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1 Introduction and statement of results

During the last decades the rigorous mathematical investigation of homog-
enization has brought appreciable success in determining the macroscopic
behavior from the knowledge of the microstructure in many problems from
different sciences. Among them are problems from the linear and nonlinear
theory of elasticity, linear viscoelasticity and electrodynamics, hydrodynam-
ics and porous media, see for example [5], [7], [9], [10], [19], [23], [24], [25],
[26], [29], [30], [32]. The only rigorous results of homogenization related to
problems from the theory of plasticity or viscoplasticity known to me are [4]
and [20]. This is in contrast to the importance of homogenization in solid
mechanics. This circumstance motivated the further study of such problems.

In this work I deal with the homogenization of the initial boundary value
problem describing the deformation behavior of inelastic materials with a
periodic microstructure, in particular for plastic and viscoplastic materials.
The formulation of the problem is based on the assumption that only small
strains occur: Let Ω be an open bounded set, the set of material points
of the body, with C1-boundary ∂Ω. Te denotes a positive number (time of
existence) and for 0 ≤ t ≤ Te

Ωt = Ω × t.

Let S3 denote the set of symmetric 3×3-matrices, and let u(x, t) ∈ IR3 be the
unknown displacement of the material point x at time t , T (x, t) ∈ S3 is the
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unknown Cauchy stress tensor and z(x, t) ∈ IR3 denotes the unknown vector
of internal variables. The model equations of the problem (a microscopic
problem) are

−divxT (x, t) = b(x, t), (1)

T (x, t) = D[
x

η
](ε(∇xu(x, t)) − Bz(x, t)), (2)

∂

∂t
z(x, t) ∈ g(

x

η
,−∇zψ(ε(∇xu(x, t)), z(x, t))) (3)

= g(
x

η
, BT T (x, t) − Lz(x, t)),

which must hold for x ∈ Ω and t ∈ [0,∞). The initial value for z(x, t) is
taken in the form

z(x, 0) = z(0)(x,
x

η
), (4)

which must hold for x ∈ Ω. For simplicity we only consider the Dirichlet
boundary condition

u(x, t) = γ(x, t), (5)

which must be satisfied for (x, t) ∈ ∂Ω × [0,∞).
Here

ε(∇xu(x, t)) =
1

2
(∇xu(x, t) + (∇xu(x, t))T ) ∈ S3,

is the strain tensor, B : IRN → S3 is a linear mapping, which assigns to the
vector z(x, t) the plastic strain tensor εp(x, t) = Bz(x, t). For every y ∈ IR3

we denote by D[y] : S3 → S3 a linear, symmetric, positive definite mapping,
the elasticity tensor. It is assumed that the mapping y → D[y] is periodic
with a rectangular periodicity cell Y ⊂ IR3. b : Ω × [0,∞) → IR3 is the
volume force, z(0) : Ω → IRN is the initial value of the vector of internal
variables, periodic in y with the same periodicity cell Y . The positive semi-
definite quadratic form

ψ(y, ε, z) =
1

2
D[y](ε − Bz) · (ε − Bz) +

1

2
(Lz) · z (6)

represents the free energy (see Appendix [1]), and for all y ∈ IR3 the function

z → g(y, z) : IRN → 2IRN
is monotone satisfying 0 ∈ g(y, 0); y → g(y, z) is

periodic with the rectangular periodicity cell Y ⊂ IR3.
A function g : D(g) ⊆ IRN 7→ 2IRN

is called monotone if

(x1 − x2, y1 − y2) ≥ 0

for any yi ∈ g(zi), i = 1, 2. A monotone function is said to be maximal
monotone if it has no monotone extension. In other words, g is maximal
monotone if and only if the inequality

2



(z1 − z2, y1 − y2) ≥ 0 for all y1 ∈ g(z1)

implies y2 ∈ g(z2).
The number η > 0 is the scaling parameter of the microstructure.
The differential inclusion (3) with a given function g and the equation

(2) together define the material behavior. They are the constitutive re-
lations which model the inelastic respond of the body, whereas (1) is the
conservation law of linear momentum. (3) is called a constitutive relation
(or equation) of monotone type which was firstly introduced in [1]. The
class of constitutive relations of monotone type naturally generalizes the
class of constitutive relations of generalized standard materials defined by
B. Halphen and Nguyen Quoc Son, because in the last case the function g is
the gradient or subdifferential of a convex function. For examples of models
from engineering and for the study whether they are of monotone type we
refer the reader to [1]. It must be said here that the classical models like
the Prandtl-Reuss and the Norton-Hoff laws belong to the class of the con-
stitutive equations of monotone type. However, this class is still too small
to include all models used in engineering. Namely, all models describing
the deformation behavior of inelastic bodies with infinitesimal strains can
be written in the form (3), but often the function g is not monotone.2.

The existence and uniqueness theory for (1) -(3) is well understood under
additional assumptions: If the free energy is not only positive semi-definite
but positive definite, equivalently if the N ×N -matrix L is positive definite;
and additionally if the mapping z → g(y, z) is maximal monotone for all
y ∈ IR3, then the initial boundary value problem has a unique solution
denoted by (uη, Tη, zη). See [3] or [1]. We remark that in many cases the
free energy is not positive definite but positive semi-definite. For example
the Prandtl-Reuss and the Norton-Hoff laws are constitutive equations with
positive semi-definite free energy, whereas models with linear hardening have
positive definite free energy. For problems with semi-definite free energy to
my knowledge there are no general results till now. Yet, for some particular
models with special choice of the function g, the existence and uniqueness
theory is already available. See for example [16], [14], [13], [31], and the
literature cited there concerning this side of the investigation.

To study the asymptotic behavior of (uη, Tη, zη) as η tends to 0 we pos-
tulate that this function is close to the function (ûη, T̂η, ẑη) defined by

ûη(x, t) = u0(x, t) + ηu1(x,
x

η
, t),

2To my knowledge all models proposed in engineering sciences belong to the problems
of pre-monotone type. The problem (1) - (3) is of a pre-monotone type if the multifunction
g in (3) satisfies the inequality

∀ z ∈ D(g), ∀ z∗ ∈ g(z) z∗ · z ≥ 0.
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T̂η(x, t) = T0(x,
x

η
, t),

ẑη(x, t) = z0(x,
x

η
, t),

where (u0, u1, T0, z0) solves the homogenized initial boundary value problem
(see [2]):

−divxT∞(x, t) = b(x, t), (7)

T∞(x, t) =
1

|Y |

∫

Y
T0(x, y, t)dy, (8)

−divyT0(x, y, t) = 0, (9)

T0(x, y, t) = D[y](ε(∇yu1(x, y, t)) − Bz0(x, y, t) (10)

+ε(∇xu0(x, t))),

∂

∂t
z0(x, y, t) ∈ g(y, BT T0(x, y, t) − Lz0(x, y, t)), (11)

z0(x, y, 0) = z
(0)
0 (x, y), (12)

which must hold for (x, y, t) ∈ Ω × Y × [0,∞),

u0(x, t) = γ(x, t), (x, t) ∈ ∂Ω × [0,∞). (13)

Remark 1.1 For fixed x the equations (9)-(12) together with the period-
icity assumption on y 7→ (u1, T0)(x, y, t), which can be considered to be a
boundary condition, define an initial boundary problem, the cell problem,
in Y × [0,∞). u0, u1 can be interpreted as macro- and microdisplacement,
T0 as a microstress; the macrostress T∞ is obtained by averaging of T0 over
the representative volume element. In Theorem 2 [4] it was shown that un-
der some additional assumptions on the function g the homogenized initial
boundary value problem (7)-(13) has a unique solution

(u0, u1, T∞) ∈ L2(0, Te; H
1(Ω, IR3))× L2(ΩTe , H

1(Y, IR3))× L2(ΩTe ,S
3)

(T0, z0) ∈ L2((Ω × Y )Te
,S3) × C([0, Te];L

2(Ω × Y, IRN)).

The main goal of this work is to prove that the solution of the microscopic
problem (uη, Tη, zη) has as the asymptotics the function (ûη, T̂η, ẑη). The
justification uses methods from the established homogenization theory for
linear problems, but several difficulties arise not present in this theory.

Firstly, the existence and uniqueness theory for the homogenized ini-
tial boundary value problem as well as the justification procedure are more
complicated due to the impossibility to decouple the homogenized problem
(the first equation) and the so-called cell problem (the last three equations
with the periodicity assumption, which can be considered as a boundary
condition), unlike in linear elasticity, where the homogenized and the cell
problem can be decoupled. This difficulty was successfully solved in [4].
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Secondly, difficulties arise which are based on the fact that the solution
of the homogenized problem is of low regularity because of the nonlinearity
of the constitutive equation. One of the difficulties resulting from the low
regularity of the solution of the homogenized problem is that the mapping
x 7→ (T0, z0)(x, x/η, t) is not well defined because x 7→ (x, x/η) maps Ω onto
a three-dimensional subspace of a six-dimensional space Ω × IR3.

6

-
x ∈ IR3

y ∈ IR3

Ω

Y

Figure 1.

