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Abstract

It is proved that the Stokes operator in L9-space on an infinite cylindrical do-
main of R",n > 3, with several exits to infinity generates a bounded and ex-
ponentially decaying analytic semigroup and admits a bounded H °°-calculus.
For the resolvent estimates, the Stokes resolvent system with a prescribed di-
vergence in an infinite straight cylinder with bounded cross-section ¥ is stud-
ied in LY(R; L7 (X)) where 1 < ¢,r < co and w € A,(R"!) is an arbitrary
Muckenhoupt weight. The proofs use cut-off techniques and the theory of
Schauder decomposition of UMD spaces based on R-boundedness of operator
families and on square function estimates involving Muckenhoupt weights.
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1 Introduction

Let @ = (J", Qs be a cylindrical domain of C'-class where € is a bounded domain
and €;,7=1,...,m, are disjoint semi-infinite straight cylinders, that is, in possibly
different coordinates,

Q={z"=(2},...,2" ) e R": 2! >0, (2,...,2, ;) € X'},

n

where 3 € R""1 i = 1,...,m, is a bounded domain and Q; N Q; = 0 for i # j.
Then we consider the Stokes operator A, = —P,A in L%(Q) with domain

D(A,) = W9(Q)" N Wy (Q)" N LL(R),
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where LZ(2) is the completion of the set C§% (2) = {u € C3°(Q)" : divu = 0} in
the norm of L?(§2) and where P, is the Helmholtz projection of L9(€2) onto LL(S2).

The Stokes operator is an important tool in the analysis of instationary Stokes
and Navier-Stokes equations, and its properties have been studied for bounded do-
mains and various kinds of unbounded domains. E.g., the Stokes resolvent system
has been analyzed for half spaces, bounded and exterior domains, aperture domains
and layer-like domains (see e.g. [1], [2], [6], [15], [20]-[24], [28]). For infinite cylin-
drical domains, one can find a result in the Bloch space of locally square integrable
functions in [31]. Concerning the H*-calculus, see below, we mention that the
Stokes operator admits a bounded H°°-calculus for bounded and exterior domains
[29], for half spaces [10], perturbed half spaces [29], aperture domains [5] and layer-
like domains [3].

The goal of this paper is to show for the cylinder €2 that — A, generates a bounded
and exponentially decaying analytic semigroup and that the Stokes operator A,
admits a bounded H*-calculus in LZ(2). Actually, we show that —a+%. C p(—A4,)
for some o > 0 and arbitrary € € (7/2, 1), where

Y.={AeC: N#0, Jarg\| < ¢}

and p(—A,) is the resolvent set of —A,, and the resolvent estimate

I+ A) Moy < YAe —a+ .. (1.1)

A+ «af

Now we present the main results and ideas of this paper. Let Wha (Q) be the
homogeneous Sobolev space

Wh(Q) = {u € L, (Q)/R: Vu € LI(Q)", HUHWLQ(Q) = |IVul| ag }-

loc

We use the short notation ||u,v||x for ||ulx + ||v||x, even if u and v are tensors of

different order. Let @ = min{a” : i = 0,...,m} where a(® > 0 and a® > 0,
i = 1,...,m, are the smallest eigenvalues of Dirichlet Laplacians in €}y and in
¥ i=1,...,m, respectively.

Theorem 1.1 Let 1 < ¢ < 00 and A € —a + X, where a € (0,a), and let € €
(m/2,7). If f € LY(Q)", then the resolvent problem
AM—Au+Vp = f n
divu = 0 in (1.2)
u = 0 on 0f)
has a unique solution (u,p) € (W1(Q)" N Wy Q)" N L1(Q)) X /I/I?l’q(Q) satisfying

the estimate
1A+ @)u, Vu, Vpl i) < C| fllzawy (1.3)

with a constant C = C(q, a, &,, 5, ..., X™) independent of X € —a + 2.



As a consequence, for every e € (7/2,m) and a € (0, @) the set —a + X, is con-
tained in p(—A,) and the resolvent estimate (1.1) with C' = C(q, o, &,$o, 24, ..., ™)
holds. In particular, —A, generates a bounded analytic semigroup e~*4a in L1(Q)
satisfying

||e_tAq||£(Lg(Q)) <Ce ™™ forall t>0 (1.4)

with a constant C = C(q, o, &,Q, B, ..., X™) independent of t > 0.

The system (1.2) in an infinite straight cylinder ¥ x R was studied in vector-
valued homogeneous Besov spaces B;q(R; L"(%)), s e R, 1 < p,q < oo, ([17]) and
in LI(R; L7 (X)) ([19]), where 1 < ¢,r < oo and w € A,(R"!) is an arbitrary
Muckenhoupt weight. To be more concrete, using the partial Fourier transform
F =" along the axis of the cylinder ¥ x R, the authors obtained estimates for the
parametrized Stokes resolvent system on X

A+ -AYU'+V'P = F in ¥

A+ & -ANU, +iP = F, in X

(Rxe) div'U' +i€U, = G in ¥
U=0 U, =0 on 0%

in Fourier space. Then the solution u to (1.2) in ¥ x R is represented by

u=F"(a1(£)f(€))

where (&) is the solution operator for (Ry¢) with G =0, ie., a0 =U = (U, U,) =
a1 (§)F, F = f. Finally operator-valued Fourier multiplier theorems are applied to
get the estimates of u.

The proof of Theorem 1.1 uses the technique of cut-off functions based on esti-
mates for the resolvent system with prescribed divergence divu = ¢g on an infinite
cylinder, see (R,) in Section 2. With the solution operator ay(§) for (Ry¢) with
F = 0 the solution to (Ry) with f =0, g # 0 is represented by u = F~(a(£)g(£)).
However, in this case, the application of Fourier multiplier theorems is not straight-
forward since the estimate for (Ry¢) with G # 0 involves a complicated parameter-
dependent norm, see (2.21)-(2.23). To get estimates for (Ry) (Theorem 2.10) we
use techniques of unconditional Schauder decompositions of UMD spaces combined
with a property of Muckenhoupt weights (see Lemma 2.8).

The second main result of this paper concerns the H>-calculus of the Stokes
operator in the cylinder Q. For 6 € (0,7) let H*(Xg) be the set of all holomorphic
and bounded functions on the sector ¥y, and let wg be the spectral angle of B, i.e.
wp = inf{f € (0,7) : 0(B) C Xy}. Then for § € (wp, ) a sectorial operator B on a
Banach space X is said to admit a bounded H*(%y)-calculus (or, shortly, bounded
H*>-calculus) in X if there is a constant Cy > 0 such that for all

h € Hi (X) == {h € H*®(Xg) : Tk, s> 0: |h(z)| < k%ﬁﬂ% Vz € Eg}



the bounded operator

1
hB) = — / hO)O — B)d € £(X) (1.5)
21t Jr
satisfies the estimate
IR Bl ccx) < Collhlloo; (1.6)

here the integral curve I is the oriented boundary of ¥4 with 6" € (wg, #); note that
h(B) is independent of the choice of . Furthermore, even for h € H> (%), we may
define h(B) with domain D(B) N R(B) in X by

h(B) = 2% / hMA(1+X)2(A=B)"dA(1+ B)’B™". (1.7)

r

It is known that (1.7) is consistent with (1.5) and, if the operator B admits a
bounded H>(%y)-calculus in X, then for h € H>(%y) the operator h(B) in (1.7) is
bounded in X and (1.6) holds as well, cf. [12].

If a sectorial operator B admits a bounded H*(3;)-calculus for some 6 € (wp, 7)
in a Banach space X, then B has bounded imaginary powers, i.e., B € £(X) and
| Bl z(x) < C with some C' > 0 for all [¢| < 1. Hence the domains of its fractional
powers are represented by complex interpolation of the spaces D(B) and X ([12]
or [32], Theorem 1.15.3). Moreover, if §# < 7/2, then B has maximal regularity
provided X is a UMD space ([12]), see also [9] and [14], Theorem 3.2. Note that the
property of admitting a bounded H*°-calculus is stable by small perturbation, see
[11], Theorem 3.2.

