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Abstract

This paper is on the equivalence of continuous and smooth principal bundles. Throughout
the text, let K be a a Lie group, modeled on a locally convex space, and M be a finite-
dimensional paracompact manifold with corners. We show that each continuous principal
K- bundle over M is continuously equivalent to a smooth one and that two smooth principal
K-bundles over M which are continuously equivalent are also smoothly equivalent. In the
concluding section, we relate our results to neighboring topics.
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Introduction

This paper deals with the close interplay between continuous and smooth principal K-bundles
over M, where K is a Lie group modeled on an arbitrary locally convex space (following [Mi84])
and M a finite-dimensional (paracompact) manifold with corners. The main point here is that
there is no essential difference between the two concepts as long as one is only interested in
equivalence classes of bundles (as one usually is).

We denote the set of equivalence classes of continuous K-principal bundles over M by
H(M, K) and the set of equivalence classes of smooth K-principal bundles over M by H! (M, K),
which is only a nomenclature for now. Since each smooth principal bundle is in particular con-
tinuous, we have a canonic map H!(M,K) — H}(M,K). The question is whether this map is
injective, surjective, or both.

One approach to this questions could be to introduce smooth structures on classifying spaces
and to smooth classifying maps. As an example, the classifying space of K = GL,,(C) is isomor-
phic to the direct limit of the Grassmanians

B GL, (C) = Gy (00) := lim Gy (k).

*Funded in the DFG-Research Project 431/5-1,2: Geometrische Darstellungstheorie wurzelgraduierter Lie-
Gruppen
TFunded by a doctoral scholarship from the Technische Universitit Darmstadt
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Then [GI05] Th. 3.1] provides a smooth manifold structure on B GL,(C), and one can smooth
classifying maps as in [Hi76l Th. 4.3.5] for the case of vector bundles. In the non-linear case,
the classifying space of the diffeomorphism group B Diff(N) for a compact manifold N, which
can be viewed as a nonlinear Grassmanian, can also be given a smooth structure [KM97, 44.21].
A general approach to this question has been taken in [Mo79], but with a focus on a de Rham
cohomology, which has not been traced further. However, a general theory for differentiable
structures on classifying spaces seems to be missing. On the other hand, there exist partial
answers to the above question arising from the comparison of continuous and analytic fiber
bundles (cf. [Gr58], [To67] and [Gu02]). Since these considerations use strong constraints on the
structure group (e.g. its compactness), they can not be used in the great generality that we are
aiming for.

The approach in this paper is to use an approximation result for Lie group-valued functions
in order to smooth representatives of continuous bundles or bundle equivalences (cf. Proposition
or [Wo05l, Prop. II1.8]). We use this in combination with the fact that there is a large freedom
of choice in the description of principal bundles by locally trivial covers and transition functions.
In this way, we construct new representatives of bundles and bundle equivalences that satisfy
cocycle or compatibility conditions on probably finer locally trivial covers, but which describe
equivalent objects. Since this technique uses heavily the local compactness of the base manifold,
there seems to be no generalization of this method to infinite-dimensional base manifolds.

We now describe our results in some detail. In the first section we recall the basic facts of
continuous and smooth principal bundles with a focus on the description of bundles and bundle
equivalences in terms of locally trivial covers and transition functions. Furthermore, we recall
briefly the concept of differential calculus and the concept of manifolds with corners that we
work with in this text.

The second section is exclusively devoted to the proofs of our main results and to their
technical prerequisites. As it is explained in the last section, the following theorems assert the
surjectivity and injectivity, respectively, of the map H!(M, K) — H}(M, K).

Theorem (Smoothing Continuous Principal Bundles). Let K be a Lie group modeled on
a locally convex space, M be a connected manifold with corners and P be a continuous principal
K-bundle over M. Then there exists a smooth principal K-bundle P over M and a continuous
bundle equivalence Q) : P — P.

Theorem (Smoothing Continuous Bundle Equivalences). If P and P’ are smooth prin-
cipal K-bundles over the connected manifold with corners M and Q : P — P’ is a continuous
bundle equivalence, then there exists a smooth bundle equivalence Q0 : P — P’.

In the third section we relate our results to some neighboring topics, in particular to non-
abelian Cech cohomology and to twisted K-theory. This presentation is not meant to be exhaus-
tive, but to give some ideas of the implications of our results.

I Principal Fiber Bundles

In this section we provide the basic material concerning manifolds with corners and smooth and
continuous principal bundles.

Definition 1.1 (Continuous Principal Bundle). Let K be a topological group and M be
a topological space. Then a continuous principal K-bundle over M (or shortly a continuous
principal bundle) is a topological space P together with a continuous action P x K — P,
(p, k) — p-k, and a map n : P — M such that there exists an open cover (U;);cr of M, called a
locally trivial cover, and homeomorphisms

QN U;) - U x K,

called local trivializations, satisfying pry o Q; = |, -1,y and Q(p-k) = Q(p) - k. Here K acts on
U; x K by right multiplication in the second factor. We will use the calligraphic letter P for the
tuple (K,n: P — M).
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A morphism of continuous bundles or a continuous bundle map between two principal bundles
P and P’ over M is a continuous map Q : P — P’ satisfying Q(p - k) = Q(p) - k. Since
P'/K = M = P/K, it induces a map Q% : M — M. We call Q a continuous bundle equivalence
if it is an isomorphism and Q# = idy,.

