Resolvent Estimates and Maximal Regularity in Weighted L^q -spaces of the Stokes Operator in an Infinite Cylinder

Reinhard Farwig¹ and Ri Myong-Hwan^{2,3}

Abstract

Let $\Omega = \Sigma \times \mathbb{R}$ be an infinite cylinder of $\mathbb{R}^n, n \geq 3$, with a bounded crosssection $\Sigma \subset \mathbb{R}^{n-1}$ of $C^{1,1}$ -class. We study resolvent estimates and maximal regularity of the Stokes operator in $L^q(\mathbb{R}; L^r_{\omega}(\Sigma))$ for $1 < q, r < \infty$ and for arbitrary Muckenhoupt weights $\omega \in A_r$ with respect to $x' \in \Sigma$. The proofs use an operator-valued Fourier multiplier theorem and techniques of unconditional Schauder decompositions based on the \mathcal{R} -boundedness of the family of solution operators for a system in Σ parametrized by the phase variable of the one-dimensional partial Fourier transform.

2000 Mathematical Subject Classification: 35Q30, 76D07

Keywords: Maximal regularity; Muckenhoupt weights; Stokes resolvent system; Stokes semigroup; infinite cylinder

1 Introduction

In this paper we show that the Stokes operator in the space $L^q(\Omega), 1 < q < \infty$, on an infinite cylinder $\Omega = \Sigma \times \mathbb{R}$ of $\mathbb{R}^n, n \geq 3$, generates a bounded and exponentially decaying analytic semigroup and has maximal L^p -regularity. We show these properties to hold even in $L^q(\mathbb{R}; L^r_{\omega}(\Sigma))$ for $1 < q, r < \infty$ and for arbitrary Muckenhoupt weight $\omega \in A_r(\mathbb{R}^{n-1})$ with respect to $x' \in \Sigma$ (see Section 2 for the definition). We note that the resolvent estimate gives, when $\lambda = 0$, a new result on the existence of a unique flow with zero flux for the Stokes system in $L^q(\mathbb{R}, L^r_{\omega}(\Sigma))$.

The proofs in this paper are mainly based on the theory of Fourier analysis. By the application of the partial Fourier transform along the axis of the cylinder Ω the

¹Reinhard Farwig: Department of Mathematics, Darmstadt University of Technology, 64289 Darmstadt, Germany,

email: farwig@mathematik.tu-darmstadt.de

 $^{^2\}mathrm{Ri}$ Myong-Hwan: Institute of Mathematics, Academy of Sciences, DPR Korea, email: ri@mathematik.tu-darmstadt.de

³Supported by the Gottlieb Daimler- und Karl Benz-Stiftung, grant no. S025/02-10/03.

$$\lambda u - \Delta u + \nabla p = f \quad \text{in } \Omega$$

(R_{\lambda})
$$div u = g \quad \text{in } \Omega$$

$$u = 0 \quad \text{on } \partial \Omega$$

is reduced to the *parametrized Stokes system* in the cross-section Σ

$$(\lambda + \xi^2 - \Delta')\hat{u}' + \nabla'\hat{p} = \hat{f}' \quad \text{in } \Sigma$$
$$(\lambda + \xi^2 - \Delta')\hat{u}_n + i\xi\hat{p} = \hat{f}_n \quad \text{in } \Sigma$$
$$(R_{\lambda,\xi}) \quad \text{div}\,'\hat{u}' + i\xi\hat{u}_n = \hat{g} \quad \text{in } \Sigma$$
$$\hat{u}' = 0, \quad \hat{u}_n = 0 \quad \text{on } \partial\Sigma$$

which involves the Fourier phase variable $\xi \in \mathbb{R}$ as parameter. We will get parameter-independent estimates of solutions to $(R_{\lambda,\xi}), \xi \in \mathbb{R}^* := \mathbb{R} \setminus \{0\}$, in L^r -spaces with Muckenhoupt weights, which yield R-boundedness of the family of solution operators $a(\xi)$ for $(R_{\lambda,\xi})$ with g = 0 due to an extrapolation property of operators defined on L^r -spaces with Muckenhoupt weights, see Theorem 5.8. Then the solution u to (R_{λ}) with g = 0 in the whole cylinder Ω is represented by $u = \mathcal{F}^{-1}(a(\xi)\mathcal{F}f)$, and an operator-valued Fourier multiplier theorem ([31]) implies the resolvent estimate. In order to prove maximal regularity we use that maximal regularity of an operator A in a UMD space X is implied by the \mathcal{R} -boundedness of the operator family

$$\{\lambda(\lambda+A)^{-1}:\ \lambda\in i\,\mathbb{R}\}\tag{1.1}$$

in $\mathcal{L}(X)$, see [31]. We show the \mathcal{R} -boundedness of (1.1) for the Stokes operator $A := A_{q,r;\omega}$ in $L^q(\mathbb{R}: L^r_{\omega}(\Sigma))$ by virtue of Schauder decomposition techniques; to be more precise, we use the Schauder decomposition $\{\Delta_j\}_{j\in\mathbb{Z}}$ where $\Delta_j = \mathcal{F}^{-1}\chi_{[2^j,2^{j+1})}\mathcal{F}$ and again the R-boundedness of the family of solution operators for $(R_{\lambda,\xi})$.

To obtain parameter-independent estimates of the solution to $(R_{\lambda,\xi}), \xi \in \mathbb{R}^*$, we start with the case $\Sigma = \mathbb{R}^{n-1}$ using Fourier multiplier theory in spaces with Muckenhoupt weights (Theorem 3.1). Next, for $(R_{\lambda,\xi})$ on the half space $\Sigma = \mathbb{R}^{n-1}_+$ (Theorem 3.4), we first consider an estimate for \hat{p} ; for this a result on Fourier multipliers in trace spaces of Sobolev spaces with Muckenhoupt weights is crucial, see Lemma 3.2. Then the estimate for \hat{u} is obtained using the Laplace resolvent equation. The result for the case of bent half spaces $\Sigma = H_{\sigma}$ (Theorem 3.5; see (3.2) for the definition of H_{σ}) is obtained by Kato's perturbation argument. For bounded domains Σ , using cut-off functions and the results for the whole, half and bent half spaces, we start with a preliminary *a priori* estimate in weighted spaces for $(R_{\lambda,\xi})$ (Lemma 4.2) and are finally led to weighted estimates of the solution to $(R_{\lambda,\xi})$ by a contradiction argument (Lemma 4.3).

There are many papers dealing with resolvent estimates ([6], [7], [13], [14], [18]; see Introduction of [9] for more details) or maximal regularity (see e.g. [1], [12], [14]) of Stokes operators for domains with compact boundaries as well as for domains

with noncompact boundaries. General unbounded domains are considered in [5] by replacing the space L^q by $L^q \cap L^2$ or $L^q + L^2$. In [9], [10] the system (R_λ) was studied in $L^q(\mathbb{R}; L^2(\Sigma)), 1 < q < \infty$, and, when g = 0, in vector-valued homogeneous Besov space $\dot{\mathcal{B}}_{pq}^s(\mathbb{R}; L^r(\Sigma))$ for $1 \leq p, q \leq \infty$, $s \in \mathbb{R}, 1 < r < \infty$. For partial results in the Bloch space of uniformly square integrable functions on a cylinder we refer to [28]. Further results on stationary and instationary Stokes and Navier-Stokes systems in unbounded cylindrical domains can be found in [2], [15], [16], [19]-[26], [28]-[30].

