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Abstract. In the C-algebra A of arithmetic functions g : N → C, endowed
with the usual pointwise linear operations and the Dirichlet convolution, let

g∗k denote the convolution power g∗· · ·∗g with k factors g ∈ A. We investigate

the solvability of polynomial equations of the form

ad ∗ g∗d + ad−1 ∗ g∗(d−1) + · · ·+ a1 ∗ g + a0 = 0

with fixed coefficients ad, ad−1, . . . , a1, a0 ∈ A. In some cases the solutions
have specific properties and can be determined explicitly. We show that the
property of the coefficients to belong to convergent Dirichlet series transfers

to those solutions g ∈ A, whose values g(1) are simple zeros of the polynomial
ad(1)zd + ad−1(1)zd−1 + · · · + a1(1)z + a0(1). We extend this to systems of
convolution equations, which need not be of polynomial type.

1. Introduction

The set of arithmetic functions g : N → C forms a C-linear space A under point-
wise addition and scalar multiplication. Null element is the null function 0. From
the structural point of view, an appropriate multiplication is the Dirichlet convo-
lution (g, h) ∈ A×A 7→ g ∗ h ∈ A defined by

(1) (g ∗ h)(n) =
∑

n1n2=n

g(n1)h(n2) (n ∈ N)

where the summation is taken over all pairs (n1, n2) ∈ N2 with n1n2 = n. Con-
volution and pointwise addition make A into an integral domain with the identity
element ε defined by ε(1) = 1 and ε(n) = 0 for 1 6= n ∈ N. We shall also tacitly use
pointwise multiplication, but in the sequel we shall always consider A as a C-algebra
under linear operations and convolution. The multiplicative group of A with respect
to the Dirichlet convolution is A∗ = {g ∈ A : g(1) 6= 0}. For abbreviation we write
g∗d for the convolution g ∗ · · · ∗ g with d factors g ∈ A.

The principle aim of this note is to deal with general polynomial type convolution
equations in one variable.

Theorem 1. For d ∈ N and g ∈ A let T : A → A be defined by

(2) Tg := ad ∗ g∗d + ad−1 ∗ g∗(d−1) + · · ·+ a1 ∗ g + a0
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with ad, ad−1, . . . , a1, a0 ∈ A and ad 6= 0. If z0 is a simple zero of the polynomial

(3) f(z) = ad(1) zd + ad−1(1) zd−1 + · · ·+ a1(1) z + a0(1)

then there exists a uniquely determined solution g ∈ A to the convolution equation
Tg = 0 satisfying g(1) = z0. If f(z) has no simple zeros then Tg = 0 need not
possess any solution. In any case Tg = 0 has at most d solutions.

The case of convolution equations of the form

(4) g∗d = a

with given function a ∈ A, a 6= 0, was studied repeatedly (see, e.g., Caroll and
Gioia [2], Cohen [3], Dehaye [5], Haukkanen [9], Porubský [12], Subbarao [14], and
the papers quoted there). In particular, it follows from Theorem 1 that equation
(4) has exactly d distinct solutions if a ∈ A∗. The case a ∈ A \A∗, i.e. a(1) = 0, is
delicate and will be discussed in Section 3 in the context of multiple zeros of f(z).

There is no explicit formula for the solutions g to Tg = 0, except for some specific
cases. An important subgroup of A∗ is the group M of multiplicative functions
g ∈ A, i.e., g(1) = 1 and g(mn) = g(m)g(n) for all coprime m,n ∈ N. Let P
denote the set of primes. Then each function g ∈ M is completely determined by
its values g(pk) on the set P? = {pk : p ∈ P, k ∈ N} of prime powers, and vice
versa these values uniquely determine a function g ∈ M. A function g ∈ M is said
to be completely multiplicative if g(pk) = gk(p) :=

(
g(p)

)k for all pk ∈ P?, it is
called exponentially multiplicative if g(pk) = 1

k! g
k(p) for all pk ∈ P?, and it is called

2-multiplicative (see Schwarz [13]) if g(pk) = 0 for all pk ∈ P? with k ≥ 2.
Caroll and Gioia [2], and Subbarao [14] determined the solution g ∈ M to g∗2 = a

for specific functions a ∈ M. In Section 3 we verify the following explicit formulas.

