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Abstract

This paper is on the equivalence of continuous and smooth principal bundles. Throughout
the text, let K be a a Lie group, modeled on a locally convex space, and M be a finite-
dimensional paracompact manifold with corners. We show that each continuous principal
K- bundle over M is continuously equivalent to a smooth one and that two smooth principal
K-bundles over M which are continuously equivalent are also smoothly equivalent. In the
concluding section, we relate our results to neighboring topics.
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Introduction

This paper deals with the close interplay between continuous and smooth principal K-bundles
over M , where K is a Lie group modeled on an arbitrary locally convex space (following [Mi84])
and M a finite-dimensional (paracompact) manifold with corners. The main point here is that
there is no essential difference between the two concepts as long as one is only interested in
equivalence classes of bundles (as one usually is).

We denote the set of equivalence classes of continuous K-principal bundles over M by
H1

c (M,K) and the set of equivalence classes of smoothK-principal bundles overM byH1
s (M,K),

which is only a nomenclature for now. Since each smooth principal bundle is in particular con-
tinuous, we have a canonic map H1

s (M,K) → H1
c (M,K). The question is whether this map is

injective, surjective, or both.
One approach to this questions could be to introduce smooth structures on classifying spaces

and to smooth classifying maps. As an example, the classifying space of K = GLn(C) is isomor-
phic to the direct limit of the Grassmanians

BGLn(C) ∼= Gn(∞) := lim
−→

Gn(k).
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Then [Gl05, Th. 3.1] provides a smooth manifold structure on B GLn(C), and one can smooth
classifying maps as in [Hi76, Th. 4.3.5] for the case of vector bundles. In the non-linear case,
the classifying space of the diffeomorphism group BDiff(N) for a compact manifold N , which
can be viewed as a nonlinear Grassmanian, can also be given a smooth structure [KM97, 44.21].
A general approach to this question has been taken in [Mo79], but with a focus on a de Rham
cohomology, which has not been traced further. However, a general theory for differentiable
structures on classifying spaces seems to be missing. On the other hand, there exist partial
answers to the above question arising from the comparison of continuous and analytic fiber
bundles (cf. [Gr58], [To67] and [Gu02]). Since these considerations use strong constraints on the
structure group (e.g. its compactness), they can not be used in the great generality that we are
aiming for.

The approach in this paper is to use an approximation result for Lie group-valued functions
in order to smooth representatives of continuous bundles or bundle equivalences (cf. Proposition
II.1 or [Wo05, Prop. III.8]). We use this in combination with the fact that there is a large freedom
of choice in the description of principal bundles by locally trivial covers and transition functions.
In this way, we construct new representatives of bundles and bundle equivalences that satisfy
cocycle or compatibility conditions on probably finer locally trivial covers, but which describe
equivalent objects. Since this technique uses heavily the local compactness of the base manifold,
there seems to be no generalization of this method to infinite-dimensional base manifolds.

We now describe our results in some detail. In the first section we recall the basic facts of
continuous and smooth principal bundles with a focus on the description of bundles and bundle
equivalences in terms of locally trivial covers and transition functions. Furthermore, we recall
briefly the concept of differential calculus and the concept of manifolds with corners that we
work with in this text.

The second section is exclusively devoted to the proofs of our main results and to their
technical prerequisites. As it is explained in the last section, the following theorems assert the
surjectivity and injectivity, respectively, of the map H1

s (M,K) → H1
c (M,K).

Theorem (Smoothing Continuous Principal Bundles). Let K be a Lie group modeled on
a locally convex space, M be a connected manifold with corners and P be a continuous principal
K-bundle over M . Then there exists a smooth principal K-bundle P̃ over M and a continuous
bundle equivalence Ω : P → P̃.

Theorem (Smoothing Continuous Bundle Equivalences). If P and P ′ are smooth prin-
cipal K-bundles over the connected manifold with corners M and Ω : P → P ′ is a continuous
bundle equivalence, then there exists a smooth bundle equivalence Ω̃ : P → P ′.

In the third section we relate our results to some neighboring topics, in particular to non-
abelian Čech cohomology and to twisted K-theory. This presentation is not meant to be exhaus-
tive, but to give some ideas of the implications of our results.

I Principal Fiber Bundles

In this section we provide the basic material concerning manifolds with corners and smooth and
continuous principal bundles.

Definition I.1 (Continuous Principal Bundle). Let K be a topological group and M be
a topological space. Then a continuous principal K-bundle over M (or shortly a continuous
principal bundle) is a topological space P together with a continuous action P × K → P ,
(p, k) 7→ p · k, and a map η : P →M such that there exists an open cover (Ui)i∈I of M , called a
locally trivial cover, and homeomorphisms

Ωi : η−1(Ui) → Ui ×K,

called local trivializations, satisfying pr1 ◦ Ωi = η|η−1(Ui)
and Ω(p · k) = Ω(p) · k. Here K acts on

Ui ×K by right multiplication in the second factor. We will use the calligraphic letter P for the
tuple (K, η : P →M).
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A morphism of continuous bundles or a continuous bundle map between two principal bundles
P and P ′ over M is a continuous map Ω : P → P ′ satisfying Ω(p · k) = Ω(p) · k. Since
P ′/K ∼= M ∼= P/K, it induces a map Ω# : M →M . We call Ω a continuous bundle equivalence
if it is an isomorphism and Ω# = idM .

Remark I.2 (Transition Functions). If P is a continuous principal K-bundle over M , then
the local trivializations define continuous mappings kij : Ui ∩ Uj → K by

(1) Ω−1
i (x, e) · kij(x) = Ω−1

j (x, e) for all x ∈ Ui ∩ Uj

called transition functions. The kij satisfy the cocycle condition

(2) kii(x) = e for all x ∈ Ui and kij(x) · kjn(x) · kni(x) = e for all x ∈ Ui ∩ Uj ∩ Uk.

