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Abstract

This paper is on the connecting homomorphism in the long exact homotopy sequence of
the evaluation fibration evp0 : C(P, K)K → K, where C(P, K)K ∼= Gau(P) is the gauge
group of a continuous principal K-bundle P over a closed orientable surface or a sphere. We
show that in this cases the connecting homomorphism in the corresponding long exact ho-
motopy sequence is given in terms of the Samelson product. As applications, we exploit this
correspondence to get an explicit formula for π2(Gau(Pk)), where Pk denotes the principal
S3-bundle over S4 of Chern number k and derive explicit formulae for the rational homotopy
groups πn(Gau(P))⊗Q.
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Introduction

The topological properties of gauge groups play an important role in the analysis of the config-
uration space in quantum field theory. There one analyses the moduli space Conn(P)/Gau(P)
of connections on a principal K-bundle P modulo Gau(P) the group of gauge transformations,
shortly called gauge group (cf. [Sin78]). Since Conn(P) is an affine space, the exact homotopy
sequence gives detailed information on the homotopy groups of the configuration space in terms
of the homotopy groups of the gauge group. On the other hand, π1(Gau(P)) and π2(Gau(P))
carry crucial information on central extensions of Gau(P) (cf. [Nee02]), which are important for
an understanding of the relation between the projective and unitary representations of Gau(P).
Furthermore, if P is a bundle over S1, then Gau(P) is isomorphic to a twisted loop goup, and
thus gauge groups are closely related to Kac-Moody groups (cf. [Mic87]).

We now describe our results in some detail. In the first section, we recall some basic facts from
elementary topology and from the classification of principal K-bundles over spheres and surfaces.
The latter are the types of bundles this text deals with since they have explicit descriptions in
terms of πm(K). In the case of a principal K-bundle P = (K, η : P → Sm) over Sm, this leads to
an explicit description of the gauge group Gau(P) as a subgroup of C(Bm,K) and of Gau∗(P) as
C∗(Sm,K), where Gau∗(P) denotes the group of gauge transformations fixing η−1(x0) pointwise
and Bm := {x ∈ Rn : ‖x‖∞ ≤ 1}. This description of Gau(P) leads directly to the main result
of this paper.
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Theorem. If P = (K, η : P → Sm) is a continuous principal K-bundle over Sm, K is lo-
cally contractible and b ∈ πm−1(K) is characteristic for P, then the connecting homomorphism
δn : πn(K) → πn+m−1(K) in the exact sequence

. . .→ πn+1(K)
δn+1−−−−→ πn+m(K) → πn(Gau(P)) → πn(K) δn−−−−→ πn+m−1(K) → . . .

is given by δn(a) = −〈a, b〉, where 〈·, ·〉 denotes the Samelson product.

The connection between the Samelson Product and the evaluation fibration is not new (cf.
[Whi46, Th. 3.2] and [BJS60, Sect. 1] and Remark II.11). The remarkable thing in this paper is
that the above theorem can be proven by using only very elementary facts on fibrations. However,
we give an alternative proof of the theorem in terms of more involved facts from homotopy theory.

As an application of the above theorem we obtain a new proof of [Kon91] providing an
explicit formula for π2(Gau(Pk)), where Pk denotes the principal SU2(C)-bundle over S4 of
Chern number k. Furthermore, we show that the connecting homomorphism of the evaluation
fibration for bundles over closed compact orientable surfaces is also given in terms of the Samelson
product, since the situation there reduces to the situation of bundles over S2.

Since the rational Samelson produce 〈·, ·〉 ⊗ idQ between the rational homotopy groups
πn(K)⊗Q and πm(K)⊗Q vanishes for a connected Lie group K, this leads to the following
explicit description of the rational homotopy groups of Gau(P) for a large class of bundles.