©©©©©©

©©©©©©¾ (x, x/η + ŷ)
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Indeed, x 7→ (x, x/η) maps Ω onto a three-dimensional subspace of Ω ×
IR3 (see Figure 1) and by virtue of Theorem 5.2.2 [12] the mapping x 7→
(T0, z0)(x, x/η, t) is not well defined. In other words, the function (T0, z0)(t)
∈ L2(Ω×Y,S3)×L2(Ω×Y, IRN) has no trace on a three-dimensional subspace
of a six-dimensional space.

In [4] this difficulty is overcome by imposing higher regularity on the
given data in such a way that the solution of homogenized problem be-
comes smoother and the existence of the trace for (T0(t), z0(t)) on the
three-dimensional subspace is an easy consequence of this obtained smooth-
ness. The higher regularity of the solution of homogenized problem plays
an essential role in this work also at another place: in order to apply
an energy method of Tartar3 in the justification the author needs that
∂tdivxT0(x, y, t) |y=x/η and ∂trotx∇yu1(x, y, t) |y=x/η belong to compact sub-

set of H−1
loc . This is provided by the smoothness of (T0, u1)(x, y, t). Unfor-

tunately, one can not expect that the solution is of this higher regularity
globally in time. Instead, after a certain finite time the solution is only of

3It is also called the oscillating test function method or the compensated compactness

method.

5



lower regularity. Therefore in [4] the justification of the homogenized prob-
lem is only possible locally in time. In contract, here we can justify the
homogenized problem globally in time without imposing additional smooth-
ness on the data.

To avoid the difficulty with the trace I follow the idea4, proposed in [2],
of introducing an additional fast variable y, which is plugged into equations
(1) - (5):

−divxT (x, y, t) = b(x, t), (14)

T (x, y, t) = D[
x

η
+ y](ε(▽xu(x, y, t)) − Bz(x, y, t)), (15)

∂

∂t
z(x, y, t) ∈ g(

x

η
+ y, BT T (x, y, t) − Lz(x, y, t)), (16)

z(x, y, 0) = z(0)(x,
x

η
+ y), (17)

which hold for (x, y) ∈ Ω× Y and t ∈ [0,∞), and of the Dirichlet boundary
condition

u(x, y, t) = γ(x, t), (18)

which holds for (x, y) ∈ ∂Ω×Y and t ∈ [0,∞). The function (uη, Tη, zη)(x, y, t)
is periodic in y.

We give the definition of a general solution of the initial boundary
value problem (14) - (18). η > 0 is fixed.

Definition 1.1 Let

(uη, Tη, zη) : Ω × IR3 × IR+ 7→ IR3 × S3 × IRN

be a function which satisfies the initial condition (17) for a. e. (x, y) ∈
Ω× IR3 and for which the function (x, y) 7→ (uη, Tη, zη)(x, y, t) is a solution
of (14)-(18) for almost all y ∈ IR3. Then (uη, Tη, zη) is called a family of
solutions of the initial boundary value problem (14)-(18) depending on the
fast variable y.

We assume now that for all 0 < η < η0 such a solution family (uη, Tη, zη)
of the initial boundary value problem depending on the fast variable y exists
and is close to

ûη(x, y, t) = u0(x, t) + ηu1(x,
x

η
+ y, t), (19)

T̂η(x, y, t) = T0(x,
x

η
+ y, t) (20)

ẑη(x, y, t) = z0(x,
x

η
+ y, t). (21)

4The idea of considering the family of shifted problems was also used in [17] to show
that for some linear and nonlinear problems the averaging over the shifting y eliminates
the rapid oscillations in the solution. For details we refer the reader to this work.
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The functions u0(x, t), u1(x, y, t), T0(x, y, t), z0(x, y, t), which are assumed to
be periodic with respect to the y-argument with a rectangular periodicity
cell Y ⊂ IR3, solve the problem (7)-(13).

Now we can formulate the main result of the work.

Theorem 1.1 Let Te > 0. Assume that the N × N -matrix L in (6) is

positive definite and that the mapping g : IR3 × IRN → 2IRN
satisfies the

following three conditions

• 0 ∈ g(y, 0),

• z 7→ g(y, z) is maximal monotone,

• the mapping y 7→ jλ(y, z) : IR3 → IRN, the inverse of z 7→ z+λg(y, z)5,
is measurable for all λ > 0.

Suppose that b ∈ W 2,1(0, Te; L
2(Ω, IR3)) and γ ∈ W 2,1(0, Te; H

1(Ω, IR3)).
Assume that z(0) ∈ L2(Ω× Y, IRN) and there exists ζ ∈ L2(Ω× Y, IRN) such
that

ζ(x, y) ∈ g(y, BT T (0)(x, y) − Lz(0)(x, y)), a.e. in Ω × Y,

where (u(0), T (0)) is a weak solution of the problem of linear elasticity theory
(25) - (27) to the data b̂ = b(0), ε̂p = Bz(0), γ̂ = γ(0).

Assume additionally that the inequality

‖gλ(·/η + ·, BT T (0) − Lz(0))‖Ω×Y ≤ C‖BT T (0) − Lz(0)‖Ω×Y (22)

with a constant C = C(λ) independent on η holds, where gλ is the Yosida
approximation of g and (u(0), T (0)) is the solution of (25) - (27) to the data
b̂ = b(0), γ̂ = γ(0) and ε̂p = Bz(0).

Then the solution (uη, Tη, zη) of the microscopic problem (14) - (18) with
parameter y satisfies for all 0 ≤ t ≤ Te

lim
η→0

(‖u0(t) − uη(t)‖Ω×Y + ‖T̂η(t) − Tη(t)‖Ω×Y + ‖ẑη(t) − zη(t)‖Ω×Y ) = 0.(23)

Remark 1.2 For the future use we need one estimate obtained in Theorem
2 [4] for the time derivative of z0. Define a function h = −(BTDQB +
L)z0 + BT σ0, where the operator Q is a projector in L2(Ω × Y,S3), and
the function σ0 solves an appropriate linear elasticity problem. Then the
function h satisfies the inequality

||
∂

∂t
h(t)||Ω×Y ≤ |Ch(0)| + ||BT σ0,t(0)||Ω×Y +

∫ t

0
||BT σ0,tt(s)||Ω×Y ds, (24)

with |Cζ| = inf{‖(BTDQB + L)ξ‖Ω×Y | ξ(x, y) ∈ g(y, ζ(x, y)) a.e.}.

5The mapping z 7→ jλ(y, z) is single valued and well-defined, since z 7→ g(y, z) is
assumed to be maximal monotone.
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Notations. Banach spaces Wm,p(Ω, IRN) are endowed with the norm
‖ · ‖m,p,Ω. Hm(Ω, IRN) = Wm,2(Ω, IRN) are Hilbert spaces with the usual
scalar product on them and the norm ‖ · ‖m,Ω, ‖ · ‖Ω = ‖ · ‖2,Ω.

Define the space

W (Y ) = {v ∈ H1(Y ) |
1

|Y |

∫

Y
v(y)dy = 0},

which becomes a Banach space due to the Poincaré-Wirtinger inequality
(Proposition 3.38 [18]) for the norm ‖u‖W (Y ) = ‖∇u‖Y .

The symbol Dη denotes the mapping D[x/η + y], i.e. Dη := D[x/η + y].

2 Justification of the homogenized model

2.1 Preliminaries

In this section we deal with a boundary value problem, a linear problem of
elasticity theory with a parameter y, formed by the equations:

−divT (x, y) = b̂(x), (25)

T (x, y) = D[
x

η
+ y](ε(∇xu(x, y)) − ε̂p(x, y)), (26)

u(x, y) = γ̂(x), x ∈ ∂Ω. (27)

The solution of this problem is understood in the following sense: a function
(u, T ) ∈ L2(Y, H1(Ω, IR3)) × L2(Ω×Y,S3) is a solution of (25) - (27), if (26)
is satisfied, and if for b̂ ∈ L2(Ω, IR3), γ̂ ∈ H1(Ω, IR3), ε̂p ∈ L2(Ω×Y,S3) and
for a.e. y ∈ Y the following identity

(D[
·

η
+ y](ε(∇xu(·, y)) − ε̂p(·, y)), ε(∇xv(·)))Ω = (b̂, v)Ω. (28)

holds for all v ∈ H1
0 (Ω, IR3), and if u can be represented in the form u = γ+w

with w ∈ L2(Y, H1
0 (Ω, IR3)).

By the well known theory for elliptic boundary value problems one gets
immediately that to b̂ ∈ L2(Ω, IR3), γ̂ ∈ H1(Ω, IR3), ε̂p ∈ L2(Ω × Y,S3) and
for a fixed η > 0 there is a unique weak solution (u, T ) satisfying

‖u‖L2(Y,H1(Ω,IR3)) + ‖T‖Ω×Y ≤ C(‖b̂‖Ω + ‖ε̂p‖Ω×Y + ‖γ̂‖1,Ω), (29)

with a constant C independent of η.
In the following we need a special projection operator.

Definition 2.1 For every ε̂p ∈ L2(Ω × Y,S3) a linear operator P : L2(Ω ×
Y,S3) 7→ L2(Ω × Y,S3) can be defined by

Pη ε̂p = ε(∇xu),
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where (u, T ) is a unique solution of (25) - (27) to b̂ = γ̂ = 0. Furthermore
we define the linear operator Qη = I − Pη. Here I is identity operator.