A general theory for unbounded domains for which the shifted Stokes operator
¢+ A, for some ¢ > 0 admits a bounded H*-calculus was studied in [5], Theorem
1.3. We check that the unbounded cylinder €2 satisfies the assumptions on domains
in that theory ([5], Assumption 1.1). Then, since the resolvent of A, is bounded in
a neighborhood of 0 by Theorem 1.1, we directly get the following theorem.

Theorem 1.2 For 1 < g < oo the Stokes operator A, admits a bounded H™(%)-
calculus in LL(QY) for any 60 € (0,7). In particular, the Stokes operator A, has
maximal reqularity in LL($2).

This paper is organized as follows. In Section 2 we deal with problems in an
infinite cylinder. In §2.1 preliminaries for Muckenhoupt weights, R-boundedness
of operator families, Schauder decompositions and square function estimates are
discussed. In §2.2 we get estimates for the Stokes resolvent system with a prescribed
divergence on an infinite cylinder. Section 3 is devoted to the proof of the main result
for cylindrical domains with several exits to infinity. In this paper, for notational
convenience, constants appearing in the proofs may differ from line to line even
though they may be denoted by the same letters.



2 Infinite Straight Cylinders: Stokes Resolvent System with
a Prescribed Divergence in Weighted Spaces

In this section 2 is an infinite cylinder ¥ x R € R", n > 3, with a bounded cross-
section ¥ C R""!. We consider the Stokes resolvent system (R)) on  with pre-
scribed divergence:

AM—Au+Vp = f in 2
(Ry) divu = ¢g inQ
u = 0 on 0f).

The system (R)) was studied in LY(R; L*(X)),1 < ¢ < oo, in [18]. Here we analyze
(Ry) in LY(R; L] (X)) for 1 < g,r < oo and arbitrary Muckenhoupt weight w.

Let a generic point z € 2 be written in the form x = (2/,x,) € Q, where
2’ € ¥ and x, € R. Similarly, differential operators in R" are split, in particular,
V = (V',0,). The outward unit normal vector at ' € ¥ is denoted by N’ €
R™ 1 whereas the exterior normal at z € 9 is denoted by N. First we recall
some preliminaries on Muckenhoupt weights, R-boundedness of operator families,
Schauder decompositions and square function estimates for functions in weighted
L"-spaces.

2.1 Preliminaries

Let 1 <7 < co. A function 0 < w € L (R"1) is called A,-weight (Muckenhoupt
weight) on R~ iff

1 1 r=1
(W) = S a2 ~1/(r-1) g
Arlw) S‘ép(|cz|/Q‘“ ) (|Q|/Q°" ) <o

where the supremum is taken over all cubes of R"™! and |Q| denotes the (n — 1)-
dimensional Lebesgue measure of Q). We call A,(w) the A,.-constant of w and we
denote the set of all A,-weights on R"™! by A, = A.(R"!). Note that

we A, iff =0V YeA, M =r/(r—1)

and A (W) = A (w)"/". A constant C' = C(w) is called A,-consistent if for every
d>0
sup{C(w) : we A, A, (w) < d} < 0.

We write w(Q) for [, wdz'.
Given a Muckenhoupt weight w, and an arbitrary domain ¥ of R"™! let

1/r
LZ}(Z) = {U € Llloc(7> : HuHT,w = </ |u’7'w dI/> < OO} :
¥



It is well-known that L7 (X) is a separable reflexive Banach space with dense subspace
Cs°(Y); in particular, L (X)* = L7, (X) for w € A,. Moreover, we need the subspace

L, (%) = {u e L (%) : /

P

wdr' = 0}

of functions in L” (X) with vanishing mean. Let w € A,. As usual, Wk (%), k € N,

denotes the weighted Sobolev space with norm |jul|g,. = (Z|a|§k ||Dau||7’j7w)1/r,
where |a| = o+ - -+, is the length of the multi-index o = (g, ..., 0, 1) € Nj~!
and D* = 9" -...-9,"7". Moreover, let W(;C;(E) = C’go(E)Mk’r’w and W&f”(}]) =

(Wéﬁ f,/, (3))*, where v’ = r/(r — 1). We introduce the weighted homogeneous Sobolev
space - )
Wi () ={ue L, (8)/R: Vue L(Z)}

with norm ||V'u||,,, and its dual space WJI"J = (Wj’”)* with norm || « [|_1 0 =

I -1 iz
Definition 2.1 A Banach space X is called a UMD space if the Hilbert transform
f(s)

s

ds for f € S(R; X),

Hf(t):—% PV /t_

where S(R; X) is the Schwartz space of all rapidly decreasing functions, extends to
a bounded linear operator in L(R; X) for some q € (1, 00).

It is well known that, if X is a UMD space, the Hilbert transform is bounded
in LY(R; X) for all ¢ € (1,00) (see e.g. [30], Theorem 1.3). The dual space and
closed subspaces of a UMD space are UMD spaces as well and for any open set X
of R" 11 < r < oo, the weighted spaces L7 (%), Wl (2) and W) () are UMD
spaces.

Definition 2.2 Let X be a Banach space and (z,);>, C X. The series Y -,
is called unconditionally convergent if > | T is convergent in norm for every
permutation o : N — N.

Definition 2.3 A sequence of projections (A;)jen C L(X) on a Banach space X is
called a Schauder decomposition of X if

AA; =0 forall i+#j
and

ZAj:c:x for each x € X.
j=1

A Schauder decomposition (A;)jen of X is called unconditional if the series
> 2 Az converges unconditionally for each x € X.



If (Aj) en is a Schauder decomposition of a Banach space X, then the family
{Z?:l Aj}kez is uniform bounded in X due to the Banach-Steinhaus theorem.
Moreover, if (A;),en is unconditional, then there is a constant ¢ > 0 such that

N N
H Z&T]‘A]’I Z Aj.?f
i=1 j=1

see e.g. [12], Proposition 3.14. Moreover, there is a constant ca > 0 such that for
all u; in the range R(A;) of A; the inequalities

k k k

E u E ei(s)u; SCAH E (2

S H , HOL 17(0,1:X) SFs
l 7=l 7=l

j=
are valid for any sequence (¢;(s)) of independent, symmetric {—1, 1}-valued random
variables defined on (0,1), for all [ < k € Z and for each p € [1,00), see e.g. [12],
(3.8). Given an interpolation couple &, X5 of Banach spaces, it is easily seen that a
Schauder decomposition of both A} and A5 is a Schauder decomposition of X; N X,
and X] + X, as well. We note that in the previous definitions and results the set of
indices N may be replaced by Z without any further changes.

Let X be a UMD space and x|, denote the characteristic function for the
interval [a,b). Let R be the Riesz projection, i.e.

R := fﬁlx[opo)f,

e
X

‘ forall NeN, z € X, ¢ € {~1,1},
X

—1
Ca

(2.1)

and define

Aj = .7:_1X[2j72j+1)]:, ] €.
It is well known that R and A, j € Z, are bounded in LY(R; X) for each ¢ € (1, o0)
and that {A; : j € Z} is an unconditional Schauder decomposition of RLI(R; X),
the image of LY(R; X)) by the Riesz projection R, see [12], proof of Theorem 3.19.
Furthermore, {A; : j € Z} is an unconditional Schauder decomposition of both

R/Wl’q(]R; X) and R/I/I?*Lq(]R; X) for each ¢ € (1, 00) since for every permutation o
of N, every | < k € Z and any u € RW™(R; X)

k
HU—ZAUO 1oy = [P0~ 200D
j=l

as well as for any v € RW ~14(R; X)

F k
HU_ZAU(J') HW La(R;X) - HF (€ K ZAU(j)F_l(g_lﬁ)

J=l =l
Definition 2.4 Let X,Y be Banach spaces. An operator family T C L(X;Y) is

called R-bounded if there is a constant ¢ > 0 such that for all Ty, --- Ty € T,
r1, -, ey € X and N € N

HZQ 1T,

La(R;X)’

La(R;X)

Ju; (2.2)

J

L‘IOIY) L4(0,1;X)



for some q € [1,00), where (¢;(-)) is any sequence of independent, symmetric
{—1, 1}-valued random variables on [0,1]. The smallest constant ¢ for which (2.2)
holds is called R-bound of T and denoted by R, (7).