Theorem. Let K be a connected Lie group and P = (K, η : P → M) be a continuous principal
K-bundle over Sm or a compact orientable surface Σ.

i) If M = Sm, then πQn (Gau(P)) ∼= πQn+m(K)⊕ πQn (K).

ii) If M = Σ , then πQn (Gau(P)) ∼= πQn+2(K)⊕ πQn+1(K)2g ⊕ πQn (K).
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I General Remarks and Notation

Remark I.1. Throughout this paper, we denote by Bn := {x ∈ Rn : ‖x‖∞ ≤ 1} the closed
unit ball of radius 1, where ‖ · ‖∞ = max{|x1|, . . . , |xn|} denotes the infinity-norm (we use
this somewhat uncommon setting since then the proof of Theorem II.10 becomes less cryptic).
Furthermore we set I = [−1, 1] = B1 and thus have Bn = Bn−1 × I. By Sn, we denote the n-
sphere and identify it interchangeably with {x ∈ Rn+1 : ‖x‖ = 1} (where ‖·‖ denots the euclidean
norm), with {x ∈ Rn+1 : ‖x‖∞ = 1} or with Bn/∂Bn, depending on what is convenient in the
considered situation. When dealing with pointed spaces, we take (1, 0, . . . , 0) as the base-point
in Bn, {x ∈ Rn+1 : ‖x‖ = 1} or {x ∈ Rn+1 : ‖x‖∞ = 1} and ∂Bn as base-point in Bn/∂Bn.

If ∼ is an equivalence relation on the topological space X and X/ ∼ is the quotient X by
this relation, then the continuous functions on X/ ∼ are in on-to-one correspondence with the
continuous functions on X which are constant on the equivalence classes of ∼ [Bou89, §I.3.4].

If f : X×Y → Z is a function, then we denote for each x ∈ X by fx the function fx : Y → Z,
y 7→ f(x, y), and for each y ∈ Y by fy the function fy : X → Z, y 7→ f(x, y).

If X,Y are spaces with base-points x0, y0, then C∗(X,Y ) := {f ∈ C(X,Y ) : f(x0) = y0}. If
X = I we set PY := C∗(I, Y ) and if X = S1 we set ΩY := C∗(S1, Y )
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Remark I.2. If X and Y are topological spaces, then we equip C(X,Y ) with the compact-open
topology. If Y = K is a topological group, then the compact-open topology on C(X,K) coincides
with the topology of compact convergence (cf. [Bou89, Th. X.3.4.2]) and this turns C(X,K)
into a topological group.

The elementary facts on the compact open topology on C(X,K) we use throughout this
paper are the following (cf. [Bou89]):

• If x ∈ X, then the exaluation map evx : C(X,Y ) → Y is continuous.

• If Z is a topological space and f : X → Z is continuous, then the pull-back
f∗ : C(Z, Y ) → C(X,Y ), γ 7→ γ ◦ f is continuous.

• We have a continuous map ∧ : C(X × Y, Z) → C(X,C(Y, Z)), f∧(x)(y) = f(x, y) and
if Y is locally compact, then this map is a homeomorphism. This property is called the
exponential law or Cartesian closedness principle.

Remark I.3. If m ∈ N+, then the equivalence classes of continuous principal K-bundles over
Sm are in one-to-one correspondence with the orbits of the π0(K)-action on πm−1(K), where
π0(K) acts on πm−1(K) by ([γ], k) 7→ [kγk−1] (cf. [Ste51, §18.5]).

A characteristic map for a fixed bundle P = (K, η : P → Sm) can be obtained as follows. Take
Sn := {x ∈ Rn : ‖x‖ = 1} and Sn−1 = {x ∈ Rn−1 : ‖x‖ = 1} = Sn ∩ {x ∈ Rn : xn = 0} and let
VN/S ⊆ Sn denote open n-cells with Sn−1 ⊆ VN/S and (0, . . . , 0, 1) ∈ VN and (0, . . . , 0,−1) ∈ VS .
Then there exist sections σN/S : VN/S → P and σS(x) = σN (x)γ(x) defines a continuous map
γ : Sn−1 → K. If we substitute σN by σN · γ(x0) we may assume that γ(x0) = e. Then
[γ] ∈ πn−1(K) represents the equivalence class of P (cf. [Ste51, §18.1]).

Remark I.4. Let K be a connected topological group and Σ be a closed compact orientable
surface. For the set of equivalence classes of continuous principal K-bundles over Σ we have
that it is equal to [Σ, BK], where BK is the classifying space of K (cf. [Hus66, Th. 4.13.1]).
Furthermore we have

[Σ, BK] ∼= H2(Σ, π2(BK)) ∼= Hom(H2(Σ), π1(K)) ∼= π1(K).

The first isomorphism is a consequence of [Bre93, Cor. VII.13.16] and [Bre93, Th. VII6.7], the
second is [Bre93, Th. V.7.2] which applies since H1(Σ) ∼= Z2g is free, and the last isomorphism
follows from H2(Σ) ∼= Z.

