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Abstract

We consider two-dimensional immersions of disc-type in R
n. We focus on well

known classical concepts and study the nonlinear elliptic systems of such map-

pings. Using an Osserman-type condition we give a-priori estimates of the

principle curvatures for graphs with prescribed mean curvature fields and de-

rive a theorem of Bernstein type for minimal graphs.
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Introduction

The main result of our paper is an estimate of the principal curvatures of two-dimensional graphs
with prescribed mean curvature in Euclidean space R

n in terms of certain a-priori data.

The notations which we need to formulate this result are introduced in the first chapter: In section
1.1. a definition of differential geometric immersions with smooth sections of the normal bundle;
in section 1.2 an introduction to conformally parametrized immersions with prescribed mean cur-
vature fields; and in section 1.3 our main theorem with a brief discussion. In particular, we will
infer a theorem of Bernstein type for minimal graphs.

Before we give a detailed proof in chapter 3 we recall important concepts of the differential ge-
ometry of two-dimensional immersions in R

n using the classical Ricci calculus. Among these are
the differential equations of Weingarten and Gauss, as well as the integrability conditions of Ricci
which lead us to the notion of the normal sectional curvature. While in the first chapter we in-
troduce the non-linear elliptic mean curvature systems in a more abstract way, in chapter 2 these
systems arise naturally from the differential geometric identities. A variational problem which
illustrates the appearance of mean curvature systems as minimal surfaces in certain Riemannian
spaces, and an example for our main theorem complete this second part.

Chapter 3 presents a detailed proof of our curvature estimate. Essentially we use ideas from [12]
where the author applies fundamental results on non-linear elliptic systems with quadratic growth
in the gradient which were developed in [6].

1 Basic notations and the main theorem

1.1. Basic notations

Denote by

B :=
{

(u, v) ∈ R
2 : u2 + v2 < 1

}
(1.1)

the open unit disc in R
2 and by B ⊂ R

2 its topological closure.
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For positive integers n ≥ 3 we consider two-dimensional immersions

X(u, v) = (x1(u, v), . . . , xn(u, v)), (u, v) ∈ B, (1.2)

of the regularity class

X ∈ C3+α(B, Rn) ∩ C0(B, Rn), α ∈ (0, 1), (1.3)

such that

rank∂X(u, v) ≡ rank




x1
u(u, v) x1

v(u, v)
...

...
xn

u(u, v) xn
v (u, v)


 = 2 for all (u, v) ∈ B (1.4)

where the indices u and v denote the partial derivatives w.r.t. u and v.

Definition 1. We define C(B, Rn) to be the set of all immersions X = X(u, v) with the properties
(1.2) to (1.4).

We infer that the tangent vectors Xu = Xu(u, v) and Xv = Xv(u, v) are linearly independent at
any (u, v) ∈ B and span the two-dimensional tangent plane at that point, namely

TX(w) := Span
{
Xu(w), Xv(w)

}
, w = u + iv ∈ B. (1.5)

The normal space NX(w) := TX(w)⊥ at w ∈ B is a (n − 2)-dimensional vector space spanned by
vectors N1(w), . . . , Nn−2(w) such that there hold the orthonormality relations

NΣ(w) · NΘ(w)t = δΣΘ :=

{
1 if Σ = Θ

0 if Σ 6= Θ
for all Σ,Θ ∈ {1, . . . , n − 2} (1.6)

with the Kronecker symbol δΣΘ. Here, the upper t means the transposed vector.

Let X ∈ C(B, Rn). Then there exists an orthonormal set {N1(w), . . . , Nn−2(w)} such that

NΣ ∈ C2+α(B,Sn−1) for all Σ = 1, . . . , n − 2 (1.7)

where Sn−1 := {Z ∈ R
n : |Z|2 = 1}, and

NΣ(w) · Xu`(w)t = 0 for all Σ = 1, . . . , n − 2, ` = 1, 2 and all w ∈ B. (1.8)

Definition 2. We call a set {N1, . . . , Nn−2} from the assumption above an orthonormal (ON-)
normal section of the immersion X = X(u, v).

Example 1. Given functions ϕ1, . . . , ϕn−2 ∈ C3+α(Ω, R) on a bounded domain Ω ⊂ R
2, we define

unit vectors

Ñ1 :=
1√

1 + |∇ϕ1|2
(−ϕ1,x,−ϕ1,y, 1, 0, . . . , 0),

Ñ2 :=
1√

1 + |∇ϕ2|2
(−ϕ2,x,−ϕ2,y, 0, 1, . . . , 0), . . .

(1.9)

which are normal to the graph (x, y, ϕ1(x, y), . . . , ϕn(x, y)). Here, ∇ denotes the Euclidean gradient.
Using Gram-Schmidt orthonormalization these vectors can be transformed into an ON-normal
section {N1, . . . , Nn−2}.
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1.2. Immersions with prescribed mean curvature fields

Following [13] we introduce conformal parameters (u, v) ∈ B into the immersion X = X(u, v) such
that there hold the conformality relations

|Xu(u, v)|2 = W (u, v) = |Xv(u, v)|2 , Xu(u, v) · Xv(u, v)t = 0 in B. (1.10)

Here, W = W (u, v) means the area element

W (u, v) :=
√

g11(u, v)g22(u, v) − g12(u, v)2 , gij(u, v) := Xui(u, v) · Xuj (u, v)t , (1.11)

of the surface. Note that W (u, v) > 0 for all (u, v) ∈ B.

Definition 3. The functions gij = gij(u, v), i, j = 1, 2, from (1.11) are called the coefficients of
the first fundamental form of the immersion X = X(u, v).

Given a vector valued function

H : R
n −→ R

n (1.12)

we define a scalar field H : R
n × Sn−1 −→ R by

H(X,Z) := H(X) · Z t for X ∈ R
n , Z ∈ Sn−1 . (1.13)

Now, we introduce the notion of prescribed mean curvature fields H(X,Z).