It is immediate seen from the estimate (29) that the thus defined operator
Pη is uniformly bounded. Other properties of Pη and Qη are delivered by

Lemma 2.1 (i) The operators Pη and Qη are orthogonal projectors with
respect to the scalar product [ξ, ζ]Ω×Y on L2(Ω × Y,S3)
(ii) The operator BTDηQηB : L2(Ω×Y, IRN) 7→ L2(Ω×Y, IRN) is selfajoint
and non-negative with respect to the scalar product (ξ, ζ)Ω×Y . Moreover,
there exists a constant C > 0 such that

‖BTDηQηBξ‖Ω×Y ≤ C‖ξ‖Ω×Y , (30)

for all η > 0.

Proof of Lemma 2.1. Lemma 2.5 in [3].

Since L is positive definite, it follows from Lemma 2.1 that the operator
L+BTDηQηB is uniformly positive definite and bounded. This implies that

〈ξ, ζ〉Ω×Y,η = ((L + BTDηQηB)ξ, ζ)Ω×Y

defines a scalar product on L2(Ω × Y, IRN). Furthermore, the associated

norm ||ξ||Ω×Y,η = 〈ξ, ξ〉
1/2
Ω×Y,η is equivalent to the norm || · ||Ω×Y .

2.2 Reduction to an evolution equation

The preparations made in the previous section enable us to reduce the initial-
boundary value problem (14)-(18) to an evolution equation with a monotone
operator.

Note that (15) yields

BT Tη − Lzη = BTDη(ε(∇xuη) − Bzη) − Lzη. (31)

Let (uη, Tη, zη) be a solution of the initial-boundary value problem (14)-
(18). Now we fix t. If z(t) is known, then (14), (15), (18) is a boundary
value problem for the components uη(t), Tη(t) of the solution, the problem
from linear elasticity theory with a parameter y. Due to linearity of such
problems these functions are obtained in the form

(uη(t), Tη(t)) = (ũη(t), T̃η(t)) + (vη(t), ση(t)),

with a solution (vη(t), ση(t)) of the Dirichlet boundary value problem (25) -

(27) to the data b̂ = b(t), γ̂ = γ(t), ε̂p = 0, and with a solution (ũη(t), T̃η(t))
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of the problem (25) - (27) to the data b̂ = γ̂ = 0, ε̂p = Bzη(t). Thus one
obtains

ε((∇xuη)(t)) − Bzη(t) = (Pη − I)Bzη(t) + ε((∇xvη)(t)).

We insert this equation into (31) and obtain that (16) can be rewritten in
the following form

∂

∂t
zη(t) ∈ Gη(−(BTDηQηB + L)zη(t) + BT ση(t)), (32)

with the mapping Gη : L2(Ω × Y, IRN) 7→ 2L2(Ω×Y,IRN) defined by

Gη(ξ) = {ζ ∈ L2(Ω × Y, IRN)| ζ(x, y) ∈ g(x/η + y, ξ(x, y)) a.e.}.

The function ση can be determined from the boundary value problem (25)
- (27) to the given data b, γ, ε̂p = 0 and can be considered as known.

The evolution equation (32) for zη can be rewritten as a non-autonomous
evolution equation in L2(Ω × Y, IRN)

∂

∂t
zη(t) + Aη(t)zη(t) ∋ 0, (33)

with the operator

Aη(t)z(t) = −Gη(−(BTDηQηB + L)zη(t) + BT ση(t)).

It turns out that the operator Aη(t) is maximal monotone as the next lemma
shows.

Lemma 2.2 Operator Aη(t) is maximal monotone on L2(Ω × Y, IRN) with
respect to the scalar product 〈ξ, ζ〉Ω×Y,η.

Proof. Set for simplicity Mη = BTDηQηB + L.
Monotonicity of Aη(t) for all t and η with respect to the scalar product

〈ξ, ζ〉Ω×Y,η is shown in Lemma [3].

Now we prove that the mapping Gη : L2(Ω × Y, IRN) 7→ 2L2(Ω×Y,IRN),

defined through the maximal monotone function g : Y × IRN 7→ 2IRN
with

g(y, 0) ∋ 0, is maximal monotone with respect to the scalar product (ξ, ζ)Ω×Y .
It is well known that Gη is maximal monotone if and only if I + Gη

is surjective. To show the surjectivity, we must prove that to every q ∈
L2(Ω × Y, IRN) the equation

q ∈ z + Gηz (34)

has a solution z ∈ L2(Ω × Y, IRN). Since g is maximal monotone, for a.e.

(x, y) the mapping (I+g(x/η+y, ·)) : IRN 7→ 2IRN
has an inverse j(x/η+y, ·) :

IRN 7→ IRN, which satisfies for a.e. (x, y) the inequality |j(x/η + y, ξ) −
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j(x/η + y, ζ)| ≤ |ξ − ζ| for all ξ, ζ ∈ IRN. This Lipschitz continuity together
with the measurability of j with respect to the first argument yield that the
function j(x/η + y, q) is of Caratheodory type. Thus one can prove that
the mapping (x, y) 7→ j(x/η + y, q(x, y)) is measurable. From g(·, 0) ∋ 0 it
follows that j(x/η + y, 0) = 0, whence

|j(x/η + y, ξ)| = |j(x/η + y, ξ) − j(x/η + y, 0)| ≤ |ξ|. (35)

For q ∈ L2(Ω× Y, IRN) we define z(x, y) = j(x/η + y, q(x, y)) for all (x, y) ∈
Ω × Y . Obviously, such defined z solves (34) if z ∈ L2(Ω × Y, IRN). Yet,
(35) yields that indeed z ∈ L2(Ω × Y, IRN) and therefore we conclude that
I + Gη is surjective. Hence Gη is maximal monotone.

With this result it is easy to prove that Aη(t) is maximal monotone for
all t. In other words we have to show that for all [z, ξ] ∈ L2(Ω × Y, IRN)×
L2(Ω × Y, IRN) and all [ẑ, ξ̂] ∈ GrAη(t) such that

〈z − ẑ, ξ − ξ̂〉Ω×Y,η ≥ 0,

it follows that [z, ξ] ∈ GrAη(t).
Indeed,

〈z − ẑ, ξ − ξ̂〉Ω×Y,η = ((−Mηz + BT σ) − (−Mη ẑ + BT σ), (−ξ) − (−ξ̂))Ω×Y ≥ 0.

Since Gη is maximal monotone [−Mηz + BT σ,−ξ] ∈ GrGη, which means
that [z, ξ] ∈ GrAη(t).

2.3 Start of the justification

Now we can prove the main result of this work, Theorem 1.1.

Proof of Theorem 1.1. The approximate solution (u0, T̂η, ẑη)(x, y, t),
determined from the homogenized problem, solves the same initial-boundary
value problem as the exact solution, however with a special right hand side.
Observing (7) - (13) we get by a simple computation that (u0, T̂η, ẑη) satisfies
the equations

−divxT̂η = −divxT0(x, ξ, t)|ξ= x
η
+y (36)

T̂η = D[
x

η
+ y](ε(∇xu0) − Bẑη + ε(∇ξu1(x, ξ, t))|ξ= x

η
+y) (37)

∂

∂t
ẑη ∈ g(

x

η
+ y, BT T̂η − Lẑη) (38)

zη(x, y, 0) = z
(0)
0 (x,

x

η
+ y), (x, y) ∈ Ω × Y (39)

u0(x, t) = γ(x, t) (x, t) ∈ ∂Ω × [0,∞). (40)

11



Since these equations have the same structure as the equations of the mi-
croscopic problem with a parameter y, we can again employ the procedure
from the last section and obtain that if (v̂η(t), σ̂η(t)) is the solution of the
linear boundary value problem (25) - (27) to the data

b̂(x) = −divxT0(x, ξ, t)|ξ=x/η+y (41)

ε̂p(x) = −ε(∇ξu1(x, ξ, t))|ξ=x/η+y (42)

γ̂(x) = γ(x, t), (43)

then the special microscopic problem is equivalent to a non-autonomous
evolution equation

∂

∂t
ẑη(t) + Âη(t)ẑη(t) ∋ 0, (44)

where

Âη(t)v = −g(
x

η
+ y,−(BTDηQηB + L)v + BT σ̂η).

It turns out that the operator Âη(t) is maximal monotone, namely

Lemma 2.3 The operator Âη(t) is maximal monotone on L2(Ω × Y, IRN)
with respect to the scalar product 〈ξ, ξ〉Ω×Y,η.

Proof of Lemma 2.3. The proof is the same as for Lemma 2.2 for Aη(t).

We are going to use the results of Lemma 2.2, Lemma 2.3 and a special
distance between two maximal monotone operators to estimate the differ-
ence of solutions of the evolution inclusions (33), (44) by the norm of a
function, which solves a linear elasticity problem to special data. This is a
crucial step in the justification of the homogenized model because we are
able to employ classical results from homogenization theory for linear prob-
lems. In the next section this estimate is given.