On the other hand, if (Vj)j∈J is an open cover of a space N , and kij : Vij → K are continuous
that satisfy condition (2), then

Pkij =
⋃
j∈J

{j} × Uj ×K/ ∼ with (j, x, k) ∼ (j′, x′, k′) ⇔ x = x′ and kj′j(x) · k = k′

defines a continuous principal K-bundle over M . Here η is given by [i, x, k] 7→ x, the local
trivializations by [(i, x, k)] 7→ (x, k) and the K-action by ([(i, x, k)], k′) 7→ [(i, x, kk′)]. We will
call this bundle Pkij

.
If the kij arise from the local trivializations of a given bundle P as in (1), then

Ω : P → Pkij
, p 7→ [i,Ωi(p)] if p ∈ η−1(Ui)

defines a bundle equivalence between P and Pkij whose inverse is given by [i, x, k] 7→ Ω−1
i (x, k).

Definition I.3 (Differential Calculus on Locally Convex Spaces). Let E and F be a
locally convex spaces and U ⊆ E be open. Then f : U → F is called continuously differentiable
or C1 if it is continuous, for each v ∈ E the differential quotient

df(x).v := lim
h→0

1
h

(f(x+ hv)− f(x))

exists and the map df : U × E → F is continuous. For n > 1 we, recursively define

dnf(x).(v1, . . . , vn) := lim
h→0

1
h

(
dn−1f(x+ h).(v1, . . . , vn−1)− dn−1f(x).(v1, . . . , vn)

)
and say that f is Cn if dkf : U × Ek → F exists for all k = 1, . . . , n and is continuous. We say
that f is C∞ or smooth if it is Cn for all n ∈ N.

Definition I.4 (Lie Group). From the definition above the notion of a smooth Lie group is
clear. It is a group which is a smooth manifold modeled on a locally convex space such that the
group operations are smooth.

Remark I.5 (Convenient Calculus). (cf. [Ne02, Rem. 3.2]) We briefly recall the basic
definitions of the convenient calculus from [KM97]. Again, let E and F be locally convex spaces.
A curve f : R → E is called smooth if it is smooth in the sense of Definition I.3. Then the
c∞-topology on E is the final topology induced from all smooth curves f ∈ C∞(R, E). If E is
a Fréchet space, then the c∞-topology is again a locally convex vector topology which coincides
with the original topology [KM97, Th. 4.11]. If U ⊆ E is c∞-open, then f : U → F is said to be
of class C∞ or smooth if

f∗ (C∞(R, U)) ⊆ C∞(R, F ),

i.e. if f maps smooth curves to smooth curves. The chain rule [Gl02, Prop. 1.15] implies that
each smooth map in the sense of Definition I.3 is smooth in the convenient sense. On the other
hand, [KM97, Th. 12.8] implies that on a Frèchet space a smooth map in the convenient sense
is smooth in the sense of Definition I.3. Hence for Fréchet spaces, the two notions coincide.
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Remark I.6 (Manifold with Corners). We refer to [Wo06] for an introduction to the concept
of manifolds with corners, which may, in general, be modeled on a locally convex space. Roughly
speaking, an n-dimensional manifold with corners (which we will assume to be paracompact
throughout this paper) is a topological space such that each point has a neighborhood that is
homeomorphic to an open subset of [0, 1]n and that the corresponding coordinate changes are
smooth. The crucial point here is the notion of smoothness for non-open domains. The usual
notion is to define a map f : A ⊆ Rn → Rm to be smooth if for each x ∈ A, there exists
a neighborhood Ux of x, which is open in Rn, and a smooth map fx : Ux → Rm such that
fx|A∩Ux

= f |A∩Ux
. The notion in [Wo06] is slightly different, but is the appropriate one for a

treatment of mapping spaces [Mi80]. However, it turns out in [Wo06] that it is equivalent to the
usual notion.

Remark I.7 (Paracompact Spaces). We recall some basic facts from general topology. If
X is a topological space, then a collection of subsets (Ui)i∈I of X is called locally finite if each
x ∈ X has a neighborhood that has non-empty intersection with only finitely many Ui, and
X is called paracompact if each open cover has a locally finite refinement. If X is the union
of countably many compact subsets, then it is called σ-compact, and if each open cover has a
countable subcover, it is called Lindelöf.

Now let M be a manifold with corners, which is in particular locally compact and locally
connected. For these spaces, [Du66, Th. XI.7.2+3] imply that M is paracompact if and only
if each component is σ-compact, equivalently, Lindelöf. Furthermore, [Br93, Th. I.12.5] implies
that M is normal in each of these cases.

Definition I.8 (Smooth Principal Bundle). If K is a smooth Lie group and M is a smooth
manifold with corners (both modeled on locally convex vector spaces), then a continuous prin-
cipal K-bundle over M is called a smooth principal K-bundle over M (or shortly a smooth
principal bundle) if the transition functions from Remark I.2 are smooth for some choice of local
trivializations.

Remark I.9 (Smooth Structure on Smooth Principal Bundles). If P is a smooth prin-
cipal bundle, then we define a smooth structure on P by requiring the local trivializations

Ωi : η−1(Ui) → Ui ×K

that define the smooth transition functions from Definition I.8 to be diffeomorphisms. This
actually defines a smooth structure on P since it is covered by (η−1(Ui))i∈I and the coordinate
changes

Ui ∩ Uj ×K → Ui ∩ Uj ×K, (x, k) 7→ Ωj(Ω−1
i (x, k)) = (x, k · kij(x))

are smooth because the kij are assumed to be smooth. A continuous bundle map between
smooth principal bundles is a morphism of smooth principal bundles or a smooth bundle map if
it is smooth with respect to the the smooth structure on the bundles just described.