Remark 1.2 (Transition Functions). If P is a continuous principal K-bundle over M, then
the local trivializations define continuous mappings k;; : U; NU; — K by

(1) Q; Nz, e) - kij(z) = Qj_l(ac, e) for all x € U; NU;
called transition functions. The k;; satisfy the cocycle condition
(2) kii(xz)=e forall xeU; and Fkij(x)-kjn(x)- kpi(z) =e forall z € U;NnU; NUj.

On the other hand, if (Vj),es is an open cover of a space N, and k;; : V;; — K are continuous
that satisfy condition , then

Pp, = Ut x Ui x K/~ with  (j,2,k) ~ (j,2/,F) & 2 =2 and kj;(z) - k =K'
jeJ

defines a continuous principal K-bundle over M. Here 7 is given by [i,z,k] — z, the local
trivializations by [(¢,z, k)] — (x, k) and the K-action by ([(¢,x, k)], k") — [(i,x, kk')]. We will
call this bundle Py, .

If the k;; arise from the local trivializations of a given bundle P as in , then

Q:P— Py, p—[i,%0p)]ifpen(U)
defines a bundle equivalence between P and Py,, whose inverse is given by [i, z, k] +— Q; N (z, k).

Definition 1.3 (Differential Calculus on Locally Convex Spaces). Let E and F be a
locally convex spaces and U C FE be open. Then f : U — F is called continuously differentiable
or C' if it is continuous, for each v € E the differential quotient

df ()0 := lim %(f(a: + o) — f()

—0

exists and the map df : U x E — F' is continuous. For n > 1 we, recursively define
. 1 n— m—
d" f(z).(v1,...,0p) = %Hng(d Y+ h) (1, vpmr) —dP T (@) (01, vn))

and say that fis C" if d*f : U x E¥ — F exists for all k = 1,...,n and is continuous. We say
that f is C* or smooth if it is C™ for all n € IN.

Definition 1.4 (Lie Group). From the definition above the notion of a smooth Lie group is
clear. It is a group which is a smooth manifold modeled on a locally convex space such that the
group operations are smooth.

Remark 1.5 (Convenient Calculus). (cf. [Ne02, Rem. 3.2]) We briefly recall the basic
definitions of the convenient calculus from [KM97]. Again, let E and F be locally convex spaces.
A curve f : R — FE is called smooth if it is smooth in the sense of Definition Then the
c¢*-topology on E is the final topology induced from all smooth curves f € C*(R, E). If E is
a Fréchet space, then the ¢*°-topology is again a locally convex vector topology which coincides
with the original topology [KM97, Th. 4.11]. If U C E is ¢*°-open, then f : U — F is said to be
of class C*° or smooth if

[ (CF(R,U)) € CF(R, F),

i.e. if f maps smooth curves to smooth curves. The chain rule [GI02] Prop. 1.15] implies that
each smooth map in the sense of Definition is smooth in the convenient sense. On the other
hand, [KM97, Th. 12.8] implies that on a Fréchet space a smooth map in the convenient sense
is smooth in the sense of Definition [[.3] Hence for Fréchet spaces, the two notions coincide.
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Remark 1.6 (Manifold with Corners). We refer to [Wo06] for an introduction to the concept
of manifolds with corners, which may, in general, be modeled on a locally convex space. Roughly
speaking, an n-dimensional manifold with corners (which we will assume to be paracompact
throughout this paper) is a topological space such that each point has a neighborhood that is
homeomorphic to an open subset of [0,1]™ and that the corresponding coordinate changes are
smooth. The crucial point here is the notion of smoothness for non-open domains. The usual
notion is to define a map f : A C R™ — R™ to be smooth if for each z € A, there exists
a neighborhood U, of x, which is open in R", and a smooth map f, : U, — R™ such that
felanv, = flany,- The notion in [Wo06] is slightly different, but is the appropriate one for a
treatment of mapping spaces [Mi80]. However, it turns out in [Wo06] that it is equivalent to the
usual notion.

Remark 1.7 (Paracompact Spaces). We recall some basic facts from general topology. If
X is a topological space, then a collection of subsets (U;);cr of X is called locally finite if each
z € X has a neighborhood that has non-empty intersection with only finitely many U;, and
X is called paracompact if each open cover has a locally finite refinement. If X is the union
of countably many compact subsets, then it is called o-compact, and if each open cover has a
countable subcover, it is called Lindel6f.

Now let M be a manifold with corners, which is in particular locally compact and locally
connected. For these spaces, [Du66l Th. XI.7.243] imply that M is paracompact if and only
if each component is o-compact, equivalently, Lindel6f. Furthermore, [Br93l Th. 1.12.5] implies
that M is normal in each of these cases.

Definition 1.8 (Smooth Principal Bundle). If K is a smooth Lie group and M is a smooth
manifold with corners (both modeled on locally convex vector spaces), then a continuous prin-
cipal K-bundle over M is called a smooth principal K-bundle over M (or shortly a smooth
principal bundle) if the transition functions from Remark are smooth for some choice of local
trivializations.