Note that due to Kahane’s inequality

IS0 0 = | S0

where ¢ = ¢(q1,q2, X) > 0 ([13]), inequality (2.2) holds for all ¢ € [1,00) if it holds
for some ¢ € [1, 00).

, 1< qq, < , 2.3
L‘12(0,1;X) = qn % > ( )

Lemma 2.5 Let X be a UMD space, 1 < ¢ < 00 and Rap := F ' xnF for
—o0 <a<b<oo.

(1) If g € W H(R; X), then R,p9 € LYR;X) and there exists a constant
c(q, X) > 0 such that

[ Rapgll La@x) < e(g, X) max{|al, D[} Rapglli-1.0(.x)-

In particular, if a > 0, then

1 c(q, X)
mllRa,bglqum;X) < NRapgll-ramn) < =

| Rabgl Lo (m;x)-

(2) There is a constant ¢ > 0 such that for all g € L4(R; X') and for anyl < k € Z
the following two formulae hold:

< A ’ 2.4
19 L9(R; X) HZ 79 qu(RX) 79 LI(R; X) (2:4)
k k k
-1 g .
27N, < H A, ‘A < H 27N, (25
¢ H Jz:; Jg Li(R;X) - ; ]g W—l,q(R;X) = ; Jg Li(R;X) ( )

(3) The operator family { R, p; —00 < a < b < 0o} is R-bounded in L(LI(R; X)).

Proof: (1) and (2) were proved in [18], Lemma 2.7 and 2.8, respectively. Further-
more, (3) is well-known, see e.g. [12]. u

Lemma 2.6 Let (H, (-,-),|| - ||z) be a Hilbert space and let 1 < q < co. Then there
is a constant ¢ > 0 such that for all u; = Aju; € LY(R; H) the inequalities

k k k
S mtin) g = [ 2 > ullr) |,

hold for alll < k € 7Z.

La(R;H)




Proof: See [18], Lemma 2.6. n

To generalize Lemma 2.6 to L"-spaces, r # 2, we recall a crucial technical lemma
from harmonic analysis ([27]).

1
Lemma 2.7 Let 1 < p < r < o0,— = 1 — b and w € A,. Then for every
s r

nonnegative function u € L?(3) there is a nonnegative function v € L (R™™1) such
that

(1) u(z") <wv(z) for a.a. 2’ € X.
(2) [1vllswmn-s < 2fullsw:s-

(3) wv € A, and A,(wv) < ¢ with ¢ = c¢(A,(w)) > 0 depending only on the
A,-constant of w and independent of u,v.

If the function u has a parameter T in a Lebesque measurable set E of R¥, k € N,
and is Lebesgue measurable w.r.t. (z',7) € ¥ x E, then the function v is also
Lebesgue measurable w.r.t. (z/,7) € R" ! x E.

Proof: We extend u onto R”~! by 0 and again denote it by u. Then the assertion
is a particular case of [27], Ch. IV, Lemma 5.18. Checking details of its proof, one
can see that the constant in (2) may be taken as 2, cf. (2.6) below.

Let u have a parameter 7 € E. By the proof of [27], Ch. IV, Lemma 5.18, the
function v may be taken as

[e.9]

o) = YIS IS u(7), (2.6)

j=0

where Su = M (|u|w) -w™! with M (|u|w) the Hardy-Littlewood maximal function of
|ulw on R™™! and ||S]| is the norm of the sublinear operator S in L (R"!). Looking
at the structure of the Hardy-Littlewood maximal function, Su(-,7) is seen to be
Lebesgue measurable w.r.t. (z/,7) € R""! X E; hence each summand of the series in
(2.6) is Lebesgue measurable w.r.t. (2/,7) as well. Then the function v as a limit of
an increasing sequence of nonnegative measurable functions on R"~! x F is Lebesgue
measurable on R"™! x E. |

Lemma 2.8 Let 1 < g <o00,2 <71 < o0, % =1- % and w € A,. Then there exist
constants C; = C1(A,(w)) > 0 and Cy = Cy(q,7) > 0 independent of w such that for
L,k € Z,l <k, and for each finite sequence u; = Aju; € LY(R; L] (X)),5 =1,...,k,
there is some measurable function v on R™ satisfying v(-,x,) € LS (R"™!) for a.a.
T, € R and

020l < 20 w0(-,00) € Ap(R™) and Aa(w(:, ) < Cr,
k k 1/2

5w [OIICERTEmTE iy ¢

o P 4

9

(2.7)

< Chen
La(R:LE ()



Moreover, for all sequences v; = Aju; € LYR; L (X)),j =1,....,k,

k ) 1/2 k
[ st eBen) ), < Caca| S
i=l 7

where ¢ is the constant in (2.1). In particular, (2.8) holds for (u;)%_; as well.

(2.8)

a La(R;LE, (%))

Proof: Choose a sequence (g;(s)) of {—1, 1}—valued symmetric, independent ran-
dom variables on [0, 1]. By (2.1), Fubini’s theorem and Kahane’s inequality (2.3)
<ca

k k
H Z MNrawsLr (=) ‘ Z 7
Jj=l Jj=l

k
:cAH E £ SCH E £,
— La(R;L9(0,1;L7,(%))) —
J:

La(0,1;L9(R;L7,(X))) (2 9)

La(R;L7(0,1;L7(%)))

where ca = ca(q,7),c = ¢(q,r) > 0; note that for X = L (X) the constants ca in
(2.1) and ¢ in (2.3) are independent of the weight w, see [19], Remark 5.7, Remark
5.3, and even independent of ¥, which can easily be seen via the extension by 0 of
functions on X onto R™ 1. Let us recall Khintchine’s inequality for complex numbers
aj, 1.€.,

c|l 2.10
oy PELO) (210

N N 1/2 N
IETH I O DU I DL
7j=1 7j=1 7j=1

where the constant K = K(p) does not depend on the choice of the sequence of
independent, symmetric and {—1, 1}-valued random variables (¢;(-)) on [0, 1] and
on (a;). By Fubini’s theorem and (2.10) we get for a.a. x, € R

)oms
<x0)( [ (;w xn>|2)/ ol >dx) v 2.11)
r>H(i|uj<~,xn>|2)”2 = r>]\zk;\uj<~,
o 0 e v .

k
| S s 2t
j=l

1/r
ds w dx’)

U LB , L
L7(0,1;L5, (X J n)

: 2 1/s' ~ 1/2
= ( /Eij(-,xnn W ) da')
j=l

1/2

- (/zzk: ) Py ma) da’)

(2.12)

10



where u(x,) = (-, z,)w™* and, if Z?:z lu; (-, x,)|? # 0,

(28 Juy (-, )P

S fuy ) e

but if Z?:z luj(-,2,)|> = 0, then (-, z,) := |X|~Y*. Note that @(z’,z,) > 0 and
a(-,z,) € L*(X) with ||a(-,z,)|s;x = 1, and hence, for a.a. z, € R we get that
u(z,) € LE(Y), [Ju(xy,)||sw = 1. Moreover, the function u is Lebesgue measurable
w.r.t. (2/,x,) € ¥ x R. Therefore, by Lemma 2.7 there is a Lebesgue measurable
function v on R™ such that v(x,) = v(-, z,) € L, (R"!) and

(- xy) -

)

w(@',x,) <wv(d,x,) foraaz €3, ||v(z,)|se <2,

wu(zy,) € Ax(R™ 1) and Ay(wv(z,)) < C, (213)

where the constant C' in (2.13) depends only on the A,-constant of w and is inde-
pendent of u, v; see Lemma 2.7. Now (2.9), (2.11) and (2.12) imply that (2.7) holds
with the function v chosen above and some constant C' = C(q,r) > 0.