Remark I.10 (Bundle Equivalences). If P and P ′ are two principal K-bundles over M , then
there exists an open cover (Ui)i∈I of M such that we have local trivializations

Ωi : η−1(Ui) → Ui ×K

Ω′i: η
′−1(Ui) → Ui ×K

for P and P ′. In fact, if (Vj)j∈J and (V ′j′)j′∈J′ are locally trivial covers of M (for P and for P ′,
respectively), then

(Vj ∩ Vj′)(j,j′)∈J×J′

is simultaneously a locally trivial cover for both P and P ′, and the local trivializations are given
by restricting the original ones.

If Pkij and Pk′ij
are given by transition functions kij and k′ij with respect to the same open

cover (Ui)i∈I (i.e., kij : Ui ∩ Uj → K and k′ij : Ui ∩ Uj → K), then a bundle equivalence
Ω : Pkij → Pk′ij

defines for each i ∈ I a continuous map

(3) ϕi : Ui ×K → K by Ω([(i, x, k)]) = [(i, x, ϕi(x, k))].
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Furthermore, we have ϕi(x, k) = ϕi(x, e) · k since Ω is assumed to satisfy Ω(p · k) = Ω(p) · k.
Setting fi(x) := ϕi(x, e), we thus obtain continuous maps fi : Ui → K satisfying

(4) k′ji(x) · fi(x) · kji(x) = fj(x) for all x ∈ Ui ∩ Uj ,

since [(i, x, k)] = [(j, x, kji(x)k)] has to be mapped to the same element of Pk′ij
by Ω. On the

other hand, if for each i ∈ I we have continuous maps fi : Ui → K satisfying (4), then

Pkij 3 [(i, x, k)] 7→ [(i, x, fi(x) · k)] ∈ Pk′ij

defines a bundle equivalence between Pkij and Pk′ij
which covers the identity on M .

If Pkij
and Pk′ij

are smooth and the maps kij and k′ij are smooth, then it follows directly
from (3) that a bundle equivalence described by continuous maps fi : Ui → K is smooth if and
only if these maps are smooth.

II Equivalences of Smooth and Continuous Bundles

In this section, we state and prove the two main results of this paper. The proofs use two
important tools that we describe first: a proposition to smooth continuous maps and a lemma
to fade out continuous functions.

Proposition II.1 (Smoothing). Let M be a paracompact manifold with corners, K a Lie
group modeled on a locally convex space and f ∈ C(M,K). If A ⊆ M is closed and U ⊆ M is
open such that f is smooth on a neighborhood of A \ U , then each open neighborhood O of f in
C(M,K)c.o. contains a map g, which is smooth on a neighborhood of A and equals f on M \ U .

Proof. This is [Wo05, Prop. III.8].

Remark II.2 (Centered Chart, Convex Subset). Let K be a Lie group modeled on a locally
convex topological vector space E. A chart ϕ : W → ϕ(W ) ⊆ E with e ∈ W and ϕ(e) = 0 is
called a centered chart. A subset L of W is called ϕ-convex (or just convex, if ϕ is obvious) if
it is identified with a convex subset ϕ(L) in E. If W itself is ϕ-convex, we speak of a convex
centered chart.

It is clear that every open identity neighborhood in K contains a ϕ-convex open neighborhood
for some centered chart ϕ, because we can pull back any convex open neighborhood that is small
enough from the underlying locally convex vector space.

Lemma II.3 (Fading-Out). Let M be a manifold with corners, A and B be closed subsets
satisfying B ⊆ A0, ϕ : W → ϕ(W ) be a convex centered chart of a Lie group K modeled on
a locally convex space, and f : A → W be a continuous function. Then there is a continuous
function F : M → W ⊆ K with F |B = f and F |M\A0 ≡ e. Moreover, if W ′ ⊆ W is another
ϕ-convex set, then f(x) ∈W ′ always implies F (x) ∈W ′.

Proof. Since M is paracompact, it is also normal (see Remark I.7). The closed sets M \ A0

and B are disjoint by assumption, so the Urysohn’s Lemma as in [Br93, Th. I.10.2] yields a
continuous function λ : M → [0, 1] such that λ|B ≡ 1 and λ|M\A0 ≡ 0. Since ϕ(W ) is a convex
zero neighborhood in E, we have [0, 1] · ϕ(W ) ⊆ ϕ(W ). We use this to define the continuous
function

fλ : A→W, x 7→ ϕ−1
(
λ(x) · ϕ

(
f(x)

))
,

that satisfies, by the choice of λ, fλ|B = f |B and fλ|∂A = e because ∂A ⊆ M \ A0. So we may
extend fλ to the continuous function

F : M →W, x 7→
{
fλ(x), if x ∈ A
e, if x ∈M \A0

that satisfies all requirements.
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Before we state and prove the main results, we need some technical data: suitable covers of
a compact manifold with corners and identity neighborhoods in a Lie group that satisfy certain
conditions.

Lemma II.4 (Squeezing-in Manifolds with Corners). Let W be an open neighborhood of a
point x in Rd+ = {(x1, . . . , xd) ∈ Rd : xi ≥ 0 for all i = 1, . . . , n} and C ⊆ W be a compact set
containing x. Then there exists an open set V satisfying x ∈ C ⊆ V ⊆ V ⊆W , whose closure V
is a compact manifold with corners.

Proof. For every x = (x1, . . . , xd) ∈ C, there is an εx > 0 such that

(5) B(x, ε) := [x1 − εx, x1 + εx]× · · · × [xd − εx, xd + εx] ∩Rd+

is contained in W . The interiors Vx := B(x, εx)0 in Rd+ form an open cover of the compact set C,
of which we may choose a finite subcollection (Vxi)i=1,...,m covering C. The union V :=

⋃m
i=1 Vxi

satisfies all requirements. In particular, V is a compact manifold with corners, because it is a
finite union of cubes.