Remark 1.9 (Smooth Structure on Smooth Principal Bundles). If P is a smooth prin-
cipal bundle, then we define a smooth structure on P by requiring the local trivializations

Q- T]il(Ui) — U, x K

that define the smooth transition functions from Definition to be diffeomorphisms. This
actually defines a smooth structure on P since it is covered by (n~1(U;))ser and the coordinate
changes

UnU; x K—U;NU; x K, (z,k)— Qi(Q; (x,k)) = (z,k - kij(z))
are smooth because the k;; are assumed to be smooth. A continuous bundle map between
smooth principal bundles is a morphism of smooth principal bundles or a smooth bundle map if
it is smooth with respect to the the smooth structure on the bundles just described.

Remark 1.10 (Bundle Equivalences). If P and P’ are two principal K-bundles over M, then
there exists an open cover (U;);c; of M such that we have local trivializations

Qi : nil(Ui) — Ui X K
Q{L nl_l(Ui) — Ui x K

for P and P’ In fact, if (Vj);jes and (V});e o are locally trivial covers of M (for P and for 7',
respectively), then

(Vi O Vi) Ganerxr
is simultaneously a locally trivial cover for both P and P’, and the local trivializations are given

by restricting the original ones.
If Py, and Pk;j are given by transition functions k;; and kgj with respect to the same open

cover (Uj)ier (ie., ki : Uy NU; — K and k’gj : UiNU; — K), then a bundle equivalence
NPy, — Pk;j defines for each i € I a continuous map

3) i Ui x K — K by Q([(i, 2, k)]) = [(i, 2, pi(2, F))].
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Furthermore, we have ¢;(z,k) = @;(x,e) - k since € is assumed to satisfy Q(p - k) = Q(p) - k.
Setting f;(x) := @;(x, e), we thus obtain continuous maps f; : U; — K satisfying

(4) Ei(x) - fi(z) - kji(x) = f;(x) for all z € U; N Uy,

since [(i,, k)] = [(j, z, kji(z)k)] has to be mapped to the same element of Py, by Q. On the
other hand, if for each ¢ € I we have continuous maps f; : U; — K satisfying (4), then

qu‘,j > [(i,ﬂf, k)] = [(vavfz(x) ! k)] € Pkgj

defines a bundle equivalence between Py, and Py, which covers the identity on M.
If Py,; and Pk;j are smooth and the maps k;; and kz’-j are smooth, then it follows directly

from that a bundle equivalence described by continuous maps f; : U; — K is smooth if and
only if these maps are smooth.

II Equivalences of Smooth and Continuous Bundles

In this section, we state and prove the two main results of this paper. The proofs use two
important tools that we describe first: a proposition to smooth continuous maps and a lemma,
to fade out continuous functions.

Proposition II.1 (Smoothing). Let M be a paracompact manifold with corners, K a Lie
group modeled on a locally convex space and f € C(M,K). If A C M is closed and U C M is
open such that f is smooth on a neighborhood of A\ U, then each open neighborhood O of f in
C(M,K).,. contains a map g, which is smooth on a neighborhood of A and equals f on M\ U.

Proof. This is [Wo05, Prop. IIL.8]. O

Remark I1.2 (Centered Chart, Convex Subset). Let K be a Lie group modeled on a locally
convex topological vector space E. A chart ¢ : W — (W) C E with e € W and ¢(e) = 0 is
called a centered chart. A subset L of W is called y-convezr (or just convex, if ¢ is obvious) if
it is identified with a convex subset ¢(L) in E. If W itself is ¢-convex, we speak of a convex
centered chart.

It is clear that every open identity neighborhood in K contains a ¢-convex open neighborhood
for some centered chart o, because we can pull back any convex open neighborhood that is small
enough from the underlying locally convex vector space.

Lemma I1.3 (Fading-Out). Let M be a manifold with corners, A and B be closed subsets
satisfying B C A%, o : W — (W) be a convex centered chart of a Lie group K modeled on
a locally convex space, and f : A — W be a continuous function. Then there is a continuous
function F: M — W C K with F|p = f and F|yp a0 = e. Moreover, if W' C W is another
p-convex set, then f(x) € W' always implies F(x) € W'.

Proof. Since M is paracompact, it is also normal (see Remark . The closed sets M \ A°
and B are disjoint by assumption, so the Urysohn’s Lemma as in [Br93, Th. 1.10.2] yields a
continuous function A : M — [0, 1] such that A|p =1 and |y 40 = 0. Since (W) is a convex
zero neighborhood in E, we have [0,1] - o(W) C o(W). We use this to define the continuous
function

PiA=W, oo (@) o (f@)),

that satisfies, by the choice of A, fa|p = f|z and fi|pa = e because A C M \ A°. So we may
extend fy to the continuous function

) fa(z), ifxeA
F:M—W, xH{e, ifze M\ A°

that satisfies all requirements. O
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Before we state and prove the main results, we need some technical data: suitable covers of
a compact manifold with corners and identity neighborhoods in a Lie group that satisfy certain
conditions.

Lemma I1.4 (Squeezing-in Manifolds with Corners). Let W be an open neighborhood of a
point x in R = {(x1,...,24) €ERY:2; >0 foralli =1,...,n} and C CW be a compact set
containing x. Then there exists an open set V satisfying x € C CV CV C W, whose closure V
is a compact manifold with corners.