Theorem 2. Let d ∈ N and a ∈ M . Then there is a unique solution g ∈ M to
g∗d = a. In particular, g ∈ M is determined by its values at pk ∈ P? as follows:

(a) g(pk) =
1
k!
ak(p)
dk

if a is exponentially multiplicative,

(b) g(pk) = (−1)k

(
− 1

d

k

)
ak(p) if a is completely multiplicative,

(c) g(pk) =
( 1

d

k

)
ak(p) if a is 2-multiplicative.

The next theorem guarantees that under the conditions of Theorem 1 the solu-
tions g ∈ A to Tg = 0, which correspond to simple zeros of f(z), have absolutely
convergent Dirichlet series in some open right half plane Hr = {s ∈ C : Re s > r}
with r ≥ 0 of the complex plane if the coefficients aj have this property. By Ar we
denote the complex Banach algebra of arithmetic functions g ∈ A with finite norm

‖g‖r :=
∞∑

n=1

|g(n)|n−r.

Theorem 3. Let ad, ad−1, . . . , a1, a0 ∈ A% and ad 6= 0 for some % ≥ 0. With the
notations of Theorem 1, suppose that g ∈ A solves the convolution equation Tg = 0,
where g(1) is a simple zero of the polynomial f(z). Then there exists some r ≥ %
such that g ∈ Ar.
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Theorem 3 is the special case

m = 1, F : Cd+1 × C → C, F (w0, . . . , wd, z) =
d∑

j=0

wjz
j

of the following multi-dimensional version, which even applies to analytic equations.
The theorem involves the functional transform g ∈ A 7→ g̃ ∈ Ã, which associates
with g the formal Dirichlet series

(5) g̃(s) =
∞∑

n=1

g(n)
ns

(s ∈ C).

The product of g̃, h̃ ∈ Ã is made into an element of Ã by formally reordering
the double series, i.e., g̃(s)h̃(s) = (g ∗ h)˜. Indeed the C-algebra A and the so
called Dirichlet algebra Ã endowed with the usual linear operations and pointwise
multiplication are isomorphic, and g̃(s) converges absolutely for all s ∈ Hr, the
closure of Hr, if and only if g ∈ Ar.

Theorem 4. For open subsets W ⊆ Cn and Z ⊆ Cm, let

F : W × Z → Cm, (w, z) 7→ F (w, z)

be a holomorphic function and (w0, z0) ∈W×Z with F (w0, z0) = 0. Let a1, . . . , an ∈
A be elements such that

(
a1(1), . . . , an(1)

)
= w0. If the differential ∂z F (w0, z) at

z = z0 is in GLm(C) then there exists a unique m-tuple (g1, . . . , gm) ∈ Am such
that (

g1(1), . . . , gm(1)
)

= z0 and(6)

F (a1, . . . , an, g1, . . . , gm) = 0.(7)

If, furthermore, a1, . . . , an ∈ A% for some % ≥ 0 then there is an r ≥ % such that
g1, . . . , gm ∈ Ar,

(
ã1(s), . . . , ãn(s), g̃1(s), . . . , g̃m(s)

)
∈W × Z, and

(8) F
(
ã1(s), . . . , ãn(s), g̃1(s), . . . , g̃m(s)

)
= 0 for all s ∈ Hr.

In this case, also (6) and (8) uniquely determine (g1, . . . , gm) ∈ Am
r .

Here, the left hand side of (7) is obtained by inserting algebra elements into the
Taylor expansion of F around (w0, z0).

Section 4 provides a proof of Theorem 4, which is based on techniques from the
theory of commutative topological algebras.