Remark I.5. We recall the construction of the connecting homomorphism for a fibration
p : Y → B with fibre F = p−1({x0}). This fibration yields a long exact homotopy sequence

. . .→ πn+1(B)
δn+1−−−−→ πn(F )

πn(i)−−−−→ πn(Y )
πn(q)−−−−→ πn(B) δn−−−−→ πn−1(F ) → . . .

and the construction of the connecting homomorphism δn is as follows (cf. [Bre93, Th. VII.6.7]):
Let f ∈ C∗(Bn, B) represent an element of πn(B), i.e. f |∂Bn ≡ x0. Then f can be lifted to
a map F : Bn → Y with q ◦ F = f since q is a fibration. Then F takes ∂Bn ∼= Sn−1 into
q−1(x0) = F , and F |∂Bn represents δ([f ]).

II The Connecting Homomorphism

Definition II.1 (Bundle Map, Automorphism Group, Gauge Group). If P = (K, η : P → M)
and P ′ = (K, η′ : P ′ → B′) are principal K-bundles, then

Bun(P,P ′) := {f ∈ C(P, P ′) : (∀p ∈ P )(∀k ∈ K) f(p · k) = f(p) · k}

are called bundle maps from P to P ′. Furthermore, Aut(P) := Bun(P,P) ∩Homeo(P )
is called the group of bundle automorphism or automorphism group of P and
Gau(P) := {f ∈ Aut(P ) : η ◦ f = η} is called the group of bundle equivalences or gauge group of
P.



4 The Samelson Product and the Connecting Homomorphism

Dm

Figure 1: Illustration of Dm

Remark II.2. The gauge group of P is isomorphic to the space of continuous K-equivariant
mappings

C(P,K)K := {f ∈ C(P,K) : (∀p ∈ P )(∀k ∈ K) f(p · k) = k−1 · f(p) · k}

under the isomorphism C(P,K)K 3 f 7→
(
p 7→ p · f(p)

)
∈ Gau(P), and we endow C(P,K)K

with the subspace topology induced from the compact-open topology on C(P,K). This turns
C(P,K)K and thus Gau(P) into topological groups.

Remark II.3. We recall the description of principal K-bundles over Sm by its characteristic
maps (also called clutching functions). Given a principal K-bundle P = (K, η : P → Sm) over
Sm and denoting by q : Bm → Sm the quotient map identifying ∂Bm with the base-point in Sm,
[Bre93, Cor. VII.6.12] provides a map σ : Bm → P satisfying η ◦σ = q. Thus σ(y) · γ(y) = σ(y0)
for y ∈ ∂Bm and we thus obtain a continuous map γ : ∂Bm ∼= Sm → K satisfying γ(y0) = e
which is called the clutching function or characteristic map describing P. Furthermore γ is a
representative of [P] since we may identify int(Bm) with VN , (Bm/∂Bm)\{0} with VS and then

σN : VN → P, x 7→ σ(x)

σS : VS → P, x 7→ σ(x)·γ
(

x

‖x‖∞

)
denote corresponding sections (cf. Remark I.3). Set P/γ := Bm ×K/ ∼ with (x, k) ∼ (y, k′) :⇔
x, y ∈ ∂Bm and γ(x) · k = γ(y) · k′ and endow it with the quotient topology. Then K acts
continuously on P/γ by ([(x, k)], k)′ 7→ [(x, kk′)] and

P/γ → P, [(x, k)] 7→
{
σN (x) · k if x ∈ VN

σS(x) · γ( x
‖x‖∞ ) · k if x ∈ VS

is an isomorphism between the K-spaces P and P/γ, whence a bundle isomorphism.

Lemma II.4. Let P = (K, η : P → Sm) be a continuous principal K-bundle with characteristic
map γ : ∂Bm → K and set

Dm = (I × ∂Bm−1) ∪ ({1} ×Bm−1) ∪ {(t, x) ∈ I ×Rm−1 : t = −1 and
1
2
≤ ‖x‖∞ ≤ 1} ⊆ ∂Bm

if m ≥ 2 (cf. Figure 1) and D1 = {1}. Then

C(P,K)K ∼= G(P) := {f ∈ C(Bm,K) : (∃k ∈ K) f |Dm ≡ k,

(∀x ∈ ∂Bm\Dm) γ(x)−1 · f(x) · γ(x) = f(x0)}.

and thus G∗(P) := {f ∈ G(P) : f(x0) = e} ∼= C∗(Sm,K).