Proof. For every x = (x1,...,24) € C, there is an e, > 0 such that
(5) B(z,e) := &1 — €4, 21 + €] X -+ X [£g — €4, Tq + €] NRET

is contained in W. The interiors V, := B(z,¢,)? in R4 form an open cover of the compact set C,
of which we may choose a finite subcollection (Vi )i=1,....m covering C. The union V := U:i1 Ve,

satisfies all requirements. In particular, V is a compact manifold with corners, because it is a
finite union of cubes. O

Proposition I1.5 (Nested Covers). Let M be a connected manifold with corners and (Uj) ;e

be an open cover of M. Then there exist countable open covers (Ui[oo])ie]N and (Ui[O])ie]N of M
such that UEOO] = Ui[ool and UEO] = UZ-[O] are compact manifolds with corners, UEOO] - UZ-[O] for

all i € IN, and such that even the cover (UZ[-O]
subordinate to (Uj)je..
In this situation, let L be any countable subset of the open interval (0,00). Then for every

)Z.G]N of M by compact sets is locally finite and

A € L, there exists a countable, locally finite cover (Uim)iel of M by open sets whose closures

are compact manifolds with corners such that UE)\] - Ui[“] holds whenever co > A > u > 0.

Proof. For every x € M, we have x € Uj(,) for some j(z) € J. Let (U, p,) be a chart of M
around z such that U, C Uj,). We can even find an open neighborhood V,, of z whose closure
V, is compact and contained in U,. Since M is paracompact, the open cover (VI)’I‘ M has a
locally finite subordinated cover (V;);er, where V; C V,, and V; C V,, C U, for suitable z = x(4).
Since M is also Lindeldf, we may assume that I = IN.

To find suitable covers Ui[oo] and Ui[o]7 we are going to enlarge the sets V; so carefully in two

steps that the resulting covers remain locally finite. More precisely, Ui[oo] and Ui[o] will be defined
inductively so that even the family (V}!)xen with

Vi Uy fork < i
Vi for k >

is still a locally finite cover of M for every ¢ € IN. We describe the construction for a fixed ¢ > 1.

For every point y € V;, there is an open neighborhood Viy of y inside U, ;) whose intersection
with just finitely many Viif1 is non-empty. Under the chart ¢, (;), this neighborhood V;, is
mapped to an open neighborhood of ¢,(;)(y) in the modeling space R4t of M. There we can
find real numbers €o(y) > €00 (y) > 0 such that the cubes B(y, e (y)) and B(y, £o(y)) introduced
in are compact neighborhoods of ¢, ;) (y) contained in @, ;) (Vi,,). Since V; is compact, it is
already covered by finitely many sets V; ,, say by (va)yey for a finite subset Y of V;. We define
the open sets

U= | entsy (B 2o ®))?) and U = | ., (B(y,20(®))°) .
yey yey

whose closures are compact manifolds with corners, because they are a finite union of cubes
under the chart ¢,;). On the one hand, the construction guarantees

]

vicu cu® cul et ¢ | iy € Uy

yey
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On the other hand, the cover (Vk’) kel is locally finite, because it differs from the locally finite

cover (Vi1), o in the single set Vi = U, T, each point of which has a neighborhood Viy
intersecting just finitely many other sets of elther cover.

For a proof of the second claim, let A1, Ao, ... be any enumeration of L. Then for any n > 1
and ¢ € IN, we apply Lemmato C = <p1(U[ ]) and W := wl(U[ ]) where X (resp. ) is the
smallest (resp largest) element of Ay,..., A\,_1 larger than (resp. smaller than) A, for n > 1
and oo (resp. 0) for n = 1. We get open sets UZ-[/\"] such that the condition UE)\] C Ui[” ! holds
whenever co > A > p > 0 are elements in {\1,...,\,}, and eventually in L. This completes the
proof. O

Remark I1.6 (Locally Finite Covers by Compact Sets). If ( ) I is a locally finite cover

of M by compact sets, then for fixed i € I, the intersection U; N U, is non-empty for only
ﬁnltely many j € I. Indeed, for every x € U;, there is an open neighborhood U, of x such that

I,:={jel:U,NU;# 0} is finite. Since U, is compact, it is covered by finitely many of these
sets, say by Ug,,..., U z,- Then J := I, U---UI, is the finite set of indices j € J such that
U; N Uj is non-empty, proving the claim.

Remark I1.7 (Intersections). From now on, multiple lower indices on subsets always indicate
intersection, i.e., U1..,. := Uy N...NU,.

Lemma I1.8 (Suitable Identity Neighborhoods). Let M be manifold with corners that is
covered locally finitely by countably many compact sets (U) en- Moreover, let kiyj : Ujj — K

be continuous functions into a Lie group K modeled on a locally convex space so that kij = k]_l
holds for alli,j € IN. Then for any convexr centered chart ¢ : W — (W), there are p-convex

open identity neighborhoods W5 C W in K for indices i < j and a in IN that satisfy

6 kji(z) - (W Wi - kij(x) CWS, for all x € Ujjna, < j <n and o in N,
() J m an J

7 k:n»:v~W”_ “kin(x) CW forallz € Uj,, j<n inIN.