Definition 4. Let X ∈ C(B, Rn) with an ON-normal section {N1, . . . , Nn−2} be given. Then
we call X = X(u, v) a conformally parametrized immersion of prescribed mean curvature field
H ∈ C0(Rn × Sn−1, R) iff there hold (1.10) and

4X = 2H(X,N1)WN1 + . . . + 2H(X,Nn−2)WNn−2 in B (1.14)

with the Euclidean Laplace operator 4. The immersion is called a minimal surface iff H(X,Z) ≡ 0,
that is

4X = 0 in B. (1.15)

Remark. The differential system (1.14) is invariant w.r.t. orthogonal changes of the ON-normal
section {N1, . . . , Nn−2}. For the proof let

O = (oΣΩ)Σ,Ω=1,...,n (1.16)

be an orthogonal matrix which in B ⊂ R
2 satisfies the relations

n−2∑

Σ=1

oΣΩ(w)2 =
n−2∑

Σ=1

oΩΣ(w)2 = 1 for Ω = 1, . . . , n − 2,

n−2∑

Σ=1

oΣΩ(w)oΣΩ′(w) =

n−2∑

Σ=1

oΩΣ(w)oΩ′Σ(w) = 0 for Ω 6= Ω′ .

(1.17)

We introduce a new ON-normal section {Ñ1, . . . , Ñn−2} via

ÑΣ :=
n−2∑

Ω=1

oΣΩNΩ , Σ = 1, . . . , n − 2. (1.18)

3



Now, we calculate

n−2∑

Σ=1

H(X, ÑΣ)ÑΣ =

n−2∑

Σ=1

{
H(X) ·

n−2∑

Ω=1

oΣΩN t
Ω

}
n−2∑

Ω′=1

oΣΩ′NΩ′

=
n−2∑

Ω=1

(
n−2∑

Σ=1

o2
ΣΩ

){
H(X) · N t

Ω

}
NΩ +

n−2∑

Ω,Ω′=1
Ω6=Ω′

(
n−2∑

Σ=1

oΣΩoΣΩ′

){
H(X) · N t

Ω

}
NΩ′

=

n−2∑

Ω=1

{
H(X) · N t

Ω

}
NΩ =

n−2∑

Ω=1

H(X,NΩ)NΩ

(1.19)

which proves the stated invariance. �

1.3. The main theorem

We admit mean curvature fields H ∈ C0(Rn × Sn−1, R) which additionally satisfy the following
Hölder and Lipschitz assumptions:

|H(X,Z)| ≤ h0 for all X ∈ R
n , Z ∈ Sn−1 and

|H(X1, Z1) − H(X2, Z2)| ≤ h1|X1 − X2|α + h2|Z1 − Z2|
for all X1, X2 ∈ R

n , Z1, Z2 ∈ Sn−1 .

(1.20)

Theorem.

Assumptions: Let an immersion X ∈ C(B, Rn) of prescribed mean curvature field H = H(X,Z)
be given such that (1.20) holds. Furthermore, we assume that

(A1) the immersion X = X(u, v) is a conformal reparametrization of a graph

(x, y, ϕ1(x, y), . . . , ϕn−2(x, y)), ϕΣ ∈ C3+α(Ω, R) for Σ = 1, . . . , n − 2, (1.21)

over a bounded and simply connected domain Ω ⊂ R
2;

(A2) the surface represents a geodesic disc Br(X0) of geodesic radius r > 0 and with center
X0 := (0, . . . , 0) such that with a real constant d0 > 0 it holds

Area[Br(X0)] :=

∫∫

B

W (u, v) dudv ≤ d0r
2 (1.22)

for the area of the geodesic disc, where d0 ∈ (0,+∞) does not depend on r;

(A3) at every point w ∈ B, each normal vector of the immersion makes an angle of at least ω > 0
with the x1-axis.

Statement: Then, for any orthonormal basis {N 1, . . . , Nn−2} of the normal space at X0 there
exists a constant

Θ = Θ(h0r, h1r
1+α, h2r, d0, sinω, n, α) ∈ (0,+∞) (1.23)

such that it holds

κΣ,1(0, 0)
2 + κΣ,2(0, 0)

2 ≤ 1

r2

{
(h0r)

2 + Θ
}

(1.24)

for the principal curvatures κΣ,1 and κΣ,2 w.r.t. NΣ for all Σ = 1, . . . , n − 2.
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Remarks.

1. The principal curvatures κΣ,i = κΣ,i(u, v) are defined as the eigenvalues of a Weingarten
form w.r.t. a unit normal vector NΣ (see section 2.1 for details).

2. An estimate of the principal curvatures can be proved under the assumption Area[X] ≤ M0

with any constant M0 ∈ (0,+∞) instead of (A2), where Θ from (1.23) will depend on M0.

However, (A2) leads to the following Bernstein type result:

Consider minimal graphs (x, y, ϕ1, (x, y), . . . , ϕn−2(x, y)), (x, y) ∈ R
2. Because its Gaussian curva-

ture is non-positive (see section 2.1), by a theorem of Hadamard (see [9], Theorem 3.4.16) we can
introduce geodesic discs Br(X0) for all X0 = (x0, y0, ϕ1(x0, y0), . . . , ϕn−2(x0, y0)) and all r > 0.

Then the limit r → ∞ yields the

Corollary 1. Let X = X(x, y), (x, y) ∈ R
2, be a complete minimal graph with the properties

(i) there exists X0 = (x0, y0, ϕ1(x0, y0), . . . , ϕn−2(x0, y0)) and a radius r0 > 0 such that all
geodesic discs Br(X0) with center X0 and radius r ≥ r0 satisfy

Area[Br(X0)] ≤ d0r
2 for all r ≥ r0 (1.25)

with a constant d0 ∈ (0,+∞) which does not depend on r;

(ii) each normal vector of the graph makes an angle of at least ω > 0 with the x1-axis.

Then X = X(x, y) is a linear mapping.

Proof. For any point X1 = (x1, y1, ϕ1(x1, y1), . . . , ϕn−2(x1, y1)) on the graph we have

Area[Br(X1)] ≤ 4d0r
2 for all r ≥ max{r0, d(X0, X1)} (1.26)

where d(X0, X1) ≥ 0 is the inner distance between X0 and X1 on the surface. This holds because
of the inclusion

Br(X1) ⊂ B2r(X0) for all r ≥ max{r0, d(X0, X1)} (1.27)

and assumption (i).