2. Proof of Theorem 1 and comments

For the proof of Theorem 1 we rewrite Tg = 0 as infinite system of equations

(9)
∑

`m=n

(
ad(`) g∗d(m) + ad−1(`) g∗(d−1)(m) + · · ·+ a0(`) ε(m)

)
= 0

for n ∈ N. It follows from (9) at n = 1 that f
(
g(1)

)
= 0. Each simple root, say

z0, of the equation f(z) = 0 can be used as a starting value for g(1) = z0 in the
following procedure.
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By evaluating hj := aj ∗ g∗j at n ∈ N, n 6= 1, and separating all terms which
contain g(n), we obtain for j ∈ N that

hj(n) = jaj(1) gj−1(1) · g(n) +
∑

`n1···nj=n
n1,...,nj<n

aj(`) g(n1) · · · g(nj).

Here the coefficient of g(n) equals the value of the derivative
(
aj(1) zj

)′ at z = g(1),
while the remaining sum contains values g(m) with m < n only. Therefore (9) takes
the form

(10) f ′
(
g(1)

)
· g(n) = −

∑
0≤j≤d

∑
`n1···nj=n
n1,...,nj<n

aj(`) g(n1) · · · g(nj) (n > 1).

Due to the choice of g(1) = z0 we have f ′
(
g(1)

)
6= 0 so that (10) represents a

recursion formula, which uniquely determines an arithmetic function g ∈ A.
Let Tg = g ∗ g − a with a ∈ A satisfying a(1) = 0 6= a(p) for some prime p, say.

Then f(z) = z2 and f ′(z) = 2z both vanish at z = 0. The convolution equation
Tg = 0 yields Tg(1) = 0 at g(1) = 0 only. Since Tg(p) = 2 g(1) g(p) − a(p) =
−a(p) 6= 0, there exists no solution to Tg = 0.

Since A is an integral domain, the polynomial Tg of degree d has at most d zeros
g ∈ A. �

As an immediate consequence of Theorem 1 we obtain

Corollary 1. If f(z) satisfies deg f = d and all zeros of f(z) are simple then, with
the d distinct solutions g1, . . . , gd ∈ A to the convolution equation Tg = 0, we have

Tg = ad ∗ (g − g1) ∗ · · · ∗ (g − gd).

Remark 1. Theorem 1 covers the case of convolution polynomials

Tg := αd g
∗d + αd−1 g

∗(d−1) + · · ·+ α1 g + α0 ε = 0

with constant coefficients αj ∈ C, αd 6= 0, and the identity element ε ∈ A, which is
seen by setting aj = αj ε ∈ A for 0 ≤ j ≤ d.

Corollary 2. Let a ∈ A∗ and d ∈ N. If g0 ∈ A is one solution to g∗d = a then all
solutions are given by ωj g0, where ωj runs over all dth complex roots of unity.

Proof. The assumptions of Theorem 1 are satisfied for f(z) = zd − a(1) since
a(1) 6= 0. The assertion now follows by inserting the d distinct sequences ωj g0 for
j = 0, 1, . . . , d− 1 into Tg = g∗d − a. �

3. Multiple zeros

As the case of multiple zeros of f(z) has led to several incorrect statements in the
literature, we shall briefly discuss it. Following Knopfmacher [11], we first define
the order 〈g〉 of a function g ∈ A by

〈g〉 =

{
min {n ∈ N : g(n) 6= 0} if 0 6= g ∈ A,

∞ if g = 0.

Then 〈g〉 = 1 if and only if g ∈ A∗, and 〈g ∗ h〉 = 〈g〉 · 〈h〉 for all g, h ∈ A.
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Remark 2. Theorem 5 of Subbarao [14] states that the convolution equation g∗d = a
has exactly d solutions g ∈ A if 0 6= a ∈ A. This is incorrect for d > 1, since any
solution g satisfies 〈g〉d = 〈a〉 so that necessarily 〈a〉 is the dth power of some
positive integer. Therefore, e.g., g ∗ g = a has no solution if a(1) = 0 and a(2) 6= 0.