This paper is organized as follows. In Section 2 the main results of this paper (Theorem 2.1, Corollary 2.2 and Theorem 2.3) and preliminaries are given. In Section 3 we obtain the estimates for $(R_{\lambda,\xi})$ on the whole, half and bent half spaces. Section 4 is devoted to obtain the estimate for $(R_{\lambda,\xi})$ on bounded domains, see Theorem 4.4. In Section 5 proofs of the main results are given.

2 Main Results and Preliminaries

Let $\Omega = \Sigma \times \mathbb{R}$ be an infinite cylinder of \mathbb{R}^n with bounded cross section $\Sigma \subset \mathbb{R}^{n-1}$ and with generic point $x \in \Omega$ written in the form $x = (x', x_n) \in \Omega$, where $x' \in \Sigma$ and $x_n \in \mathbb{R}$. Similarly, differential operators in \mathbb{R}^n are split, in particular, $\Delta = \Delta' + \partial_n^2$ and $\nabla = (\nabla', \partial_n)$.

For $q \in (1, \infty)$ we use the standard notation $L^q(\Omega) = L^q(\mathbb{R}; L^q(\Sigma))$ for classical Lebesgue spaces with norm $\|\cdot\|_q = \|\cdot\|_{q;\Omega}$ and $W^{k,q}(\Omega), k \in \mathbb{N}$, for the usual Sobolev spaces with norm $\|\cdot\|_{k,q;\Omega}$. We do not distinguish between spaces of scalar functions and vector-valued functions as long as no confusion arises. In particular, we use the short notation $\|u, v\|_r$ for $\|u\|_r + \|v\|_r$, even if u and v are tensors of different order.

Let $1 < r < \infty$. A function $0 \le \omega \in L^1_{loc}(\mathbb{R}^{n-1})$ is called A_r -weight (Muckenhoupt weight) on \mathbb{R}^{n-1} iff

$$\mathcal{A}_r(\omega) := \sup_Q \left(\frac{1}{|Q|} \int_Q \omega \, dx' \right) \cdot \left(\frac{1}{|Q|} \int_Q \omega^{-1/(r-1)} \, dx' \right)^{r-1} < \infty$$

where the supremum is taken over all cubes of \mathbb{R}^{n-1} and |Q| denotes the (n-1)dimensional Lebesgue measure of Q. We call $\mathcal{A}_r(\omega)$ the A_r -constant of ω and denote the set of all A_r -weights on \mathbb{R}^{n-1} by $A_r = A_r(\mathbb{R}^{n-1})$. Note that

$$\omega \in A_r$$
 iff $\omega' := \omega^{-1/(r-1)} \in A_{r'}, \quad r' = r/(r-1)$

and $A_{r'}(\omega') = A_r(\omega)^{r'/r}$. A constant $C = C(\omega)$ is called A_r -consistent if for every d > 0

$$\sup \{ C(\omega) : \ \omega \in A_r, \ \mathcal{A}_r(\omega) < d \} < \infty.$$

We write $\omega(Q)$ for $\int_{\Omega} \omega \, dx'$.

Given $\omega \in A_r, r \in (1, \infty)$, and an arbitrary domain $\Sigma \subset \mathbb{R}^{n-1}$ let

$$L^r_{\omega}(\Sigma) = \Big\{ u \in L^1_{\mathrm{loc}}(\bar{\Sigma}) : \|u\|_{r,\omega} = \|u\|_{r,\omega;\Sigma} = \Big(\int_{\Sigma} |u|^r \omega \, dx'\Big)^{1/r} < \infty \Big\}.$$

For short we will write L^r_{ω} for $L^r_{\omega}(\Sigma)$ provided that the underlying domain Σ is known from the context. It is well-known that L^r_{ω} is a separable reflexive Banach

space with dense subspace $C_0^{\infty}(\Sigma)$. In particular $(L_{\omega}^r)^* = L_{\omega'}^{r'}$. As usual, $W_{\omega}^{k,r}(\Sigma)$, $k \in \mathbb{N}$, denotes the weighted Sobolev space with norm

$$||u||_{k,r,\omega} = \Big(\sum_{|\alpha| \le k} ||D^{\alpha}u||_{r,\omega}^r\Big)^{1/r},$$

where $|\alpha| = \alpha_1 + \cdots + \alpha_{n-1}$ is the length of the multi-index $\alpha = (\alpha_1, \ldots, \alpha_{n-1}) \in \mathbb{N}_0^{n-1}$ and $D^{\alpha} = \partial_1^{\alpha_1} \cdot \ldots \cdot \partial_{n-1}^{\alpha_{n-1}}$; moreover, $W_{0,\omega}^{k,r}(\Sigma) := \overline{C_0^{\infty}(\Sigma)}^{\|\cdot\|_{k,r,\omega}}$ and $W_{0,\omega}^{-k,r}(\Sigma) :=$ $(W_{0,\omega'}^{k,r'}(\Sigma))^*$, where r' = r/(r-1). We introduce the weighted homogeneous Sobolev space

$$\widehat{W}^{1,r}_{\omega}(\Sigma) = \left\{ u \in L^1_{\text{loc}}(\bar{\Sigma}) / \mathbb{R} : \, \nabla' u \in L^r_{\omega}(\Sigma) \right\}$$

with norm $\|\nabla' u\|_{r,\omega}$ and its dual space $\widehat{W}_{\omega'}^{-1,r'} := (\widehat{W}_{\omega}^{1,r})^*$ with norm $\|\cdot\|_{-1,r',\omega'} =$ $\|\cdot\|_{-1,r',\omega';\Sigma}$

Let $q, r \in (1, \infty)$. On an infinite cylinder $\Omega = \Sigma \times \mathbb{R}$, where Σ is a bounded $C^{1,1}$ -domain of \mathbb{R}^{n-1} , we introduce the function space $L^q(L^r_\omega) := L^q(\mathbb{R}; L^r_\omega(\Sigma))$ with norm

$$\|u\|_{L^q(L^r_{\omega})} = \left(\int_{\mathbb{R}} \left(\int_{\Sigma} |u(x', x_n)|^r \omega(x') \, dx'\right)^{q/r} \, dx_n\right)^{1/q}$$

Furthermore, $W^{k;q,r}_{\omega}(\Omega), k \in \mathbb{N}$, denotes the Banach space of all functions in Ω whose derivatives of order up to k belong to $L^q(L^r_{\omega})$ with norm $||u||_{W^{k;q,r}_{\omega}}$ $(\sum_{|\alpha|\leq k} \|D^{\alpha}u\|_{L^q(L^r_{\alpha})}^2)^{1/2}$, where $\alpha \in \mathbb{N}^n_0$, and let $W^{1;q,r}_{0,\omega}(\Omega)$ be the completion of the set $C_0^{\infty}(\Omega)$ in $W^{1;q,r}_{\omega}(\Omega)$. The weighted homogeneous Sobolev space $\widehat{W}^{1;q,r}_{\omega}(\Omega)$ is defined by \tilde{V}

$$\widehat{W}^{1;q,r}_{\omega}(\Omega) = \{ u \in L^1_{\text{loc}}(\Omega) / \mathbb{R} : \nabla u \in L^q(L^r_{\omega}) \}$$

with norm $\|\nabla u\|_{L^q(L^r_{\omega})}$. Finally, $L^q(L^r_{\omega})_{\sigma}$ is the completion in the space $L^q(L^r_{\omega})$ of the set

$$C_{0,\sigma}^{\infty}(\Omega) = \{ u \in C_0^{\infty}(\Omega)^n; \quad \operatorname{div} u = 0 \}.$$

The Fourier transform in the variable x_n is denoted by \mathcal{F} or $\widehat{}$ and the inverse Fourier transform by \mathcal{F}^{-1} or \vee . For $\varepsilon \in (0, \frac{\pi}{2})$ we define the complex sector

$$S_{\varepsilon} = \{\lambda \in \mathbb{C}; \lambda \neq 0, |\arg \lambda| < \frac{\pi}{2} + \varepsilon\}.$$

The first main theorem of this paper is as follows.