( J n J J J

Proof. Dlsregardlng condition @ initially, we set W§, = W for n # a and choose Wj, C W
such that (|7)) is satisfied for all j < n in IN. To do the latter we observe that the functlon

Oin :Ujn xW = K, (2,k) — kpj(z)- kL kin(z)

is continuous and maps the point (z,e) to the identity e for every # € Uj,. So we may choose
an open neighborhoods U, of z and a convex (short for p-convex) open identity neighborhood
Wy € W such that ¢, (U, x W) € W. Since an is compact, it is covered by finitely many U,
say by Uz, ..., Uy, . Then Wi, := Ni~, Wy, is a convex open identity neighborhood in W such
that @, (an X W) C W, in other words, it satisfies .

To organize a step-by-step construction of the final open identity neighborhoods W, which
may become smaller than their initial values above, we define the following total order

(8) (i) < (i) & j<jor(j=4 andi<i)

on pairs of real numbers, in particular on pairs of indices (i,7) in IN x IN with ¢ < j. Note that
this guarantees (i,5) < (j,n) and (i,n) < (j,n) whenever 4, j, n are as in condition (). We use
this in the following construction that we perform for each fixed o € IN.

Since the cover (U 2)1 cn 18 locally finite, Remark says that there are only finitely many

indices j < n such that the intersection Uy, is non-empty. Starting at the largest such pair
j < n with respect to the total order , we adjust the identity neighborhoods Wy, one at a
time in decreasing order down to and including W%. For the index (j,n), we

e fixate the identity neighborhood W, (which already satisfies @ ifn=a)
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e and make sure that all conditions (6) with this W7, on the right hand side are satisfied
by making the corresponding sets W5 and W on the left hand side smaller, if necessary.
Here we use the same line of argument as above: Given such a condition, the compactness

of Uijna and the continuity of the function

Vijna : Uijna X Wi x Wi — K, (2,k, k) = kji(z) - k7 k- kij(),
at the points (z, e, e) yield convex open identity neighborhoods inside W and W, replac-
ing these sets, so that condition @ is satisfied. Note that we are still free to modify these
sets with indices smaller than (j,n). Furthermore, making them smaller cannot violate any

conditions that we guaranteed in previous steps of the construction, because they can only
appear on the left hand side of such conditions.

This completes the proof. O

Theorem I1.9 (Smoothing Continuous Principal Bundles). Let K be a Lie group modeled
on a locally convex space, M be a connected manifold with corners and P be a continuous principal
K-bundle over M. Then there exists a smooth principal K-bundle P over M and a continuous
bundle equivalence Q) : P — P.

Proof. We may assume that the continuous bundle P is equivalent to a bundle Py, ; as in Remark
where (Uj);es is a locally trivial cover of M and k;; : U;; — K are continuous transition
functions that satisfy the cocycle condition k;; - kj, = ki, pointwise on Uyj,.

Proposition yields open covers (Ui[OO])ie]N and (Ui[O])ie]N of M subordinate to (Uj);e.

For every i € IN, we denote by U; an open set of the cover (U;);es that contains Ui[o] and observe
that (U;);en is still a locally trivial open cover of M. In our construction, we need open covers
not only for pairs (j,n) € INxIN with j < n, but also for pairs (j—1/3,n), (j —2/3,n) in-between
and (n,n) to enable continuous extensions and smoothing. The function

n(n—1)

Ai{(gn) €40,1/3,2/3,... 3} x N j < m} —[0,00),  A(j,n) = ——;

+7,

is tailored to map the pairs (0,1),(1,1),(1,2),(2,2),(1,3),(2,3),(3,3),(1,4),... to the integers
0,1,2,..., respectively, and the other pairs in-between. If we apply the second part of Proposition
I1.5(to the countable subset L := (im A) \ {0} of (0, c0), we get open sets Ubn] U[)‘ 7 for all

pairs (j,n) in the domain of A such that (UEJ”] are again locally finite covers. We note that

)ien
(4,m) < (4',n') in the sense of implies UEJ " C Ui[jn}.

Let ¢ : W — (W) be an arbitrary centered chart of K and consider the countable compact
cover (U,
corresponding intersections. Then Lemma _ ylelds open -convex (convex, for short) identity
neighborhoods W for all i < j and o in IN that satisfy condition @ stated there.

Our first goal is the construction of smooth maps Eij : U;; — K that satisfy the cocycle condi-

of M and the restrictions km| ) of the continuous transition functions to the

tion on the open cover (Ui[oo}) of M, which uniquely determines a smooth principal K-bundle

ielN i
‘P by Remarks and These maps k;; will be constructed step-by-step in increasing order
with respect to (8)), starting with the minimal index (1,2). At all times during the construction,
the conditions

(a) %jn = %ji -Em pointwise on U[] nl for1<i<j<n<N and

wn

(b) (Kjn - kny) (U[.jn]) € W§, for all j <n and a in IN,

Jjna

will be satisfied whenever all k”- involved have already been constructed. We are now going to

construct the smooth maps kjn for 1 < j <n < N (and implicitly k:n] as kn]( )= kjn( )1,
assuming that this has already been done for pairs of indices smaller than (j,n).