Let v; = Aju; € LYR; LT (X)), j =1,...,k, be an arbitrary sequence. Then, by
Holder’s inequality, (2.13), (2.10) and (2.3) we get for almost all z,, € R that

k 1/2 k , 1/2
(Z ||Uj('7$n)||%,wv(xn)> = </ Z |Uj(l'/’;pn)|2w(l'/)l/8 . U(x’)q}n)W(l‘/)l/S dxl)
j=l X j=1
k 1/2 k 1/2
< |t @l < v2|(3 it e)?)
j=l ’“’ j=l

< K2 iw(-,xn)

r,wW

< clg.1)| S ey

Lr(0,LL5(%) pr

La(0,1;LE,(%))

Therefore, using a similar technique as in (2.9), by Fubini’s theorem and (2.1) we
get (2.8). u
2.2 Generalized Resolvent Estimates on an Infinite Straight Cylinder

Let 1 < ¢,7 < co. On an infinite cylinder 2 = ¥ x R we introduce the function
space

L(IL) = DR L(S)), oy = ( [/ |u<x',a:n>|fw<x'>dw')q/rdxny/q.

Furthermore, let W*47(Q), k € N, denote the Banach space of all functions on
2 whose partial derivatives of order up to k belong to L(L’) endowed with the

norm [[uflykar = (E|a|§k HDO‘UH%C,(LT))I/Q, where o € Nf is a multi-index, and
let W&f’r(Q) be the completion of the set C5°(Q2)" in Wker(Q). The weighted
homogeneous Sobolev space Wj;q”(Q) is defined by

Wher(Q) = {u € LL (Q)/R: Vue LI(L)}

11



with norm ||Vu||pe(zy); finally, Wotkar(Q) = (Wiﬁq,’w(ﬁ))*. By the Hahn-Banach
theorem it is easily seen that

W0 (Q) = WH(R; LL(E)) + L9(R; W, (). (2.14)

Lemma 2.9 Let 1 < g,r < 0o and w € A.(R"1).
(1) For d > 1 let
Qo= {(",2,) € Q: |z,| < d}.

Then Poincaré’s inequality

lellra(-aazr =) < CdAIVOl|Laad L)) (2.15)

holds with an A,-consistent constant C' = C(A,(w), %) > 0 for all p € C>®(Qy) with
de pdxr = 0.

(2) The set C(Q) is dense in Wher(Q).

(3) The set C°(R; Whr(2)) N W\Jl?q”(ﬂ) is dense in the space W™ (Q) N
W ke (Q).

w

Proof: (1) Let ((x,) = ﬁfz o(a', z,)de’, x, € (—d,d), and define Y (2', z,) =
o(x',x,) — ((x,). Obviously, fiid ((zn)dz, = 0 and [ (a’,2,)dz’ = 0 for all
€ (—d,d). Therefore, by Poincare’s inequalities on ¥ and on (—d, d) we get

lolla(-aa ey < NVl La—aa o)) + 1<l La(—aa; or(m))

d 1/q
E;Q/ wwa%qu%) () o
<C(A (/ [V (-, ) |2 dxn) + deyw(S)Y10nC | La(—d.a)-

Note that Vi) = V'p and, due to Hélder’s inequality and w(x)Y"w’(z)"/" =1 for
ey,

w(Z)M / , ,
Onp(a', ) d
ST
w(E)l/rw’(Z)l/T/
2]
< e(B)A(W)1Onpl La(—ad; () -

W) 10nC | a(-d.0

L4(—d,d)

IN

10l La(—d.d; Lr, ()

Thus (2.15) is proved.
(2) The assertion is proved in the same way as [18], Lemma 2.1 (ii), where w = 1.
(3) Let {pe }e>0 be a one-dimensional mollifier defined by p.(z,) = 2p(%2), e > 0,
with p € C§°(R) satisfying supp p C [—1,1] and [, p(x,) dz,, = 1. In the subsequent
proof, for a function f defined on € let p. * f denote the convolution with respect
to x,, that is,

pwﬂ%m%=4ﬂ%%—%mmMM.

12



Further choose n € C§°(R) such that

(22) = 1 for |z, <1
)= 0 for |a,| > 2,

and let n;(z,) :==n(**) for j € N.

Now, for g € Wker(Q)NW,; 147 (€), define the functions g;, g;, j € N, by g;(z) :==
nj(xn)g(x), x € Q, and

@ -
gj(x) == ’ €251 Ja,

gidx  for x € €y,

0 otherwise,

respectively. Further let g;. := g; * p. for € > 0.

Evidently, g;. € C°(R: WAr(%)) € Wher(Q). To prove g;. € W, 197 (€) note
that supp gje C €224 and that fQ gje dv = 0 since fQ g;dx = 0. Therefore, by
(2.15), for ¢ € C§° ()

/gjs¢d$ = / gjs¢dx :/ gja@dx
Q Q2jte Qojye

||gjs ||Lq(L;) ||@||LQ’(—2jf€,2j+s; L;’/ ()

IN

< A2) +lgsellLaan IVl Lo 1y

where ¢ = p — ‘92]%' szJ+ ¢ dr and ¢ = ¢(A,(w), ) > 0. Thus g;. € W 527(Q).
Now we will show that the sequence {g;.} with carefully chosen ¢ = ¢(j) con-
verges to g in Wher(Q) N W 597(Q) as j — oo. First let us prove the convergence
in W}er(2). Since supp g; C s, we obtain
1 &
9je =9 = (g% pe —9) + (g — 9) % p= — (Q— 95 drc) / Pe(Tn = Yn) dyn . (2.16)
Q9] Ja,,

Since g € WJW””(Q), by Hahn-Banach’s theorem there is some u € L(L]) such
that
g=divu, u-Nlopa=0 and |ullrry) = llgllgz-1ar -

By elementary calculations we have
)/ gjdx‘ = ‘/ njdivudx’ = ‘ an-udx‘
Qo Qaj Qg
< e
J

= cl(q)J Ya,/(8 )1/7" ||XJ2JUHL‘1 L2)

(2.17)

where x;o; is the characteristic function of the set [—2j, —j] U [],2]'] and ci(q) =
(ff2 10,1 (yn)|* dyn)l/ql. Further we get
2j
[ ol = w)dn,

T
27

= w(D)Vr (2.18)

Wi (@) Wha(R)

13



Note that, if 0 < € < 27,

H/ Pe(Tn — Yn) dyn

2j
5w [ petoa =

= H/%:(xn + 2]) - /)5<£Un - 2j)||Lq(—2j—€72j+€)

< 2(|pe |l Loy = c2(q)e 7,

where ¢3(q) = 2||p||za(—1,1). Therefore, taking e = £(j) := j~9/4, it follows from
(2.17),(2.18) that the W% (Q)-norm of the third term of (2.16) is estimated by
)

c(Qw(E)Vrw/ (D) c(q, X) A (w
: X525 wllLacer) < S o || La(rr)
|29 J
J

< (4j + 25)1/11 < 81/qj1/q
La(—2j—¢,2j+¢€)

and that

L4(—2j—&,2j+¢)

which tends to 0 as 7 — oo.
Obviously [|g+ pz(j) = gllyy1iar gy — 0 and [[(g; — g) * pe(j) Iy 10 gy — 0 as j — oo.
Summarizing the previous results we get that [|gje(j) — glly1arq) — 0 as j — oc.
Next we will prove ||gj-(;) — g||WJ1;q,r(Q) — 0 as j — oo. For j € N define f; on
Q by
1 .
fA(:L‘/ xn) _ Uy, &mj + m fQQj g; dl’, |ZEn| < 2]
0, |z,| > 27.

Then g; = div (n;u) — f; and, using (2.17), we have

1
lerazy < e Oullasaszsy + | [ s
1Q09;] Ja,,

(45)Y1w(S)M"
€251

L9(-24,25; L)

/ g;dr
ng

< 10nmjlloolIXi.25 wllLacrr) +

(2.19)
<

c , @)y
5+ s Iasllza)

c(q)
< — (14 A (@)lPas ey
Note that fﬂgj fjdz = 0. Therefore, defining (f;,¢) := [, fjpdx for p € C=(Q),

we get by (2.15), (2.19) that

o)l = | [ fiede| = | [ fipdal

.
“fj”Lq(LL) H@HL(I'(—M,Qj;LZ’,)

< O(AW), D)lxgas ullss) IVl

QQJ'

IN

where ¢ = ¢ — @ fﬂgj @dx. Hence (f;,-) € WJI?W(Q) and
1€ Mz r0r ) < C(A(W), B)IXG25 ull Lacer)-
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By Hahn-Banach’s theorem there exists some w; € LI(L]) such that
divw; = f;, w;-Nloo =0, and  |wjllzewy) = (/5 ) sz 100 -

Therefore, with u; := n;u — w;, we get g; = divu,; and

195e() = 9llgis 10 () = 1div (u = w; % pe(i)) I 10
< lu = u; * pegyllLacer)

< lw—w* pegy)l|zacer) + lw —n5ullpaczry + llwjllLar) — 0

as j — oQ.
The proof of this lemma is complete. ]

Now we are in a position to prove the main theorem of this section.