Theorem 2.1 (Weighted Resolvent Estimates) Let Σ be a bounded domain of $C^{1,1}$ -class with $\alpha_0 > 0$ being the least eigenvalue of the Dirichlet Laplacian in Σ , and let $0 < \varepsilon < \frac{\pi}{2}$, $1 < q, r < \infty$ and $\omega \in A_r$. Then for every $f \in L^q(\mathbb{R}; L^r_{\omega}(\Sigma))$, every $\alpha \in (0, \alpha_0)$ and $\lambda \in -\alpha + S_{\varepsilon}$ there exists a unique solution

$$(u,p) \in \left(W^{2;q,r}_{\omega}(\Omega) \cap W^{1;q,r}_{0,\omega}(\Omega) \right) \times \widehat{W}^{1;q,r}_{\omega}(\Omega)$$

to (R_{λ}) (with q=0) satisfying the estimate

$$\|(\lambda + \alpha)u, \nabla^{2}u, \nabla p\|_{L^{q}(L^{r}_{\omega})} \le C\|f\|_{L^{q}(L^{r}_{\omega})}$$
(2.1)

with an A_r -consistent constant $C = C(q, r, \alpha, \varepsilon, \Sigma, \mathcal{A}_r(\omega))$ independent of λ .

In particular we obtain from Theorem 2.1 the following corollary on resolvent estimates of the Stokes operator in the cylinder Ω .

Corollary 2.2 (Stokes Operator and Stokes Semigroup) Let $1 < q, r < \infty$, $\omega \in A_r(\mathbb{R}^{n-1})$ and define the Stokes operator $A = A_{q,r;\omega}$ on Ω by

$$D(A) = W^{2;q,r}_{\omega}(\Omega) \cap W^{1;q,r}_{0,\omega}(\Omega) \cap L^q(L^r_{\omega})_{\sigma} \subset L^q(L^r_{\omega})_{\sigma}, \ Au = -P_{q,r;\omega}\Delta u,$$
(2.2)

where $P_{q,r;\omega}$ is the Helmholtz projection in $L^q(\mathbb{R}; L^r_{\omega}(\Sigma))$ (see [8]). Then, for every $\varepsilon \in (0, \frac{\pi}{2})$ and $\alpha \in (0, \alpha_0)$, $-\alpha + S_{\varepsilon}$ is contained in the resolvent set of -A, and the estimate

$$\|(\lambda+A)^{-1}\|_{\mathcal{L}(L^q(L^r_{\omega})_{\sigma})} \le \frac{C}{|\lambda+\alpha|} \quad \forall \lambda \in -\alpha + S_{\varepsilon}$$
(2.3)

holds with an A_r -consistent constant $C = C(\Sigma, q, r, \alpha, \varepsilon, \mathcal{A}_r(\omega)).$

As a consequence, the Stokes operator generates a bounded analytic semigroup $\{e^{-tA_{q,r;\omega}}; t \geq 0\}$ on $L^q(L^r_{\omega})_{\sigma}$ satisfying the estimate

$$\|e^{-tA_{q,r;\omega}}\|_{\mathcal{L}(L^q(L^r_{\omega})_{\sigma})} \le C e^{-\alpha t} \quad \forall \alpha \in (0, \alpha_0), \forall t > 0$$
(2.4)

with a constant $C = C(q, r, \alpha, \varepsilon, \Sigma, \mathcal{A}_r(\omega)).$

The second important result of this paper is the *maximal regularity* of the Stokes operator in an infinite straight cylinder.

Theorem 2.3 (Maximal Regularity) Let $1 < p, q, r < \infty$ and $\omega \in A_r(\mathbb{R}^{n-1})$. Then the Stokes operator $A = A_{q,r;\omega}$ has maximal regularity in $L^q(L^r_{\omega})_{\sigma}$. To be more precise, for each $f \in L^p(\mathbb{R}_+; L^q(L^r_{\omega})_{\sigma})$ the instationary system

$$u_t + Au = f, \quad u(0) = 0 \tag{2.5}$$

has a unique solution $u \in W^{1,p}(\mathbb{R}_+; L^q(L^r_\omega)_\sigma) \cap L^p(\mathbb{R}_+; D(A))$ such that

$$||u, u_t, Au||_{L^p(\mathbb{R}_+; L^q(L^r_{\omega})_{\sigma})} \le C ||f||_{L^p(\mathbb{R}_+; L^q(L^r_{\omega})_{\sigma})}.$$
(2.6)

Analogously, for every $f \in L^p(\mathbb{R}_+; L^q(L^r_\omega))$, the instationary system

$$u_t - \Delta u + \nabla p = f$$
, div $u = 0$, $u(0) = 0$

has a unique solution $(u, \nabla p) \in (W^{1,p}(\mathbb{R}_+; L^q(L^r_\omega)_\sigma) \cap L^p(\mathbb{R}_+; D(A))) \times L^p(\mathbb{R}_+; L^q(L^r_\omega))$ satisfying the a priori estimate

$$\|u_t, u, \nabla u, \nabla^2 u, \nabla p\|_{L^p(\mathbb{R}_+; L^q(L^r_{\omega}))} \le C \|f\|_{L^p(\mathbb{R}_+; L^q(L^r_{\omega}))}.$$
(2.7)

Moreover, if $e^{\alpha t} f \in L^p(\mathbb{R}_+; L^q(L^r_{\omega})_{\sigma})$ for some $\alpha \in (0, \alpha_0)$, then the solution u satisfies the estimate

$$\|e^{\alpha t}u, e^{\alpha t}u_{t}, e^{\alpha t}Au\|_{L^{p}(\mathbb{R}_{+}; L^{q}(L^{r}_{\omega})_{\sigma})} \leq C \|e^{\alpha t}f\|_{L^{p}(\mathbb{R}_{+}; L^{q}(L^{r}_{\omega})_{\sigma})}.$$
(2.8)

In each estimate $C = C(\Sigma, q, r, \mathcal{A}_r(\omega))$ and $C = C(\Sigma, q, r, \mathcal{A}_r(\omega), \alpha)$, respectively.

Remark 2.4 (1) We note that in (2.5) we may take nonzero initial values $u(0) = u_0$ in the interpolation space $(L^q(L^r_{\omega})_{\sigma}, D(A_{q,r;\omega}))_{1-1/p,p}$.

(2) By [1], Theorem 1.3, maximal regularity in $L^q(\Omega)$ of $cI + A_q$ with some c > 0, where A_q is the Stokes operator in $L^q(\Omega)$, will follow; this result is weaker than the particular case q = r and $\omega \equiv 1$ in Theorem 2.3.

For the proofs in Section 3 and Section 4, we need some preliminary results for Muckenhoupt weights.

Proposition 2.5 ([8], Lemma 2.4) Let $1 < r < \infty$ and $\omega \in A_r(\mathbb{R}^{n-1})$.

(1) Let $T : \mathbb{R}^{n-1} \to \mathbb{R}^{n-1}$ be a bijective, bi-Lipschitz vector field. Then also $\omega \circ T \in A_r(\mathbb{R}^{n-1})$ and $\mathcal{A}_r(\omega \circ T) \leq c \mathcal{A}_r(\omega)$ with a constant c = c(T,r) > 0 independent of ω .