Proof. Let γ be determined by σ : Bm → P with γ(x0) = e as in the preceding remark. Since
∂Bm = (I × ∂Bm−1) ∪ ({−1, 1} × Bm−1) and since Dm is contractible in ∂Bm, [Hat02, Prop.
0.17] implies that γ is homotopic to a map which is the identity on Dm. Since homotopic maps
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yield equivalent bundles (cf. [Ste51, Th. 18.3]) we may assume that γ|Dm ≡ e. Furthermore,
f 7→ f ◦ σ provides a map σ∗ : C(P,K)K → G(P) since γ|Dm ≡ e. We claim that σ∗ is an
isomorphism and that an inverse map can be constructed with σN and σS in terms of pull-backs
and multiplication in spaces of continuous mappings. In fact, for f ∈ G(P) we set fN := f |VN

and fS : VS → K, x 7→ γ( x
‖x‖∞ )−1f(x)γ( x

‖x‖∞ ). Furthermore, p = σN/S(η(p)) · kN/S(p) de-

termines continuous maps kN/S : η−1(VS/N ) → K satisfying kN (p) = γ
(

η(p)
‖η(p)‖∞

)
kS(p) for

p ∈ η−1(VS ∩ VN ). Then

f ′ : P → K, p 7→ kN/S(p)−1fN/S(η(p))kN/S(p) if η(p) ∈ VN/S

determines an element of C(P,K)K and the assignment f 7→ f ′ defines a continuous inverse of
σ∗.

Remark II.5. (cf. [PS86, 3.7]) Note that the preceding lemma implies that if P = (K, η :
P → S1) is a principal K-bundle over the circle given by [k] ∈ π0(K), then the gauge group is
isomorphic to the twisted loop group

Ck(S,K) := {f ∈ C(R,K) : f(x+ n) = k−nf(x)kn}.

In fact, since a characteristic map for a bundle over S1 is represented by an element k ∈ K we
have G(P) = {f ∈ C(I,K) : k−1 · f(−1) · k = f(1)} and the isomorphism

G(P) 3 f 7→
(
x 7→ k−1 · f(2(x− n)− 1) · kn

)
∈ Ck(S,K),

where n ∈ Z such that x− n ∈ [0, 1].

Definition II.6 (Evaluation Map). If P = (K, η : P → Sm) is a continuous principal K-bundle,
then evx0 : G(P) → K, f 7→ f(x0) is called the the evaluation map.

Lemma II.7. If P = (K, η : P → Sm) is a continuous principal K-bundle and K is locally
contractible, then the evaluation map is a fibration with kernel G∗(P) ∼= C∗(Sm,K). Furthermore,
KP := im(evx0) is open and thus contains the identity component K0.

Proof. Since K is locally contractible, there exist open unit neighbourhoods V ⊆ U and a
continuous map F : [0, 1] × V → U such that F (0, k) = e, F (1, k) = k for all k ∈ V and
F (t, e) = e for all t ∈ [0, 1]. For k ∈ V we set τk := F (·, k), which is a continuous path and
satisfies τk(0) = e and τk(1) = k. Furthermore, the map V 3 k 7→ τk ∈ C(I,K) is continuous as
an easy calculation in the topology of compact convergence shows.

Now V 3 k 7→ fτk
∈ G(P) defines a continuous section of the evaluation map and since evx0

is surjective this shows that (G∗(P), evx0 : G(P) → K) is a continuous principal G∗(P)-bundle
and thus a fibration (cf. [Bre93, Cor. VII.6.12]). Since the bundle projection of a locally trivial
bundle is open it follows in particular that evx0 is open and thus that its image is open.

Lemma II.8. If P = (K, η : P → Sm) is a continuous principal K-bundle over Sm and K is
locally contractible, then the evaluation map evx0 induces a long exact homotopy sequence

(1) . . .→ πn+1(K)
δn+1−−−−→ πn+m(K) → πn(Gau(P)) → πn(K) δn−−−−→ πn+m−1(K) → . . .