Equivalences of Smooth and Continuous Bundles 9

e To satisfy all relevant cocycle conditions, we start with

il _ o % o
T S K, W (@) = Ra(e) - Fan(a) for @ € T,

1<J

This smooth function is well-defined, because the cocycle conditions @ for lower indices

assert that for any indices i’ < i < j and any point = € U[j bl U[] bl

iin ijn » we have

kjir () - kirn () = Kjir () - kiri(2) - kiir () - kin(2) = kji(2) - Kin (),

77l ]

because U[ Ll is contained in both U[ ] and U;/;

iijn i/ij

~ 1 .
e Next, we want to extend the smooth map k7, on {UJ,_; Uén " to a continuous map kj,

on Uj, without compromising the cocycle conditions too much. To do this, we consider

the function ¢j, := k: nknj t Uicy U[] LK. Foralli < Jj,a € Nand z € U%nin],
conditions (]ED above and @ of Lemma imply

(@) = (K hng) (@) = kji(@) - ((hij - kji) (@) 7"+ (Kin ki) (2) i ()

ews; cewg,
€ kﬂ(m) : (Wg‘)_l ’ WZ(ZL ki ( ) - W]O’:’L’
because U Z[Jna ™ is contained in both U Zﬁ and Uma Since the values of ¢;,, are contained

in particular in the 1dent1ty nelghborhood W, we may apply Lemma [[L.3]to M = Uj,, and

1 2/3, .
1ts subsets A = |J,_; én " and B = Ui, UEJM Al yields a continuous function

: Ujp, — W that comcides with ¢;, on B, is the identity outside A, and satisfies
<Iljn( ) € W, for all z € TV We define Ky 2 Upn — K by K, := ®;nkj, and note

jna
that k7, coincides with the smooth function k;n on B and with kj, outside A.

e We finally get the smooth map Ejn : Ujn, — K that we are looking for if we apply Proposi-

tion to the function &7, on M = A = Uj,, to the open complement U of |J,_; U%nl/?”n]
in M, and to the open neighborhood

0= () [T )

aclN

of both kj, and kf,, where k%, € Oj, follows from ®;,(z) € WS, and &, (z) = ®;n(2) -
kin(z) € Wiy, - kjn(x). Note that Ojn is really open, because Remark [L1.6| asserts that just

finitely many of the sets U ina for a € N are non-empty and may influence the intersection.

By the choice of U, the result kJn coincides with both &, and k’ on U, Gk

so it
ijn >’
satisfies the cocycle conditions @ It also satisfies (]ED by the ch01ce of Oj,.

This concludes the construction of the smooth principal K-bundle P. We use the same covers of

M and identity neighborhoods in K for the construction of continuous functions f; : UEO] — K
such that

(€) fu= Enj - fj - kjn pointwise on UET] for j <mn in N,
()fn( )CWfornE]Nand

(e) fn = e outside |J;_ J]forne]N
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and Remark tells us that the restriction of the maps f; to the sets Ui[oo] of the open cover
is the local description of a bundle equivalence €2 : P — P of the bundles P = P

P P e ] that we are looking for. Indeed, all the sets Uﬁn]
kij
corresponding sets U o) of the open cover.
We start with the constant function f; = e, which clearly satisfies conditions @ and @
The construction of f, for n > 1 is as follows:

ki \U [e0] and

of condition contain the

e To satisfy condition , we start with

£ UJT S K f@) = (@) - (@) - k(@) for 2 € T,

j<n

This continuous function is well-defined, because the conditions for f; and @ for
j' < j < n guarantee that

kg (2) - (@) - Rjn (@) = kg (2) - Rjgr (2) - [ (@) - hjoj (@) - Rjn(@) = Fongo (2) - fi (@) - Rjon(2)

holds for all x € Ug];i = UE»J;Z] N Ug?:],

e To apply Lemma [[1.3 _ we need to know something about the values of f/. Let x be an

arbitrary point in U] <n Ugjn}, and let j < n be the smallest index such that x € Ubn].

Using condition @ for f;, we learn that f;(x) = e. Then we get the estimate

(@) = k(@) - £5(@) - kju (@) = Fuj (@) - Ky (@)
~ ~ -1 "oy —
= kg (@) (kjn (@) - knj (@) kjn(@) € knj(2) - W)™ kju(2) S W,
so that the values of ﬁ are, altogether, contained in the identity neighborhood W of K.
I

O 4o flon A =, U;J: }and to the smaller set

If we apply Lemma to M :=1U,,, J<n

B =, i<n U Ezn , then we get a continuous function f,, : U, — W that coincides with f;
on B and is e outside A. Accordingly, f,, satisfies all the conditions (| . to (ED

This concludes the construction of the bundle equivalence. O

Lemma II.10 (More Identity Neighborhoods). If Pk;j is a continuous principal K-bundle

over M with locally trivial cover (U;);cr, then there exist open unit neighborhoods Wi forj,a e N
such that

(9) Ko(x) We k), (2) WO forall i< j and z € Uy

Proof. For any fixed a € IN, let j < 0o be maximal with Uj, # 0 (cf. Remark and set
W = W. With the same continuity argument as in Lemma [IT.8] we get W2 for any ¢ < j that
satlsfy @ but which we do not fixate yet. In the next step, let 7/ < j be maximal such that
Ujio # 0. We now fixate the W57 just constructed and compromise the remaining W for i < 5’
by continuity as before. Proceeding in this way, we end up after finitely many steps with the
construction of all W2. O

Theorem II.11 (Smoothing Continuous Bundle Equivalences). If P and P’ are smooth
principal K-bundles over the connected manifold with corners M and Q0 : P — P’ is a continuous
bundle equivalence, then there exists a smooth bundle equivalence Q) : P — P’.