Remark 3. Theorem 1 of Haukkanen [9] states that the order condition 〈a〉 = md

with some m ∈ N from Remark 2 guarantees the solvability of g∗d = a. But this
does not suffice, in general. E.g., if d > 1 and a(1) = 0 then every solution g
satisfies 0 = a(1) = gd(1) so that g(1) = 0 and a(p) = d gd−1(1) g(p) = 0 for all
primes p. Hence g ∗ g = a has no solution if a(1) = 0 and a(p) 6= 0 for some p ∈ P
with p > 〈a〉.

Remark 4. Theorem 3 of Haukkanen [9] states that the linear convolution equation
a ∗ g = b is solvable if the divisibility condition 〈a〉 | 〈b〉 is satisfied. In general,
this divisibility condition does not suffice. E.g., if a(1) = b(1) = 0 then b(p) =
a(1) g(p) + a(p) g(1) = a(p) g(1) for all p ∈ P. Therefore a ∗ g = b has no solution
if a(1) = b(1) = 0 and a(p) = 0 6= b(p) for some prime p with p > 〈a〉.

As the preceding remarks show, the convolution equation need not have any
solution if g(1) is a multiple zero of f(z). In fact, if f

(
g(1)

)
= f ′

(
g(1)

)
= 0 then

the coefficient functions aj ∈ A of Tg in equation (2) underly severe restrictions.
We exemplarily derive some conditions, which are necessary for the existence of
solutions g ∈ A to Tg = 0.

For m ∈ N we introduce the polynomials fm(z) ∈ C[z] by

fm(z) = ad(m) zd + · · ·+ a1(m) z + a0(m) .

Obviously f(z) = f1(z) . Suppose now that f1(z0) = f ′1(z0) = 0 and g is a solution
to Tg = 0 satisfying g(1) = z0 .

i) For p ∈ P we find

Tg(p) =
∑

0≤j≤d

aj(p) gj(1) + g(p)
∑

1≤j≤d

aj(1) j gj−1(1)

= fp(z0) + g(p) f ′1(z0) .

It follows from f ′(z0) = 0 that z0 is a zero of fp(z) for all p ∈ P .
ii) In the same way we obtain for p ∈ P

Tg(p2) = fp2(z0) + g(p) f ′p(z0) + g(p2) f ′1(z0) +
1
2
g2(p) f ′′1 (z0) ,

and f ′(z0) = 0 implies that z0 is a zero of fp2(z) + g(p)f ′p(z) + 1
2 g

2(p)f ′′1 (z).
iii) For distinct p, q ∈ P we have

Tg(pq) = fpq(z0) + g(q)f ′p(z0) + g(p)f ′q(z0) + g(pq)f ′1(z0) + g(p)g(q)f ′′1 (z0) .

Now f ′(z0) = 0 implies that z0 is a zero of fpq(z) + g(p) f ′q(z) + g(q) f ′p(z) +
g(p) g(q) f ′′1 (z) for all distinct p, q ∈ P .

For instance, let Tg = g ∗ g − a with a ∈ A , a(1) = 0 . Then fq(z) = z2 − a(q)
for all q ∈ N , particularly z0 = 0 is a double zero of f1(z) . We get f ′q(z) = 2z
and f ′′q (z) = 2 for all q ∈ N so that fq(0) = −a(q) , f ′q(0) = 0 , f ′′q (0) = 2 .
From ii) and iii) we infer that −a(p2) − g2(p) = 0 , −a(q2) − g2(q) = 0 , and
−a(pq) + 2 g(p) g(q) = 0 for distinct primes p, q . It follows that the values of a are
interrelated by a2(pq) = a(p2) a(q2) for all p, q ∈ P , p 6= q , if a solution g to Tg = 0
exists .
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Observe that the above examples i), ii), and iii) can be extended to products
of more than two prime factors. It seems to be difficult to provide fairly general
sufficient conditions on the coefficients aj of the convolution polynomial Tg char-
acterizing the solvability of Tg = 0 in the case of multiple zeros z0 = g(1) of f(z) .