Proof. Since KP contains the identity component K0 we have πn(K0) = πn(KP) = πn(K),
and since πn+m(K) = π0(C∗(Sn+m,K)) ∼= π0(C∗(Sn, C∗(Sm,K))) = πn(C∗(Sm,K)) this a di-
rect consequence of the long exact homotopy sequence (cf. [Bre93, Th. VII.6.7]) for
evx0 : G(P) ∼= C(P,K)K ∼= Gau(P) → KP and the preceding lemma.

Definition II.9 (Samelson Product). If K is a topological group, a ∈ πn(K) is represented by
α ∈ C∗(Sn,K) and b ∈ πm(K) is represented by β ∈ C∗(Sm,K), then the commutator map

α#γ : Sn × Sm → K, (x, y) 7→ α(x)β(y)α(x)−1β(y)−1
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α̃(x, s,− (·))

γ̃(y)α̃(x, s, ·) · γ̃(y)−1

y

Figure 2: Construction of A′

maps Sn∨Sm to e. Hence it may be viewed as an element of C∗(Sn∧Sm,K) and thus determines
an element 〈a, b〉 := [α#β] ∈ π0(C∗(Sn+m,K)) ∼= πn+m(K). The map

πn(K)× πm(K) → πn+m(K), (a, b) 7→ 〈a, b〉

is biadditive [Whi78, Th. X.5.1] and is called the Samelson Product (cf. [Whi78, Sect. X.5]).

Theorem II.10. If P = (K, η : P → Sm) is a continuous principal K-bundle over Sm, K is
locally contractible and b ∈ πm−1(K) is characteristic for P (cf. Remark I.3), then the connecting
homomorphism δn : πn(K) → πn+m−1(K) in (1) is given by δn(a) = −〈a, b〉, where 〈·, ·〉 denotes
the Samelson product.

Proof. Let b be represented by γ ∈ C∗(∂Bm,K) with γ|Dm ≡ e, a ∈ πn(K) be represented by
α ∈ C(Bn,K) with α|∂Bn ≡ e. Due to the construction of the connecting homomorphism (cf.
Remark I.5), we have to construct a lift A : Bn → G(P) of α.

We set α̃(x, s, t) := α(x, t+1
2 s − (1 − t+1

2 )) and note that α̃(x, s, 1) = α(x, s) and
α̃(x, s,−1) = α(x,−1) = e. If m = 1, then [γ] = [k] ∈ π0(K) for some k ∈ K, and we
set

A : Bn × I × I → K, (x, s, t) 7→ α̃(x, s,−t) · k · α̃(x, s, t) · k−1.

If m ≥ 2 the construction of A is as follows. First we set

A′ : Bn−1 ×B2 × 1
2
Bm−1 → K, (x, s, t, y) 7→ α̃(x, s,−t)γ̃(y)α̃(x, s, t)γ̃(y)−1,

where γ̃(y) := γ(−1, y) (cf. Figure 2). Note that due to γ|I×∂Bm−1∪{1}×Bm−1 ≡ e, we have that
γ̃ : Bm−1 → K represents the same element of πm−1(K) as γ does if we identify Sm−1 with
Bm−1/∂Bm−1 instead of ∂Bm.

Then t 7→ A′x,s,y(t) satisfies A′x,s,y(t) = α̃(x, s,−t)α̃(x, s, t) if ‖y‖∞ = 1
2 since then γ̃(y) = e

and this map is homotopic to the map which is constantly α(x, s). We take a standard homotopy
Fx,s between t 7→ α̃(x, s,−t) · α̃(x, s, t) and the constant map α(x, s).

Then (x, s, r, t) 7→ Fx,s(r, t) is continuous and thus

A : Bn−1 ×B2 ×Bm−1 → K, (x, s, t, y) 7→
{
A′(x, s, t, y) if ‖y‖∞ ≤ 1

2
Fx,s(3− 4‖y‖∞, t) if ‖y‖∞ ≥ 1

2

defines a continuous map (cf. Figure 3) such that Ax,s is an element of G(P) (note that Fx,s

satisfies Fx,s|I×{−1,1} ≡ α(x, s)). Furthermore (x, s) 7→ Ax,s is a lift of α since it is continuous
by the exponential law and satisfies Ax,s(1, 0, . . . , 0) = α(x, s).