Proof. Let (V});cr be a locally trivial locally finite open cover of M. First, we use Proposition
to obtain for each ¢,7 € IN open sets UZ-[OO], Ui[]], Ui[J-irl/?’]7 Ui[j+2/3], and Ui[o] such that their
closures are compact manifolds with corners, that ﬁﬁo] C V; for some [ € L, that (Ui[oo})ie]N and

(UEO])igN are locally finite covers of M, and such that

(10) U[Oo] C U[]""l] U£J+1] g U£j+2/3] g U£j+2/3] g U7;[j+1/3] g U£j+1/3] g UZ[]] g Ui[O]
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holds for all 4,5 € IN.
Since the Ui[oo] also cover M, we have a countable subcover (V;);en of the locally finite cover
(Vi)ier with V; := Vj(;). This defines smooth transition functions k;; : Vi; — K, Ky Ui[;o] — K

and smooth bundle equivalences Py, = P = P .. Performing the same construction for P’ we

get smooth transition functions k; : Vj; — K, K}, : UZ[OO] — K and smooth bundle equivalences

Pk/ =P=P, 1 According to Remark - the bundle equivalence €2 defines continuous maps
fi: Vw — K that satisfy

(11) fila) = Kij(x) - fi(x) - kji(x) for all z € Vi;.
We shall inductively construct smooth maps ﬁ : UEO] — K such that

(12) filz)- fi(x)"t e W2 for all z<aand:r€Um,

(13) f](x) = k;l(x) . ﬁ(x) -kij(x) forall i <j and x € UEJ-].

This will finish the proof, since k;; = Kjj, kgj |U[°°] = ngj and according to Remark |[.10} the
iluls

|yt

restriction of ﬁ to UZ-[OO] defines a smooth bundle equivalence Q- Py — 73”;],.

To construct fl, first note that

m 0= () [0 we] 5

aclN

is an open neighborhood of f;, since only finitely many U[lo(l are non-empty. We now obtain ]?1
if we apply Proposition tof=fi, M=A=U= U[lo], and the open neighborhood O; from
@ |
To construct fj we set f’( ) = kl(z) - filz) - kij(x) for i < j and = € UEJJ._”. This defines a
i<j | , since on each U%il] the compatibility condition is satisfied
by induction. Furthermore we have

pil@) = fi(@) - fi(a) ™ = K@) - filw) - kij(@) - fi(2) ™ = Kjia) - fulw) - file) " K (e) € W
~—_————

ewy

i

continuous map on | J,; . U;; []

77li—1]

ijo

Proposition to A=/,

for x € U; 1 < j < «a due to @D, and ( . Since W C W is convex, we may apply

[J 1] andB U, U[J 2/3]

i<j to extend ¢; to a continuous map ®;

’L<j
on U[ ) Then ®; coincides Wlth @; on B and maps U[ /] into Wi* if j < a. Accordingly, ®; - f;
is an element of the open neighborhood

(15) 0y:= [Uﬂ,waJ 5

a>j
i< UJ /3] We then obtain ]}; by applying Proposition to the
map f=®;-f;, M = A= UE-O], U=M\U, ‘Ugfl/g], and to the open neighborhood from

1<J

). O

of f; and is smooth on |J,

IIT Related Topics

In this section, we explain the relations of the results of the preceding section to non-abelian
Cech cohomology and to twisted K-theory. While the first one is simply a reformulation of the
previous setting in terms of sheaf theory, the latter shows how applications of the previous results
may arise.
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Remark III.1 (Abelian Cech Cohomology). Let M be a paracompact topological space
with an open cover U = (U;);er and A be an abelian topological group. Then, for n > 0 an
n-cochain f is a collection of continuous functions f;, . .., : Ui, — A, and we denote the
set of n-cocycles by C™(U, A) and set it to 0 if n < 0. We then define the boundary operator

On Cn(Z/LA) - Cm+1(Z/{,A) 5(f)ioi1»--in,+1 = (*l)kfio,_fk_“inﬂa

k=

(=)

where zAk means that we omit the index 4,. Then 6,1 0§, = 0, and we define

(16) H!(U,A) :=ker(d,,)/im(0,—1) and HI}(M,A):=lm H}U,A),

where the order on covers is induced by being refinements of one another. The group H'(M, A)
is the n-th continuous Cech cohomology. If, in addition, M is a smooth manifold with or with-
out corners and A is a smooth Lie group, then the same construction with smooth instead of
continuous functions leads to the corresponding n-th smooth Cech cohomology.