Proposition II.5 (Nested Covers). Let M be a connected manifold with corners and (Uj)j∈J

be an open cover of M . Then there exist countable open covers
(
U

[∞]
i

)
i∈N and

(
U

[0]
i

)
i∈N of M

such that U
[∞]

i := U
[∞]
i and U

[0]

i := U
[0]
i are compact manifolds with corners, U

[∞]

i ⊆ U
[0]
i for

all i ∈ N, and such that even the cover
(
U

[0]

i

)
i∈N of M by compact sets is locally finite and

subordinate to (Uj)j∈J .
In this situation, let L be any countable subset of the open interval (0,∞). Then for every

λ ∈ L, there exists a countable, locally finite cover
(
U

[λ]
i

)
i∈I

of M by open sets whose closures

are compact manifolds with corners such that U
[λ]

i ⊆ U
[µ]
i holds whenever ∞ ≥ λ > µ ≥ 0.

Proof. For every x ∈ M , we have x ∈ Uj(x) for some j(x) ∈ J . Let (Ux, ϕx) be a chart of M
around x such that Ux ⊆ Uj(x). We can even find an open neighborhood Vx of x whose closure
Vx is compact and contained in Ux. Since M is paracompact, the open cover

(
Vx

)
x∈M

has a
locally finite subordinated cover (Vi)i∈I , where Vi ⊆ Vx and Vi ⊆ Vx ⊆ Ux for suitable x = x(i).
Since M is also Lindelöf, we may assume that I = N.

To find suitable covers U [∞]
i and U [0]

i , we are going to enlarge the sets Vi so carefully in two
steps that the resulting covers remain locally finite. More precisely, U [∞]

i and U [0]
i will be defined

inductively so that even the family (V i
k )k∈N with

V i
k :=

{
U

[0]

k for k ≤ i
Vk for k > i

is still a locally finite cover of M for every i ∈ N. We describe the construction for a fixed i ≥ 1.
For every point y ∈ Vi, there is an open neighborhood Vi,y of y inside Ux(i) whose intersection

with just finitely many V i−1
i is non-empty. Under the chart ϕx(i), this neighborhood Vi,y is

mapped to an open neighborhood of ϕx(i)(y) in the modeling space Rd+ of M . There we can
find real numbers ε0(y) > ε∞(y) > 0 such that the cubes B(y, ε∞(y)) and B(y, ε0(y)) introduced
in (5) are compact neighborhoods of ϕx(i)(y) contained in ϕx(i)(Vi,y). Since Vi is compact, it is
already covered by finitely many sets Vi,y, say by

(
Vi,y)y∈Y for a finite subset Y of Vi. We define

the open sets

U
[∞]
i :=

⋃
y∈Y

ϕ−1
x(i)

(
B(y, ε∞(y))0

)
and U [0]

i :=
⋃

y∈Y

ϕ−1
x(i)

(
B(y, ε0(y))0

)
,

whose closures are compact manifolds with corners, because they are a finite union of cubes
under the chart ϕx(i). On the one hand, the construction guarantees

Vi ⊆ U
[∞]
i ⊆ U

[∞]

i ⊆ U
[0]
i ⊆ U

[0]

i ⊆
⋃

y∈Y

Vi,y ⊆ Ux(i).



Equivalences of Smooth and Continuous Bundles 7

On the other hand, the cover
(
V i

k

)
k∈N is locally finite, because it differs from the locally finite

cover
(
V i−1

k

)
k∈N in the single set V i

i = U
[0]

i , each point of which has a neighborhood Vi,y

intersecting just finitely many other sets of either cover.
For a proof of the second claim, let λ1, λ2, . . . be any enumeration of L. Then for any n ≥ 1

and i ∈ N, we apply Lemma II.4 to C := ϕi

(
U

[λ]

i

)
and W := ϕi

(
U

[λ]
i

)
, where λ (resp. λ) is the

smallest (resp. largest) element of λ1, . . . , λn−1 larger than (resp. smaller than) λn for n > 1
and ∞ (resp. 0) for n = 1. We get open sets U [λn]

i such that the condition U
[λ]

i ⊆ U
[µ]
i holds

whenever ∞ ≥ λ > µ ≥ 0 are elements in {λ1, . . . , λn}, and eventually in L. This completes the
proof.

Remark II.6 (Locally Finite Covers by Compact Sets). If
(
U i

)
i∈I

is a locally finite cover
of M by compact sets, then for fixed i ∈ I, the intersection U i ∩ U j is non-empty for only
finitely many j ∈ I. Indeed, for every x ∈ U i, there is an open neighborhood Ux of x such that
Ix := {j ∈ I : Ux ∩U j 6= ∅} is finite. Since U i is compact, it is covered by finitely many of these
sets, say by Ux1 , . . . , Uxn . Then J := Ix1 ∪ · · · ∪ Ixn is the finite set of indices j ∈ J such that
U i ∩ U j is non-empty, proving the claim.

Remark II.7 (Intersections). From now on, multiple lower indices on subsets always indicate
intersection, i.e., U1···r := U1 ∩ . . . ∩ Ur.

Lemma II.8 (Suitable Identity Neighborhoods). Let M be manifold with corners that is
covered locally finitely by countably many compact sets

(
U i

)
i∈N. Moreover, let kij : U ij → K

be continuous functions into a Lie group K modeled on a locally convex space so that kij = k−1
ji

holds for all i, j ∈ N. Then for any convex centered chart ϕ : W → ϕ(W ), there are ϕ-convex
open identity neighborhoods Wα

ij ⊆W in K for indices i < j and α in N that satisfy

kji(x) · (Wα
ij)

−1 ·Wα
in · kij(x) ⊆Wα

jn for all x ∈ U ijnα, i < j < n and α in N,(6)

knj(x) · (Wn
jn)−1 · kjn(x) ⊆W for all x ∈ U jn, j < n in N.(7)

Proof. Disregarding condition (6) initially, we set Wα
jn = W for n 6= α and choose Wn

jn ⊆ W
such that (7) is satisfied for all j < n in N. To do the latter, we observe that the function

ϕjn : U jn ×W → K, (x, k) 7→ knj(x) · k−1 · kjn(x)

is continuous and maps the point (x, e) to the identity e for every x ∈ U jn. So we may choose
an open neighborhoods Ux of x and a convex (short for ϕ-convex) open identity neighborhood
Wx ⊆W such that ϕjn(Ux×Wx) ⊆W . Since U jn is compact, it is covered by finitely many Ux,
say by Ux1 , . . . , Uxm . Then Wn

jn :=
⋂m

i=1Wxi is a convex open identity neighborhood in W such
that ϕjn

(
U jn ×W

)
⊆W , in other words, it satisfies (7).