We now restrict the lift to ∂Bm = ∂Bm−1 × I ∪ Bm × {−1, 1}. For x ∈ ∂Bm−1 or s = −1
we see that Fx,s ≡ e since then α̃(x, s, t) = e and thus that in this case Ax,s ≡ e. Identifying
Sn−1 with {x ∈ ∂Bn : xn = 1} modulo boundary it thus suffices to evaluate the lift for s = 1.
Note that we have α̃(x, 1, t) = α(x, t). If m = 1 we take a homotopy G : I × I → K between
t 7→ α(x,−t) and t 7→ α(x, t)−1. Then (r′, x, t, y) 7→ G(r′, t)A(x, 1, t, y) defines a homotopy in
G∗(P) between A|s=1 and α−1#γ̃.
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Fx,s(·, ·)

Figure 3: Construction of A

If m ≥ 2, we define F̃x : I3 → K, with F̃x(1, r, t) = F̃x(r, 1, t) = Fx,1(r, t), constant on
straight lines joining (1, r, t) with (r, 1, t) and F̃x(r′, r, t) = e if r′ + r ≤ 0. Then F̃x(1, 1, t) =
Fx,1(1, t) = α(x,−t)α(x, t), Fx|{−1}×I×I ≡ e and Fx depends continuously on x. Thus

G : I ×Bn−1 × I ×Bm−1,

(r′, x, t, y) 7→

{
F̃x(r′, 1, t)α(x, t)−1γ̃(y)α(x, t)γ̃(y)−1 if ‖y‖∞ ≤ 1

2

F̃x(r′, 3− 4‖y‖∞, t) if ‖y‖∞ ≥ 1
2

defines a homotopy in G∗(P) between A|s=1 = G1 and α−1#γ̃ = G−1. Thus we have
[α−1#γ̃] = [α−1#γ] = −〈a, b〉 in πn+m−1(K).

Remark II.11. The above sequence can also be obtained as follows. Let PK =
(K, ηK : EK → BK) be a universal bundle for K, i.e. a continuous principal K-bundle such
that πn(EK) vanishes for n ∈ N+. Furthermore let γ : Sm → BK be a classifying map for P
and denote by Γ : P → EK the corresponding bundle map.

Now each f ∈ Bun(P,PK) induces a map f̄ : Sm → BK and the map

Bun(P,PK ,Γ) 3 f 7→ f̄ ∈ C(B,BK, γ)

is a fibration [Got72, Prop. 3.1], where Bun(P,PK ,Γ) (respectively C(B,BK, γ)) denotes the
connected component of Γ (respectively γ). Then the fibre F = {Bun(P,PK) : f̄ = γ} of this
map is homeomorphic to Gau(P) [Got72, Prop. 4.3]. Since Bun(P,PK) is essentially contractible
[Got72, Th. 5.2] πn(Bun(P,PK)) vanishes, and thus the long exact homotopy sequence of the
above fibration leads to πn−1(Gau(P)) ∼= πn(C(B,BK, γ)) (cf. [Tsu85, Th. 1.5]).

We now consider the evaluation map evx0 : C(Sm, BK) → BK in the base-point x0 of Sm.
This map is a fibration ([Bre93, Th. VII.6.13]) and we thus get a long exact homotopy sequence

(2) . . .→ πn+1(BK)
δn+1−−−−→ πn(C∗(Sm, BK, γ)) → πn(C(Sm, BK, γ))

→ πn(BK) δn−−−−→ πn−1(C∗(Sm, BK, γ)) → . . .

If we identify πn(C∗(Sm, BK, γ)) with πn+m(BK) (cf.[Whi46, 2.10]), then the connecting ho-
momorphism in this sequence is given by δn+1(a) = −[a, b], where b = [γ] ∈ πm(BK) and [·, ·]
denotes the Whitehead product (cf. [Whi46, Th. 3.2] and [Whi53, (3.1)]).

Since πn(EK) vanishes, the connecting homomorphism ∆ : πn+1(BK) → πn(K) from the
long exact homotopy sequence for PK is an isomorphism. Since we have

∆ ([a, b]) = (−1)n〈∆(a),∆(b)〉

for a ∈ πn+1(BK) by [BJS60, Sect. 1], (2) yields a long exact sequence

. . . πn(K)
δ′n−−−−→ πn+m−1(K) → πn−1(Gau(P)) → πn−1(K)

δ′n−1−−−−→ πn+m−2(K) → . . ..

with connecting homomotphism δ′n(a) = (−1)n〈a, b〉 if we identify πn−1(Gau(P)) with
πn(C∗(Sm, BK, γ)) as described above and πn+1(BK) with πn(K) and πn+m(BK) with
πn+m−1(K) by ∆.
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III Applications

Proposition III.1. (cf. [Kon91, Lem. 1.3]) If Pk is a principal SU2(C)-bundle over S4 of
Chern number k ∈ Z, then π2(Gau(Pk)) ∼= Zgcd(k,12). In particular, if P1 = H is the quaterionic
Hopf fibration, then π2(Gau(H)) vanishes.