Since K ≤ 0 for the Gaussian curvature we can consider geodesic discs Br(X1) for all r ∈ (0,+∞)
on account of Hadamard’s theorem. With the aid of [13] we introduce conformal parameters into
such a geodesic disc.

Using the curvature estimate (1.24) and letting r → ∞ shows that all principal curvatures at X1

vanish which proves the Corollary (note that Θ does not depend on r since h0, h1, h2 = 0).

Remarks.

1. In [11] Osserman proved that a complete two-dimensional minimal surface in R
n is a plane

if all of its normal vectors make a certain positive angle with a fixed axis in space (compare
with assumption (A3)). The method of his proof is based essentially on results of complex
analysis and it does not need a growth condition of the form (1.22).

2. In [7] a Bernstein type result for minimal submanifolds is proved. The methods established
there were generalized in [8] to prove curvature estimates for submanifolds with parallel mean
curvature fields. Due to the higher dimension of the manifolds itself the authors assume a-
priori bounds for the gradients.
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3. Curvature estimates and related Bernstein type result for minimal submanifolds can also
be found in [17] where the authors extend methods from [15] for minimal immersions with
vanishing normal sectional curvature (see also [18], and (2.13) below).

4. Our method of proof uses essentially results from [6], and follows [12] where curvature esti-
mates for two-dimensional immersions of mean curvature type in R

3 where established.

2 Differential geometry of surfaces in R
n

2.1. Mean and Gaussian curvature fields and principal curvatures

Let the immersion X ∈ C(B, Rn) be given with an ON-normal section {N1, . . . , Nn−2}.
Consider the forms

(Lk
Σ,i)i,k=1,2 := (LΣ,ijg

jk)i,k=1,2 ∈ R
2×2 , Σ = 1, . . . , n − 2, (2.1)

with the coefficients gij = gij(u, v) of the inverse of the first fundamental form, i.e. gijg
jk = δk

i

with the Kronecker symbol δk
i using the summation convention.

Definition 5. The mean curvature HΣ = HΣ(u, v) and the Gaussian curvature KΣ = KΣ(u, v)
in direction NΣ, Σ = 1, . . . , n − 2, are defined as

HΣ :=
1

2
trace (Lk

Σ,i)i,k=1,2 =
LΣ,11g11 − 2LΣ,12g12 + LΣ,22g22

2(g11g22 − g2
12)

(2.2)

and

KΣ := det (Lk
Σ,i)i,k=1,2 =

LΣ,11LΣ,22 − L2
Σ,12

g11g22 − g2
12

. (2.3)

The principal curvatures κΣ,1, κΣ,2 w.r.t. NΣ are the eigenvalues of (Lk
Σ,i)i,k=1,2, that is

HΣ =
κΣ,1 + κΣ,2

2
, KΣ = κΣ,1κΣ,2 , Σ = 1, . . . , n − 2. (2.4)

Definition 6. Let X ∈ C(B, Rn) be given with an ON-normal section {N1, . . . , Nn−2}. The
Gaussian curvature of X = X(u, v) is defined by

K(u, v) :=

n−2∑

Σ=1

KΣ(u, v), (u, v) ∈ B. (2.5)

Remarks.

1. Similarly to the proof of the invariance of the mean curvature system w.r.t. changes of the
ON-normal section in 1.2, one can show the invariance of the Gauss curvature K = K(u, v).

2. For minimal surfaces we have KΣ ≤ 0 for all Σ = 1, . . . , n − 2, therefore K ≤ 0.

3. Up to sign, K = K(u, v) is the non-trivial component of the Riemannian curvature tensor

Rnijk = R`
ijkg`n = (Γ`

ij,uk − Γ`
ik,uj + Γm

ijΓ
`
mk − Γm

ikΓ
`
mj)g`n (2.6)

with the Christoffel symbold Γk
ij defined in (2.11). In particular, evaluating the tangent

components of Xuiuv − Xuivu = 0 yields

R2112 =

n−2∑

Σ=1

KΣW 2 . (2.7)

This is the so-called theorema egregium.
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2.2. The differential equations

We want to express NΣ,ui and Xuiuj in terms of the moving frame {Xu, Xv , N1, . . . , Nn−2}.
Proposition 1. Let X ∈ C(B, Rn) be given with an ON-normal section {N1, . . . , Nn−2}. Then
there hold the Weingarten equations

NΣ,ui = −LΣ,ijg
jkXt

uk + σΘ
Σ,iNΘ , i = 1, 2, Σ = 1, . . . , n − 2, (2.8)

with the torsion coefficients

σΘ
Σ,i :=

{
NΣ,ui · N t

Θ if Σ 6= Θ

0 if Σ = Θ
, (2.9)

as well as the Gauss equations

Xuiuj = Γk
ijXuk +

n−2∑

Σ=1

LΣ,ijNΣ , i, j = 1, 2, (2.10)

with the Christoffel symbols

Γk
ij :=

1

2
gk`(gj`,i + g`i,j − gij,`), gij,k := gij,uk . (2.11)

For the proofs of these equations we refer to [3].

The σΩ
Σ,i = σΩ

Σ,i(u, v) are also called the coefficients of the normal connection. This notation
becomes clear from the next result:

Corollary 2. Let X ∈ C(B, Rn) be given with an ON-normal section {N1, . . . , Nn−2}. Then there
hold the Ricci equations

σΩ
Σ,2,u − σΩ

Σ,1,v + σΘ
Σ,2σ

Ω
Θ,1 − σΘ

Σ,1σ
Ω
Θ,2 = (LΣ,2jLΩ,k1 − LΣ,1jLΩ,k2)g

jk (2.12)

for Σ,Ω = 1, . . . , n − 2.

These identities follow by evaluating NΣ,uv − NΣ,vu = 0 for Σ = 1, . . . , n − 2 (see e.g. [3]).

Note the similarity of the left hand side in (2.12) with the Riemannian curvature tensor in (2.6).

