - N, + 0(e),

X2 =W +2ep X, - N +o(e),
X, X! = e{ Xy N+ X, N} o+ o(e).
We define the forms
Lij =Xy N =—-X, N, =-X,;, N, d,j=12

Note that M,: - N = 0 due to N? = 1, and X, - mij =X

utud

Furhermore, it holds X, - 91, = X,, - M!,. Then, (2.26) can be written in the form
X2 =W — 260811 + o(e),
X2 = W — 2089 + 0(e),
X, - )N(ﬁ = —2epL1s + 0(e)
which yields the variation formula
ogi1 = —2¢L11, 0g12 = —2¢L12, 0ga = —2pL2.
From 2WOW = gog 0911 — 2g12 0g12 + g11 0go2 we obtain
oW = %5911 + %5922 = —{8u+Lnlp=—20W¢
with the mean curvature field $ := % £l-jgij .

Together with dT(X) = I'x(X) - N ¢ we infer
§ FIX] = // {FX(X) Mt — 20(X)H(X, m)} W dudv
B

for all ¢ € C3°(B,R). Then 6F[X] = 0 gives

Ty (X) - 9Nt

HXN) = 2T (X)

where 7> = 7> (u,v) is chosen arbitrarily.

(2.25)

(2.26)

(2.27)

N in view of X, - N = 0.

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

Let v* =1 for any ¥ € {1,...,n — 2} and 4 = 0 for all Q # ¥. Then M = Ny, $ = Hs,

such that (2.21) follows.

Remark. If we endow R™ with the Riemannian metric

ds® :=T(x1,...,2,) {(dx1)2 +...+ (d:c")Q}

O

(2.33)

then F[X] measures the area of an immersion X = X(u,v) in the Riemannian space (R"™,ds?).
Thus, minimal surfaces in this Riemannian space are surfaces with mean curvature field $(X, 9)
from (2.32) in R™. An example of such a space is obtained by stereographic projection of the sphere
S™ into R”, where

4

M= e

X = (zh, ..., 2").

(2.34)



2.5. An example: The holomorphic graph (w,w?)

Let us consider the graph
X (u,v) == (u,v,u? — 02, 2uv), (u,v) € Bp:= {(u,v) eER? ;w42 < RZ} (2.35)

2

in R* which is generated by the holomorphic function ®(w) := w?, w = u + iv.

Note that this graph can be extended to a graph over the whole plane R? but it is not a plane. We
show that (A1) and (A2) of our Theorem are satisfied, while (A3) holds with an angle w = w(R)
such that w(R) — 0 for R — oo. Therefore, we cannot apply Corollary 1.

Statement 1. The graph is a conformally parametrized minimal graph over Bg. Furthermore,
it can be extended to a complete and non-linear minimal graph over R2. In particular, it holds
H(X,Z) =0 for the mean curvature field.

Statement 2. The unit vectors
1 1
Ny = (—2u,2v,1,0), Ni:= (—2v, —2u,0,1) (2.36)
V14 4u? + 402 V14 4u? + 402

form an ON-normal section {N1, No} over Bp.

Let c(t) = (u(t),v(t)) C Bg, t € [0,T], denote a continuously differentiable curve such that
(i) ¢(0) = (0,0) and ¢(T") € OBg;
(ii) |¢(t)|> =1 for all ¢ € [0, 7] where the dot denotes differentiation w.r.t. the variable ¢.
Denote the class of all these curves by .

Statement 3. It holds
Area[B,(Xo)] < 192772 for large r > 0 (2.37)

for Xo =(0,...,0).

Proof. We give a lower bound for the length L[] of the image curve X o ¢(t) for any ¢ € © on the
surface. Assume w.l.o.g. that |u(T)| > |v(T)|, in particular |u(T)| > £. Define

t* := sup {t € (0,7) : |u(t)| < %} (2.38)

Note that T"— t* > % because of the arc length parametrization. Then we estimate as follows:

T T T
Llc] = /\/1+4u2+4v2dt > /\/1+4u2dt > /\/1+4u2dt
0 0 t*
(2.39)
r R R?
> 2/\u(t)\dt >Bop_pmy s B
2 8
t*
In the same way we treat the case |v(T")| > |u(T)|.
Now if we define
r:= min L[c], (2.40)

ceE®D
then the geodesic disc B,.(Xp), Xo := (0,...,0), projects into Bp.
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Using (2.39) we estimate the area of this geodesic disc:

2r R

Area[B,(Xy)] < //(1 + 4u? + 40?) dudv = //(1 + 40%) o dody
Br 00 (2.41)

R2
= 27 (7 +R4> < 3rR* < 192772

for all R > 1. Thus, Assumption (A2) is satisfied at least for large r > 0. O

Statement 4. (A3) does not hold for R — oo.