(2) Define the weight $\tilde{\omega}(x') = \omega(|x_1|, x'')$ for $x' = (x_1, x'') \in \mathbb{R}^{n-1}$. Then $\tilde{\omega} \in A_r$ and $\mathcal{A}_r(\tilde{\omega}) \leq 2^r \mathcal{A}_r(\omega)$.

(3) Let $\Sigma \subset \mathbb{R}^{n-1}$ be a bounded domain. Then there exist $\tilde{s}, s \in (1, \infty)$ satisfying

$$L^{\tilde{s}}(\Sigma) \hookrightarrow L^{r}_{\omega}(\Sigma) \hookrightarrow L^{s}(\Sigma).$$

Here \tilde{s} and $\frac{1}{s}$ are A_r -consistent. Moreover, the embedding constants can be chosen uniformly on a set $W \subset A_r$ provided that

$$\sup_{\omega \in W} \mathcal{A}_r(\omega) < \infty, \quad \int_Q \omega \, dx' = 1 \quad \text{for all } \omega \in W, \tag{2.9}$$

for a cube $Q \subset \mathbb{R}^{n-1}$ with $\overline{\Sigma} \subset Q$.

Proposition 2.6 ([8], Proposition 2.5) Let $\Sigma \subset \mathbb{R}^{n-1}$ be a bounded Lipschitz domain and let $1 < r < \infty$.

(1) For every $\omega \in A_r$ the continuous embedding $W^{1,r}_{\omega}(\Sigma) \hookrightarrow L^r_{\omega}(\Sigma)$ is compact.

(2) Consider a sequence of weights $(\omega_j) \subset A_r$ satisfying (2.9) for $W = \{\omega_j : j \in \mathbb{N}\}$ and a fixed cube $Q \subset \mathbb{R}^{n-1}$ with $\overline{\Sigma} \subset Q$. Further let (u_j) be a sequence of functions on Σ satisfying

$$\sup_{j} \|u_{j}\|_{1,r,\omega_{j}} < \infty \quad and \quad u_{j} \rightharpoonup 0 \quad in \ W^{1,s}(\Sigma)$$

for $j \to \infty$ where s is given by Proposition 2.5 (3). Then

$$||u_j||_{r,\omega_j} \to 0 \quad for \ j \to \infty.$$

(3) Under the same assumptions on $(\omega_j) \subset A_r$ as in (2) consider a sequence of functions (v_j) on Σ satisfying

$$\sup_{j} \|v_{j}\|_{r,\omega_{j}} < \infty \quad and \quad v_{j} \rightharpoonup 0 \quad in \ L^{s}(\Sigma)$$

for $j \to \infty$. Then considering v_j as functionals on $W^{1,r'}_{\omega'_i}(\Sigma)$

$$\|v_j\|_{(W^{1,r'}_{\omega'_j}(\Sigma))^*} \to 0 \quad for \ j \to \infty.$$

Proposition 2.7 Let $r \in (1, \infty)$, $\omega \in A_r$ and $\Sigma \subset \mathbb{R}^{n-1}$ be a bounded Lipschitz domain. Then there exists an A_r -consistent constant $c = c(r, \Sigma, \mathcal{A}_r(\omega)) > 0$ such that

$$\|u\|_{r,\omega} \le c \|\nabla' u\|_{r,\omega}$$

for all $u \in W^{1,r}_{\omega}(\Sigma)$ with vanishing integral mean $\int_{\Sigma} u \, dx' = 0$.

Proof: See the proof of [14], Corollary 2.1 and its conclusions; checking the proof, one sees that the constant $c = c(r, \Sigma, \mathcal{A}_r(\omega))$ is A_r -consistent.

Finally we cite the Fourier multiplier theorem in weighted spaces.

Theorem 2.8 ([17], Ch. IV, Theorem 3.9) Let $m \in C^k(\mathbb{R}^k \setminus \{0\}), k \in \mathbb{N}$, admit a constant $M \in \mathbb{R}$ such that

$$|\eta|^{\gamma}|D^{\gamma}m(\eta)| \le M \quad for \ all \quad \eta \in \mathbb{R}^k \setminus \{0\}$$

and multi-indices $\gamma \in \mathbb{N}_0^k$ with $|\gamma| \leq k$. Then for all $1 < r < \infty$ and $\omega \in A_r(\mathbb{R}^k)$ the multiplier operator $Tf = \mathcal{F}^{-1}m(\cdot)\mathcal{F}$ defined for all rapidly decreasing functions $f \in \mathcal{S}(\mathbb{R}^k)$ can be uniquely extended to a bounded linear operator from $L^r_{\omega}(\mathbb{R}^k)$ to $L^r_{\omega}(\mathbb{R}^k)$. Moreover, there exists an A_r -consistent constant $C = C(r, \mathcal{A}_r(\omega))$ such that

$$||Tf||_{r,\omega} \le CM ||f||_{r,\omega}, \quad f \in L^r_{\omega}(\mathbb{R}^k).$$

3 The Problem $(R_{\lambda,\xi})$ in Half Spaces

Consider the parametrized resolvent problem $(R_{\lambda,\xi})$ for all $\xi \in \mathbb{R}^* = \mathbb{R} \setminus \{0\}$ and $\lambda \in S_{\varepsilon}, 0 < \varepsilon < \frac{\pi}{2}$. In this section Σ denotes either \mathbb{R}^{n-1} or the half space

$$\Sigma = \mathbb{R}^{n-1}_{+} = \{ x' = (x_1, x'') : x'' \in \mathbb{R}^{n-2}, x_1 > 0 \},$$
(3.1)

or a bent half space

$$H_{\sigma} = \{ x' = (x_1, x'') : x_1 > \sigma(x''), x'' \in \mathbb{R}^{n-2} \},$$
(3.2)

where σ is a $C^{1,1}$ -function. For notational convenience we omit the symbol $\hat{}$ for the one-dimensional Fourier transform; thus

$$u = (u', u_n), p, f, g$$
 stand for $\hat{u} = (\hat{u'}, \hat{u_n}), \hat{p}, \hat{f}, \hat{g}$.

Let $\omega \in A_r(\mathbb{R}^{n-1})$ be an arbitrary Muckenhoupt weight. For the divergence $g(=\hat{g})$, by the same argument as in Section 2 of [9], we may define, for $r \in (1, \infty)$ and $\xi \in \mathbb{R}^*$, the spaces

$$\widehat{W}^{1,r}_{\omega}(\Sigma) \cap L^r_{\omega,\xi}(\Sigma) \cong W^{1,r}_{\omega}(\Sigma) \quad \text{with norm} \quad \max\{\|\nabla' u, \xi u\|_{r,\omega}\}\$$

and

$$\widehat{W}_{\omega}^{-1,r} + L_{\omega,1/\xi}^r := (\widehat{W}_{\omega'}^{1,r'} \cap L_{\omega',\xi}^{r'})^* \cong (W_{\omega'}^{1,r'})^*, \quad r' = r/(r-1),$$

with ξ -dependent norm

$$\|h;\widehat{W}_{\omega}^{-1,r} + L_{\omega,1/\xi}^{r}\| = \inf\{\|h_0\|_{-1,r,\omega} + \|h_1/\xi\|_{r,\omega} : h = h_0 + h_1, h_0 \in \widehat{W}_{\omega}^{-1,r}, h_1 \in L_{\omega}^{r}\}.$$

Assume that

$$f \in L^r_{\omega}(\Sigma), \quad g \in W^{1,r}_{\omega}(\Sigma).$$

Note that $W^{1,r}_{\omega}(\Sigma)$ is obviously contained in the sum $\widehat{W}^{-1,r}_{\omega}(\Sigma) + L^r_{\omega,1/\xi}(\Sigma)$.