Theorem 2.10 Let ¥ C R™! be a bounded domain of C*'-class and let oy > 0 be
the smallest eigenvalue of the Dirichlet Laplacian in Y. Moreover, let 1 < q < o0,
2<r<oo,weAR"™M), aec(0,a0) and let \ € —a+ ., ¢ € (n/2,m). Then, for
every f € LY(R; LT (X))", g € Wher(Q) n /V[?w_l;q”"(Q) there exists a unique solution

P

(u,p) € (WEer ()" N WolgT(Q)") X Wher(Q) to (Ry) satisfying the estimate

(A + a)u, V2u, V|| Larr)

(2.20)
< C(Illzrazy + Nallyary + (A + Dliglar )

with an A,-consistent constant C = C(q,r,a,e,%, A.(w)) independent of \.

Proof: For the special case g = 0 this theorem was treated in [19], Theorem 2.1.
Therefore, we shall consider only the case f = 0 and assume, due to Lemma 2.9 (3),
that g € C2°(R; WA (X)) N W Ler(Q).

By [19], Theorem 4.4, for every £ € R* and A € —a+ S the parametrized Stokes
resolvent system (R) ¢), see the Introduction, with F' = f=0and G =jeW(),
has a unique solution

(Ug, Pe) :== (Ug(€), Pa(€)) € W2 (Z)N W(},Z(E)) x W)"(%)

such that
(A + a)Uq, §Uq, EV'Uq, V?Uq, EPa, V' Fgll s
< (196, GG + (N4 DIG L+ Eol),
and, by [19], Corollary 4.5,
€5 (A + )Uq, €Uq, EV'Uq, VU, EP6, V' Fa) ||, .5 02,

< c(IIV'G, G &G s + (N + DIG: Ly, o + L2 1 ello):

W,
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here the constant ¢ = ¢(r, a, €, 3, A, (w)) > 0 is independent of A € —a+ 5., £ € R*,
and

G Lo + L 1 jello := inf {[|Goll -1 + |G1 /€]l 2.2
G=Go+ G, GoelL, (¥),G e L,(D)}.
Moreover, the operator M (€) : Wl (2) — L7 (X), € € R*, defined by
M(&)G = (A + a)Ug, U, EV'Uq, V*?Uq, EP, V' Fg)
is Frechét differentiable, and (2.21), (2.22) yield the estimate
IM ()G, EM'(§)Gllrws < c(IV'G, G, EG lrwis+(INFDIG; Ly, 4L 1 ello) s (2.24)

where ¢ = ¢(r,a, ¢, 2, A, (w)) > 0.
Obviously (u,p) = (Uye)(§)Y, Pye)(§)Y) solves (Ry) with right-hand side (0, g)
in the sense of distributions. Therefore, to prove (2.20) it is enough to show that

1(M©OFO) sz < Cllglhyaor @ + A+ Dlgllgorarg)  (2:25)

with an A,-consistent constant C' = C(q,r,a,¢, %, A, (w)
may assume without loss of generality that supp g C [0, 0o

) independent of A\. We
) due to the relation
9@ xn) = (X(0.00)9(8))" (@', n) + (X(~0,09(£))" (2", 20)

= (X[O,oo)g(g))v(xla xn) + (X[O,oo)g(_g))v(xla _xn>

and due to the linearity of the problem (R)). For notational convenience, we intro-
duce the space

X = Whar(Q) N W ke (Q)
= (Wh(R; L,(%)) 1 LR WL (2))) N (W(R; L (3) + LI(R; W 10(3)))
As mentioned in §2.1 the operator family {A; = F'xpio+)(§)F : j € Z} is

an unconditional Schauder decomposition of RX, the image of X by the Riesz

projection R; hence g = szZ Aj;g in X. Moreover, for s € R we define

Ry = F ' X[s.00F-

Note that M(é’) = M(2%) + f2] M'(t)dr for & € [27,27%1) j € Z, and that
obviously (M(2J)A]g) M(2 )Ajg; furthermore,

€ - v 27+1 o v
( g M'(7) dTAjg(§)> = ( g M'(T)xpi,6)(T)Ag(&) dT)
= (/0 2T M (27 (1 + 1)) xp2 (27 (1 4 1)) xp23 2541 (£) 9 (E) dt>v
= / 27 M'(2/(1 + 1)) (Rai(144) — Rosr1) g dt.

0
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Thus we get

(M(©3(©)" = (3 xwan©ME©Rg)

JEZ

. € v
M(27) + / M'(1)dr) Ajg) (2.26)

- ZM(ZJ Ajg+ Z/ P M'(2(1+1)) By, A9 dt,
JEZ JEZ
where Bj,t = R2j(1+t) — R2j+1.

First let 2 < r < oo. To estimate the first term on the right-hand side of (2.26)
in the norm of L(R; L (X)), note that for each j € Z the operator M (2?) commutes
with A; and that {A; : j € Z} is a Schauder decomposition of RLY(R; L7 (X)). Then,
by Lemma 2.8, for a.a. x,, € R and for any [, k € Z there is some v(z,) € L (R"!)
depending on u; = M(27)A;g,j = 1,...,k, such that (2.7), (2.8) are satisfied with
(u;)h_;. Therefore, in view of (2.24), we get

k k 12
AV AVAN I
| D M| Qj; 1M@)850 B o) ||
k
1/2 4 1/2
2j 112
<o{| (Z 18lise, o) |+ [ (2 1801c) 7]

1/2
(|)\| + 1 H (Z ||A]gv mev(mn) + Li”(mn)vl/w ||3> Hq R}

(2.27)
with ¢ = ¢(q,r, o, e, %, A.(w)) > 0 independent of [, k € Z.
Now let us estimate each term on the right-hand side of (2.27). By (2.8) we get

k
1/2
H(Z|\AJ9|\W12 o) ||, S]] A
wv(zn) q,]R ]:l

note that A; is an operator with respect to the variable z,. By analogy, exploiting
Lemma 2.5 (2),

12 221890 o) 2

(2.28)

La®WL" (D)

IN

C(q7 T) H Z?zl QjAjg”Lq(R;LL(E)) (2 29)
< olgn)|| X5 Ai9ll @0 )

In order to get an estimate of the last term on the right-hand side of (2.27), let
k —_ —_~
S A= g+ a g0 € LR, T(R)), g1 € WHI(R; LI(E)),
j=1

be any splitting of Z?:z Ajg. Due to the properties of A; we see that A;g = Ajgo+
Ajgy for all j = [,... k, and that, by Lemma 2.5 (1), A,;¢g; € LY(R;L](X)) and
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consequently even A gy € L(RR; WJ”(Z)HLZ(E)) = LY(R; Ly, ,(¥)). Furthermore,
by (2.7) and Hoélder’s inequality it is easily proved that for a.a =, € R

Ly,(¥) C Liv(rn)(E)v o ll2,w0 (@) < ||90||Tw||v($n)”1/2 < ﬁ”@”nw (2.30)
for all p € L7 (X), and hence
WS (E) C WL (D), Il -r2wwn < V2IAIl-1 5w (2.31)

wv J?n

for all h € WJ Lr(¥). By the triangle inequality,

é 2 2 2 1/2
H (Z ||Ajg; Lm,wv(mn) + va(xn),l/Qj ||0) Hq R

g=l

k ) 1/2 k L , 1/2
< (sl min) |+ (218000 n)
J=l ' j=l ’