Proof. The condition that each normal vector NV makes an angle of at least w > 0 with the x{-axis
means |N - (1,0,...,0)!| < cosw < 1. But consider N; from (2.36) for v = 0, then

2Jul
N - (1,0,...,0) | = ——= — 1 for |u| — > 2.42
which proves the statement. ]
3 Proof of the main theorem
We set Hy(X) = H(X, Ny).
At first it holds
k5.1(0,0)% 4+ k5 2(0,0)2 = 4Hx(0,0)* — 2Kx(0,0) < 4h3 + 2|Kx(0,0)|
1 s (3.1)
= 5 {@hor)? +12|K5(0,0)]}
for ¥ =1,...,n — 2. The desired curvature bound follows from an estimate of
(qu : NZ)(XUU : NE) - (Xuv : NZ)2
K5(0,0) = ‘ . 3.2
5(0,0) — o (32)

This means that (i) we have to find a lower bound for the area element, and (ii) we have to establish
an upper bound for the second derivatives of the immersion.

1. In the first part we will prove the estimate
W (w)
r2

with a constant Cy = C1(hgr,dp,sinw,n) > 0.

>(C; forwe B%(0,0) (3.3)

1.1 Due to the graph property (Al) it is not difficult to find a global ON-normal section
{N1,...,Np_2} on the surface: Note that the vectors

es :=(0,0,1,0,...,0),...,e, :=(0,...,0,1) (3.4)

are not in any tangent plane of the surface beause
1

—(—goL ,—P1y,1,0,...
V14 V]2 ! !
(3.5)
1

1+ |v<)0 2|2 (_80n72,1'5_g0n72,y50,"' )
n—

11
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1.2

1.3

1.4

are normal to the surface and their inner products with ex do not vanish. Therefore,
the projections

¢ ¢
Nf = e3— e&jg“ u |X)|(2 Xy,
. eq - X! e Xt (3:6)
Ny = e4— W u ’X ‘2 - Xy,
can be transformed into an ON-normal section {Ny,..., N,_o}. In the first part of the

proof we will work with this section.

Using conformal parameters (u,v) € B it holds
AX =2H(X,N\)WN;y + 2H (X, N))WNy + ... + 2H(X, Ny_3)WN,_, in B. (3.7)
From (1.20) we infer the estimate
IAX (u,v)] < (n —2)ho|VX (u,v)|* in B. (3.8)

The special structure of this differential inequality - the quadratic growth in the gradient
- enables us to apply the methods of [6].
We cite two important consequences of our assumptions.

Assumption (A2) yields: Let I'(B) be the set of all continuous and piecewise differen-
tiable curves v : [0,1] — B, such that v(0) = (0,0) and (1) € 9B. Then (see [12])

1
d
inf — X dt > 3.9
iy [ [ xor0] > 59
0
Assumption (A3) gives
|Vzt)? > Wsin?w in B. (3.10)

The proof can be taken from [11], Lemma 1.1 where the author makes essential use of
the conformal representation of the surface.

For the estimate of the area element we define several auxiliary functions and apply Heinz’
results on elliptic systems in R? from [6].

1.5

We denote by
F*(u,v) := (2 (u,v),2*(u,v)) : B — R? (3.11)

the plane mapping w.r.t. X = X (u,v). Then we have
4h0

sin

() |AF ()] < —5= [VF"(w)]? for all w € B

because we estimate

IAF*| < |AX] < (n—2)ho|VX]? = 2(n —2)heW

3.12)
4h 4h (
< Vel < - [VEP
5111
(ii) VX (w)]* < |VF*( )|? for all w € B
5111
which follows from
2 2
IVX|? =2W < —— |Vz!|> < —— |[VF*]°. (3.13)
S~ w S~ w