Proof. Since by [Nab00, Th. 6.4.2] Pk is classified by its Chern number k ∈ Z ∼= π3(SU2(C)),
Theorem II.10 provides an exact sequence

. . .→ π3(SU2(C))
δk
2−−−−→ π6(SU2(C))

π2(i)−−−−→ π2(Gau(Pk)) → π2(SU2(C)) → . . . ,

where δk
2 : π3(SU2(C)) → π6(SU2(C)) is given by a 7→ −〈a, k〉. Since π3(SU2(C)) ∼= Z,

π6(SU2(C)) ∼= Z12 and 〈1, 1〉 generates Z12, we may assume that δk
2 : Z → Z12 is the map

Z 3 z 7→ −[kz] ∈ Z12 due to the biadditivity of 〈·, ·〉. Since π2(SU2(C)) is trivial we have that
π2(i) is surjective and

im(π2(i)) ∼= Z12/ker(π2(i)) = Z12/im(δk
2 ) = Z12/kZ12

∼= Zgcd(k,12).

Corollary III.2. If Pk is a smooth principal SU2(C)-bundle over S4 with Chern number k, then
π2(Gau∞(P)) ∼= Zgcd(12,k), where Gau∞(P) denotes the group of smooth gauge transformations
on P.

Proof. This is the preceding proposition and [Woc05, Th. III.11]

Remark III.3. We recall that a closed compact orientable surface Σ of genus g with ∂Σ = ∅
can be described as a CW-complex by starting with a bouquet

Bg = S1 ∨ · · · ∨ S1︸ ︷︷ ︸
2g

of 2g circles. We write a1, b1, . . . , ag, bg for the corresponding generators of the fundamental
group of Bg, which is a free group of 2g generators [Bre93, Th. III.V.14]. Then we consider a
continuous map f : S1 → Bg representing

a1 · b1 · a−1
1 · b−1

1 · · · ag · bg · a−1
g · b−1

g ∈ π1(Bg).

Now Σ is homeomorphic to the space obtained by identifying the points on ∂B2 ∼= S1 with their
images in Bg under f , i.e.

(3) Σ ∼= Bg ∪f ∂B
2

and we denote by qΣ the corresponding quotient map qΣ : B2 → Σ.

Remark III.4. Let (K, η : P → Σ) be a continuous principal K-bundle over a closed, compact
and orientable surface with, K be connected, and denote by qΣ : B2 → Σ the quotient map from
Remark III.3. Then [Bre93, Cor. VII.6.12] provides a map σ : Σ → P satisfying η ◦ σ = qΣ
and since P|η−1(Bg) is trivial, we have a continuous map γ : ∂B2 → K satisfying σ(x) · γ(x) =
σ(y) · γ(y) if x, y ∈ ∂B2 and f(x) = f(y). We may also require w.l.o.g. that γ(x0) = e and then
[γ] may be viewed as a representative of P.

Denote by σ′ : Bg → P a continuous section. Then p ∼ p′ wherever p = σ′(x) · k and
p′ = σ′(y) · k for some x, y ∈ Bg and k ∈ K defines an equivalence relation on P . Then P/ ∼ is
isomorphic to P/γ from Remark I.3 (by a similar construction) and we thus set P/γ := P/ ∼.

Proposition III.5. Let P = (K, η : P →M) be a continuous principal K-bundle over a closed,
compact orientable surface, let K be locally contractible and connected and let b ∈ π1(K) be
characteristic for P (cf. Remark I.4). If evp0 : C(P,K)K → K is the evaluation fibration at the
base-point of P , then we have a long exact sequence

(4) . . .→ πn+1(K)
δn+1−−−−→ πn+1(K)2g ⊕ πn+2(K) → πn(C(P,K)K)

→ πn(K) δn−−−−→ πn(K)2g ⊕ πn+1(K) → . . .
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with connecting homomorphisms δn : πn(K) → πn(K)2g ⊕ πn+1(K) given by a 7→ (0,−〈a, b〉),
where 〈·, ·〉 denotes the Samelson product.