4. Proof of Theorem 2 and comments

The formal Dirichlet series g̃(s) of g ∈ M has a formal Euler product represen-
tation

(11) g̃(s) =
∏
p∈P

g̃p(s) (s ∈ C),

where the factor

g̃p(s) = 1 +
g(p)
ps

+
g(p2)
p2s

+ · · ·

is the formal Dirichlet series of the p-fibre gp ∈ M of g defined by1

(12) gp(n) =

{
g(n) if n = pk for some k ∈ N0 = N ∪ {0}
0 otherwise

(n ∈ N).

Notice that, in the sense of convergence, (11) holds for all s ∈ Hr if g ∈ Ar.

Proof of Theorem 2. Due to Corollary 2 there exists a uniquely determined solution
g ∈ A to g∗d = a such that g(1) = 1. Let the function h ∈ M be defined by
h(pk) = g(pk) for all prime powers pk ∈ P? and by multiplicative continuation from
P? to N. Since M is closed under the convolution, h is a multiplicative solution to
g∗d = a with h(1) = 1. Hence g = h ∈ M.

The strategy for verifying the statements (a) to (c) consists in reducing the
global convolution equation g∗d = a to its local versions g∗dp = ap for all p-fibres
and switching to the associated formal Euler product factors g̃ d

p (s) = ãp(s) or

equivalently to g̃p(s) =
(
ãp(s)

)1/d.2 With z = p−s this takes the form (compare
Subbarao [14, Section 3])

(13) 1 + g(p) z + g(p2) z2 + · · · =
(
1 + a(p) z + a(p2) z2 + · · ·

)1/d
.

If the right hand side coincides with a power series expansion of some known analytic
function then the values of g ∈ M at prime powers pk ∈ P? result from comparing
coefficients.

(a) It follows from a(pk) = ak(p)
k! that 1 + a(p) z + a(p2) z2 + · · · = exp

(
a(p) z

)
.

From (13) and the exponential series we see that
∞∑

k=0

g(pk) zk = exp
(a(p)

d
z
)

=
∞∑

k=0

ak(p)
k! dk

zk,

from which the stated formula follows by comparison.
(b) Now a(pk) = ak(p) implies 1 + a(p) z + a(p2) z2 + · · · =

(
1 − a(p) z

)−1.
Therefore, via (13) and the binomial series, we have

∞∑
k=0

g(pk) zk =
(
1− a(p)z

)− 1
d =

∞∑
k=0

(−1)k

(
− 1

d

k

)
ak(p) zk,

1Notation used for the p-fibre of g within this section only.
2z1/d denotes the branch of the dth root of z, which is positive for positive z.
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which yields the stated formula.
(c) From a(pk) = 0 for k ≥ 2 we obtain 1 + a(p) z + a(p2) z2 + · · · = 1 + a(p) z.

This gives
∞∑

k=0

g(pk) zk =
(
1 + a(p) z

) 1
d =

∞∑
k=0

( 1
d

k

)
ak(p) zk,

and the stated formula appears. �

For rational exponents q = d
m ∈ Q with coprime integers d ∈ N, m ∈ Z and

functions a ∈ A∗ we may define g∗q = a by g∗d = a∗m. The proof of Theorem 2
then easily transfers to

Corollary 3. With q ∈ Q instead of d ∈ N, all assertions of Theorem 2 remain
valid for convolution equations of the form g∗q = a.