Now we start with the case $\Sigma = \mathbb{R}^{n-1}$. Since $C_0^{\infty}(\mathbb{R}^{n-1})$ is dense in $\widehat{W}_{\omega'}^{1,r'}(\mathbb{R}^{n-1})$, if $g = g_0 + g_1, g_0 \in \widehat{W}_{\omega}^{-1,r}$ and $g_1 \in L^r_{\omega,1/\xi}$, is any splitting of g, Hahn-Banach's theorem implies the existence of a vector field $h \in L^r_{\omega}$ such that

$$g_0 = \operatorname{div}' h, \quad ||g_0||_{-1,r,\omega} = ||h||_{r,\omega}.$$

An elementary calculation shows that p in $(R_{\lambda,\xi})$ satisfies the equation

$$(\xi^2 - \Delta')p = (\lambda + \xi^2 - \Delta')g - (\operatorname{div}' f' + i\xi f_n).$$
(3.3)

Introducing the (n-1)-dimensional Fourier transform ~ with respect to x' and with phase variable $s \in \mathbb{R}^{n-1}$ we get

$$\tilde{p} = \tilde{g} + \frac{\lambda}{\xi^2 + |s|^2} \tilde{g} - \frac{is}{\xi^2 + |s|^2} \cdot \tilde{f}' - \frac{i\xi}{\xi^2 + |s|^2} \tilde{f}_n = \tilde{g} + \frac{\lambda is}{\xi^2 + |s|^2} \cdot \tilde{h} + \frac{\lambda \xi}{\xi^2 + |s|^2} (\tilde{g}_1/\xi) - \frac{is}{\xi^2 + |s|^2} \cdot \tilde{f}' - \frac{i\xi}{\xi^2 + |s|^2} \tilde{f}_n.$$

Obviously the functions

$$m_{\xi}(s) = \frac{s_j s_k}{\xi^2 + |s|^2}, \quad \frac{s_j \xi}{\xi^2 + |s|^2}, \quad \frac{\xi^2}{\xi^2 + |s|^2}, \quad 1 \le j, k \le n-1,$$

are classical multiplier functions satisfying the pointwise Hörmander-Michlin condition

$$|s|^{\alpha}|\nabla_s^{\alpha}m_{\xi}(s)| \le c_{\alpha}, \quad 0 \ne s \in \mathbb{R}^{n-1}, \, \alpha \in \mathbb{N}_0^{n-1}, \, |\alpha| \le n-1, \tag{3.4}$$

uniformly with respect to $\xi \in \mathbb{R}^*$. Then Theorem 2.7 applied to $\nabla' p$ and to ξp yields the estimate

$$\|\nabla' p, \xi p\|_{r,\omega} \leq c(\|f, \nabla' g, \xi g\|_{r,\omega} + \|\lambda h, \lambda g_1 / \xi\|_{r,\omega})$$

$$\leq c(\|f, \nabla' g, \xi g\|_{r,\omega} + \|\lambda g_0\|_{-1,r,\omega} + \|\lambda g_1 / \xi\|_{r,\omega}).$$
 (3.5)

Next consider the Laplace resolvent equations for u' and u_n , i.e.,

$$\begin{aligned} &(\lambda + \xi^2 - \Delta')u' = F' & \text{in } \mathbb{R}^{n-1}, \\ &(\lambda + \xi^2 - \Delta')u_n = F_n & \text{in } \mathbb{R}^{n-1} \end{aligned} \tag{3.6}$$

with resolvent parameters $\lambda + \xi^2$, where $F' := f' - \nabla' p$, $F_n := f_n - i\xi p$ and p is the solution to (3.3) satisfying (3.5). Again applying the (n - 1)-dimensional Fourier transform with respect to $x' \in \mathbb{R}^{n-1}$ to (3.6), we get

$$\tilde{u}' = \frac{\tilde{F}'}{\lambda + \xi^2 + |s|^2}, \quad \tilde{u}_n = \frac{\tilde{F}_n}{\lambda + \xi^2 + |s|^2}.$$

Therefore, using the fact that

$$\frac{\lambda + \xi^2}{\lambda + \xi^2 + |s|^2}, \quad \frac{\sqrt{\lambda + \xi^2 s_j}}{\lambda + \xi^2 + |s|^2}, \quad \frac{s_j s_k}{\lambda + \xi^2 + |s|^2}, \quad j, k = 1, \dots, n-1,$$

are Fourier multipliers satisfying (3.4), we get the existence of a solution $u = (u', u_n)$ to (3.6) satisfying

$$\| (\lambda + \xi^2) u, \sqrt{\lambda + \xi^2} \nabla' u, \nabla'^2 u \|_{r,\omega} \le c \| f, \nabla' p, \xi p \|_{r,\omega}$$

$$\le c (\| f, \nabla' g, \xi g \|_{r,\omega} + \| \lambda g_0 \|_{-1,r,\omega} + \| \lambda g_1 / \xi \|_{r,\omega})$$
(3.7)

with A_r -consistent constants $c = c(\varepsilon, r, \mathcal{A}_r(\omega))$.

Let $\mu = |\lambda + \xi^2|^{1/2}$. We can prove the following theorem.

Theorem 3.1 Let $\Sigma = \mathbb{R}^{n-1}$, $1 < r < \infty$ and $\omega \in A_r(\mathbb{R}^{n-1})$. If $f \in L^r_{\omega}(\Sigma)$ and $g \in W^{1,r}_{\omega}(\Sigma)$, then for every $\lambda \in S_{\varepsilon}, 0 < \varepsilon < \frac{\pi}{2}$, and $\xi \in \mathbb{R}^*$ the problem $(R_{\lambda,\xi})$ has a unique solution $(u, p) \in W^{2,r}_{\omega}(\Sigma) \times W^{1,r}_{\omega}(\Sigma)$ satisfying

$$\|\mu^{2}u, \mu\nabla' u, \nabla'^{2}u, \nabla' p, \xi p\|_{r,\omega} \le c \left(\|f, \nabla' g, \xi g\|_{r,\omega} + \|\lambda g; \widehat{W}_{\omega}^{-1,r} + L_{\omega,1/\xi}^{r}\|\right)$$
(3.8)

with an A_r -consistent constant $c = c(\varepsilon, r, \mathcal{A}_r(\omega)).$

Proof: Let u be a solution to (3.6) where p is a solution to (3.3). We have already seen that $(u, p) \in W^{2,r}_{\omega}(\Sigma) \times W^{1,r}_{\omega}(\Sigma)$ satisfies the estimate (3.8) since $g = g_0 + g_1$ in the estimate (3.5), (3.7) is an arbitrary splitting of $g \in \widehat{W}^{-1,r}_{\omega} + L^r_{\omega,1/\xi}$. Therefore, for the proof of the existence of a solution, it is enough to show that (u, p) solves the divergence equation of $(R_{\lambda,\xi})$. A simple calculation with (3.3) and (3.6) yields

$$(\lambda + \xi^2 - \Delta')(\operatorname{div}' u' + i\xi u_n - g) = 0$$
 in \mathbb{R}^{n-1} .