To organize a step-by-step construction of the final open identity neighborhoods Wα
jn, which

may become smaller than their initial values above, we define the following total order

(8) (i, j) < (i′, j′) :⇔ j < j′ or (j = j′ and i < i′)

on pairs of real numbers, in particular on pairs of indices (i, j) in N×N with i < j. Note that
this guarantees (i, j) < (j, n) and (i, n) < (j, n) whenever i, j, n are as in condition (6). We use
this in the following construction that we perform for each fixed α ∈ N.

Since the cover
(
U i

)
i∈N is locally finite, Remark II.6 says that there are only finitely many

indices j < n such that the intersection U jnα is non-empty. Starting at the largest such pair
j < n with respect to the total order (8), we adjust the identity neighborhoods Wα

jn one at a
time in decreasing order down to and including Wα

12. For the index (j, n), we

• fixate the identity neighborhood Wα
jn (which already satisfies (7) if n = α)
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• and make sure that all conditions (6) with this Wα
jn on the right hand side are satisfied

by making the corresponding sets Wα
ij and Wα

in on the left hand side smaller, if necessary.
Here we use the same line of argument as above: Given such a condition, the compactness
of U ijnα and the continuity of the function

ψijnα : U ijnα ×Wα
ij ×Wα

in → K, (x, k, k′) 7→ kji(x) · k−1 · k′ · kij(x),

at the points (x, e, e) yield convex open identity neighborhoods inside Wα
ij and Wα

in, replac-
ing these sets, so that condition (6) is satisfied. Note that we are still free to modify these
sets with indices smaller than (j, n). Furthermore, making them smaller cannot violate any
conditions that we guaranteed in previous steps of the construction, because they can only
appear on the left hand side of such conditions.

This completes the proof.

Theorem II.9 (Smoothing Continuous Principal Bundles). Let K be a Lie group modeled
on a locally convex space, M be a connected manifold with corners and P be a continuous principal
K-bundle over M . Then there exists a smooth principal K-bundle P̃ over M and a continuous
bundle equivalence Ω : P → P̃.

Proof. We may assume that the continuous bundle P is equivalent to a bundle Pkij as in Remark
I.2, where (Uj)j∈J is a locally trivial cover of M and kij : Uij → K are continuous transition
functions that satisfy the cocycle condition kij · kjn = kin pointwise on Uijn.

Proposition II.5 yields open covers
(
U

[∞]
i

)
i∈N and

(
U

[0]
i

)
i∈N of M subordinate to (Uj)j∈J .

For every i ∈ N, we denote by Ui an open set of the cover (Uj)j∈J that contains U [0]
i and observe

that (Ui)i∈N is still a locally trivial open cover of M . In our construction, we need open covers
not only for pairs (j, n) ∈ N×N with j < n, but also for pairs (j−1/3, n), (j−2/3, n) in-between
and (n, n) to enable continuous extensions and smoothing. The function

λ : {(j, n) ∈ {0, 1/3, 2/3, . . . } ×N : j ≤ n} → [0,∞), λ(j, n) =
n(n− 1)

2
+ j,

is tailored to map the pairs (0, 1), (1, 1), (1, 2), (2, 2), (1, 3), (2, 3), (3, 3), (1, 4), . . . to the integers
0, 1, 2, . . . , respectively, and the other pairs in-between. If we apply the second part of Proposition
II.5 to the countable subset L := (imλ) \ {0} of (0,∞), we get open sets U [jn]

i := U
[λ(j,n)]
i for all

pairs (j, n) in the domain of λ such that
(
U

[jn]

i

)
i∈N are again locally finite covers. We note that

(j, n) < (j′, n′) in the sense of (8) implies U
[j′n′]

i ⊆ U
[jn]
i .

Let ϕ : W → ϕ(W ) be an arbitrary centered chart of K and consider the countable compact
cover

(
U

[0]

i

)
i∈N of M and the restrictions kij |U [0]

ij

of the continuous transition functions to the

corresponding intersections. Then Lemma II.8 yields open ϕ-convex (convex, for short) identity
neighborhoods Wα

ij for all i < j and α in N that satisfy condition (6) stated there.
Our first goal is the construction of smooth maps k̃ij : Uij → K that satisfy the cocycle condi-

tion on the open cover
(
U

[∞]
i

)
i∈N of M , which uniquely determines a smooth principal K-bundle

P̃ by Remarks I.2 and I.9. These maps k̃ij will be constructed step-by-step in increasing order
with respect to (8), starting with the minimal index (1, 2). At all times during the construction,
the conditions

(a) k̃jn = k̃ji · k̃in pointwise on U
[jn]

ijn for 1 ≤ i < j < n ≤ N and

(b)
(
k̃jn · knj

)(
U

[jn]

jnα

)
∈Wα

jn for all j < n and α in N,

will be satisfied whenever all k̃ij involved have already been constructed. We are now going to
construct the smooth maps k̃jn for 1 ≤ j < n ≤ N (and implicitly k̃nj as k̃nj(x) := k̃jn(x)−1),
assuming that this has already been done for pairs of indices smaller than (j, n).
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• To satisfy all relevant cocycle conditions, we start with

k̃′jn :
⋃
i<j

U
[j−1,n]

ijn → K, k̃′jn(x) := k̃ji(x) · k̃in(x) for x ∈ U [j−1,n]

ijn .