Then using the Hilbert space structure of W

independent symmetric {—1, 1}-valued random Varlables (¢(-)) on (0,1) as well as

(2.31), Kahane’s inequality (2.3), Fubini’s theorem and (2.1) we get that

i ) 1/2 k
H(;HAngHLQ,wv(mn)) Hq,R = HH ;8J( 390HL2(01W7 (mn)(z))

k
< \/§H H Z 5j(3)Aj90HL?(OJ;WJ“(E)) HqR
j=l |

)(Z) and the properties of any

R

Z €j<S)A1g0||Lq(0,1;/W\/Jl’T(2))

wnSan)
Similarly, using (2.30) and (2.5), we get that

1 27212850112 )

q,R

LIRS (5))

IA

r) H Z?:z ANT HLq(R;L;(z))
r) H Z?:z Ajo HW—L'J(R;LZ(E))'

IA

Then the uniform boundedness of {Z?Zl Ajbkez in L(LA(R; /W;LT(E))) and in
LW=L4(R; L7,())) implies the estimate

) 9 1/2
H (Z “Ajg7 m,wv(zn ) _'_ va(l‘n)vlﬂj HO) Hq,R
k
< A, ‘ H A
> C( ‘ Z 790 Iz R'/I/I\/717T(E) + Z ig

(HgoHLq wotrey) T 91 [l 1‘1(]RLT(E)))

WLQ(R;La@)))
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with ¢ = ¢(q,r) > 0 independent of [,k € Z. Now (2.14) implies the estimate

k
> Ay
j=l

2.32)

k
1/2
5 ol ] 565 Bl
H(;” 395 m,wv(mn)+ wv(wn),1/2J||0 q,]R{_C((LT) /I/i\/;hq’r(Q) (

Summarizing (2.27)-(2.29) and (2.32) we get that
H Z?:z M(2j)Ajg||LQ(R;LL(E))
= C(” Zﬁzl AJ‘gHWJ;W(Q) + (A + 1)H Z?:z AJgHW;“‘”(Q))

with ¢ = ¢(q,r,a,6,%, A (w)) > 0 for all [,k € Z and for all A € —a + S..
Since (A;);ez defines unconditional Schauder decompositions of RW24"(Q) and
of RWJL‘”(Q), (2.33) implies that the series > .., M(2/)A;g converges in
LY(R; L7,(X)) and

| > M)

with ¢ = ¢(q, 7, a,¢, %, A.(w)) > 0. This is the desired estimate of the first term on
the right-hand side of (2.26).

Next let us estimate the second term on the right-hand side of (2.26). Note that
the operator family

(2.33)

ey < Calhazariy + A1+ Dl e o)

{Bj.:7eNte(0,1)} Cc L(LYR; L.(X)))

is R-bounded, cf. Lemma 2.5 (3). Moreover, for ¢t € (0, 1), the operator M’ (27(1+t))
commutes with the operator B;; and the range of B}, is contained in the range of A;.
Hence it follows from (2.1), (2.2) that for any independent symmetric {—1, 1}-valued
random variables {¢;(-)} on (0, 1)

k 1
HZ/ 2 M(2(1+ 1)) By, ]
j=1 /0
1 k
<)

o 142
1
SCA/
0

1 k
Sc/ | S erarnm@a+mag
o 143

1
SC/
0

By Lemma 2.8 (2.7) holds with u; = u;(t) := 2/(1 + t)M'(27(1 + t))A,;¢ and with
corresponding functions v = v(-, z,,t) € L (R"™!) for (x,,t) € R x (0,1), where v

La(R; L, (2))

dt
La(R; L, (X))

l

dt (2.34)

k
Z 6ij7t2](1 + t)M/(QJ(l + t))Ajg L4(0,1;L4(R; L7, (X))
J=l - -

dt
La(0,1;L9(R; L, (X))

dt.
La(R; L, (2))

k
‘ N V(1 M2 (1+1) A9
=1
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is Lebesgue measurable w.r.t. (2/,z,,t) € R” x (0,1) by Lemma 2.7, see the proof
of Lemma 2.8. Therefore, using (2.24) we get that

the r.h.s. of (2.34)

SC/Ol
<[ I

1/2
+|)\ + 1|2 ||Ajgﬂ L?n,wv(-,xn,t) + LZU(-,xn,t),2—1(1+t)—1 ||(%] } Hq R dt)
1 )
< C</
0

b 1/2 k 12
) (S 1)
(;u e ) L Z 1850tz |

wvu(-,an,
Ek: 2 2 2) /2

+|)\ + 1‘ H ( HA]g7 Lm,wv(-,xn,t) + va(',xmt),Q—j HO) Hq]R dt)7
= ’

dt

1/2H
q,R

k
(20400 0+ 0)As0C.2) [3000)

k

1Asl152

wv(A,mn,t)(E) - 22](1 T t)z HA‘ng;wv('vxnvt)
l

where ¢ = ¢(q,r,a,¢,%, A.(w)). Thus, by the same argument leading from (2.27)
to (2.33) we get the estimate

La(R; LT (X))

I3 [ 2 nms
j=l

k
<e(| 2
j=l

with ¢ = ¢(q,r,a,¢,%, A.(w)) > 0. Summarizing, we proved in the case r > 2 the
existence of a solution to (R)) satisfying the estimate (2.20).

In the case r = 2 the same proof as before, but with v = 1, may be used.

The uniqueness of solution is obvious from the uniqueness result for f # 0,9 = 0,
see [18]. Now the proof of the theorem is complete. n

Wj;qm Ww—l;q,r(g)>

o T (A iAjg

3 Cylindrical Domains with Several Exits to Infinity: Proof
of the Main Results

In this section  C R" is the cylindrical domain Q = [JI%,Q; of C'!-class where
Q) is a bounded domain of class Ob! and Q;, i = 1,...,m, are disjoint semi-infinite
straight cylinders; that is, in possibly different coordinates,

Q, ={2' cR": x; >0, (m’i,...,xi_l) € X',

where Y C R""! is bounded, and €; N Q; = () for i # j. Let @ = min{a® : i =
0,...,m} where a(® > 0 and a” > 0,7 =1,...,m, are the smallest eigenvalues of
the Dirichlet Laplacians in g and in X%, i = 1,...,m, respectively.
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For fixed A € C\ (—o00, —a] let us define the operator S, by

D(Syn) = (W24(Q)" N Wy (Q)" N LL(Q)) x WH(Q),
Sga(u,p) = Au — Au+ Vp.

Obviously the range R(S,1) of S, is contained in L?(£2)".

Lemma 3.1 Let 2 < g < o0, € € (1/2,7) and X\ € —a + 3., where a € (0, @).
(i) If (u,p) € (W29(Q)" N Wy '(Q)") x WH4(Q) is a solution to the resolvent
problem (1.2) with f € LI(Q)", then (u,p) satisfies the estimate
(A + a)u, VZu, Vp||La()

(3.1)
< C([1f o) + [IVu, s pllzagao) + (Al + Dl s o))

with a constant C' = C(q, a,&,Q, 3, ..., 5™) > 0 independent of N € —a + X.;

here ¢ = q/(q — 1).
(i1) The operator S, is injective.
(1it) The range R(Sy ) of Sy is dense in LI(Q)".