2.4 Main estimate

We define a special distance between two maximal monotone operators due
to [36]. With its help we obtain an important estimate in the justification
procedure of the homogenized model.

Let H be a Hilbert space.

Definition 2.2 The distance between two maximal monotone operators on
H is defined as

dis(A1, A2) = sup{
(y1 − y2, x2 − x1)

‖y1‖ + ‖y2‖ + 1
| xi ∈ D(Ai), yi ∈ Aixi, i = 1, 2}

with the value possibly equal to +∞.

12



The distance dis is not a metric because in a general case the triangle in-
equality is not fulfilled.

Concerning properties and application to the study of evolution equa-
tions in a Hilbert space the reader is referred to the original work [36].

The following lemma plays an important role in the proof of the con-
vergence result, since it reduces the convergence problem for the nonlinear
evolution equation to a convergence problem for the linear system of elas-
ticity.

Lemma 2.4 For the functions ẑη(t) and zη(t) the following estimate with
a constant C independent of η holds

‖ẑη(t) − zη(t)‖
2
Ω×Y ≤ C

∫ t

0
‖σ̂η(s) − ση(s)‖Ω×Y ds. (45)

Proof. We use the operator distance introduced in Definition 2.2:

dis(Âη(t), Aη(t)) = sup
z1∈D(Âη), z2∈D(Aη)

y1∈Âηz1, y2∈Aηz2

〈y1 − y2, z2 − z1〉Ω×Y,η

1 + ‖y1‖Ω×Y,η + ‖y2‖Ω×Y,η
,

which is well-defined, since Âη and Aη are maximal monotone operators.
We get

〈y1 − y2, z2 − z1〉Ω×Y,η = (Mη(y1 − y2), z2 − z1)Ω×Y =

−(−y2 + y1, (−Mηz2 + BT ση(t)) − (−Mηz1 + BT σ̂η(t)))Ω×Y

−(y2 − y1, B
T ση(t) − BT σ̂η(t))Ω×Y ≤

−(y2 − y1, B
T (ση(t) − σ̂η(t)))Ω×Y ,

since the inclusion −y2+y1 ∈ Gη(−Mηz2+BT ση(t))−Gη(−Mηz1+BT σ̂η(t))
holds and the operator Gη is monotone.

Then we have

dis(Âη(t), Aη(t)) ≤ sup
z1∈D(Âη), z2∈D(Aη)

y1∈Âηz1, y2∈Aηz2

|(y2 − y1, B
T (ση(t) − σ̂η(t))Ω×Y |

1 + ‖y1‖Ω×Y,η + ‖y2‖Ω×Y,η

≤ sup
z1∈D(Âη), z2∈D(Aη)

y1∈Âηz1, y2∈Aηz2

(‖y2‖Ω×Y,η + ‖y1‖Ω×Y,η)‖B
T (ση(t) − σ̂η(t))‖Ω×Y

1 + ‖y1‖Ω×Y,η + ‖y2‖Ω×Y,η

≤ C1‖B
T (ση(t) − σ̂η(t))‖Ω×Y ≤ C2‖ση(t) − σ̂η(t)‖Ω×Y .
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Now we use the last inequality to obtain the main estimate. If ẑη(t) and zη(t)
are, respectively, absolutely continuous solutions of the monotone evolution
equations (33) and (44) with the same initial conditions, then one easily gets

d

dt
‖ẑη(t) − zη(t)‖

2
Ω×Y,η = 2〈ẑη;t(t) − zη;t(t), ẑη(t) − zη(t)〉Ω×Y,η

= 2
〈ẑη;t(t) − zη;t(t), ẑη(t) − zη(t)〉Ω×Y,η

1 + ‖ẑη;t(t)‖Ω×Y,η + ‖zη;t(t)‖Ω×Y,η
(1 + ‖ẑη;t(t)‖Ω×Y,η + ‖zη;t(t)‖Ω×Y,η)

≤ dis(Âη(t), Aη(t))(1 + ‖ẑη;t(t)‖Ω×Y,η + ‖zη;t(t)‖Ω×Y,η)

≤ C2‖σ̄η(t)‖Ω×Y (1 + ‖ẑη;t(t)‖Ω×Y + ‖zη;t(t)‖Ω×Y ),

since −ẑη;t(t) ∈ Âη ẑη(t), −zη;t(t) ∈ Aηzη(t) a. e.. Here σ̄η(t) = ση(t)− σ̂η(t).
As a result of all calculations:

‖ẑη(Te) − zη(Te)‖
2
Ω×Y ≤ 2C2

∫ Te

0
‖σ̄η(t)‖Ω×Y (1 + ‖ẑη;t(t)‖Ω×Y + ‖zη;t(t)‖Ω×Y )dt.

We have to show that ‖ẑη;t(t)‖Ω×Y and ‖zη;t(t)‖Ω×Y are uniformly bounded
with respect to η.

We can transform the equation (33) to an autonomous equation by in-
serting

hη = −(BTDηQηB + L)zη + BT ση

into (32). This autonomous equation is

d

dt
hη(t) + Cηh(t) ∋ BT ση,t(t)

with the operator Cη : L2(Ω × Y, IRN) →2L2(Ω×Y,IRN) defined by Cη =
(BTDηQηB + L)Gη.

The estimate (81) then implies

||
∂

∂t
hη(t)||Ω×Y ≤ ||Gλh(0)||Ω×Y + ||BT ση,t(0)||Ω×Y +

∫ t

0
||BT ση,tt(s)||Ω×Y ds.

From the estimate (29) with ε̂p = 0 we conclude that the L2(Ω × Y )-norm
of ση is uniformly bounded with respect to η. By virtue of the assumptions
made on b, γ, we can differentiate the equations (25) - (27) with respect to t
and apply the existence theory for elliptic problems to the obtained system.
It results in the inequality

‖vη,t‖L2(Y,H1(Ω,IR3)) + ‖ση,t‖Ω×Y ≤ C(‖b̂t‖Ω + ‖γ̂t‖1,Ω), (46)
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with a constant C independent of η. (46) yields that the L2(Ω × Y )-norm
of ση,t is uniformly bounded with respect to η. Similarly we conclude the
same result for ση,tt. From (22) and the inequality

‖BT T (0) − Lz(0)‖Ω×Y ≤ C‖z(0)‖Ω×Y ≤ C1,

which holds with the constants C and C1 independent of η, it follows that
||Gλh(0)||Ω×Y is also uniformly bounded with respect to η (Gλ is Yosida ap-
proximation of G). These imply that the function zη,t is uniformly bounded6.

We notice that ‖ẑη,t‖Ω×Y = ‖z0,t‖Ω×Y , where z0(t) is a solution of the
homogenized problem. Thus the required result is obtained from the esti-
mate (24).

This completes the proof of Lemma.

Remark 2.1 Using a special distance between two maximal monotone op-
erators the difference of solutions of the evolution inclusions can be estimated
by the norm a function which solves a linear elasticity problem to a special
data. It is a crucial step in the justification of the homogenized model.
Instead of treating to evolution equations (inclusions) with in general non-
linear multivalued operators the problem is reduced to a linear elasticity
case. It enables us with possibility to use standard methods which perfectly
work for linear problems.

2.5 End of the justification

Thus, we can estimate ẑη − zη by the difference ση − σ̂η. In the next section
we present an estimate for the function ση − σ̂η. Both, ση and σ̂η solve the
same boundary value problem, the problem of linear elasticity theory, but to
different data. Here we only state the estimate and refer to the next section
for the proof.

Lemma 2.5 Let (vη(t), ση(t)) be a solution of the boundary value problem
(25) - (27) to the data

b̂ = b(t), ε̂p = 0, γ̂ = γ(t),

and let (v̂η(t), σ̂η(t)) be a solution of the problem (25) - (27) to the data

b̂ = −divxT0(x,
x

η
+ y, t), ε̂p = −ε(∇yu1(x,

x

η
+ y, t)), γ̂ = γ(t).

Then for all t ∈ [0, Te]

‖vη(t) − v̂η(t)‖Ω×Y + ‖ση(t) − σ̂η(t)‖Ω×Y → 0, as η → 0. (47)

6Remember also that the operator (BTDηQηB + L) is uniformly bounded and invert-
ible.
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Moreover, there exists a constant C independent of η such that for all t ∈
[0, Te] and all η > 0

‖ση(t) − σ̂η(t)‖Ω×Y ≤ C. (48)

With this lemma the proof of Theorem 1.1 can be finished. Lemma 2.5 and
the inequality (45) yield together with Lebesgue’s convergence theorem that
for all t ∈ [0, Te]

lim
η→0

‖ẑη(t) − zη(t)‖Ω×Y = 0. (49)

We observe also that the equations (14), (15), (18) form the boundary value
problem for (uη, Tη) and the equations (36), (37), (40) form a boundary
value problem for (u0, T̂η). The Definition 2.1 of Pη and the definitions of
(v̂η(t), σ̂η(t)) and (vη(t), ση(t)) thus yield the decomposition

uη = wη + vη, Tη = D[
·

η
+ y](Pη − I)Bzη + ση,

u0 = ŵη + v̂η, T̂η = D[
·

η
+ y](Pη − I)Bẑη + σ̂η,

where wη(t), ŵη(t) ∈ L2(Y, H1
0 (Ω, IR3)) are the unique functions from Defini-

tion 2.1 which satisfy ε(∇xwη(t)) = PηBzη(t) and ε(∇xŵη(t)) = PηBẑη(t).
We thus have

ε(∇x(wη − ŵη)) = PηB(zη − ẑη), (50)

Tη − T̂η = −D[
·

η
+ y]QηB(zη − ẑη) + (ση − σ̂η), (51)

u0 − uη = (wη − ŵη) + (vη − v̂η). (52)

From Lemma 2.5, (49), (51) and the uniform boundedness of DηQηB we
infer that

lim
η→0

‖T̂η(t) − Tη(t)‖Ω×Y = 0.