This smooth function is well-defined, because the cocycle conditions (a) for lower indices
assert that for any indices i′ < i < j and any point x ∈ U [j−1,n]

i′jn ∩ U [j−1,n]

ijn , we have

k̃ji′(x) · k̃i′n(x) = k̃ji′(x) · k̃i′i(x) · k̃ii′(x) · k̃in(x) = k̃ji(x) · k̃in(x),

because U
[j−1,n]

i′ijn is contained in both U
[ij]

i′ij and U
[in]

i′in.

• Next, we want to extend the smooth map k̃′jn on
⋃

i<j U
[j−1,n]

ijn to a continuous map k′jn

on Ujn without compromising the cocycle conditions too much. To do this, we consider

the function ϕjn := k̃′jnknj :
⋃

i<j U
[j−1,n]

ijn → K. For all i < j, α ∈ N and x ∈ U
[j−1,n]

ijnα ,
conditions (b) above and (6) of Lemma II.8 imply

ϕjn(x) = (k̃′jnknj)(x) = kji(x) · ((k̃ij · kji)(x)︸ ︷︷ ︸
∈W α

ij

)−1 · (k̃in · kni)(x)︸ ︷︷ ︸
∈W α

in

·kij(x)

∈ kji(x) · (Wα
ij)

−1 ·Wα
in · kij(x) ⊆Wα

jn,

because U
[j−1,n]

ijnα is contained in both U [ij]
ijα and U [in]

inα . Since the values of ϕjn are contained
in particular in the identity neighborhood W , we may apply Lemma II.3 to M = Ujn and

its subsets A =
⋃

i<j U
[j−1,n]

ijn and B =
⋃

i<j U
[j−2/3,n]

ijn . It yields a continuous function
Φjn : Ujn → W that coincides with ϕjn on B, is the identity outside A, and satisfies

Φjn(x) ∈ Wα
jn for all x ∈ U

[j−1,n]

jnα . We define k′jn : Ujn → K by k′jn := Φjnkjn and note
that k′jn coincides with the smooth function k̃′jn on B and with kjn outside A.

• We finally get the smooth map k̃jn : Ujn → K that we are looking for if we apply Proposi-

tion II.1 to the function k′jn on M = A = Ujn, to the open complement U of
⋃

i<j U
[j−1/3,n]

ijn

in M , and to the open neighborhood

Ojn =

(⋂
α∈N

⌊
U

[jn]

jnα,W
α
jn

⌋)
· kjn

of both kjn and k′jn, where k′jn ∈ Ojn follows from Φjn(x) ∈ Wα
jn and k′jn(x) = Φjn(x) ·

kjn(x) ∈Wjn · kjn(x). Note that Ojn is really open, because Remark II.6 asserts that just

finitely many of the sets U
[jn]

jnα for α ∈ N are non-empty and may influence the intersection.

By the choice of U , the result k̃jn coincides with both k′jn and k̃′jn on
⋃

i<j U
[jn]

ijn , so it
satisfies the cocycle conditions (a). It also satisfies (b) by the choice of Ojn.

This concludes the construction of the smooth principal K-bundle P̃. We use the same covers of
M and identity neighborhoods in K for the construction of continuous functions fi : U

[0]

i → K
such that

(c) fn = k̃nj · fj · kjn pointwise on U
[nn]

jn for j < n in N,

(d) fn

(
U

[0]

n

)
⊆W for n ∈ N, and

(e) fn ≡ e outside
⋃

j<n U
[jn]

jn for n ∈ N,
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and Remark I.10 tells us that the restriction of the maps fi to the sets U [∞]
i of the open cover

is the local description of a bundle equivalence Ω : P → P̃ of the bundles P ∼= P
kij |U [∞]

ij
and

P̃ ∼= Pekij |U [∞]
ij

that we are looking for. Indeed, all the sets U
[nn]

jn of condition (c) contain the

corresponding sets U [∞]
jn of the open cover.

We start with the constant function f1 ≡ e, which clearly satisfies conditions (d) and (e).
The construction of fn for n > 1 is as follows:

• To satisfy condition (c), we start with

f ′n :
⋃
j<n

U
[jn]

jn → K, f ′n(x) = k̃nj(x) · fj(x) · kjn(x) for x ∈ U [jn]

jn .

This continuous function is well-defined, because the conditions (c) for fj and (a) for
j′ < j < n guarantee that

k̃nj(x) · fj(x) · kjn(x) = k̃nj(x) · k̃jj′(x) · fj′(x) · kj′j(x) · kjn(x) = k̃nj′(x) · fj′(x) · kj′n(x)

holds for all x ∈ U [jn]

j′jn = U
[jn]

j′n ∩ U [jn]

jn .

• To apply Lemma II.3, we need to know something about the values of f ′n. Let x be an
arbitrary point in

⋃
j<n U

[jn]

jn , and let j < n be the smallest index such that x ∈ U
[jn]

jn .
Using condition (e) for fj , we learn that fj(x) = e. Then we get the estimate

f ′n(x) = k̃nj(x) · fj(x) · kjn(x) = k̃nj(x) · kjn(x)

= knj(x) ·
(
k̃jn(x) · k̃nj(x)

)−1 · kjn(x) ∈ knj(x) · (Wn
jn)−1 · kjn(x) ⊆W,

so that the values of fn are, altogether, contained in the identity neighborhood W of K.
If we apply Lemma II.3 to M := U

[0]

n , to f ′n on A =
⋃

j<n U
[jn]

jn and to the smaller set

B =
⋃

j<n U
[nn]

jn , then we get a continuous function fn : U
[0]

n → W that coincides with f ′n
on B and is e outside A. Accordingly, fn satisfies all the conditions (c) to (e).

This concludes the construction of the bundle equivalence.

Lemma II.10 (More Identity Neighborhoods). If Pk′ij
is a continuous principal K-bundle

over M with locally trivial cover (Ui)i∈I , then there exist open unit neighborhoods Wα
j for j, α ∈ N

such that

(9) k′ji(x) ·Wα
i · k′ij(x) ⊆Wα

j for all i < j and x ∈ U ijα.