12



1.6

1.7

1.8

Let wg € B and v € (0,1) be given such that By, (wg) :== {w € B : |[w—wp| < 2v} C B.
We consider the mapping

Y (w) = %{X(wo +2vw) — X(wg)}, we B, (3.14)
and the corresponding plane mapping
F(w) = (y'(w),y*(w)) : B — R2. (3.15)
The immersion Y = Y (w) satisfies

1/2
Yo (w)]? = % W(wo + 20w) = [Va(w)|?, Ya(w)-Yo(w) =0  (3.16)

and due to (3.8)
|AY (w)| < (n — 2)(hor)|VY (w)* in B. (3.17)
Together with 1.5 (ii) we infer
|AF(w)] < |AY (w)] < (n = 2)(hor)| VY (w)|?

—2)%(h
_ 8(” )QV ( OT) W(U)Q+21/’U)) _
T T

4(n — 2)v%(hor)
2

VX (wg + 2vw)|?

(3.18)

8(n — 2)v2(hor) 8(n — 2)v2(hor) 72

< VF* wvw)|? = — |VF(w)|?
- r2sin? w | (wo + 2vw)] r2sin?w 412 | (w)]
2(n — 2)(h
< w ]VF(w)|2
sin”® w

for all w € B. Furthermore, from (Al) we infer that F' = F'(u,v) is one-to-one and has
positive Jacobian Jr(w) > 0 for all w € B. Additionally, assumption (A2) gives

DIF] < D[Y] < - DIX] < 24y . (3.19)

r

with the Dirichlet energy
— 2 2
D] = //{|Zu| +12, P} dudo (3.20)
B

We apply [6], Theorem 6, page 254 to obtain the following inner gradient estimate:
There is a constant ¢; = ¢1(hor, dp, sinw,n) € (0,400) such that

|VF(u,v)| <eci(hor,dy,sinw,n) for all (u,v) € B%(O, 0). (3.21)

From 1.7, (3.18) we get

2

1 1
— W(wp + 2vw) < ———— ¢1(hor, do, sinw, n) =: co(hor, dy, sinw, v, n) (3.22)
r2 412 sin* w

for all w € B. In particular, we arrive at
1
— W(w) < e2(hor, do,sinw,v,n)  for all w € B1(0,0). (3.23)
r 2

This estimate will be used in the second part of the proof.

13



1.9 Because Jp(w) > 0 and D[F] < 2dy we can apply [6], Lemma 17, page 255: There exists

a constant cs = c3(hor, dg,sinw,n) € (0, +00) such that

|VF(w)|? < cs3(hor, do,sinw,n)|VF(0,0)]% for all w € B%(0,0).

It follows
412 1 hor, do, si
= W(wo+2vw) < —— |VF(w)? < cs( 0’”’,02’81“‘”’") IVF(0,0)]3
r sin® w sin® w
< cs(hor, inQ,smw,n) |VY(0,0)\%
sin® w
1
hor, do, si v/ 5
_ s 07",.02,smw,n) %W(wo)
sin® w r

Rearranging yields an inequality of Harnack type

5 for all w € B1(0,0),
r 2

W (wo) 5 S 4.8 505 sin?w W(wo + 2vw)
~ c3(hor,dg, sinw) r?

or equivalently

for all w € B, (wo)

5
W(2 )} < W(Qo)

cq(hor, do, sinw, v, n) [

r r

10 .,

Zutsinl e (0, +00).

with the constant cy(hor, dg,sinw, v, n) := S Thordo.sine )5

1.10 (A2) also ensures that we can estimate the area element in at least one point

a point w* € Bi_,,(0,0), 1o := min(e 4%, 1) such that

W (w*) S 1

2 > 4(1—6_47“[0) =: C5(d0)>0.

The constant vy comes from an application of the Courant-Lebesgue lemma.
1.11 We now establish an estimate of the area element:

Set v := 11y € (0, 1] and choose an integer m = m(v) € N such that
1—21/§%1/§1—y.