Hence standard arguments from Fourier analysis show that $\operatorname{div}' u' + i\xi u_n = g$. The uniqueness of the solution is obvious from the above Fourier multiplier technique, i.e., if (u, p) is a solution to $(R_{\lambda,\xi})$ with f = 0, g = 0, then u satisfies (3.6) with f = 0 and $(\xi^2 - \Delta')p = 0$ yielding p = 0, and hence u = 0.

In the next main step we consider the case $\Sigma = \mathbb{R}^{n-1}_+$, see (3.1). Just as for $x' = (x_1, x'')$ we write $u' = (u_1, u'')$, $f' = (f_1, f'')$. For a function $h : \Sigma \to \mathbb{R}$ define the even extension h_e by

$$h_e(x_1, x'') = \begin{cases} h(x_1, x'') & \text{for } x_1 > 0\\ h(-x_1, x'') & \text{for } x_1 < 0, \end{cases}$$

while the odd extension h_o of h is defined by

$$h_o(x_1, x'') = -h(-x_1, x'')$$
 for $x_1 < 0$.

Given $(R_{\lambda,\xi})$ in (Σ) , take the even extension f''_e of f'', f_{ne} of f_n and g_e of g, but the odd extension f_{1o} of f_1 . Then obviously

$$(f_{1o}, f_e'', f_{ne}) \in L^r_{\tilde{\omega}}(\mathbb{R}^{n-1}), \quad g_e \in W^{1,r}_{\tilde{\omega}}(\mathbb{R}^{n-1}),$$

where $\tilde{\omega}(x_1, x'') = \omega(|x_1|, x'')$. Note that $\mathcal{A}_r(\tilde{\omega}) \leq 2^r \mathcal{A}_r(\omega)$, see Proposition 2.5 (2). It is clear that

$$\|h_o, h_e\|_{r,\tilde{\omega};\mathbb{R}^{n-1}} \le c(r) \|h\|_{r,\omega;\Sigma};$$

$$(3.9)$$

moreover, for a function $h \in L^r_{\omega}(\mathbb{R}^{n-1}_+) \cap \widehat{W}^{-1,r}_{\omega}(\mathbb{R}^{n-1}_+)$ we get

$$\begin{aligned} \|h_e\|_{\widehat{W}_{\hat{\omega}}^{-1,r}(\mathbb{R}^{n-1})} &= \sup_{\varphi} \left| \int_{\mathbb{R}^{n-1}} h_e \varphi \, dx' \right| \\ &= \sup_{\varphi} \left| \int_{\Sigma} h \varphi \, dx' + \int_{\Sigma} h \varphi(-x_1, x'') \, dx' \right| \\ &\leq 2 \|h\|_{\widehat{W}_{\omega}^{-1,r}(\Sigma)}, \end{aligned}$$
(3.10)

where the supremum is taken over all $\varphi \in C_0^{\infty}(\mathbb{R}^{n-1})$ with $\|\nabla' \varphi\|_{r',\omega';\mathbb{R}^{n-1}} \leq 1$.

Now we will solve $(R_{\lambda,\xi})$ in the whole space \mathbb{R}^{n-1} with right-hand side $(f_{1o}, f''_e, f_{ne}), g_e$. By the uniqueness assertion it is easily seen that the solution (U, P) of this extended problem is even with respect to x_1 except for the component U_1 which is odd with respect to x_1 . In particular $U_1 = 0$ for $x_1 = 0$ and, due to (3.8),

$$\|\mu^{2}U, \mu\nabla' U, \nabla'^{2}U, \nabla' P, \xi P\|_{r,\omega;\Sigma}$$

$$\leq c \left(\|f_{1o}, f_{e}'', f_{ne}, \nabla' g_{e}, \xi g_{e}\|_{r,\tilde{\omega};\mathbb{R}^{n-1}} + \|\lambda g_{e}; \widehat{W}_{\tilde{\omega}}^{-1,r}(\mathbb{R}^{n-1}) + L_{\tilde{\omega},1/\xi}^{r}(\mathbb{R}^{n-1})\|\right)$$

$$(3.11)$$

where $\mu = |\lambda + \xi^2|^{1/2}$ and the constant *c* is A_r -consistent due to Proposition 2.5. Thus, from (3.9)–(3.11), we get

$$\|\mu^{2}U, \mu\nabla' U, \nabla'^{2}U, \nabla' P, \xi P\|_{r,\omega;\Sigma}$$

$$\leq c \left(\|f, \nabla' g, \xi g\|_{r,\omega;\Sigma} + \|\lambda g; \widehat{W}_{\omega}^{-1,r} + L_{\omega,1/\xi}^{r} \| \right)$$

$$(3.12)$$

with an A_r -consistent constant $c = c(\varepsilon, r, \mathcal{A}_r(\omega)).$

Subtracting (U, P) in $(R_{\lambda,\xi})$, the parametrized resolvent problem $(R_{\lambda,\xi})$ is reduced to the homogeneous system

$$(\lambda + \xi^2 - \Delta')u' + \nabla'p = 0 \quad \text{in} \quad \Sigma = \mathbb{R}^{n-1}_+$$
$$(\lambda + \xi^2 - \Delta')u_n + i\xi p = 0 \quad \text{in} \quad \Sigma$$
$$\operatorname{div}'u' + i\xi u_n = 0 \quad \text{in} \quad \Sigma$$
(3.13)

with inhomogeneous boundary values

$$u = \Phi := U|_{\partial \Sigma} \quad \text{on} \quad \partial \Sigma. \tag{3.14}$$

With the splittings $\Delta' = \partial_1^2 + \Delta''$, div $u' = \partial_1 u_1 + \text{div}'' u''$ and $\nabla' = (\partial_1, \nabla'')$ elementary operations with (3.13), (3.14) yield the fourth order equation

$$(\lambda + \xi^{2} - \Delta')(\xi^{2} - \Delta')u_{1} = 0 \qquad \text{in} \qquad \Sigma$$

$$u_{1} = 0 \qquad \text{on} \qquad \partial\Sigma$$

$$\partial_{1}u_{1} = -\operatorname{div}''\Phi'' - i\xi\Phi_{n} \qquad \text{on} \qquad \partial\Sigma.$$
(3.15)

Let us introduce the additional partial Fourier transform $\mathcal{F}_{\sigma} = \widetilde{}$ with respect to the variable $x'' \in \mathbb{R}^{n-2}$ and with phase variable $\sigma \in \mathbb{R}^{n-2}$. Applying $\widetilde{}$ to (3.15), we get the fourth order ordinary differential equation $(s = |\sigma|)$

$$\begin{aligned} (\lambda + \xi^2 + s^2 - \partial_1^2)(\xi^2 + s^2 - \partial_1^2)\tilde{u}_1 &= 0 & \text{for} & x_1 > 0 \\ \tilde{u}_1 &= 0 & \text{at} & x_1 = 0 \\ \partial_1 \tilde{u}_1 &= -i\sigma \cdot \tilde{\Phi}'' - i\xi \tilde{\Phi}_n & \text{at} & x_1 = 0. \end{aligned}$$
(3.16)

For fixed $\lambda \in S_{\varepsilon}, \xi \in \mathbb{R}^*$ and $\sigma \in \mathbb{R}^{n-2}$ (3.16) has a unique bounded solution \tilde{u}_1 in $(0, \infty)$, namely

$$\tilde{u}_1(x_1,\sigma,\xi) = \frac{e^{-\sqrt{\lambda+\xi^2+s^2}x_1} - e^{-\sqrt{\xi^2+s^2}x_1}}{\sqrt{\lambda+\xi^2+s^2} - \sqrt{\xi^2+s^2}} (i\sigma \cdot \tilde{\Phi''} + i\xi\tilde{\Phi}_n)|_{\partial\Sigma}.$$
(3.17)