5. Proof of Theorem 4

We find it convenient to deduce Theorem 4 from general facts concerning analytic
equations in topological algebras. Recall that a complex topological algebra is an
algebra A, equipped with a locally convex vector topology making the bilinear
algebra multiplication A × A → A a continuous map. It is called complete if the
underlying locally convex space is complete. A continuous inverse algebra is a
unital, associative complex topological algebra A whose group of units A∗ is open
in A and whose inversion map A∗ → A, a 7→ a−1 is continuous (see Biller [1],
Glöckner [8], Waelbroeck [15]). The spectrum of a commutative continuous inverse
algebra A is the set Â of all algebra homomorphisms ξ : A → C. It is known
that ξ 7→ ker ξ is a bijection from Â onto the set of all maximal (proper) ideals
of A (Biller [1, Lemma 1.5]). The spectrum of an element a ∈ A is defined as
σ(a) := {s ∈ C : s − a 6∈ A∗}, and by Biller [1, Theorem 1.7 (a)], it coincides with
the set {ξ(a) : ξ ∈ Â }. Our proof of Theorem 4 rests on the following special case
of Biller [1, Theorem 7.2], applied to algebras whose spectrum is a singleton.

Lemma 1. Let A be a complete, commutative continuous inverse algebra whose
spectrum is a singleton, Â = {ξ}. Let W ⊆ Cn and Z ⊆ Cm be open sets and
F : W×Z → Cm be a holomorphic function. Suppose that w0 ∈W , z0 ∈ Z such that
F (w0, z0) = 0 and ∂z F (w0, z)|z=z0 ∈ GLm(C). Then, for each (a1, . . . , an) ∈ An

satisfying
(
ξ(a1), . . . , ξ(an)

)
= w0, there exists a unique (g1, . . . , gm) ∈ Am such

that
(
ξ(g1), . . . , ξ(gm)

)
= z0 and

(14) F (a1, . . . , an, g1, . . . , gm) = 0.

Remark 5. The left hand side of (14) is defined componentwise using multi-variable
holomorphic functional calculus. We recall: If f : Cn ⊇ U → C is a holomor-
phic function, A a complete, commutative continuous inverse algebra and a =
(a1, . . . , an) ∈ An such that σ(a1)×· · ·×σ(an) ⊆ U , then the holomorphic functional
calculus defines an element F (a) ∈ A (see Biller [1] and the references therein).
Hence, for Â = {ξ} a singleton, F (a) can be formed for each a ∈ An such that
x0 :=

(
ξ(a1), . . . , ξ(an)

)
∈ U . If x0 is contained in a polycylinder P ⊆ U around

some element u0 ∈ U , and F (u) =
∑

α∈Nn
0
bα(u − u0)α is the Taylor expansion of

F around u0 (using multi-index notation), then F (a) =
∑

α∈Nn
0
bα(a− u0)α in A.
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We shall apply the lemma to two algebras. First, to the algebra A = CN of
arithmetic functions, equipped with the product topology, which makes A a Fréchet
space. Second, to

A∞ :=
⋃
%≥0

A% ,

which inherits a commutative, associative complex algebra structure from the al-
gebras A%. We give A∞ the locally convex vector topology making it the locally
convex direct limit

A∞ = lim
−→%≥0

A% = lim
−→n∈N

An .

The elements of A∞ can be identified with germs around +∞ of Dirichlet series
that converge absolutely on some right half-plane.

Lemma 2. A is a commutative continuous inverse algebra whose spectrum is a
singleton, namely Â = {ξ} with ξ : A∞ → C, f 7→ f(1). Furthermore, A is a
Fréchet space.

Proof. The point evaluation ξ : f 7→ f(1) is a homomorphism A → C. Let m be
its kernel. Then A \ m = {f ∈ A : f(1) 6= 0} is the set A∗ of invertible elements,
which entails that m is the only maximal ideal of A and hence Â = {ξ}. Since
(f ∗ g)(n) =

∑
n1n2=n f(n1)g(n2) is a polynomial in finitely many components of f

and g, it is continuous in (f, g) ∈ A×A, whence convolution is continuous as a map
A×A → A. Given f ∈ A∗, the component f−1(n) is a rational function in finitely
many components of f and hence continuous in f , entailing that the inversion map
A∗ → A is continuous. �

Lemma 3. The following holds.
(a) For each r ≥ 0, the map ψr : A0 → Ar, ψr(f)(n) := nrf(n) is an isomor-

phism of Banach algebras.
(b) If f ∈ A0 and g := ψr(f), then f̃(s) = g̃(s+ r) for each s ∈ H0.
(c) For each f ∈ Ar, its spectrum is the closure of f̃(Hr) in C.
(d) If f ∈ A% and r ≥ %, let σr(f) be the spectrum of f as an element of Ar.