For an arbitrary wg € Bi_,,(0,0) we define the points

wj ::iw*—l—mwo for j=0,...,m
m m

with w* € B1_,,(0,0) from 1.10. We have
ol
jwj| < L jw*| + 2L jwg| < 1 1p
m m

and therefore By, (w;) = By,(w;) C B. Furthermore, it holds

1 1 1 2(1 —
i — gl = 2wt = L[ < L g <2000 o,
m m m m

This implies w; 1 € By (w;) for j =0,...,m — 1.
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(3.24)

(3.25)

(3.26)

(3.27)

: There is

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)



We apply the Harnack inequality from 1.9, (3.27) and obtain

r2

2 m—1
L > Cﬁll+5+5 +..4+5 |:

Recall that w,, = w*, and 1.10, (3.28) gives

W (wo)
2

r

W (wo) > ¢4 [wrz ot [MFQ > ..

r2

W (wm)

5m
r2 ] '

for all wy € Bi—y,(0,0). From 1y < & we conclude

W (w)
r2

This completes the first part of the proof.

> C1(hor,dy,sinw,n) for all w € B1(0,0).
2

> c}t+5+52+"'+5m_105(d0)5m =: C1(hor,dy,sinw,n) >0

2. In the second part we estimate the second derivatives of X = X (u,v) using

AX =2H(X,N\)WN; + 2H(X,No)WNy + ...+ 2H(X, Ny_g)W N, _s.

(3.33)

(3.34)

(3.35)

(3.36)

In particular, we have to give Holder estimates of the right hand side of this equation. We
will construct an adequate ON-normal section { N1, ..

2.1 Define the auxiliary function

.y Np—o} of the normal space.

Z(u,v) = %{X(u,v) - X(0,0)} = %X(u,v), (u,v) €

Denoting by Wy the area element of Z, we have

Zu2 =Wz =|Z,]* and Z,-Z.=0 inB.

It holds 7?Wy = Wx with Wy := | X,|> = | X, |>. We calculate

2
AZ = ZH(X,N))WxN; + ...
r
= WHEZ N)WsNy + ...+ 20H(rZ, Ny_2)WyNy_s .
2.2 Due to 1.8, (3.23) we have the estimate

IANZ(w)] < 2(n —2)(rhg)ca(hor, d,sinw,n)  for all w € B% (0,0).

Furthermore, we get

2

B.

+ 2 H(X, Ny_g)Wx Np_s

r

|Z(u,v)| = |Z(u,v) — Z(0,0)] <2 max |VZ(w)|

weEB1 (0,0)
2

< 24/2¢a(hor, do, sinw)

Potential theoretic estimates yield a constant cg(hor, do, sinw, n, ) such that

in B1(0,0).
2

| Zi(w1) — Zyi(we)| < cg(hor, do, sinw, n, a)|w; — wy|®

for wy,we € B1(0,0)
4
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(3.38)

(3.39)

(3.40)

(3.41)

(3.42)



for all @ € (0,1), where u! = u, u? = v (see e.g. [14], chapter XII, §2). Therefore

Wz (w1) = Wz(w2)| < er(hor, do, sinw, n, a)lw; — wa|®

3.43
for all wy,wsy € Bi (0,0) ( )

with the constant ¢7 := 4./cs 6.

2.3 Using the mean value theorem we have the Lipschitz estimate

|Z(w1) — Z(ws)| < 4v/2ca(hor,do,sin ) |wy — wa|  for wy,wy € B% (0,0). (3.44)

In a certain neighborhood of the origin we construct an ON-normal section {Ny,..., N,_2}
whose Holder norm can be estimated.

2.4 We choose unit vectors N1,..., N,_s € R" such that
Ns-Z,;(0,00 =0, Ny -Ny=0dsq, j=12 ¥Q=1,...,n—2  (3.45)

and define vectors

Ni(w) := Ny, — % Zy(w) — W Zy(w) in B. (3.46)

2.5 These vectors belong to the normal space at Z(w) but they may not be linearly inde-
pendent. We now determine a vy = vy (hgr, do,sinw, n,«) > 0 such that

ez 1 Nu-Zuw)? [Ny - Zy(w)']?

1
5 in B, (0,0). (3.47)
Namely, using (3.45) and 2.2, (3.42) we calculate

INs - Zye(w)'* = [N - {Zye(w) = Z,e(0,0)}'* < | Zye(w) = Z,e(0,0)?