Definition 7. The normal curvature tensor of the ON-normal section {N1, . . . , Nn−2} is given by

SΩ
Σ,ij := σΩ

Σ,i,uj − σΩ
Σ,j,ui + σΘ

Σ,iσ
Ω
Θ,j − σΘ

Σ,jσ
Ω
Θ,i . (2.13)

Remark. Consider the two-dimensional plane σ := Span {NΣ, NΩ} ⊂ R
n. Then Sij(σ) := SΩ

Σ,ij is
invariant w.r.t. changes of the orthonormal basis of σ. Thus Sij(σ) represents a sectional curvature
in the normal bundle.

2.3. The mean curvature system

Using conformal parameters (u, v) ∈ B, the Christoffel symbols satisfy

Γ1
11 + Γ1

22 = 0, Γ2
11 + Γ2

22 = 0. (2.14)

Together with (2.2) and (2.10) we calculate

4X = (Γ1
11 + Γ1

22)Xu + (Γ2
11 + Γ2

22)Xv +
n−2∑

Σ=1

(LΣ,11 + LΣ,22)NΣ = 2
n−2∑

Σ=1

HΣWNΣ . (2.15)

This is exactly the mean curvature system from (1.14).
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Corollary 3. Under the assumptions |H1|, . . . , |Hn−2| ≤ h0 with a real constant h0 ∈ [0,+∞)
there holds the estimate

|4X| ≤ 2(n − 2)h0|Xu||Xv | ≤ (n − 2)h0|∇X|2 in B. (2.16)

The quadratic growth in the gradient allows e.g. the following enclosure principle (see [5]):

Corollary 4. Let the conformally parametrized immersion X ∈ C(B, Rn) be given with an ON-
normal section {N1, . . . , Nn−2}. Let furthermore |H1|, . . . , |Hn−2| ≤ h0 for the associated mean
curvature field of X = X(u, v) with a real constant h0 such that

0 ≤ h0 sup
(u,v)∈B

|X(u, v)| ≤ 1

n − 2
. (2.17)

Then it holds
sup

(u,v)∈B

|X(u, v)|2 = sup
(u,v)∈∂B

|X(u, v)|2 (2.18)

where we set ∂B := {(u, v) ∈ R
2 : u2 + v2 = 1}.

Proof. Using (2.16) and (2.17) we estimate

4|X|2 = 2|∇X|2 + 24X · X t ≥ 2
{

1 − (n − 2)|X|h0

}
|∇X|2 ≥ 0. (2.19)

The maximum principle yields the statement.

2.4. An example from the calculus of variations

We want to discuss a variational problem (see [2] for n = 3) whose critical points X = X(u, v)
satisfy the above mean curvature system together with the continuity assumptions (1.20).

Proposition 2. Let the conformally parametrized immersion X ∈ C(B, Rn) be critical for

F [X] :=

∫∫

B

Γ(X)W dudv (2.20)

with a positive weight function Γ ∈ C1+α(Rn, R). Let {N1, . . . , Nn−2} be an ON-normal section.
Then X = X(u, v) satisfies the mean curvature system

4X = 2
n−2∑

Σ=1

HΣWNΣ in B (2.21)

with the mean curvatures

HΣ = H(X,NΣ) =
ΓX(X) · N t

Σ

2Γ(X)
, Σ = 1, . . . , n − 2. (2.22)

Proof. (i) We introduce the unit normal field

N(u, v) :=

n−2∑

Σ=1

γΣ(u, v)NΣ(u, v),

n−2∑

Σ=1

(γΣ)2 = 1, (2.23)

with coefficients γΣ ∈ C2+α(B, R) and consider the variation

X̃(u, v) = X(u, v) + εϕ(u, v)N(u, v) (2.24)
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with a test function ϕ ∈ C∞
0 (B, R) and ε ∈ (−ε0,+ε0). We calculate

X̃u = Xu + εϕuN + εϕNu , X̃v = Xv + εϕvN + εϕNv , (2.25)

and therefore
X̃2

u = W + 2εϕXu · Nt
u + o(ε),

X̃2
v = W + 2εϕXv · Nt

v + o(ε),

X̃u · X̃t
v = ε

{
Xu · Nt

v + Xv · Nt
u

}
ϕ + o(ε).

(2.26)

(ii) We define the forms

Lij := Xuiuj · Nt = −Xui · Nt
uj = −Xuj · Nt

ui , i, j = 1, 2. (2.27)

Note that Nui · Nt = 0 due to N2 = 1, and Xui · Nt
uj = −Xuiuj · Nt in view of Xui · Nt = 0.

Furhermore, it holds Xu · Nt
v = Xv · Nt

u. Then, (2.26) can be written in the form

X̃2
u = W − 2εϕL11 + o(ε),

X̃2
v = W − 2εϕL22 + o(ε),

X̃u · X̃t
v = − 2εϕL12 + o(ε)

(2.28)

which yields the variation formula

δg11 = −2ϕL11 , δg12 = −2ϕL12 , δg22 = −2ϕL22 . (2.29)

From 2WδW = g22 δg11 − 2g12 δg12 + g11 δg22 we obtain

δW =
1

2
δg11 +

1

2
δg22 = −

{
L11 + L22

}
ϕ = − 2HWϕ (2.30)

with the mean curvature field H := 1
2 Lijg

ij .

(iii) Together with δΓ(X) = ΓX(X) · Nt ϕ we infer

δ F [X] =

∫∫

B

{
ΓX(X) · Nt − 2Γ(X)H(X,N)

}
Wϕdudv (2.31)

for all ϕ ∈ C∞
0 (B, R). Then δF [X] = 0 gives

H(X,N) =
ΓX(X) · Nt

2Γ(X)
(2.32)

where γΣ = γΣ(u, v) is chosen arbitrarily.

(iv) Let γΣ ≡ 1 for any Σ ∈ {1, . . . , n − 2} and γΩ ≡ 0 for all Ω 6= Σ. Then N = NΣ, H = HΣ,

such that (2.21) follows.