Then σr(f) → f(1) as r →∞.

Proof. (a) and (b) are clear. If r = 0 then (c) is covered by Hewitt and Williamson
[10, Theorem 1]. Combining this special case with (a) and (b), the general case
follows. Since f̃(s) → f(1) as Re(s) → ∞, given ε > 0 we find r0 ≥ % such that
|f̃(s) − f(1)| ≤ ε for all s ∈ Hr0 . Using (c), we deduce that σr(f) is contained in
the closed disk of radius ε around f(1), for all r ≥ r0. �

Lemma 4. A∞ is a commutative continuous inverse algebra whose spectrum is a
singleton, namely Â∞ = {η} with η : A∞ → C, f 7→ f(1). Also, A∞ is a Silva
space and hence complete.

Proof. If 0 ≤ % < r then the weights (n−%)n∈N and (n−r)n∈N satisfy lim
(

n−r

n−%

)
= 0,

entailing that the inclusion map A% → Ar is a compact operator (see Floret and
Wloka [7, § 19, pp. 90–91]). Hence A∞ = lim

−→n∈N
An is a Silva space (an (FS)-space

in the terminology of Floret [6]) and thus complete by Floret [6, p. 170, Satz]. Like
any direct limit of a direct sequence of normed algebras, A∞ is a locally convex
topological algebra which is locally m-convex (a subalgebra of a projective limit of
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normed algebras), by Dierolf and Wengenroth [4, Theorem 1]. This entails that
the inversion map A∗

∞ → A∞ is continuous. To see that A∗
∞ is open, we first

note that the linear map η is continuous because A∞ is the locally convex direct
limit of the spaces A% and η|A%

is continuous for each % ≥ 0. Hence m := ker η
is closed, and thus A∞ will be a continuous inverse algebra if we can show that
A∗
∞ = A \ m. Since m is a proper ideal, we have A∗

∞ ⊆ A \ m. To prove the
converse inclusion, let f ∈ A∞ with η(f) = f(1) 6= 0, where f ∈ A%, say. Then
limRe(s)→∞ f̃(s) = f(1) 6= 0, whence there is an r ≥ % such that the closure of
f̃(Hr) in C is contained in C∗. Hence σ(f) ⊆ C∗ holds for f as an element of Ar,
by Lemma 3. Therefore f ∈ A∗

r and hence also f ∈ A∗
∞. Thus A∗

∞ is open, and
also we infer (as in the proof of Lemma 2) that ker η is the unique maximal ideal
of A∞ and thus Â∞ = {η}. �

Proof of Theorem 4. We proceed in steps.
Step 1. By Lemma 2, A is a complete, commutative continuous inverse algebra

with spectrum {ξ}. Since
(
ξ(a1), . . . , ξ(an)

)
=

(
a1(1), . . . , an(1)

)
= w0, Lemma 1

shows the existence and uniqueness of (g1, . . . , gm) ∈ Am such that conditions (6)
and (7) of Theorem 4 are satisfied.

Step 2. Likewise, if a1, . . . , an ∈ A% for some % ≥ 0 then Lemma 1 and Lemma 4
provide a uniquely determined m-tuple (g1, . . . , gm) ∈ Am

∞ such that (6) and (7)
hold. The elements (g1, . . . , gm) ∈ Am

∞ coincide with the corresponding elements
of A obtained in Step 1. To see this, note that the inclusion map λ : A∞ → A is con-
tinuous linear (as its restriction to each Ar is continuous linear) and multiplicative,
whence

0 = λ
(
F (a1, . . . , an, g1, . . . , gm)

)
= F

(
λ(a1), . . . , λ(an), λ(g1), . . . , λ(gm)

)
due to the naturality of holomorphic functional calculus (see Biller [1, Theorem 3.9]).
Now the uniqueness assertion from Step 1 applies.