Since for a.e. y ∈ Y the function (wη − ŵη) belongs to H1
0 (Ω, IR3), we

conclude from the first Korn’s inequality for a. e. y ‖(wη − ŵη)(t, y)‖1,Ω ≤
C‖ε(∇x(wη − ŵη)(t, y))‖Ω and from (49), (50) that ‖wη(t)− ŵη(t)‖Ω×Y → 0
as η → 0; from Lemma 2.5 and (52) we thus conclude

lim
η→0

‖u0(t) − uη(t)‖Ω×Y = 0.

for all t ∈ [0, Te]. These two relations and (49) together yield

lim
η→0

(‖u0(t) − uη(t)‖Ω×Y + ‖T̂η(t) − Tη(t)‖Ω×Y + ‖ẑη(t) − zη(t)‖Ω×Y ) = 0

. This completes the proof of Theorem 1.1.

To finish the proof of Theorem 1.1 it thus remains to verify Lemma 2.5.
The next section is devoted to the proof of this lemma.
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3 Convergence results based on the two-scale con-

vergence method

In this section we present the convergence result stated in Lemma 2.5. To
do this an auxiliary function is taken into consideration. We define it to be
a solution of a Dirichlet boundary value problem of linear elasticity theory
to special data. This data is chosen to be smooth enough such that the
two-scale convergence method can be applied. The direct application of the
method seems not possible to me because of the low regularity of the func-
tions T0(x, y, t) and u1(x, y, t), the solutions of the homogenized problem,
which are now considered as the data to an elasticity problem.

Now we give the definition of the so-called two-scale converged sequence.
We assume that |Y | = 1.

Definition 3.1 A sequence of functions uη in L2(Ω, IR3) is said to two-
scale converge to a limit u0(x, y) belonging to L2(Ω× Y, IR3) if, for any test
function ψ(x, y) in L2(Ω, C(Y, IR3)), one has

lim
η→0

∫

Ω
uη(x)ψ(x,

x

η
)dx =

∫

Ω

∫

Y
u0(x, y)ψ(x, y)dxdy. (53)

Remark 3.1 This definition makes sense for every bounded sequence uη

in L2(Ω, IR3). As it is shown in Theorem 1.2 [6] for such a sequence uη

there exists a limit u0 ∈ L2(Ω × Y, IR3) such that, with possible expanse of
extracting a subsequence, uη(x) two-scale converges to u0(x, y).

Remark 3.2 The two-scale convergence method [28], [6], which is an alter-
native to the compensated compactness method [27], applied for partial dif-
ferential equations with periodically oscillating coefficients. We only briefly
recall the definition of a two-scale converging sequence and the main prop-
erties, which we use in this work. For a deeper understanding of the subject
the reader is referred to the work [6].

Let the boundary value problem be given:

−divxT (x, y) = b̂(x), (54)

T (x, y) = D[
x

η
+ y](ε(∇xu(x, y)) − ε̂p(x, y)), (55)

u(x, y) = γ̂(x), x ∈ ∂Ω, (56)

with given functions b̂ : Ω 7→ IR3, γ̂ : ∂Ω 7→ IR3, ε̂p : Ω 7→ S3, a given
number η > 0 and fixed y ∈ Y . This is the linear problem of elasticity with
a parameter y.

17



We recall that for a.e. y ∈ Y the function (vη(t), ση(t)) solves the bound-
ary value problem (54) - (56) to the data

b̂ = b(t), ε̂p = 0, γ̂ = γ(t),

and (v̂η(t), σ̂η(t)) solves the problem (54) - (56) to

b̂ = −divxT0(x,
x

η
+ y, t), ε̂p = −ε(∇yu1(x,

x

η
+ y, t)), γ̂ = γ(t).

My goal now is to show that for almost all y ∈ Y and all t ∈ [0, Te]

lim
η→0

‖vη(·, y, t) − v̂η(·, y, t)‖Ω = 0,

lim
η→0

‖ση(·, y, t) − σ̂η(·, y, t)‖Ω = 0.

These relations follow from two auxiliary lemmas proved in the next section.

3.1 Two auxiliary lemmas

Lemma 3.1 Let the function τ ∈ L2(Ω×Y,S3) have the property divyτ(x, y) =
0, and let the family {τη,n(x) = τn(x, x/η)}η,n with τn ∈ L2(Ω, C(Y,S3)) be
such that the sequence τn(x, y) converges strongly to τ(x, y) in L2(Ω×Y,S3).
Denote

τn,∞(x) :=
1

|Y |

∫

Y
τn(x, y)dy and τ∞(x) =

1

|Y |

∫

Y
τ(x, y)dy.

Then τn,∞(x) converges strongly to τ∞(x) in L2(Ω,S3).
Let (vη,n, ση,n) ∈ H1(Ω, IR3) × L2(Ω,S3) be the weak solution of the

boundary value problem formed by the equations

−div ση,n = b + divxτη,n, (57)

ση,n = D[
·

η
] ε(∇xvη,n), (58)

which must hold in Ω, and by the boundary condition

vη,n(x) = 0, x ∈ ∂Ω. (59)

If additionally the function τ∞ satisfies

−divτ∞ = b

for b ∈ L2(Ω, IR3), then

lim
n→∞

lim
η→0

(‖vη,n‖Ω + ‖ση,n‖Ω) = 0.
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Proof of Lemma 3.1. Firstly we observe that the symmetry of the matrices
ση,n, τη,n and the equations (57) - (59) yield

c‖ση,n‖
2
Ω ≤

∫

Ω
D−1[

x

η
] ση,n(x) · ση,n(x)dx =

∫

Ω
ε(∇xvη,n(x)) · ση,n(x)dx

=

∫

Ω
vη,n(x) · b(x) + divxτn(x,

x

η
) · vη,n(x)dx (60)

= (vη,n, b)Ω − (τn(·,
·

η
),∇xvη,n)Ω.

Now we notice that for a fixed n the function τn(x, x/η) can be consid-
ered as a test function in the definition of the two-scale convergence (see
Definition 3.1), and by properties of such functions

‖ψ(·,
·

η
)‖Ω ≤ ‖ψ(·, ·)‖L2(Ω,C(Y,IR3)) ≡ (

∫

Ω
sup
y∈Y

|ψ(x, y)|2dx)1/2 (61)

we can easily conclude using the standard estimates for elliptic boundary
value problems that the sequence vη,n is uniformly bounded in H1

0 (Ω, IR3)
for a fixed n. Then by virtue of the property (i) of Proposition 1.14 in [6]
one gets the following result

(vη,n, b)Ω − (τn(·,
·

η
),∇xvη,n)Ω → (v0,n, b)Ω −

∫

Ω×Y
τn(x, y) · ∇xv0,n(x)dxdy

−

∫

Ω×Y
τn(x, y) · ∇yw1,n(x, y)dxdy = (v0,n, b)Ω − (τn,∞,∇xv0,n)Ω (62)

−

∫

Ω×Y
τn(x, y) · ∇yw1,n(x, y)dydx,

where the function (v0,n, w1,n) ∈ H1
0 (Ω, IR3)×L2(Ω, W (Y, IR3)) solves the

problem written in the variational form

∫

Y

∫

Ω
D[y]ε(∇v0,n(x) + ∇yw1,n(x, y))ε(∇ψ(x) + ∇yψ1(x, y))dxdy

= (b + divxτn,∞, ψ)Ω (63)

with a function (ψ, ψ1) ∈ H1
0 (Ω, IR3)×L2(Ω, W (Y, IR3)). Here v0,n(x) is a

weak limit of vη,n(x) in H1
0 (Ω, IR3). The equation (63) is obtained in the

same way as (91) in the proof of Theorem 4.2.
The existence and uniqueness of the solution for this problem is obtained

in Theorem 4.2. If in (63) we choose ψ = v0,n and ψ1 = w1,n then we obtain
easily the following estimate for (v0,n(x), w1,n(x, y)) with constants C, C1

independent of n

‖v0,n‖
2
1,Ω + ‖w1,n‖

2
L2(Ω,W (Y,IR3)) ≤ C(‖b‖Ω + ‖τn,∞‖Ω) ≤ C1. (64)
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As a consequence of the last estimate one can extract subsequences of
v0,n(x) and w1,n(x, y), which converge weakly to v0,∞(x) in H1

0 (Ω, IR3) and
to w1,∞(x, y) in L2(Ω, W (Y, IR3)), respectively. Taking into account this
fact and the properties of τ∞ and τ we finally obtain after passage to the
limit in (62) as n → ∞

(v0,∞, b)Ω − (τ∞,∇xv0,∞)Ω − (τ,∇yw1,∞)Ω×Y

= (b + divxτ∞, v0,∞)Ω + (divyτ, w1,∞)Ω×Y = 0.