Remark. If we endow R
n with the Riemannian metric

ds2 := Γ(x1, . . . , xn)
{

(dx1)2 + . . . + (dxn)2
}

(2.33)

then F [X] measures the area of an immersion X = X(u, v) in the Riemannian space (Rn, ds2).
Thus, minimal surfaces in this Riemannian space are surfaces with mean curvature field H(X,N)
from (2.32) in R

n. An example of such a space is obtained by stereographic projection of the sphere
Sn into R

n, where

Γ(X) =
4

(1 + |X|2)2 , X = (x1, . . . , xn). (2.34)
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2.5. An example: The holomorphic graph (w, w
2)

Let us consider the graph

X(u, v) := (u, v, u2 − v2, 2uv), (u, v) ∈ BR :=
{
(u, v) ∈ R

2 : u2 + v2 ≤ R2
}

(2.35)

in R
4 which is generated by the holomorphic function Φ(w) := w2, w = u + iv.

Note that this graph can be extended to a graph over the whole plane R
2 but it is not a plane. We

show that (A1) and (A2) of our Theorem are satisfied, while (A3) holds with an angle ω = ω(R)
such that ω(R) → 0 for R → ∞. Therefore, we cannot apply Corollary 1.

Statement 1. The graph is a conformally parametrized minimal graph over BR. Furthermore,
it can be extended to a complete and non-linear minimal graph over R

2. In particular, it holds
H(X,Z) ≡ 0 for the mean curvature field.

Statement 2. The unit vectors

N1 :=
1√

1 + 4u2 + 4v2
(−2u, 2v, 1, 0), N2 :=

1√
1 + 4u2 + 4v2

(−2v,−2u, 0, 1) (2.36)

form an ON-normal section {N1, N2} over BR.

Let c(t) = (u(t), v(t)) ⊂ BR, t ∈ [0, T ], denote a continuously differentiable curve such that

(i) c(0) = (0, 0) and c(T ) ∈ ∂BR;

(ii) |ċ(t)|2 = 1 for all t ∈ [0, T ] where the dot denotes differentiation w.r.t. the variable t.

Denote the class of all these curves by D.

Statement 3. It holds
Area[Br(X0)] ≤ 192πr2 for large r > 0 (2.37)

for X0 = (0, . . . , 0).

Proof. We give a lower bound for the length L[c] of the image curve X ◦ c(t) for any c ∈ D on the
surface. Assume w.l.o.g. that |u(T )| ≥ |v(T )|, in particular |u(T )| ≥ R

2 . Define

t∗ := sup

{
t ∈ (0, T ) : |u(t)| ≤ R

4

}
. (2.38)

Note that T − t∗ ≥ R
4 because of the arc length parametrization. Then we estimate as follows:

L[c] =

T∫

0

√
1 + 4u2 + 4v2 dt ≥

T∫

0

√
1 + 4u2 dt ≥

T∫

t∗

√
1 + 4u2 dt

≥ 2

T∫

t∗

|u(t)| dt ≥ R

2
(T − t∗) ≥ R2

8
.

(2.39)

In the same way we treat the case |v(T )| ≥ |u(T )|.
Now if we define

r := min
c∈D

L[c], (2.40)

then the geodesic disc Br(X0), X0 := (0, . . . , 0), projects into BR.
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Using (2.39) we estimate the area of this geodesic disc:

Area[Br(X0)] ≤
∫∫

BR

(1 + 4u2 + 4v2) dudv =

2π∫

0

R∫

0

(1 + 4%2)% d%dϕ

= 2π

(
R2

2
+ R4

)
≤ 3πR4 ≤ 192πr2

(2.41)

for all R ≥ 1. Thus, Assumption (A2) is satisfied at least for large r > 0.

Statement 4. (A3) does not hold for R → ∞.

Proof. The condition that each normal vector N makes an angle of at least ω > 0 with the x1-axis
means |N · (1, 0, . . . , 0)t| ≤ cos ω < 1. But consider N1 from (2.36) for v = 0, then

|N1 · (1, 0, . . . , 0)t| =
2|u|√

1 + 4u2
−→ 1 for |u| → ∞ (2.42)

which proves the statement.

3 Proof of the main theorem

We set HΣ(X) ≡ H(X,NΣ).

At first it holds

κΣ,1(0, 0)
2 + κΣ,2(0, 0)

2 = 4HΣ(0, 0)2 − 2KΣ(0, 0) ≤ 4h2
0 + 2|KΣ(0, 0)|

=
1

r2

{
(2h0r)

2 + r2|KΣ(0, 0)|
} (3.1)

for Σ = 1, . . . , n − 2. The desired curvature bound follows from an estimate of

KΣ(0, 0) =
(Xuu · NΣ)(Xvv · NΣ) − (Xuv · NΣ)2

W 2

∣∣∣
(0,0)

. (3.2)

This means that (i) we have to find a lower bound for the area element, and (ii) we have to establish
an upper bound for the second derivatives of the immersion.

1. In the first part we will prove the estimate

W (w)

r2
≥ C1 for w ∈ B 1

2

(0, 0) (3.3)

with a constant C1 = C1(h0r, d0, sinω, n) > 0.

1.1 Due to the graph property (A1) it is not difficult to find a global ON-normal section
{N1, . . . , Nn−2} on the surface: Note that the vectors

e3 := (0, 0, 1, 0, . . . , 0), . . . , en := (0, . . . , 0, 1) (3.4)

are not in any tangent plane of the surface beause

1√
1 + |∇ϕ1|2

(−ϕ1,x,−ϕ1,y, 1, 0, . . . , 0),

...
...

...

1√
1 + |∇ϕn−2|2

(−ϕn−2,x,−ϕn−2,y, 0, . . . , 0, 1)

(3.5)
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are normal to the surface and their inner products with eΣ do not vanish. Therefore,
the projections

N∗
1 := e3 −

e3 · Xt
u

|Xu|2
Xu − e3 · Xt

v

|Xv|2
Xv ,

N∗
2 := e4 −

e4 · Xt
u

|Xu|2
Xu − e4 · Xt

v

|Xv|2
Xv , . . .

(3.6)

can be transformed into an ON-normal section {N1, . . . , Nn−2}. In the first part of the
proof we will work with this section.