Remark IT1.2 (Non-Abelian Cech Cohomology). (cf. [De53, Sect. 12] and [GM99, 3.2.3])
If n =0,1, then we can perform a similar construction as in the previous remark in the case of
a not necessarily commutative group K. The definition of an m-cochain is the same as in the
commutative case, but we run into problems when writing down the boundary operator 4, since
the computation of §,1 o d, = 0 uses heavily the commutativity of A. Even for n = 0, where
an almost trivial computation shows that d; o dp, vanishes, im(dg) is not a normal subgroup of
ker(d,), whence we may not adopt the definition of H!(M, K) as in (16). However, we may
define 8o (f)ij = fi - fj_l7 01(k)iji = kij - kji - ki and call the elements of ker(dq) 2-cocycles (or
cocycles for short).

The way to circumvent difficulties for n = 1 is the observation that even in the non-abelian
case, C1(U, K) acts on ker(61) by (fi, kij) — fi - kij - f;l. Thus we define two cocycles k;; and
k}; to be equivalent if kj; = fi - ki - f;l on U;; for some f; € CY(U, K) and by H!(U, K), the
equivalence classes (or the orbit space) of this action. Then H!(U, K) is not a group, but we
may nevertheless take the direct limit

HY(M,K):=lim HXU,K)

as sets and define it to be the 15* (non-abelian) continuous Cech cohomology of M with coefficients
in K. A representing space of H!(M, K) would then be the set of equivalence classes of continuous
principal K-bundles over M.

Again, if M is a smooth manifold with corners and K is a smooth Lie, we can adopt this
construction to define the 1% (non-abelian) smooth Cech cohomology H!(M, K).

Theorem II1.3 (Isomorphism for Non-Abelian Cech Cohomology). If M is a finite-
dimensional connected manifold with corners and K is a smooth Lie group modeled on a locally
convex space, then the canonical injection

v HY M, K) — HY (M, K)
s a bijection.

Proof. We identify smooth and continuous principal bundles with Cech 1-cocycles and smooth
and continuous bundle equivalences with Cech 0-cochains as in Remark For each open cover
U of M, we have the canonical map H!(U,K) — H}!(U, K). Now each cocycle k;; : Uj; — K
defines a principal bundle P with locally trivial covering /. We may assume by Theorem
that P is continuously equivalent to a smooth principal bundle P, and thus that U/ is also a
locally trivial covering for P. This shows that the map is surjective and the injectivity follows
from Theorem [[T.T1] in the same way. Accordingly, the map induced on the direct limit is a
bijection. O
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Remark IT1.4 (The Projective Unitary Group). Let H be a separable infinite-dimensional
Hilbert space and denote by U(H) the group of unitary operators. If we equip U(H) with the
norm topology, then the exponential series, restricted to skew-self-adjoint operators L(U(H)),
defines an exponential function and turns U(H) into an infinite-dimensional Banach-Lie group
(cf. [Mi84, Ex. 1.1]). Then U(1) is a normal subgroup of U(H) and it can also be shown that
PU(H) := U(H)/ U(1) is also a Lie group modeled on L(U(H))/iR.

Remark IIL.5 (Eilenberg—MacLane Spaces). If X is a topological space with non-trivial
n-th homotopy group 7,(X) for all but one n € IN, then it is called an Filenberg-MacLane
space K(n,m,(X)). Since U(1) is a K(1,7Z), the long exact homotopy sequence [Br93, Th.
VIL.6.7] shows that PU(H) is a K(2,7), since U(H) is contractible [Ku65, Th. 3]. By the
same argument, the classifying space B PU(H) [Hu94, Ch. 4.11] is a K(3,7Z) since its total
space P PU(H) is contractible. Thus [M, B PU(H)] = H*(M,Z) by [Br93, Cor. VII.13.16]
classifies the equivalence classes of principal PU(H)-bundles over M. The representing class [P]
in H3(M,Z) is called the Dizmier-Douady class of P (cf. [CCM98], [DD63]). It describes the
restriction of P to be the projectivization of an (automatically trivial) principal U(H)-bundle.

Remark II1.6 (Twisted K-theory). (cf. [Ro89, Sect. 2], [BCM™02]) The Dixmier-Douady
class of a bundle P induces a twisting of K-theory in the following manner. For any paracompact
space M, the K-theory K°(M) is defined to be the ring completion of the equivalence classes of
finite-dimensional complex vector bundles over X, where addition and multiplication is defined
by taking direct sums and tensor products of vector bundles [Hu94]. Furthermore, the space of
Fredholm operators Fred(H) is a representing space for K-theory, i.e. K°(M) = [M, Fred(H)],
where [, -] denotes homotopy classes of continuous maps. Since PU(H) acts (continuously) on
Fred(H) by conjugation, we can form the associated vector bundle Ppyeq() := Fred(H) X py)P-
Then the homotopy classes of sections [M, Ppea(r)] (or equivalently the equivariant homotopy
classes of equivariant maps [Ppyed (), Fred(H)]PY(™)) define the twisted K -theory Kp(M). Since
Theorem implies that we may assume P to be smooth and the action of PU(H) on Fred(H)
is smooth, being given locally in terms of a continuous linear map, Pagq is also smooth. We
may thus, in the computation of Kp (M), restrict our attention to smooth sections and smooth
homotopies if M has a sufficiently nice triangularization.
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