This means that ‖ση,n‖Ω → 0 as η → 0 and n → ∞. Together with Korn’s
inequality it follows from this that

lim
n→∞

lim
η→0

(‖ση,n‖Ω + ‖vη,n‖Ω) = 0.

This ends the proof of Lemma 3.1.

Lemma 3.2 Let κη(x) := κ(x, x/η) be a sequence of functions in L2(Ω, IR3×3),
where κ ∈ L2(Ω, C(Y, IR3×3)) satisfies the relation κ = ∇yϑ with a suitable
Y -periodic in y function ϑ(x, y). Suppose that (vη, ση) ∈ H1(Ω, IR3)×L2(Ω,S3)
be a weak solution of the boundary value problem formed by the equations

−div ση = 0 (65)

ση = D[
·

η
] (ε(∇xvη) + ε(κη)), (66)

which must hold in Ω, and by the boundary condition

vη(x) = 0, x ∈ ∂Ω. (67)

Then

lim
η→0

(‖vη‖Ω + ‖ση‖Ω) = 0.

Proof of Lemma 3.2. Similarly as in the proof of Lemma 3.1 the symmetry
of ση and equations (65) - (67) yield:

c‖ση‖
2
Ω ≤

∫

Ω
κ(x,

x

η
) · ση(x)dx +

∫

Ω
∇xvη · ση(x)dx = (κη, ση)Ω (68)

Notice that due to the regularity assumption for the function κ(x, x/η) it
can be taken as a test function in the sense of the definition of two-scale
convergence (see Definition 3.1). Moreover, from the estimate

‖ψ(x,
x

η
)‖L2(Ω,IR3×3) ≤ ‖ψ(x, y)‖L2(Ω,C(Y,IR3×3)),
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which holds for every ψ ∈ L2(Ω, C(Y, IR3×3)) and from (68) we obtain

c‖ση‖
2
Ω ≤ ‖κη‖L2(Ω,C(Y,IR3×3)) ‖ση‖Ω,

which implies that ση(x) is uniformly bounded in L2(Ω,S3). Simultaneously
one gets a uniform bound for vη in H1

0 (Ω, IR3). The boundness of ση allows
us to pass to the limit in the inequality (68) as η → 0. Using property (iii)
of Proposition 1.14 in [6] we obtain
∫

Ω
κ(x,

x

η
) · σηdx →

∫

Ω×Y
κ(x, y) · σ0(x, y)dxdy = −(ϑ, divyσ0)Ω×Y = 0,

where σ0(x, y) is a two-scale limit of the sequence ση(x). From the last limit
relation and the inequality (68) we can conclude that ση converges strongly
to 0 in L2(Ω,S3).

Now we observe that the uniform boundness of vη in H1
0 (Ω, IR3) gives us

the possibility to extract a subsequence that converges weakly to a function
v0 in H1

0 (Ω, IR3), or , by the compactness result, converges strongly to the
same function v0 in L2(Ω, IR3). To finish the proof of Lemma 3.2 we have
to show that v0(x) = 0. Notice first that well known properties7of functions
from L2(Ω, C(Y, IR3×3)) yield weak convergence of κη to 0 in L2(Ω, IR3×3).
Indeed, from the weak convergence of κ(·, ·/η) and periodicity of ϑ(x, y) with
respect to the second variable it follows that for ψ ∈ L2(Ω, IR3×3):

∫

Ω
κ(x,

x

η
) · ψ(x)dx →

∫

Ω

∫

Y
∇yϑ(x, y)dy ψ(x)dx = 0.

Taking into account the last result we get from the equality

(ε(∇xvη), ψ)Ω + (κη, ψ)Ω =

∫

Ω
D−1[

x

η
]ση(x) · ψ(x)dx,

where ψ ∈ L2(Ω,S3), that ε(∇xvη(x)) weakly converges to 0 in L2(Ω,S3)8.
Since ∇xvη(x) ⇀ ∇xv0(x) weakly in L2(Ω, IR3×3) it follows that ε(∇xv0(x)) =

0. Using that v0 ∈ H1
0 (Ω, IR3) we conclude from Korn’s first inequality that

v0(x) = 0.
Therefore

‖ση‖Ω + ‖vη‖Ω → 0 as η → 0.

This completes the proof of Lemma 3.2.

7We use the fact (Lemma 9.1, [18]) that for any ψ ∈ L2(Ω, C(Y, IR3×3)) the sequence

ψ(·,
·

η
) ⇀

∫

Y

ψ(·, y)dy weakly in L2(Ω, IR3×3).

8From the strong convergence of ση to 0 and the inequality ‖D−1[·/η]ση‖Ω ≤ C‖ση‖Ω

we conclude that also the sequence D−1[·/η]ση converges strongly to 0 in L2(Ω,S3). The
constant C is independent of η.
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3.2 Proof of Lemma 2.5

Now we are well prepared to prove Lemma 2.5. The crucial point in the
proof of Lemma 2.5 is to introduce an auxiliary function, which solves a
linear elasticity problem to smoothed data. This smoothed data satisfies
all requirements of Lemma 3.1 and Lemma 3.2. The rest of the proof is a
consequence of these two lemmas.

Proof of Lemma 2.5. Let T0,n(x, y, t) be a sequence of smooth func-
tions in C∞

0 (Ω, C(Y,S3)) that converges strongly to T0(x, y, t) in L2(Ω ×
Y,S3) for all t, let u1,n(t) be another sequence of smooth functions in
C∞

0 (Ω, C(Y, IR3)) that converges strongly to u1(t) in L2(Ω, H1(Y, IR3)) for all
t. We notice that an approximation sequence for T∞(t) in the strong topol-
ogy of L2(Ω,S3) necessary has to be of the form T∞,n(x, t) = 1

|Y |

∫

Y T0,n(x, y, t)dy.

Now we fix t and introduce an auxiliary function9 (vη,n, ση,n). We define
it as a unique solution of an elasticity problem to the data determined by
the smooth functions T0,n(x, y, t) and u1,n(x, y, t):

−divση,n(x) = −divxT0,n(x,
x

η
+ y, t), (69)

ση,n(x) = D[
x

η
+ y](ε(∇xvη,n(x)) + ε(∇yu1,n(x,

x

η
+ y, t))), (70)

vη,n(x) = γ(x, t), x ∈ ∂Ω. (71)

The existence and uniqueness of the function (vη,n, ση,n) as a solution of
the boundary value problem (69) - (71) can be obtained by the well known
theory for elliptic problems. Details are omitted.

We obviously have that

ση(x, t) − σ̂η(x, t) = (ση(x, t) − ση,n(x)) + (ση,n(x) − σ̂η(x, t)),

vη(x, t) − v̂η(x, t) = (vη(x, t) − vη,n(x)) + (vη,n(x) − v̂η(x, t)).

The proof of the convergence result will be separated in two steps. In the
first step we show that the sequences (v̄η,n(x), σ̄η,n(x)) with σ̄η,n(x) :=
ση(x, t)−ση,n(x) and v̄η,n(x) := vη(x, t)−vη,n(x) converge to 0 in appropriate
strong topologies. Then the same result will be shown for sequences (v̂η,n(x),
σ̂η,n(x)), where σ̂η,n(x) := ση,n(x)− σ̂η(x, t) and v̂η,n(x) := vη,n(x)− v̂η(x, t).

First step. By definition, (v̄η,n(x), σ̄η,n(x)) is a weak solution of the
boundary value problem (54) - (56) to the data:

b̂(x) = b(x, t) + divxT0,n(x,
x

η
+ y, t) (72)

ε̂p(x, y) = ε(∇yu1,n(x,
x

η
+ y, t)) (73)

γ̂(x) = 0. (74)

9A similar idea was used in [8].
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By linearity of the problem (54) - (56) to the data (72) - (74) the required
convergence of (v̄η,n(x), σ̄η,n(x)) is an easy consequence of Lemma 3.1 and
Lemma 3.2, which are applied for a.e. value y = ŷ ∈ Y .

Indeed, to see that we set for fixed t and a.e. ŷ

τη,n(x) = T0,n(x,
x

η
+ ŷ, t), τ(x, y) = T0(x, y + ŷ, t), τ∞(x) = T∞(x, t),

κη,n(x) = −∇yu1,n(x,
x

η
+ ŷ, t), τ∞,n(x) = T∞,n(x, t), b = b(t).

Note first that periodicity of T0,n, T0 and the choice of T0,n yield
∫

Ω×Y
(T0,n(x, y + ŷ, t) − T0(x, y + ŷ, t))2dxdy

=

∫

Ω×Y
(T0,n(x, y, t) − T0(x, y, t))2dxdy → 0 as n → ∞.

From (9) one immediately gets

divyτ(x, y) = divyT0(x, y + ŷ, t) = 0

and

divxτη,n(x) = divxT0,n(x,
x

η
+ ŷ, t).