3.48)
< Cﬁ(h(]'l", dO,SiHu},’I’L,Oé)2|w|2a ) (
for t=1,2,¥=1,...,n—2, and from 1.11, (3.34) we know the lower bound
Wz(w) > Cyi(hor,dy,sinw,n) in B1(0,0). (3.49)
2

Thus, (3.47) holds if v?* < &L,
6
2.6 We remark that the vectors N3 (w), ¥ =1,...,n — 2, satisfy the the Holder estimate
|NS (w1) — Ny (wa)| < cg(hor, do, sinw, n, a)|wy — wa|®

(3.50)
for wy,wq € By, (0,0)

with a constant cg(hor, dy, sinw, n, «). This estimate arises from the Holder estimate for
Zy; and the lower bound of Wy.
2.7 For X =1,...,n — 2 we define
_ Ny(w)
[N (w)]

Ny(w) : in By, (0,0). (3.51)
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2.8

2.9

2.10

These vectors are well defined because it holds [N} (w)|> > 3 in B,,(0,0), but they are
not orthogonal. Note that

(Nx - Zi)(Na - Z3) N (Nx - Z})(Nq - Z})

Ny - NG = W, W, vs for X #Q (3.52)
and therefore with (3.48)
. INZ - Ng| 2 _ _ _ 4¢2
NoRbI = [ < o Vs ZilINo 20+ N 24 [No- 251} < G2 P (3.53)
b Q

Thus we can find a vo = va(hor, dy , Sinw, n~,a) with 0 < v9 < 17 such that the following
vectors (write Ny for Ny (w) and Nq for No(w)) are well-defined in B,,(0,0) :

Ny = Ny,
-
Ny = N {Nl Ni}]\S’
m (3.54)
N, Moo= {Ny - Nt Ny — o = {Ny - Nt N, 5
n—2 = — — .
VI- NP — = (N NP

Namely, we choose v € (0,1) sufficiently small with the property that all denominators
in (3.54) are greater than or equal to % These vectors form an ON-normal section in

B,,(0,0). Furthermore, the Holder estimates

|Ns:(wy) — Nx(wa)| < eg(hor, do, sinw, n, a)|wy — wa|*

(3.55)
for wy,wq € B,,(0,0)
for ¥ =1,...,n—2 hold with a constant cg(hgr, dy,sinw, n, @) which can be calculated
from the Holder estimates for the Ns.
Now we make use of the differential system
NZ =2rH(rZ,Ny)WzNy + 2rH(rZ, No9)WzNy in B,,(0,0). (3.56)

We already established |AZ(w)| < 2(n — 2)(hor)c in B,,(0,0) (see 2.2). Using (1.20)
we obtain the Holder estimate

|H (rZ(w1), N (w1)) = H(rZ(w2), N (w2))]
< har®|Z(w1) = Z(w2)|* + ho|Ng(w1) — Nx(ws)] (3.57)
< h140‘r0‘(202)% |wy — wa|® + hacglwg — wal®.
Thus we can find a constant c19 = cig(hor, 17 T, hor, dg, sinw, n, a) such that

IAZ(w1) — AZ(w3a)| < crolwy — wal®  for wy,we € By, (0,0). (3.58)

We set v3 := %1/2. From interior Schauder estimates we infer a constant Cy € (0, +00)
such that there hold

| Zu (W), | Zuw (W), | Zw (w)| < Co(hor, Byt T, hor, do,sinw, n, ) in B,,(0,0). (3.59)
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2.11 From the beginning of the proof we recall

1 |2 (0,0)[| Z0, (0, 0)| + [Zu (0, 0)|?
0,0)? 0,0)* < = { (hor)? ikt ’ ’ . (3.60
k1,5(0,0)% + k2,5(0,0)* < 2 {( or)” + W,(0,0)2 (3.60)
. 1+a . L 2022 .
Setting ©(hor, hir' %, hor, dy, sinw, n, o) := =+ we arrive at
1
2 2 1 2
k1,5(0,0)7 + k2,5(0,0)° < = (hor)* + © ¢. (3.61)
This completes the proof. O

Remarks.

1. The graph property (Al) is essentially needed in 1.9 where we derived the Harnack-type
inequality for the area element. For certain immersions of prescribed mean curvature in R3
one can establish a modulus of continuity for the spherical mapping which ensures the graph
property at least locally.