1.2 Using conformal parameters (u, v) ∈ B it holds

4X = 2H(X,N1)WN1 + 2H(X,N2)WN2 + . . . + 2H(X,Nn−2)WNn−2 in B. (3.7)

From (1.20) we infer the estimate

|4X(u, v)| ≤ (n − 2)h0|∇X(u, v)|2 in B. (3.8)

The special structure of this differential inequality - the quadratic growth in the gradient
- enables us to apply the methods of [6].

We cite two important consequences of our assumptions.

1.3 Assumption (A2) yields: Let Γ(B) be the set of all continuous and piecewise differen-
tiable curves γ : [0, 1] → B, such that γ(0) = (0, 0) and γ(1) ∈ ∂B. Then (see [12])

inf
γ∈Γ(B)

1∫

0

∣∣∣∣
d

dt
X ◦ γ(t)

∣∣∣∣ dt ≥ r. (3.9)

1.4 Assumption (A3) gives
|∇x1|2 ≥ W sin2 ω in B. (3.10)

The proof can be taken from [11], Lemma 1.1 where the author makes essential use of
the conformal representation of the surface.

For the estimate of the area element we define several auxiliary functions and apply Heinz’
results on elliptic systems in R

2 from [6].

1.5 We denote by
F ∗(u, v) := (x1(u, v), x2(u, v)) : B −→ R

2 (3.11)

the plane mapping w.r.t. X = X(u, v). Then we have

(i) |4F ∗(w)| ≤ 4h0

sin2 ω
|∇F ∗(w)|2 for all w ∈ B

because we estimate

|4F ∗| ≤ |4X| ≤ (n − 2)h0|∇X|2 = 2(n − 2)h0W

≤ 4h0

sin2 ω
|∇x1|2 ≤ 4h0

sin2 ω
|∇F ∗|2 ;

(3.12)

(ii) |∇X(w)|2 ≤ 2

sin2 ω
|∇F ∗(w)|2 for all w ∈ B

which follows from

|∇X|2 = 2W ≤ 2

sin2 ω
|∇x1|2 ≤ 2

sin2 ω
|∇F ∗|2 . (3.13)
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1.6 Let w0 ∈ B and ν ∈ (0, 1) be given such that B2ν(w0) := {w ∈ B : |w−w0| < 2ν} ⊂ B.

We consider the mapping

Y (w) :=
1

r
{X(w0 + 2νw) − X(w0)}, w ∈ B, (3.14)

and the corresponding plane mapping

F (w) := (y1(w), y2(w)) : B → R
2 . (3.15)

The immersion Y = Y (w) satisfies

|Yu(w)|2 =
4ν2

r2
W (w0 + 2νw) = |Yv(w)|2, Yu(w) · Yv(w)t = 0 (3.16)

and due to (3.8)
|4Y (w)| ≤ (n − 2)(h0r)|∇Y (w)|2 in B. (3.17)

1.7 Together with 1.5 (ii) we infer

|4F (w)| ≤ |4Y (w)| ≤ (n − 2)(h0r)|∇Y (w)|2

=
8(n − 2)ν2(h0r)

r2
W (w0 + 2νw) =

4(n − 2)ν2(h0r)

r2
|∇X(w0 + 2νw)|2

≤ 8(n − 2)ν2(h0r)

r2 sin2 ω
|∇F ∗(w0 + 2νw)|2 =

8(n − 2)ν2(h0r)

r2 sin2 ω

r2

4ν2
|∇F (w)|2

≤ 2(n − 2)(h0r)

sin2 ω
|∇F (w)|2

(3.18)

for all w ∈ B. Furthermore, from (A1) we infer that F = F (u, v) is one-to-one and has
positive Jacobian JF (w) > 0 for all w ∈ B. Additionally, assumption (A2) gives

D[F ] ≤ D[Y ] ≤ 1

r2
D[X] ≤ 2d0 . (3.19)

with the Dirichlet energy

D[Z] :=

∫∫

B

{
|Zu|2 + |Zv |2

}
dudv (3.20)

We apply [6], Theorem 6, page 254 to obtain the following inner gradient estimate:
There is a constant c1 = c1(h0r, d0, sinω, n) ∈ (0,+∞) such that

|∇F (u, v)| ≤ c1(h0r, d0, sinω, n) for all (u, v) ∈ B 1

2

(0, 0). (3.21)

1.8 From 1.7, (3.18) we get

1

r2
W (w0 + 2νw) ≤ 1

4ν2 sin2 ω
c1(h0r, d0, sinω, n) =: c2(h0r, d0, sinω, ν, n) (3.22)

for all w ∈ B. In particular, we arrive at

1

r2
W (w) ≤ c2(h0r, d0, sinω, ν, n) for all w ∈ B 1

2

(0, 0). (3.23)

This estimate will be used in the second part of the proof.
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1.9 Because JF (w) > 0 and D[F ] ≤ 2d0 we can apply [6], Lemma 17, page 255: There exists
a constant c3 = c3(h0r, d0, sin ω, n) ∈ (0,+∞) such that

|∇F (w)|2 ≤ c3(h0r, d0, sinω, n)|∇F (0, 0)| 25 for all w ∈ B 1

2

(0, 0). (3.24)

It follows

4ν2

r2
W (w0 + 2νw) ≤ 1

sin2 ω
|∇F (w)|2 ≤ c3(h0r, d0, sinω, n)

sin2 ω
|∇F (0, 0)| 25

≤ c3(h0r, d0, sinω, n)

sin2 ω
|∇Y (0, 0)| 25

=
c3(h0r, d0, sinω, n)

sin2 ω

[
8ν2

r2
W (w0)

] 1

5

.

(3.25)

Rearranging yields an inequality of Harnack type

[
W (w0)

r2

] 1

5

≥ 4 · 8− 1

5 ν
8

5 sin2 ω

c3(h0r, d0, sinω)

W (w0 + 2νw)

r2
for all w ∈ B 1

2

(0, 0), (3.26)

or equivalently

c4(h0r, d0, sinω, ν, n)

[
W (w)

r2

]5

≤ W (w0)

r2
for all w ∈ Bν(w0) (3.27)

with the constant c4(h0r, d0, sinω, ν, n) := 27ν8 sin10 ω
c3(h0r,d0,sinω,n)5

∈ (0,+∞).