Furthermore (3.13), (3.17) yield after some elementary calculations

$$p(x',\xi) = -\mathcal{F}_{\sigma}^{-1} \left(\frac{1}{\xi^{2}+s^{2}} (\lambda + \xi^{2} + s^{2} - \partial_{1}^{2}) \partial_{1} \tilde{u}_{1} \right)$$

$$= -\mathcal{F}_{\sigma}^{-1} \left(\frac{\sqrt{\lambda + \xi^{2} + s^{2}} + \sqrt{\xi^{2} + s^{2}}}{\sqrt{\xi^{2} + s^{2}}} e^{-\sqrt{\xi^{2} + s^{2}} x_{1}} (i\sigma \cdot \tilde{\Phi}'' + i\xi \tilde{\Phi}_{n}) \right)$$

$$= \mathcal{F}_{\sigma}^{-1} \left((1 + \frac{\sqrt{\lambda + \xi^{2} + s^{2}}}{\sqrt{\xi^{2} + s^{2}}}) \tilde{v} \right),$$

(3.18)

where

$$v = \mathcal{F}_{\sigma}^{-1} \left(-e^{-\sqrt{\xi^2 + s^2}x_1} (i\sigma \cdot \tilde{\Phi}'' + i\xi \tilde{\Phi}_n) \right).$$
(3.19)

For every nonzero complex number μ and k = 1, 2 let $W^{k,r}_{\omega,\mu}(\mathbb{R}^{n-1})$ denote the weighted Sobolev space $W^{k,r}_{\omega}(\mathbb{R}^{n-1})$ endowed with the norm

$$\|u\|_{W^{k,r}_{\omega,\mu}(\mathbb{R}^{n-1})} = \|\nabla'^k u, \mu u\|_{r,\omega;\mathbb{R}^{n-1}}, \quad k = 1, 2.$$

Similarly we define the space $W^{k,r}_{\omega,\mu}(\mathbb{R}^{n-1}_+), k = 1, 2$, on the half space \mathbb{R}^{n-1}_+ . Using the trace operator γ , well-defined for functions from $W^{k,r}_{\text{loc}}(\mathbb{R}^{n-1}_+)$, we may define the trace space $T^{k,r}_{\omega,\mu}(\mathbb{R}^{n-2}), k = 1, 2$, by

$$T^{k,r}_{\omega,\mu}(\mathbb{R}^{n-2}) := \gamma W^{k,r}_{\omega,\mu}(\mathbb{R}^{n-1}_+), \quad \|\phi\|_{T^{k,r}_{\omega,\mu}(\mathbb{R}^{n-2})} = \inf_{\gamma u = \phi} \|u\|_{W^{k,r}_{\omega,\mu}(\mathbb{R}^{n-1}_+)}.$$

Obviously the set $C_0^{\infty}(\mathbb{R}^{n-1})$ is dense in the Banach space $T_{\omega,\mu}^{k,r}(\mathbb{R}^{n-2}), k = 1, 2$. We note that for $\phi \in T_{\omega,\mu}^{2,r}(\mathbb{R}^{n-2})$ and $\mu \in S_{\varepsilon}$ the function $R_{\mu}\phi := \mathcal{F}_{\sigma}^{-1}(e^{-\sqrt{\mu+s^2}x_1}\tilde{\phi}) \in W_{\omega}^{2,r}(\mathbb{R}^{n-1}_+)$ is the unique solution to the Laplace resolvent equation

$$(\mu - \Delta')q = 0$$
 in $\mathbb{R}^{n-1}_+, \quad q|_{\mathbb{R}^{n-2}} = \phi$ (3.20)

(see [13], Theorem 4.5). Furthermore, by standard techniques using Fourier multiplier theory one can easily see that $R_{\mu}\phi$ satisfies the estimates

$$||R_{\mu}\phi||_{W^{2,r}_{\omega,\mu}(\mathbb{R}^{n-1}_{+})} \le c(r,\varepsilon,\mathcal{A}_{r}(\omega))||\phi||_{T^{2,r}_{\omega,\mu}(\mathbb{R}^{n-2})},$$
(3.21)

$$\|R_{\mu}\phi\|_{W^{1,r}_{\omega,\sqrt{\mu}}(\mathbb{R}^{n-1}_{+})} \le c(r,\varepsilon,\mathcal{A}_{r}(\omega))\|\phi\|_{T^{1,r}_{\omega,\sqrt{\mu}}(\mathbb{R}^{n-2})}.$$
(3.22)

Lemma 3.2 Let $m \in C^{n-2}(\mathbb{R}^{n-2}\setminus\{0\})$. If $m(\sigma)$ as well as $\frac{\sqrt{\xi^2+s^2}}{s}m(\sigma)$, $\xi \in \mathbb{R}^*$, are (n-2)-dimensional multiplier functions satisfying the pointwise Hörmander-Michlin condition, see Theorem 2.8, with a constant K > 0 independent of $\xi \in \mathbb{R}^*$, then the operator $M : \mathcal{S}(\mathbb{R}^{n-2}) \to \mathcal{S}'(\mathbb{R}^{n-2})$ defined by

$$M\phi = \mathcal{F}_{\sigma}^{-1}(m(\sigma)\tilde{\phi})$$

is a bounded operator in $\mathcal{L}(T^{1,r}_{\omega,\xi}(\mathbb{R}^{n-2}))$ with $\|M\|_{\mathcal{L}(T^{1,r}_{\omega,\xi}(\mathbb{R}^{n-2}))} \leq c(r,\varepsilon,\mathcal{A}_r(\omega))K$.

Proof: Let $\phi \in \mathcal{S}(\mathbb{R}^{n-2})$, let τ be the Fourier phase variable for the partial Fourier transform with respect to x_1 , and let $\eta = (\tau, \sigma)$. Note that $\mathcal{F}_{x_1}\left(e^{-\sqrt{\xi^2+s^2}|x_1|}\right) = \frac{2\sqrt{\xi^2+s^2}}{\xi^2+s^2+\tau^2}$ and $\mathcal{F}_{\tau}^{-1}\left(\frac{\sqrt{\xi^2+s^2}+s}{s}\frac{s^2}{s^2+\tau^2}\mathcal{F}_{x_1}e^{-\sqrt{\xi^2+s^2}|x_1|}\right)\Big|_{x_1=0} = 1$. Hence, by the definition of the space $T^{1,r}_{\omega,\xi}(\mathbb{R}^{n-2})$, we get

$$\|M\phi\|_{T^{1,r}_{\omega,\xi}(\mathbb{R}^{n-2})} \leq \|\mathcal{F}_{\sigma}^{-1}(m(\sigma)\mathcal{F}_{\tau}^{-1}(\frac{\sqrt{\xi^{2}+s^{2}}+s}{s}\frac{s^{2}}{s^{2}+\tau^{2}}\mathcal{F}_{x_{1}}e^{-\sqrt{\xi^{2}+s^{2}}|x_{1}|})\widetilde{\phi})\|_{W^{1,r}_{\omega,\xi}(\mathbb{R}^{n-1}_{+})} \qquad (3.23)$$
$$\leq \left\|\mathcal{F}_{\eta}^{-1}\left(m(\sigma)\left(\frac{\sqrt{\xi^{2}+s^{2}}+s}{s}\frac{s^{2}}{s^{2}+\tau^{2}}\mathcal{F}_{x_{1}}e^{-\sqrt{\xi^{2}+s^{2}}|x_{1}|}\right)\widetilde{\phi}\right)\right\|_{W^{1,r}_{\omega,\xi}(\mathbb{R}^{n-1})}.$$