Due to periodicity of T0(x, y, t) we obtain also that
∫

Y
T0(x, y + ŷ, t)dy =

∫

Y
T0(x, y, t)dy = T∞(x, t) = τ∞(x),

and from strong convergence of T0,n to T0 we deduce that the sequence
τ∞,n(x) = T∞,n(x, t) converges strongly to τ∞(x) = T∞(x, t) in L2(Ω,S3).
One needs to apply a Hölder’s inequality.

Moreover, (7) implies that

b + divxτ∞(x) = b(t) + divxT∞(t) = 0.

Since by definition (v̄η,n(x), σ̄η,n(x)) is a weak solution of the boundary
value problem (54) - (56) to the data

b̂(x) = b(x, t) + divxT0,n(x,
x

η
+ ŷ, t) = b + divxτη,n,

ε̂p(x) = ε(∇yu1,n(x, y, t))|y=x
η
+ŷ = −ε(κη)

γ̂(x) = 0,

we can use the linearity of the problem (54) - (56) to write the function
(v̄η,n(x), σ̄η,n(x)) as a sum of two functions

(v̄η,n, σ̄η,n)(x) = (v̄, σ̄)(x) + (v̂, σ̂)(x),
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where the function (v̄, σ̄)(x) solves the boundary problem (57) - (59) and
the function (v̂, σ̂)(x) solves the problem (65) - (67). Then the application
of Lemma 3.1 and Lemma 3.2 to (v̄, σ̄) and (v̂, σ̂) gives for every t and a.e.
ŷ ∈ Y

lim
n→∞

lim
η→0

(‖v̄η,n(·, ŷ, t)‖Ω + ‖σ̄η,n(·, ŷ, t)‖Ω) = 0. (75)

Second step. We fix t and y. (v̂η,n(x), σ̂η,n(x)) is a weak solution of the
boundary value problem (54)-(56) to the data:

b̂(x) = −divx(T0,n(x,
x

η
+ y, t) − T0(x,

x

η
+ y, t)) (76)

ε̂p(x) = −ε(∇y(u1,n(x,
x

η
+ y, t) − u1(x,

x

η
+ y, t))), (77)

γ̂(x) = 0. (78)

Using the properties of D, we obtain elliptic theory applied to the bound-
ary value problem (54) - (56) to the data (76) - (78), observing that b̂ ∈
H−1(Ω, IR3), ε̂p ∈ L2(Ω,S3), γ̂ ∈ H1(Ω, IR3) and η > 0, y ∈ Y , that there is
a constant C independent of η, y, t and n, such that

‖ σ̂η,n(t)‖2
Ω ≤ C [ ‖T0,n(·,

·

η
+ y, t) − T0(·,

·

η
+ y, t)‖2

Ω

+‖∇yu1,n(·,
·

η
+ y, t) −∇yu1(·,

·

η
+ y, t)‖2

Ω ]

We integrate the right hand side of this inequality with respect to the pa-
rameter y over Y . As result we have

∫

Ω

∫

Y
| T0,n(x,

x

η
+ y, t) − T0(x,

x

η
+ y, t) |2

+| ∇yu1,n(x,
x

η
+ y, t) −∇yu1(x,

x

η
+ y, t) |2dydx

=

∫

Ω

∫

x
η
+Y

| T0,n(x, y, t) − T0(x, y, t) |2

+| ∇yu1,n(x, y, t) −∇yu1(x, y, t) |2dydx

= ‖ T0,n(t) − T0(t) ‖2
Ω×Y + ‖ ∇yu1,n(t) −∇yu1(t) ‖2

Ω×Y .

Thus the function ση(t) − σ̂η(t) must satisfy the following inequality

‖ση(t) − σ̂η(t)‖
2
Ω×Y ≤ C (

∫

Y
‖σ̄η,n(y, t)‖2

Ωdy

+ ‖T0,n(t) − T0(t)‖
2
Ω×Y + ‖∇yu1,n(t) −∇yu1(t)‖

2
Ω×Y ).
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We notice that the L2(Ω)-norm of σ̄η,n is uniformly bounded with respect
to η and y. Indeed, (v̄η,n(x), σ̄η,n(x)) is the solution of (54) - (56) to the
data (72) - (74). Applying the standard existence theory for linear elliptic
problems we obtain that

‖σ̄η,n(y, t)‖Ω ≤ C (‖b(t)‖Ω + ‖T0,n(·,
·

η
+ y, t)‖Ω + ‖∇yu1,n(·,

·

η
+ y, t)‖Ω).

The functions T0,n, ∇yu1,n can be considered as an ”admissible” test func-
tion in the definition of the two-scale convergence. By the properties of these
function we get that

‖σ̄η,n(y, t)‖Ω ≤ C (‖b(t)‖Ω + ‖T0,n(t)‖L2(Ω,C(Y,S3)) + ‖∇yu1,n(t)‖L2(Ω,C(Y,IR3×3))).

Thus we can use Lebesgue’s convergence theorem to interchange the passage
to the limit and the integration in the lines below.

Let us now pass to the limit as η → 0:

lim
η→0

‖ση(t) − σ̂η(t)‖
2
Ω×Y ≤ C lim

η→0
(

∫

Y
‖σ̄η,n(y, t)‖2

Ωdy

+‖T0,n(t) − T0(t)‖
2
Ω×Y + ‖∇yu1,n(t) −∇yu1(t)‖

2
Ω×Y )

= C (

∫

Y
lim
η→0

‖σ̄η,n(y, t)‖2
Ωdy + ‖T0,n(t) − T0(t)‖

2
Ω×Y

+‖∇yu1,n(t) −∇yu1(t)‖
2
Ω×Y ).

Lemma 3.1 and Lemma 3.2 imply, if we set τη,n(x) = T0,n(x, x/η + y, t) and
κη,n(x) = −∇yu1,n(x, x/η + y, t), that the function limη→0 ‖σ̄η,n(y, t)‖2

Ω is
uniformly bounded with respect to n and y. It follows from (60), (62) and
(64). We can pass now to the limit as n → ∞:

lim
η→0

‖ση(t) − σ̂η(t)‖
2
Ω×Y ≤ lim

n→∞
C (

∫

Y
lim
η→0

‖σ̄η,n(y, t)‖2
2,Ωdy

+ lim
n→∞

‖T0,n(t) − T0(t)‖
2
Ω×Y + lim

n→∞
‖∇yu1,n(t) −∇yu1(t)‖

2
Ω×Y )

= C (

∫

Y
lim

n→∞
lim
η→0

‖σ̄η,n(y, t)‖2
2,Ωdy + lim

n→∞
‖T0,n(t) − T0(t)‖

2
Ω×Y

+ lim
n→∞

‖∇yu1,n(t) −∇yu1(t)‖
2
Ω×Y ) = 0.

In exactly the same way we get

lim
η→0

‖vη(t) − v̂η(t)‖
2
Ω×Y ≤ C (

∫

Y
lim

n→∞
lim
η→0

‖v̄η,n(y)‖2
2,Ωdy

+ lim
n→∞

‖T0,n(t) − T0(t)‖
2
Ω×Y + lim

n→∞
‖∇yu1,n(t) −∇yu1(t)‖

2
Ω×Y ) = 0.

This ends the proof of Theorem 1.1.
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4 Appendix

4.1 Existence of solutions for the reduced equation

In this subsection we are going to show the existence result10 in a Hilbert space H
for the following Cauchy problem

d

dt
u(t) + A(u(t)) ∋ f(t), (79)

u(0) = u0 (80)

with A = MG, where M is a linear, bounded, positive definite, selfadjoint operator,
G is a maximal monotone operator with respect to the usual scalar product (·, ·).
It is already shown in Theorem 3.3 [3] that A is maximal monotone with respect
to the scalar product 〈·, ·〉 = (M−1·, ·).

Theorem 4.1 Let Gλ be a Yosida approximation of G. Assume that u0 ∈ D(A)
and f ∈ W 1,1(0, Te;H). Then the Cauchy problem has a unique solution u ∈
W 1,∞(0, Te;H). The solution satisfies the inequality

‖
d

dt
u(t)‖H ≤ C‖Gλu0‖H + ‖f(0)‖H +

∫ t

0

‖f
′

(s)‖Hds (81)

with a constant C independent of λ.

Proof. The uniqueness follows directly from the monotonicity of A.
For each λ > 0 let uλ be the solution of

d

dt
uλ(t) + Aλ(uλ(t)) ∋ f(t), (82)

uλ(0) = u0 (83)

with a maximal monotone (with respect to 〈·, ·〉 = (M−1·, ·)) operator Aλ = MGλ.
Then similarly as in Theorem IV.4.1 [33] we get the estimate for u

′

λ

‖u
′

λ(t)‖H ≤ ‖Aλu0‖H + ‖f(0)‖H +

∫ t

0

‖f
′

(s)‖Hds

≤ C‖Gλu0‖H + ‖f(0)‖H +

∫ t

0

‖f
′

(s)‖Hds

≤ C|G0u0| + ‖f(0)‖H +

∫ t

0

‖f
′

(s)‖Hds. (84)

From (82) and (84) it follows that u
′

λ, uλ and Aλuλ are uniformly bounded in
C([0, Te],H).

uλ is a Cauchy sequence in C([0, Te],H). To see that let λ, µ > 0 and use (82)
to obtain

1

2

d

dt
‖uλ(t) − uµ(t)‖2 = −〈Aλ(uλ(t)) − Aµ(uµ(t)), uλ(t) − uµ(t)〉.