Proof. For any fixed α ∈ N, let j < ∞ be maximal with U jα 6= ∅ (cf. Remark II.6) and set
Wα

j = W . With the same continuity argument as in Lemma II.8, we get Wα
i for any i < j that

satisfy (9), but which we do not fixate yet. In the next step, let j′ < j be maximal such that
U j′α 6= ∅. We now fixate the Wα

j′ just constructed and compromise the remaining Wα
i for i < j′

by continuity as before. Proceeding in this way, we end up after finitely many steps with the
construction of all Wα

i .

Theorem II.11 (Smoothing Continuous Bundle Equivalences). If P and P ′ are smooth
principal K-bundles over the connected manifold with corners M and Ω : P → P ′ is a continuous
bundle equivalence, then there exists a smooth bundle equivalence Ω̃ : P → P ′.

Proof. Let (Vl)l∈L be a locally trivial locally finite open cover of M . First, we use Proposition
II.5 to obtain for each i, j ∈ N open sets U [∞]

i , U [j]
i , U [j+1/3]

i , U [j+2/3]
i , and U

[0]
i such that their

closures are compact manifolds with corners, that U
[0]

i ⊆ Vl for some l ∈ L, that (U [∞]
i )i∈N and

(U
[0]

i )i∈N are locally finite covers of M , and such that

(10) U
[∞]

i ⊆ U
[j+1]
i ⊆ U

[j+1]

i ⊆ U
[j+2/3]
i ⊆ U

[j+2/3]

i ⊆ U
[j+1/3]
i ⊆ U

[j+1/3]

i ⊆ U
[j]
i ⊆ U

[0]
i
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holds for all i, j ∈ N.
Since the U [∞]

i also cover M , we have a countable subcover (Vi)i∈N of the locally finite cover
(Vl)l∈L with Vi := Vl(i). This defines smooth transition functions kij : Vij → K, κij : U [∞]

ij → K
and smooth bundle equivalences Pkij

∼= P ∼= Pκij . Performing the same construction for P ′ we
get smooth transition functions k′ij : Vij → K, κ′ij : U [∞]

ij → K and smooth bundle equivalences
Pk′ij

∼= P ∼= Pκ′ij
. According to Remark I.10, the bundle equivalence Ω defines continuous maps

fi : Vij → K that satisfy

(11) fi(x) = k′ij(x) · fj(x) · kji(x) for all x ∈ Vij .

We shall inductively construct smooth maps f̃i : U
[0]

i → K such that

f̃i(x) · fi(x)−1 ∈Wα
i for all i < α and x ∈ U [i]

iα,(12)

f̃j(x) = k′ji(x) · f̃i(x) · kij(x) for all i < j and x ∈ U [j]

ij .(13)

This will finish the proof, since kij |U [∞]
ij

= κij , k′ij
∣∣
U

[∞]
ij

= κ′ij and according to Remark I.10, the

restriction of f̃i to U [∞]
i defines a smooth bundle equivalence Ω̃ : Pκij → Pκ′ij

.

To construct f̃1, first note that

(14) O1 :=
⋂

α∈N

⌊
U

[0]

1α,W
α
1

⌋
· f1

is an open neighborhood of f1, since only finitely many U
[0]

1α are non-empty. We now obtain f̃1

if we apply Proposition II.1 to f = f1, M = A = U = U
[0]

1 , and the open neighborhood O1 from
(14).

To construct f̃j we set f̃ ′j(x) := k′ji(x) · f̃i(x) · kij(x) for i < j and x ∈ U [j−1]

ij . This defines a

continuous map on
⋃

i<j U
[j−1]

ij , since on each U
[j−1]

ij the compatibility condition (13) is satisfied
by induction. Furthermore, we have

ϕj(x) := f̃ ′j(x) · fj(x)−1 = k′ji(x) · f̃i(x) · kij(x) · fj(x)−1 = k′ji(x) · f̃i(x) · fi(x)−1︸ ︷︷ ︸
∈W α

i

·k′ij(x) ∈Wα
j

for x ∈ U
[j−1]

ijα , i < j < α due to (9), (11) and (12). Since Wα
j ⊆ W is convex, we may apply

Proposition II.3 to A =
⋃

i<j U
[j−1]

ij and B =
⋃

i<j U
[j−2/3]

ij to extend ϕj to a continuous map Φj

on U
[0]

j . Then Φj coincides with ϕi on B and maps U
[j]

jα into Wα
j if j < α. Accordingly, Φj · fj

is an element of the open neighborhood

(15) O2 :=
⋂
α>j

⌊
U

[j]

jα,W
α
j

⌋
· fj

of fj and is smooth on
⋃

i<j U
[j−2/3]
ij . We then obtain f̃j by applying Proposition II.1 to the

map f = Φj · fj , M = A = U
[0]

j , U = M \
⋃

i<j U
[j−1/3]

ij , and to the open neighborhood from
(15).

III Related Topics

In this section, we explain the relations of the results of the preceding section to non-abelian
Čech cohomology and to twisted K-theory. While the first one is simply a reformulation of the
previous setting in terms of sheaf theory, the latter shows how applications of the previous results
may arise.
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Remark III.1 (Abelian Čech Cohomology). Let M be a paracompact topological space
with an open cover U = (Ui)i∈I and A be an abelian topological group. Then, for n ≥ 0 an
n-cochain f is a collection of continuous functions fi1...in+1 : Ui1...in+1 → A, and we denote the
set of n-cocycles by Cn(U , A) and set it to 0 if n < 0. We then define the boundary operator

δn : Cn(U , A) → Cn+1(U , A) δ(f)i0i1...in+1 =
n∑

k=0

(−1)kfi0... bik...in+1
,

where îk means that we omit the index in. Then δn+1 ◦ δn = 0, and we define

(16) Hn
c (U , A) := ker(δn)/ im(δn−1) and Hn

c (M,A) := lim
→

Hn
c (U , A),

where the order on covers is induced by being refinements of one another. The group H1(M,A)
is the n-th continuous Čech cohomology. If, in addition, M is a smooth manifold with or with-
out corners and A is a smooth Lie group, then the same construction with smooth instead of
continuous functions leads to the corresponding n-th smooth Čech cohomology.