Proof: The proof uses a cut-off technique and, in principle, follows the same ar-
gument as in the proof of Lemma 4.1 of [20]. Without loss of generality we may
assume that there exist cut-off functions {;}, such that

ZZ’W;O sz(x) = 1, 0< QDZ(JZ) <1 forzxe Q, (3 2)
@i € C°(€y), dist (suppp;, 02;NQ) >5>0,i=0,...,m, .

where ’dist” means the distance. For ¢ = 1,...,m let ; be the infinite straight
cylinder extending the semi-infinite cylinder €;, and denote the zero extension of v
to Q; by 0. Then {pou, pop} on Qy satisfies

Apou) — Alpou) + V(pop) = f° in Qo
(Rx)o div(pou) = ¢° in Qg
Yo = 0 on 8907

and {p7u, gip} on O, i = 1,...,m, satisfy

M) — A(pu) + V(ep) = 1 in€y
(Bx)i div(pm) = § &
o = 0 on 0%,

where

fi =oif + (Ve)p — (Apj)u — 2V p; - Vu, gi =Vy;-u, 1=0,...,m.
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Note that supp g’ C Qo and [, g'dx =0 for i =0,...,m. Therefore,

/ ¢ dr = / u- (1 Vo)dr  for all p € C(Qp)
Q0 Q0

where ¢ = 1) — ﬁ Jo, ¥ da. Hence, using Poincaré’s inequality, we get that ¢° €
W=14(0) and

9%l 1000 < <(Q0)IIV200, Vool ow (20 [l 1. 20+
In the same way it follows that §' € W=14(€);) and
ngwal,q(ﬁl) S CHuH(WLq/(QO))* fOr Z = 1’ “ e ,m.
Therefore, by [20], Theorem 1.2, for all A € —a + X,
1A + @) (wow), V2(ou), V(o) || L)
< c(11°, V9%, 8°llzaco) + M9l -1agan)) (3.3)
< (||f||Lq(Q) + ||VU7U,p||Lq Q) T |)\|||U||(W1,q'(90))*)

with ¢ = ¢(q, a, ,€) > 0. Furthermore, by Theorem 2.10, fori =1,...,m

1A + @) (piw), V2(piu), V(eip) Lo
= [[(A+ a)(@in), V*(oi), V(0iD) || oo,
< c(IlF, V3, 3l a@y + A+ DI I 5-10,)
< c(Ilfllea) + IV w, pllagae) + (AL + Dllull e @))-)

(3.4)

with ¢ = ¢(q, a, £, 2%) > 0. Finally, summing (3.3) and (3.4) fori = 1,...,m, we get
the estimate (3.1) for u = > """ p;u and p =" @;p. Thus (i) is proved.

To prove the injectivity of S, let S, (u,p) = 0 with (u,p) € D(S,). If ¢ =2,
one directly gets (u, Vp) = 0 by testing with w.

Let 2 < ¢ < co. Looking at (Ry)g and (Ry);, i = 1,...,m, it is obvious that f° €
L2(90), ¢° € WE(Q)NW12(Qo) and f € L2(Q), §° € W2(€:)NW12(Q;); note
that f = 0 and that f?,¢°, i = 0,...,m are compactly supported in €. Therefore,
by [20], Theorem 1.2 and [19], Theorem 2.1, we get that

(piu, pip) € (WZ’Q(Qi)n N W(}Q(Qz)n) X /Wl’z(Qi)a i1=0,...,m.

Thus (u,p) € D(S2,) yielding (u,p) = 0.

Next let us show that R(S, ) is dense in L(2)". By the lemma of Lax-Milgram
and regularity theory of the Stokes system we conclude that R(Ss,) = L*(2)". For
¢ >2and f € Cj°(2)" which is dense in L?(2)", there is (u,p) € D(S,,) such that
Sox(u,p) = f. Looking at (Ry)o and (R,); and using regularity results for Stokes
resolvent systems on bounded domains and on infinite cylinders (Theorem 2.10),
one can see that

(cpiu, QDZp> S (Wi;[j,’/‘(ﬁi)n N Wol’g,T(QZ)n) X /Wi;fi,r(Qi)? 1=1,...,m,
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with w =1 for all § € (1,00), r € [2,00), in particular,
(Spiua gplp) S (WZQ(QZ')n N WOI’q<Ql)n) X /WLq(QZ')v L= 07 s, M,
yielding the denseness of R(S,) in L(2)"
The proof of this lemma is complete. [ ]

Now we can prove the main theorem of this paper.

Proof of Theorem 1.1: First let 2 < ¢ < oco. Let us prove the a prior: estimate
(1.3) which will imply by Lemma 3.1 that the operator S, is an isomorphism from
D(S,.») to L1(Q2)". Instead of proving (1.3) we shall show a slightly stronger estimate

H()\ + ﬁ)u, VQU, VpHLq(Q) < CHfHLq(Q) VA€ —a+ Es (35)

with a constant C' = C(q, «, ¢, ) independent of A\ where = %(a + @); note that
AN+ a| <cle,a)|]A+ 3| for all A € —a+ X..

Assume that (3.5) does not hold. Then there are sequences {\;} C —a + X,
{(uj,p;)} C D(Sy,5,) such that

1N + B)ug, VPuy, Vpjlla = 1, [l fillpaw) — 0 as j — oo, (3.6)
where f; = Sgx;(u;,p;). Without loss of generality we may assume that
(A + Bu; = v, V?u; —=V?u, Vp; = Vp asj— oo (3.7)

with some v € L), u € W“(Q) and p € /Wl’q(Q)_. Moreover, we may assume
Jo,pidr =0, [ pdr =0 and that \; — A € {—a + S.} U {oc}.

(i) Let \; = A€ —a+S..

Note that A + 3 # 0. Then by (3.7) v = (A + B)u, u; — u in W29(Q) and
u € D(S,). It follows from (1.2), (3.6) that S, \(u,p) = 0 yielding (u,p) = 0 by
Lemma 3.1 (ii). On the other hand, we have the strong convergences

u; — 0 in Wh(Q), p; — 0 in LYQ), (M| 4+ Duy; — 0 in (WH7(Q))* (3.8)

due to the compact embeddings W>4(Qy) cc Wh(Q,) ccC L%, CC
(W4'(Q0))*, Poincaré’s inequality on €y and (3.7). Thus Lemma 3.1 (i) together
with (3.6) yields the contradiction 1 < 0.

(ii) Let |A;| — oc. Then, besides (3.7), we conclude that V?u = 0, and conse-
quently v 4+ Vp = 0 where v € L4(Q). Note that this is the L?-Helmholtz decompo-
sition of the null vector field on 2. Therefore, v = 0, Vp = 0. Again we get (3.8)
and finally the contradiction 1 < 0.

Thus (3.5) holds true proving existence of a unique solution to (R,) in the case
2 <q<o0.

The case 1 < ¢ < 2 can be proved by a duality argument. As is well known,
(1.2) is equivalent to

A+ AgJu =Py f
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with the Stokes operator A, and the Helmholtz decomposition P, of L(2). More-
over, if 0 € p(4,), then the resolvent estimate of type (1.1) implies by the open
mapping theorem the estimate (1.3) as well as the uniqueness and existence of a
solution to (Ry). If we show

AT = Ay, (3.9)

where A7 is the dual of A, in LZ(2), then —a+ . C p(—A,) and the estimate (1.1)
for 2 < ¢’ < oo yield, by well-known theory on resolvents, that —a + 3. C p(—A4,)
and the estimate (1.1) for 1 < ¢ < 2.

Since P; = Py, it is easily seen that Ay C A}. Let v € D(A}) and let w € D(Ay)
satisfy Ayw = Ajv; note that 0 € p(Ay) due to the result already proved for ¢’ > 2.
Then for all u € D(A,)

(Aquav)LzLLZ’ = (uaA;U)Lq,Lq’ = (u,Aq/w)quLq/ = (Aqu, w)Lq,Lq"

Since R(A,) is dense in LZ(2) — for an argument see the last paragraph of the proof
of Lemma 3.1 -, we conclude that v = w € D(Ay), and (3.9) is proved.

Finally, (1.4) follows from (1.1) by the well-known theory of analytic semigroups.

n

In [5] it is proved that the shifted Stokes operator ¢ + A, with some ¢ > 0 on
L4(G) admits a bounded H*-calculus provided the domain G C R", n > 2, satisfies
the following assumptions (A1)-(A3):

(A1) There is a finite covering of GG with relatively open sets Uj,j =1,....1
such that U; coincides (after rotation) with a relatively open set of jo, where
R_gj ={(z1,2) € R": z1 > v(2)}, v, € O%, j=1,...,1. Moreover, suppose that
there are cut-off functions ¢;,1; € C;°(G), j = 1,...,1, such that {¢;} is a partition
of unity subordinated to {Uj}é-:l, Y; =1onsuppy; and suppy; C U;, j=1,....1;

here Cp°(G) means the space of all infinitely differentiable and bounded functions

on G.