10Actually in [11], [33] it is already shown that the problem (79) has a unique solution,
but in one place in the justification proof we need other estimates for solutions than this
theory delivers. We slightly modify the classical proof in order to obtain the mentioned
estimates. More details can be found in [11], [33].
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With uλ = λGλuλ + Jλuλ and uµ = µGµuµ + Jµuµ (Jλ is a resolvent of G) we
obtain as in Theorem IV.4.1 [33]

‖uλ(t) − uµ(t)‖2 ≤
λ + µ

2
K2, 0 ≤ t ≤ Te,

where K = sup{‖Gλ(uλ(t))‖ | 0 ≤ t ≤ Te, λ > 0}, so uλ is a Cauchy sequence in
C([0, Te],H) with

‖uλ(t) − u(t)‖H ≤

√

λ

2
C(|G0u0| + ‖f(0)‖H + ‖f‖C([0,Te],H) +

∫ Te

0

‖f
′

(s)‖Hds). (85)

The proof ends similarly as in Theorem IV.4.1 [33].

4.2 Homogenization of linear elasticity system

Now we show how to apply the two-scale convergence method to the homoge-
nization of linear elasticity systems with periodically oscillating coefficients. This
example is of great importance in the rigorous justification procedure because of
the frequent use of estimates obtained for the sequence of solutions of the linear
elasticity problem as well as of its homogenized problem. Therefore the proof, ac-
tually a rephrasing of Theorem 2.3 [6] for the case of linear elasticity with a slight
modification, is given in all details.

Consider the following problem

−div D[
x

η
]ε (∇xu(x)) = b(x), x ∈ Ω, (86)

u(x) = 0, x ∈ ∂Ω, (87)

with a given function b ∈ L2(Ω, IR3) and an Y -periodic linear positive definite
mapping D[y] : S3 7→ S3, the elasticity tensor. D[y] is such that there exist two
positive constants 0 < α ≤ β satisfying

α|ξ|2 ≤ Dijkl[y]ξklξij ≤ β|ξ|2 for any ξ ∈ S3. (88)

The last assumption (88) implies that the mapping D[y] belongs to L∞(Y,S3) and
consequently in virtue of the first Korn’s inequality (for example, [29]) that the
problem (86)-(87) admits a unique solution uη in H1

0 (Ω, IR3), which satisfies the
estimate

‖uη‖1,Ω ≤ C‖b‖2, (89)

where C is a positive constant that depends on Ω and α, and not on η.

Theorem 4.2 The sequence uη of solutions of the problem (86)-(87) converges
weakly to u(x) in H1

0 (Ω, IR3), and the sequence ∇uη two-scale converges to ∇u(x)+
∇yu1(x, y), where (u, u1) ∈ H1

0 (Ω, IR3)×L2(Ω,W (Y, IR3)) is the unique solution of
the following two-scale homogenized system:

−divy[D[y]ε(∇u(x) + ∇yu1(x, y))] = 0 in Ω × Y,

−divx[

∫

Y

D[y]ε(∇u(x) + ∇yu1(x, y))dy] = b(x) in Ω,

u(x) = 0 on ∂Ω,

y 7→ u1(x, y) Y − periodic.
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Proof. By virtue of the estimate (89) and Proposition 1.14 in [6] the sequence
uη and the sequence of its gradient ∇uη, up to a subsequence, have the weak
limit u ∈ H1

0 (Ω, IR3) and the two-scale limit ∇u(x)+∇yu1(x, y), respectively, with
u1 ∈ L2(Ω,W (Y, IR3)).

Multiply (86) by a test function ψ(x) + ηψ1(x, x/η), with ψ ∈ C∞
0 (Ω, IR3) and

ψ1 ∈ C∞
0 (Ω, C∞(Y, IR3)). Integration by parts of the resulting equation and some

rewriting imply
∫

Ω

∇uη(x)D[
x

η
]ε[∇ψ(x) + ∇yψ1(x,

x

η
)]dx (90)

+η

∫

Ω

D[
x

η
]ε(∇uη(x))ε(∇xψ1(x,

x

η
))dx =

∫

Ω

b(x)(ψ(x) + ηψ1(x,
x

η
))dx.

Here the symmetry of D was used in the first term.
It is easily seen now that applying consecutively the limit relation in the definition
of the admissible test functions and Theorem 1.8 [6] justifies the passage to the
two-scale limit in (90):

∫

Y

∫

Ω

D[y]ε(∇u(x) + ∇yu1(x, y))ε(∇ψ(x) + ∇yψ1(x, y))dxdy

=

∫

Ω

b(x)ψ(x)dx. (91)

(91) holds true for any function (ψ,ψ1) ∈ H1
0 (Ω, IR3)×L2(Ω,W (Y, IR3)). (91) is

variational formulation associated to the two-scale homogenized problem stated
above. Due to the first Korn’s inequality, and to Korn’s inequality for periodic
functions ([29]), the Hilbert space H = H1

0 (Ω, IR3)× L2(Ω,W (Y, IR3)) can be en-
dowed with following norm

‖Ψ‖2
H = ‖ψ‖2

1,Ω + ‖ε(∇yψ1)‖
2
Ω×Y .

Then application of the Lax-Milgram lemma shows that there exists a unique so-
lution of the two-scale homogenized problem. Consequently, the entire sequences
uη(x) and ∇uη(x) converge to u(x) and ∇u(x) + ∇yu1(x, y).

4.3 Homogenization of the second order elliptic operators

with non-uniformly oscillating coefficients

For another interesting application of a parameter y consider the following problem
with non-uniformly oscillating coefficients (chapter 1, section 6, [9])

−div D[x,
x

η
] (∇xuη(x)) = b(x), x ∈ Ω, (92)

uη(x) = 0, x ∈ ∂Ω, (93)

with a given function b ∈ L2(Ω) and Y -periodic in y a matrix D[x, y] such that
there exist two positive constants 0 < α ≤ β satisfying

α|ξ|2 ≤ Dij [y]ξiξj ≤ β|ξ|2 for any ξ ∈ IRN. (94)

The last assumption (94) implies that the mapping D[x, y] belongs to L∞(Ω ×
Y, IRN×N). But it is not enough to ensure that the mapping x 7→ D[x, x/η] is
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measurable, so in [9] it is assumed that D ∈ C(Ω, L∞(Y, IRN×N)) to obtain a
solution of (92)-(93). Instead of increasing the regularity of D[x, y] we consider
a family of shifted problems

−divx D[x,
x

η
+ y] (∇xuη(x, y)) = b(x), (x, y) ∈ Ω × Y, (95)

uη(x, y) = 0, (x, y) ∈ ∂Ω × Y. (96)

Now the problem (95)-(96) admits a unique solution uη in L2(Y,H1
0 (Ω)), which

satisfies the estimate

‖uη‖L2(Y,H1

0
(Ω)) ≤ C‖b‖Ω,

where C is a positive constant independent of η. For a.e. fixed y ∈ Y the existence of
the solution is provided by the well known result for second order elliptic operators
and the integrability with respect to y is then the easy consequence of it.

It is convenient now to write (95)-(96) in the form

−divxση(x, y) = b(x), (x, y) ∈ Ω × Y, (97)

ση(x, y) = D[x,
x

η
+ y] (∇xuη(x, y)) , (x, y) ∈ Ω × Y, (98)

uη(x, y) = 0, (x, y) ∈ ∂Ω × Y. (99)

Now the solution of (97)-(99) is a function (uη, ση) ∈ L2(Y,H1
0 (Ω))×L2(Ω×Y, IRN).

Then inserting the formal ansatz for the solution uη

ûη(x, y) = u0(x) + ηu1(x,
x

η
+ y) + η2u2(x,

x

η
+ y) + ...

into the boundary problem (95)-(96) and identifying powers of η lead to the ho-
mogenized problem

−divxσ∞(x) = b(x),

σ∞(x) =
1

|Y |

∫

Y

σ0(x, y)dy

−divyσ0(x, y) = 0,

σ0(x, y, t) = D[x, y](∇yu1(x, y) + ∇xu0(x)),

which must hold for (x, y) ∈ Ω × Y

u0(x) = 0,

which must hold for x ∈ ∂Ω. This form of the homogenized problem is equivalent
to the already obtained one in [9]. A slight modification of the proof of Lemma 2.5
yields the following convergence result

lim
η→0

(‖u0 − uη‖Ω×Y + ‖σ0 − ση‖Ω×Y ) = 0, (100)

where (u0, u1, σ0) is the solution of the homogenized problem and (uη, ση) is the
solution of the problem (97)-(99) with a parameter y.

(100) holds without imposing additional regularity on D[x, y], b(x) and ∂Ω.

Acknowledgement. The author thanks Hans-Dieter Alber for helpful
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