Step 3. There is an r ≥ % such that g1, . . . , gm ∈ Ar. By Lemma 3 (d), after
increasing r if necessary, we may assume that σr(a1) × · · · × σr(an) ⊆ W and
σr(g1) × · · · × σr(gm) ⊆ Z. Thus b := F (a1, . . . , an, g1, . . . , gm) can be defined in
the commutative Banach algebra Ar using holomorphic functional calculus. The
inclusion map Ar → A∞ being a continuous algebra homomorphism, we deduce as
above that b coincides with F (a1, . . . , an, g1, . . . , gm) calculated in A∞, which is 0.
Thus b = 0 and hence (8) holds. In fact, for each s ∈ Hr, the map

ŝ : Ar → C , ŝ(f) := f̃(s)

is an algebra homomorphism and thus

0 = ŝ(b) = F
(
ŝ(a1), . . . , ŝ(an), ŝ(g1), . . . , ŝ(gm)

)
= F

(
ã1(s), . . . , ãn(s), g̃1(s), . . . , g̃m(s)

)
,

whence (8) from Theorem 4 holds.
Step 4. In order to see that (6) and (8) determine g1, . . . , gm, assume that also

h1, . . . , hm ∈ Ar satisfy these conditions. Then c := F (a1, . . . , an, h1, . . . , hn) can
be formed in Ar. By (8), we have c̃(s) = ŝ(c) = 0 for each s ∈ Hr, whence c = 0
and hence (h1, . . . , hm) = (g1, . . . , gm), by uniqueness in Step 2. �

Remark 6. Suppose that F : W × Z → Cm, (w0, z0) ∈ W × Z and a1, . . . , an are
as in Theorem 4, but that ∂zF (w0, z)|z=z0 fails to be invertible. Then a solution
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(g1, . . . , gm) ∈ Am to (6) and (7) can still be constructed provided that there exists
a holomorphic function φ = (φ1, . . . , φm) : W0 → Z on an open neighbourhood
W0 ⊆W of w0 such that φ(w0) = z0 and

(15) F
(
w, φ(w)

)
= 0 for all w ∈W0.

In fact, the elements gj := φj(a1, . . . , an) ∈ A, defined using holomorphic functional
calculus in A, have the desired properties (this follows from (15) and the natural-
ity of holomorphic functional calculus). If a1, . . . , an ∈ A% for some % ≥ 0 then
Lemma 3 (d) implies that there is an r ≥ % such that σr(a1)× · · · × σr(an) ⊆ W0.
Then φj(a1, . . . , an) can be formed in Ar and coincides with gj , which yields
g1, . . . , gm ∈ Ar. As above, we see that (7) holds in Ar. Applying now the complex
homomorphisms ŝ for s ∈ Hr, we deduce that also (8) is satisfied.

References

[1] Biller, H.: Analyticity and naturality of the multi-variable functional calculus.

TU Darmstadt Preprint 2332, 2004; http://wwwbib.mathematik.tu-darmstadt.de/Math-
Net/Preprints/Listen/files/2332.ps.gz

[2] Carroll, T. and A.A. Gioia: Roots of multiplicative functions. Compositio Math. 65 (1988),
349–358.

[3] Cohen, M.J.: Advanced problem 5293. Am. Math. Monthly 72 (1965), 555; Solution, ibid.

73 (1966), 553–554.
[4] Dierolf, S. and J. Wengenroth: Inductive limits of topological algebras. Linear Topol. Spaces

Complex Anal. 3 (1997), 45–49.

[5] Dehaye, P.-O.: On the structure of the group of multiplicatice arithmetical functions. Bull.
Belg. Math. Soc. 9 (2002), 15–21.

[6] Floret, K.: Lokalkonvexe Sequenzen mit kompakten Abbildungen. J. Reine Angew. Math. 247

(1971), 155–195.
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