1.10 (A2) also ensures that we can estimate the area element in at least one point: There is
a point w∗ ∈ B1−ν0

(0, 0), ν0 := min(e−4πd0 , 1
2 ) such that

W (w∗)

r2
≥ 1

4(1 − e−4πd0)
=: c5(d0) > 0 . (3.28)

The constant ν0 comes from an application of the Courant-Lebesgue lemma.

1.11 We now establish an estimate of the area element:

Set ν := 1
2ν0 ∈ (0, 1

4 ] and choose an integer m = m(ν) ∈ N such that

1 − 2ν ≤ m

2
ν ≤ 1 − ν. (3.29)

For an arbitrary w0 ∈ B1−ν0
(0, 0) we define the points

wj :=
j

m
w∗ +

m − j

m
w0 for j = 0, . . . ,m (3.30)

with w∗ ∈ B1−ν0
(0, 0) from 1.10. We have

|wj | ≤
j

m
|w∗| + m − j

m
|w0| < 1 − ν0 (3.31)

and therefore B2ν(wj) = Bν0
(wj) ⊂ B . Furthermore, it holds

|wj+1 − wj | =
∣∣∣

1

m
w∗ − 1

m
w0

∣∣∣ ≤ 1

m
|w∗ − w0| ≤

2(1 − ν0)

m
≤ ν. (3.32)

This implies wj+1 ∈ Bν(wj) for j = 0, . . . ,m − 1.
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We apply the Harnack inequality from 1.9, (3.27) and obtain

W (w0)

r2
≥ c4

[
W (w1)

r2

]5

≥ c1+5
4

[
W (w2)

r2

]52

≥ . . .

. . . ≥ c1+5+52+...+5m−1

4

[
W (wm)

r2

]5m

.

(3.33)

Recall that wm = w∗, and 1.10, (3.28) gives

W (w0)

r2
≥ c1+5+52+...+5m−1

4 c5(d0)
5m

=: C1(h0r, d0, sinω, n) > 0 (3.34)

for all w0 ∈ B1−ν0
(0, 0). From ν0 ≤ 1

2 we conclude

W (w)

r2
≥ C1(h0r, d0, sinω, n) for all w ∈ B 1

2

(0, 0) . (3.35)

This completes the first part of the proof.

2. In the second part we estimate the second derivatives of X = X(u, v) using

4X = 2H(X,N1)WN1 + 2H(X,N2)WN2 + . . . + 2H(X,Nn−2)WNn−2 . (3.36)

In particular, we have to give Hölder estimates of the right hand side of this equation. We
will construct an adequate ON-normal section {N1, . . . , Nn−2} of the normal space.

2.1 Define the auxiliary function

Z(u, v) =
1

r
{X(u, v) − X(0, 0)} =

1

r
X(u, v), (u, v) ∈ B. (3.37)

Denoting by WZ the area element of Z, we have

|Zu|2 = WZ = |Zv|2 and Zu · Zt
v = 0 in B. (3.38)

It holds r2WZ = WX with WX := |Xu|2 = |Xv |2. We calculate

4Z =
2

r
H(X,N1)WXN1 + . . . +

2

r
H(X,Nn−2)WXNn−2

= 2rH(rZ,N1)WZN1 + . . . + 2rH(rZ,Nn−2)WZNn−2 .

(3.39)

2.2 Due to 1.8, (3.23) we have the estimate

|4Z(w)| ≤ 2(n − 2)(rh0)c2(h0r, d0, sinω, n) for all w ∈ B 1

2

(0, 0). (3.40)

Furthermore, we get

|Z(u, v)| = |Z(u, v) − Z(0, 0)| ≤ 2 max
w∈B 1

2

(0,0)
|∇Z(w)|

≤ 2
√

2c2(h0r, d0, sin ω) in B 1

2

(0, 0).

(3.41)

Potential theoretic estimates yield a constant c6(h0r, d0, sinω, n, α) such that

|Zui(w1) − Zui(w2)| ≤ c6(h0r, d0, sin ω, n, α)|w1 − w2|α

for w1, w2 ∈ B 1

4

(0, 0)
(3.42)
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for all α ∈ (0, 1), where u1 = u, u2 = v (see e.g. [14], chapter XII, §2). Therefore

|WZ(w1) − WZ(w2)| ≤ c7(h0r, d0, sinω, n, α)|w1 − w2|α

for all w1, w2 ∈ B 1

4

(0, 0)
(3.43)

with the constant c7 := 4
√

c2 c6.

2.3 Using the mean value theorem we have the Lipschitz estimate

|Z(w1) − Z(w2)| ≤ 4
√

2c2(h0r, d0, sin α) |w1 − w2| for w1, w2 ∈ B 1

2

(0, 0). (3.44)

In a certain neighborhood of the origin we construct an ON-normal section {N1, . . . , Nn−2}
whose Hölder norm can be estimated.

2.4 We choose unit vectors N 1, . . . , Nn−2 ∈ R
n such that

NΣ · Zuj (0, 0)t = 0, NΣ · N t
Ω = δΣΩ , j = 1, 2, Σ,Ω = 1, . . . , n − 2, (3.45)

and define vectors

N∗
Σ(w) := NΣ − NΣ · Zu(w)t

|Zu(w)|2 Zu(w) − NΣ · Zv(w)t

|Zv(w)|2 Zv(w) in B. (3.46)

2.5 These vectors belong to the normal space at Z(w) but they may not be linearly inde-
pendent. We now determine a ν1 = ν1(h0r, d0, sinω, n, α) > 0 such that

|N∗
Σ(w)|2 = 1 − [NΣ · Zu(w)t]2

WZ(w)
− [NΣ · Zv(w)t]2

WZ(w)
≥ 1

2
in Bν1

(0, 0). (3.47)

Namely, using (3.45) and 2.2, (3.42) we calculate

|NΣ · Zu`(w)t|2 = |NΣ · {Zu`(w) − Zu`(0, 0)}t |2 ≤ |Zu`(w) − Zu`(0, 0)|2

≤ c6(h0r, d0, sinω, n, α)2|w|2α ,
(3.48)

for ` = 1, 2, Σ = 1, . . . , n − 2, and from 1.11, (3.34) we know the lower bound

WZ(w) ≥ C1(h0r, d0, sinω, n) in B 1

2

(0, 0). (3.49)

Thus, (3.47) holds if ν2α
1 ≤ C1

4c6
.