(A2) The Helmholtz decomposition is valid for L"(G)™ withr = gand r = ¢/, i.e.,
for every f € L"(G)" there is a unique decomposition f = fy+ Vp with fy € LL(G)
and p € WL (G). Moreover,

LUG)={f e LYG)": divf=0, f-N|og =0} (3.10)

(A3) For every p € W“’(G),r = q,q, there is a decomposition p = p; + ps
such that p; € WY (G),p, € L (G) with Vp, € W' (G) and ||p1, Vps|lwirq) <
ClIVpll-

It is easily seen that the domain €2 satisfies the assumption (Al). Furthermore
the Helmholtz decomposition of L?(§2)™ was proved in [7], Theorem 4(c). Through
the following lemmata we shall see that the remaining assumptions are satisfied as
well.

Lemma 3.2 The set C5°(Q) is dense in /Wl’q(Q) forl < q < oc.
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Proof: Fixu € leq(Q). Using the same notation as in the proof of Lemma 3.1 and
the cut-off functions ¢;, j = 0,...,m, see (3.2), we have u = Z;.n:o @;u. Without
loss of generality assume that fQo wdxr = 0. Thus, by Poincaré’s inequality on the
bounded domain €2,

wou € WH(Qg) and @ju € /WLq(Qj)7 CRTRS /Wl’q(flj), j=1,...,m.

Then there are sequences {v,(co)} C Cg°(Q), {vlij)} C C{)’o(ﬁj),j =1,...,m, such
that
0 Ny
lor” = Goullwray = 0, v = Brtllgrag,) — 0 (3.11)

as k — oo due to the denseness of C5°(Q) in W14(£y) and Lemma 2.9 (2). Let
Q)= {z € Q; : dist (z,Q2N Q) > 6} for j=0,...,m.
Note that
supp ¢;u C Qg, j=0,...,m, (3.12)

due to the construction of {¢;}7,. Without loss of generality we may assume that
/ v,gj)dx:0 forj=1,...,m. (3.13)
0;\8

Let us choose functions 1y € C5°(Q) and 7; € C§° (ﬁj),j =1,...,m such that

no(z) =1 for x € Q) and ny(z) =0 foerQ\Qg/Q, (3.14)
nj(:n)zl,xeﬁg, and n;(z)=0,2€ U\ Q, j=1,...,m. '

For k € N let wl(;)) = nov,(f) and let w,(gj) be the zero extension of njv,(gj) onto ().

Now let wy := 37" w,(cj). Obviously wy € C°(Q), k € N, and

IV (= wi)llza) < D 1V (050 — w) | ae- (3.15)

=0

Due to (3.12) and (3.14) we get for each j = 0,...,m that

IA

1V (@50 = 08 zaasy + IV o) oo
< V(51 = o)) o) + il Vol pagpas-
(3.16)
Note that for j = 1,...,m, using (3.13) and Poincaré’s inequality, Hv,(j)HLq(Qj\m) <
. J
c(q, Qo)|]VU£])HLq(Qj\Q§). Therefore, by (3.11), (3.12) the right-hand side of (3.16) for

j=0,...,m tends to 0 as k — oo, and so does the right-hand side of (3.15).
The proof of the lemma is complete. |

IV (et — wd) | 2oy

Corollary 3.3 For the domain §2 the assertion (3.10) holds.
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Proof: Obviously,
LI(Q) Cc{fe LY Q)" : divf=0, f-N|og = 0}.

Since the right-hand side of (3.10) is ‘orthogonal’ to {Vh : h € C5?(Q)}, the same
result holds for {Vh : h € WH(Q)} by Lemma 3.2. Therefore, [25], Ch. III,

Lemma 2.1, accomplishes the proof. [ ]
Lemma 3.4 The assumption (A3) is satisfied for the domain €.

Proof: First consider the case of {2 being an infinite straight cylinder ¥ x R with

Y C R™! a bounded domain of C'!-class. For p € Wh4(Q) let po(z',x,) =

po(zy) == ﬁ Js (2, z,) dx" and p == p — po. Then it follows that

po € WH(X x R), ”pOHVT/Lq@xR) =< C<E’Q)HpHleq(EXR)’

~ | (3.17)
pEWHMEXR), [pllwraexr < (X, QlIpliasymy;

here we used Poincaré’s inequality for p(-,z,) on ¥. On the other hand the whole
space R*, k € N, was proved to satisfy assumption (A3), see [4], Remark 2.7. There-
fore, as a function on R, py is decomposed by

Po = Po1 +Po2,  ||po1, 61p02||W1v4(]R) < C||po||wl,q(R)-

Then py := P+ po1, P2 := po2 satisfy assumption (A3) due to (3.17).
Next let 2 be the general unbounded cylinder introduced in the beginning of
this section. We use the same notation for {¢;}7, €, €; and Q) as in the proof of

Lemma 3.2. Fix p € /Wl’q(Q) and write it in the form p = Y™ ; ¢;p. Without loss
of generality we assume that fQo pdx = 0; therefore, by Poincaré’s inequality

Ipllwrao) < cllplliae): (3.18)

By the fact already proved for infinite straight cylinders, we have for j =1,...,m,
a decomposition @;p = pj1 + pj2 such that pj1, Vp;o € WH(Q;) and

P31, Vpjellwra,) < Ipjts Veiallwra@,) < cl@ipllinag,) < clplliprogy;  (3-19)

here we used fQOpdx = 0. Now define the functions n € C*(Q2) by

1, 2eQP j=1....m
T](ZE‘) - m )
07 IEQ\U]:IQJ7

with 6 > 0 as in (3.2), and w;, i = 1,2, on 2 by

(@) pji(x), reQ,j=1,....m
w;\xr) =
0, otherwise.
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Then we get the decomposition

p=p1+p2 with pr =vp+nwi, ps =nuw,, (3.20)
where ¢ = (1 —7) >_7", ; + ¢o; note that ¢ € C*(Q) and suppy) € Q. Hence,
in view of (3.18), Yp € WH(Q) and ||vp|lwra@) < cllpll51.aqy- Moreover, nuw; €
Wh4(Q) and, due to (3.19), [[nwillwia) < cllpllg ). Thus we conclude that

p1 € WH(Q),  Ipillwra) < cllplliia)- (3:21)

On the other hand, we have Vpy = V(nws) = nVws + weVn and, due to (3.19),

m
InVewsllwra = [19ellwrom o < ¢S 19psellwros < elplpia;
j=1

moreover, supp Vn C U;nzl (Q;S \ di) C Qg and obviously wy = p — @op — wy €
wha( Ui (Q0\ Q2)) implying that

m
lwo Yl < 3 I, pi oo < clpllrae:
j=1

due to (3.19). Therefore we get that
Vp2 € WLQ(Q)’ ||vp2“W1"1(Q) S CHp”leq(Q)’

which together with (3.20), (3.21) completes the proof of this lemma. u

Now we can prove Theorem 1.2.

Proof of Theorem 1.2: By Theorem 1.1 the spectral angle wy, of A, is 0. Fix
0 € (0, ) arbitrarily. We must show that there is a constant C' > 0 depending on ¢
such that for all h € H>(Xy) the operator

b(A) = [ B = A) e £(LA(@)
r
satisfies the estimate

1A 2pe @) < Collh]oo, (3.22)

where I' is the oriented boundary of the sector ¥y for any fixed 6’ € (0,6).
Since the domain € has been shown to satisfy the assumptions (A1)-(A3), by
[5], Theorem 1.3, there are constant R = R(q,0) > 0 and C' = C(q,0) > 0 such that

where I'g oo = {A € T': |\| > R}. On the other hand, due to Theorem 1.1, we get

< Cfhloo,
£(L8(@)

/ h(A)(A — A,) " dA

< Cyollhlloo-
ZI)

/ h(A) (X — A,) "t dA
I'\I'g,00
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Thus we proved (3.22).

Maximal regularity of A, in LZ(2) follows directly, since A, admits a bounded

H®>(%y)-calculus for 6 € (0,7/2) and LL(Q2) is a UMD space, see Introduction.

Now the proof is complete. [ ]
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