2. Assumption (A2) is needed e.g. in 1.9 for the gradient estimate in terms of |VF'(0,0)|, and in
1.10 to ensure a point w* with the property W (w*) > r2cs. For certain stable or generalized
stable immersions in R? one can realize the constant dy in (1.22) (see e.g. [4]).

3. Assumption (A3) is needed in 1.5. to establish the inequality

4hg

sin? w

[AF"(w)] < VF* (w)|*

for the plane mapping F'*. For immersions in R3, such an inequality follows already from the

conformal parametrization and (A3) is not needed.

4. The assumptions (1.20) on the mean curvature field are needed in 2.9 and 2.10 where we ap-
plied Schauder theory to establish upper bounds for the second derivatives of the immersion.

References

[1] BLASCHKE, W.; LEICHTWEISS, K.: Elementare Differentialgeometrie. Grundlehren der math-
ematischen Wissenschaften 1, Springer, 1973.

[2] BOHME, R.; HILDEBRANDT, S.; TAUSCH, E.: The two-dimensional analogue of the catenary.
Pac. J. Math. 88, No.2, 247-278, 1980.

[3] BRAUNER, H.: Differentialgeometrie. Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braun-
schweig, 1981.

[4] FROHLICH, S.: On two-dimensional immersions that are stable for parametric functionals of
constant mean curvature type. Diff. Geom. Appl. 23, 235-256, 2005.

[5] DIERKES, U.; SCHWAB, D.: Mazimum principles for submanifolds of arbitrary codimension
and bounded mean curvature. Calc. Var. 22, 173-184, 2005.

6] HEINZ, E.: On certain nonlinear differential equations and univalent mappings. Journal
d’Analyse Math. 5, 197-272, 1956.

18



[7] HILDEBRANDT, S.; JosT, J.; WIDMAN, K.O.: Harmonic mappings and minimal submani-
folds. Inv. math. 62, 269298, 1980.

[8] JosT, J.; XIN, Y.L.: Bernstein type theorems for higher codimension. Calc. Var. 9, 277-296,
1999.

[9] KLINGENBERG, W.: Klassische Differentialgeometrie. Fine Einfihrung in die Riemannsche
Geometrie. Edition am Gutenbergplatz, Leipzig, 2004.

[10] LawsoN, H.B.: Lectures on minimal submanifolds. Vol. I, Mathematics Lecture Series 9,
Publish or Perish, Inc., 1980.

[11] OSSERMAN, R.: Global properties of minimal surfaces in E* and E". Ann. Math. 80, 340-364,
1964.

[12] SAUVIGNY, F.: A-priori-Abschitzungen der Hauptkrimmungen fir Immersionen vom Mit-
tleren- Kriimmungs-Typ mittels Uniformisierung und Sdtze vom Bernstein-Typ. Habilitations-
schrift, Gottingen 1988.

[13] SAuVIGNY, F.: Introduction of isothermal parameters into a Riemannian metric by the con-
tinuity method. Analysis 19, No. 3, 235-243, 1999.

[14] SAUVIGNY, F.: Partielle Differentialgleichungen der Geometrie und der Physik. Springer-
Verlag, 2004.

[15] SCHOEN, R.; SIMON, L.; YAu, S.T.: Curvature estimates for minimal hypersurfaces. Acta
Math. 134 (3-4), 275-288, 1975.

[16] ScHuLz, F.: Regularity theory for quasilinear elliptic systems and Monge-Ampére equations
in two dimensions. Lecture Notes in Mathematics 1445, Springer-Verlag, 1990.

[17] Smoczyk, K.; WANG, G.; XIN, Y.L.: Bernstein type theorems with flat normal bundle.
accepted by Calc. Var.

[18] WANG, M.-T.: Stability and curvature estimates for minimal graphs with flat normal bundles.
arXiv:math.DG/0411169v2.

[19] WEYL, H.: Zur Infinitesimalgeometrie: p-dimensionale Fldchen im n-dimensionalen Raum.
Math. Z. 12, 154-160, 1922.

Matthias Bergner, Steffen Frohlich

AG Differentialgeometrie und Geometrische Datenverarbeitung
Fachbereich Mathematik
TU Darmstadt

Schlossgartenstrafie 7
D-64289 Darmstadt

bergner@mathematik.tu-darmstadt.de
sfroehlich@mathematik.tu-darmstadt.de

19