Remark III.2 (Non-Abelian Čech Cohomology). (cf. [De53, Sect. 12] and [GM99, 3.2.3])
If n = 0, 1, then we can perform a similar construction as in the previous remark in the case of
a not necessarily commutative group K. The definition of an n-cochain is the same as in the
commutative case, but we run into problems when writing down the boundary operator δ, since
the computation of δn+1 ◦ δn = 0 uses heavily the commutativity of A. Even for n = 0, where
an almost trivial computation shows that δ1 ◦ δ0, vanishes, im(δ0) is not a normal subgroup of
ker(δ1), whence we may not adopt the definition of H1

c (M,K) as in (16). However, we may
define δ0(f)ij = fi · f−1

j , δ1(k)ijl = kij · kjl · kli and call the elements of ker(δ1) 2-cocycles (or
cocycles for short).

The way to circumvent difficulties for n = 1 is the observation that even in the non-abelian
case, C1

s (U ,K) acts on ker(δ1) by (fi, kij) 7→ fi · kij · f−1
j . Thus we define two cocycles kij and

k′ij to be equivalent if k′ij = fi · kij · f−1
j on Uij for some fi ∈ C1(U ,K) and by H1

c (U ,K), the
equivalence classes (or the orbit space) of this action. Then H1

c (U ,K) is not a group, but we
may nevertheless take the direct limit

H1
c (M,K) := lim

→
H1

c (U ,K)

as sets and define it to be the 1st (non-abelian) continuous Čech cohomology ofM with coefficients
inK. A representing space ofH1

c (M,K) would then be the set of equivalence classes of continuous
principal K-bundles over M .

Again, if M is a smooth manifold with corners and K is a smooth Lie, we can adopt this
construction to define the 1st (non-abelian) smooth Čech cohomology H1

s (M,K).

Theorem III.3 (Isomorphism for Non-Abelian Čech Cohomology). If M is a finite-
dimensional connected manifold with corners and K is a smooth Lie group modeled on a locally
convex space, then the canonical injection

ι : H1
s (M,K) → H1

c (M,K)

is a bijection.

Proof. We identify smooth and continuous principal bundles with Čech 1-cocycles and smooth
and continuous bundle equivalences with Čech 0-cochains as in Remark I.10. For each open cover
U of M , we have the canonical map H1

s (U ,K) → H1
c (U ,K). Now each cocycle kij : Uij → K

defines a principal bundle P with locally trivial covering U . We may assume by Theorem II.9
that P is continuously equivalent to a smooth principal bundle P̃, and thus that U is also a
locally trivial covering for P̃. This shows that the map is surjective and the injectivity follows
from Theorem II.11 in the same way. Accordingly, the map induced on the direct limit is a
bijection.
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Remark III.4 (The Projective Unitary Group). Let H be a separable infinite-dimensional
Hilbert space and denote by U(H) the group of unitary operators. If we equip U(H) with the
norm topology, then the exponential series, restricted to skew-self-adjoint operators L(U(H)),
defines an exponential function and turns U(H) into an infinite-dimensional Banach–Lie group
(cf. [Mi84, Ex. 1.1]). Then U(1) is a normal subgroup of U(H) and it can also be shown that
PU(H) := U(H)/U(1) is also a Lie group modeled on L(U(H))/iR.

Remark III.5 (Eilenberg–MacLane Spaces). If X is a topological space with non-trivial
n-th homotopy group πn(X) for all but one n ∈ N, then it is called an Eilenberg–MacLane
space K(n, πn(X)). Since U(1) is a K(1,Z), the long exact homotopy sequence [Br93, Th.
VII.6.7] shows that PU(H) is a K(2,Z), since U(H) is contractible [Ku65, Th. 3]. By the
same argument, the classifying space B PU(H) [Hu94, Ch. 4.11] is a K(3,Z) since its total
space P PU(H) is contractible. Thus [M,B PU(H)] ∼= H3(M,Z) by [Br93, Cor. VII.13.16]
classifies the equivalence classes of principal PU(H)-bundles over M . The representing class [P]
in H3(M,Z) is called the Dixmier-Douady class of P (cf. [CCM98], [DD63]). It describes the
restriction of P to be the projectivization of an (automatically trivial) principal U(H)-bundle.

Remark III.6 (Twisted K-theory). (cf. [Ro89, Sect. 2], [BCM+02]) The Dixmier-Douady
class of a bundle P induces a twisting of K-theory in the following manner. For any paracompact
space M , the K-theory K0(M) is defined to be the ring completion of the equivalence classes of
finite-dimensional complex vector bundles over X, where addition and multiplication is defined
by taking direct sums and tensor products of vector bundles [Hu94]. Furthermore, the space of
Fredholm operators Fred(H) is a representing space for K-theory, i.e. K0(M) ∼= [M,Fred(H)],
where [·, ·] denotes homotopy classes of continuous maps. Since PU(H) acts (continuously) on
Fred(H) by conjugation, we can form the associated vector bundle PFred(H) := Fred(H)×PU(H)P.
Then the homotopy classes of sections [M,PFred(H)] (or equivalently the equivariant homotopy
classes of equivariant maps [PFred(H),Fred(H)]PU(H)) define the twisted K-theory KP(M). Since
Theorem II.9 implies that we may assume P to be smooth and the action of PU(H) on Fred(H)
is smooth, being given locally in terms of a continuous linear map, PAd is also smooth. We
may thus, in the computation of KP(M), restrict our attention to smooth sections and smooth
homotopies if M has a sufficiently nice triangularization.
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