2.6 We remark that the vectors N ∗
Σ(w), Σ = 1, . . . , n − 2, satisfy the the Hölder estimate

|N∗
Σ(w1) − N∗

Σ(w2)| ≤ c8(h0r, d0, sinω, n, α)|w1 − w2|α

for w1, w2 ∈ Bν1
(0, 0)

(3.50)

with a constant c8(h0r, d0, sinω, n, α). This estimate arises from the Hölder estimate for
Zuj

and the lower bound of WZ .

2.7 For Σ = 1, . . . , n − 2 we define

ÑΣ(w) :=
N∗

Σ(w)

|N∗
Σ(w)| in Bν1

(0, 0). (3.51)
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These vectors are well defined because it holds |N ∗
k (w)|2 ≥ 1

2 in Bν1
(0, 0), but they are

not orthogonal. Note that

N∗
Σ · N∗

Ω =
(NΣ · Zt

u)(NΩ · Zt
u)

WZ
+

(NΣ · Zt
v)(NΩ · Zt

v)

WZ
for Σ 6= Ω (3.52)

and therefore with (3.48)

|ÑΣ·Ñ t
Ω| =

|N∗
Σ · N∗

Ω|
|N∗

Σ||N∗
Ω|

≤ 2

C1

{
|NΣ·Zt

u||NΩ·Zt
u|+|NΣ·Zt

v ||NΩ·Zt
v |
}
≤ 4c2

6

C1
|w|2α . (3.53)

2.8 Thus we can find a ν2 = ν2(h0r, d0, sinω, n, α) with 0 < ν2 ≤ ν1 such that the following
vectors (write NΣ for NΣ(w) and ÑΩ for ÑΩ(w)) are well-defined in Bν2

(0, 0) :

N1 := Ñ1,

N2 :=
Ñ2 −

{
N1 · Ñ t

2

}
N1√

1 −
{
N1 · Ñ t

2

}2
,

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

Nn−2 :=
Ñn−2 −

{
N1 · Ñ t

n−2

}
N1 − . . . −

{
Nn−3 · Ñ t

n−2

}
Nn−3√

1 −
{
N1 · Ñ t

n−2

}2 − . . . −
{
Nn−3 · Ñ t

n−2

}2
.

(3.54)

Namely, we choose ν2 ∈ (0, 1) sufficiently small with the property that all denominators
in (3.54) are greater than or equal to 1

2 . These vectors form an ON-normal section in
Bν2

(0, 0). Furthermore, the Hölder estimates

|NΣ(w1) − NΣ(w2)| ≤ c9(h0r, d0, sinω, n, α)|w1 − w2|α

for w1, w2 ∈ Bν2
(0, 0)

(3.55)

for Σ = 1, . . . , n− 2 hold with a constant c9(h0r, d0, sinω, n, α) which can be calculated
from the Hölder estimates for the N ∗

Σ.

2.9 Now we make use of the differential system

4Z = 2rH(rZ,N1)WZN1 + 2rH(rZ,N2)WZN2 in Bν2
(0, 0) . (3.56)

We already established |4Z(w)| ≤ 2(n − 2)(h0r)c2 in Bν2
(0, 0) (see 2.2). Using (1.20)

we obtain the Hölder estimate

|H(rZ(w1), NΣ(w1)) − H(rZ(w2), NΣ(w2))|

≤ h1r
α|Z(w1) − Z(w2)|α + h2|NΣ(w1) − NΣ(w2)|

≤ h14
αrα(2c2)

α
2 |w1 − w2|α + h2c9|w1 − w2|α .

(3.57)

Thus we can find a constant c10 = c10(h0r, h1r
1+α, h2r, d0, sinω, n, α) such that

|4Z(w1) −4Z(w2)| ≤ c10|w1 − w2|α for w1, w2 ∈ Bν2
(0, 0). (3.58)

2.10 We set ν3 := 1
2ν2. From interior Schauder estimates we infer a constant C2 ∈ (0,+∞)

such that there hold

|Zuu(w)|, |Zuv(w)|, |Zvv(w)| ≤ C2(h0r, h1r
1+α, h2r, d0, sinω, n, α) in Bν3

(0, 0). (3.59)
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2.11 From the beginning of the proof we recall

κ1,Σ(0, 0)2 + κ2,Σ(0, 0)2 ≤ 1

r2

{
(h0r)

2 +
|Zuu(0, 0)||Zvv(0, 0)| + |Zuv(0, 0)|2

WZ(0, 0)2

}
. (3.60)

Setting Θ(h0r, h1r
1+α, h2r, d0, sinω, n, α) :=

2C2

2

C2

1

we arrive at

κ1,Σ(0, 0)2 + κ2,Σ(0, 0)2 ≤ 1

r2

{
(h0r)

2 + Θ
}
. (3.61)

This completes the proof. �

Remarks.

1. The graph property (A1) is essentially needed in 1.9 where we derived the Harnack-type
inequality for the area element. For certain immersions of prescribed mean curvature in R

3

one can establish a modulus of continuity for the spherical mapping which ensures the graph
property at least locally.

2. Assumption (A2) is needed e.g. in 1.9 for the gradient estimate in terms of |∇F (0, 0)|, and in
1.10 to ensure a point w∗ with the property W (w∗) ≥ r2c5. For certain stable or generalized
stable immersions in R

3 one can realize the constant d0 in (1.22) (see e.g. [4]).

3. Assumption (A3) is needed in 1.5. to establish the inequality

|4F ∗(w)| ≤ 4h0

sin2 ω
|∇F ∗(w)|2

for the plane mapping F ∗. For immersions in R
3, such an inequality follows already from the

conformal parametrization and (A3) is not needed.

4. The assumptions (1.20) on the mean curvature field are needed in 2.9 and 2.10 where we ap-
plied Schauder theory to establish upper bounds for the second derivatives of the immersion.
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