Proof. Recall the notation for surfaces from Remark III.3 and consider the restriction map
r : C(P,K)K → C(η−1(Bg),K)K . Furthermore, [Woc05, Lem. IV.4] provides a con-
tinuous map S : C∗(η−1(Bg),K)K ∼= C∗(Bg,K) ∼= C∗(S1,K)2g → C∗(P,K)K satisfying
r ◦ S = idC∗(η−1(Bg),K)K . Furthermore, P|η−1(Bg) is trivial and we may assume S to be de-
fined on C(η−1(Bg,K))K such that r ◦ S = idC∗(η−1(Bg),K)K still holds.

Now take the long exact homotopy sequence for the fibration evp0 : C(P,K)K → K [Woc05,
Prop. IV.8] and recall the construction of the connecting homomorphism from Remark I.5. If
α : Bn → K represents a ∈ πn(K) and A : Bn → C(P,K)K is a lift of α, then A′ := A ·(S ◦r◦A)
is also a lift of α and A′(x)(p) = e holds for x ∈ ∂Bn and p ∈ η−1(Bg). Hence A′|∂Bn factors
through a map on P/γ (where γ : S1 → K is supposed to represent the equivalence class of P)
and thus represents (0,−〈a, b)〉 ∈ πn(K)⊕ πn+1(K) due to Theorem II.10.

Remark III.6. In infinite-dimensional Lie theory one often considers (period-) homomorphisms
ϕ : πn(G) → V for an infinite-dimensional Lie Group G and an R-vector space V , which we
consider here as a Q-vector space. If n ≥ 1, then πn(G) is abelian and this homomorphism
factors through the canonical map ψ : πn(G) → πn(G)⊗Q, a 7→ a⊗ 1 and

ϕ̃ : πn(G)⊗Q→ V, a⊗ x 7→ x ϕ(a).

It thus suffices for many interesting questions arising from infinite-dimensional Lie theory to
consider the rational homotopy groups πQn (G) := πn(G)⊗Q for n ≥ 1.

Furthermore, the functor ⊗Q in the category of abelian groups, sending A to AQ := A ⊗ Q
and ϕ : A→ B to ϕQ := ϕ⊗ idQ : A⊗Q→ B ⊗Q, preserves exact sequences since Q is torsion
free and hence flat.

Lemma III.7. If K is a (possibly infinite-dimensioanl) connected Lie group, then the rational
Samelson product

〈·, ·〉Q : πQn (G)× πQm(G) → πQn+m(G), a⊗ x, b⊗ y 7→ 〈a, b〉 ⊗ xy

vanishes.

Proof. Since each connected Lie group is homeomorphic to a compact group and a vector space,
is has finite-dimensional rational homology and thus the rational Whitedead product in BK
vanishes (cf [FHT01, Prop. 15.15 f.]). Since the Whitehead product in BK and the Samelson
product in K correspond to each other via the connecting homomorphism from the classifying
bundle EK → BK (cf. Remark II.11 and [BJS60, Sect. 1]), it follows that the rational Samelson
product vanishes either.

Theorem III.8. Let K be a connected Lie group and P = (K, η : P → M) be a continuous
principal K-bundle over Sm or a compact orientable surface Σ.

i) If M = Sm, then πQn (Gau(P)) ∼= πQn+m(K)⊕ πQn (K).

ii) If M = Σ , then πQn (Gau(P)) ∼= πQn+2(K)⊕ πQn+1(K)2g ⊕ πQn (K).

Proof. With Remark III.6 we obtain exact rational homotopy sequences from the exact se-
quences (1) and (4). Then the preceding Lemma implies that the connecting homomorphisms
in these sequences vanish and the long exact sequences decay into short ones. Furthermore, the
short exact sequences split linearly since each of them involves just vector spaces.

Remark III.9. Since the rational homotopy groups of finite-dimensioanl Lie groups are those
of odd-dimensional spheres [FHT01, Sect. 15.f], which are well known [FHT01, Ex. 15.d.1] the
preceding theorem gives an explicit formula for πQn (Gau(P)) in the case of finite-dimensional
structure groups. E.g., if M = Sm and m is even, then πQn (Gau(P)) vanishes for even n.
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