Since $m(\sigma) \frac{\sqrt{\xi^2 + s^2} + s}{s} \frac{s^2}{s^2 + \tau^2}$ is easily seen to be an (n - 1)-dimensional Fourier multiplier by the assumptions on m, we get from (3.23), (3.22) that

$$\begin{split} \|M\phi\|_{T^{1,r}_{\omega,\xi}(\mathbb{R}^{n-2})} &\leq c(\mathcal{A}_r(\omega))K\|\mathcal{F}_{\sigma}^{-1}(e^{-\sqrt{\xi^2+s^2}|x_1|}\tilde{\phi})\|_{W^{1,r}_{\omega,\xi}(\mathbb{R}^{n-1})} \\ &\leq c(\mathcal{A}_r(\omega))K\|\mathcal{F}_{\sigma}^{-1}(e^{-\sqrt{\xi^2+s^2}x_1}\tilde{\phi})\|_{W^{1,r}_{\omega,\xi}(\mathbb{R}^{n-1}_+)} \\ &\leq c(r,\varepsilon,\mathcal{A}_r(\omega))K\|\phi\|_{T^{1,r}_{\omega,\xi}(\mathbb{R}^{n-2})}. \end{split}$$

The proof of the lemma is complete.

Lemma 3.3 The function p defined by (3.18) satisfies the estimate

$$\|\nabla' p, \xi p\|_{r,\omega;\Sigma} \le c \left(\|f, \nabla' g, \xi g\|_{r,\omega;\Sigma} + \|\lambda g; \widehat{W}_{\omega}^{-1,r}(\Sigma) + L^r_{\omega,1/\xi}(\Sigma) \| \right)$$

with an A_r -consistent constant $c = c(r, \varepsilon, \mathcal{A}_r(\omega)).$

Proof: First we shall show for the function v in (3.19) the estimate

$$\|\nabla' v, \xi v\|_{r,\omega;\Sigma} \le c \big(\|f, \nabla' g, \xi g\|_{r,\omega;\Sigma} + \|\lambda g; \widehat{W}_{\omega}^{-1,r}(\Sigma) + L^r_{\omega,1/\xi}(\Sigma)\|\big), \qquad (3.24)$$

with an A_r -consistent constant $c = c(r, \varepsilon, \mathcal{A}_r(\omega))$. Since v solves the equation $(\xi^2 - \Delta')v = 0$ in \mathbb{R}^{n-1}_+ with boundary condition $v|_{\partial\Sigma} = -\operatorname{div}''\Phi'' - i\xi\Phi_n$, standard techniques (see [13], Theorem 4.4) and a scaling argument yield a constant $c = c(r, \mathcal{A}_r(\omega)) > 0$ independent of $\xi \in \mathbb{R}^*$ such that

$$\|\nabla' v, \xi v\|_{r,\omega;\Sigma} \le c \|\nabla'(\operatorname{div}'' U'' + i\xi U_n), \xi(\operatorname{div}'' U'' + i\xi U_n)\|_{r,\omega;\Sigma}.$$

Hence (3.12) yields (3.24).

Now let $\mu = \lambda + \xi^2$. We shall show the auxiliary estimate

$$\begin{aligned} \|\mathcal{F}_{\sigma}^{-1}\left(\sqrt{\mu+s^{2}}e^{-\sqrt{\xi^{2}+s^{2}}x_{1}}\left(\sigma\cdot\tilde{\Phi}''+\xi\tilde{\Phi}_{n}\right)\right)\|_{r,\omega;\Sigma} \\ &\leq c(r,\varepsilon,\mathcal{A}_{r}(\omega))\left(\|f,\nabla'g,\xi g\|_{r,\omega;\Sigma}+\|\lambda g;\widehat{W}_{\omega}^{-1,r}(\Sigma)+L_{\omega,1/\xi}^{r}(\Sigma)\|\right). \end{aligned}$$
(3.25)

By (3.22) we get

$$\begin{aligned} \left\| \mathcal{F}_{\sigma}^{-1} \left(\sqrt{\mu + s^2} e^{-\sqrt{\xi^2 + s^2} x_1} (\sigma \cdot \tilde{\Phi}'' + \xi \tilde{\Phi}_n) \right) \right\|_{r,\omega;\Sigma} \\ &= \left\| \partial_1 \mathcal{F}_{\sigma}^{-1} \left(e^{-\sqrt{\xi^2 + s^2} x_1} \sqrt{\mu + s^2} (\frac{\sigma}{\sqrt{\xi^2 + s^2}} \cdot \tilde{\Phi}'' + \frac{\xi}{\sqrt{\xi^2 + s^2}} \tilde{\Phi}_n) \right) \right\|_{r,\omega;\Sigma} \\ &\leq c \left\| \mathcal{F}_{\sigma}^{-1} \left(\sqrt{\mu + s^2} (\frac{\sigma}{\sqrt{\xi^2 + s^2}} \cdot \tilde{\Phi}'' + \frac{\xi}{\sqrt{\xi^2 + s^2}} \tilde{\Phi}_n) \right) \right\|_{T^{1,r}_{\omega,\xi}} \end{aligned}$$
(3.26)

where $c = c(r, \varepsilon, \mathcal{A}_r(\omega)) > 0$. Note that $\frac{\sigma_k}{\sqrt{\xi^2 + s^2}}, k = 2, \ldots, n-1$, and $1 - \frac{\xi}{\sqrt{\xi^2 + s^2}}$ satisfy the assumption of Lemma 3.2 with a constant K > 0 independent of $\xi \in \mathbb{R}^*$. Hence Lemma 3.2 and the fact that $\|\varphi\|_{T^{1,r}_{\omega,\xi}} \leq c(\varepsilon) \|\varphi\|_{T^{1,r}_{\omega,\sqrt{\mu}}}$ for $\varphi \in T^{1,r}_{\omega,\xi}(\mathbb{R}^{n-2}_+)$ yield

$$\begin{aligned} \left\| \mathcal{F}_{\sigma}^{-1} \left(\sqrt{\mu + s^{2}} e^{-\sqrt{\xi^{2} + s^{2}} x_{1}} (\sigma \cdot \tilde{\Phi}'' + \xi \tilde{\Phi}_{n}) \right) \right\|_{r,\omega;\Sigma} \\ &\leq c \left\| \mathcal{F}_{\sigma}^{-1} \left(\left(\frac{\sigma}{\sqrt{\xi^{2} + s^{2}}} \cdot \sqrt{\mu + s^{2}} \, \tilde{\Phi}'' + \left(1 - \frac{\xi}{\sqrt{\xi^{2} + s^{2}}} \right) \sqrt{\mu + s^{2}} \, \tilde{\Phi}_{n} \right) \right) \right\|_{T_{\omega,\xi}^{1,r}} \\ &+ \left\| \mathcal{F}_{\sigma}^{-1} (\sqrt{\mu + s^{2}} \, \tilde{\Phi}_{n}) \right\|_{T_{\omega,\xi}^{1,r}} \\ &\leq c \left\| \mathcal{F}_{\sigma}^{-1} (\sqrt{\mu + s^{2}} \, \tilde{\Phi}) \right\|_{T_{\omega,\xi}^{1,r}} \\ &\leq c \left\| \mathcal{F}_{\sigma}^{-1} (\sqrt{\mu + s^{2}} \, \tilde{\Phi}) \right\|_{T_{\omega,\xi}^{1,r}} \\ &\leq c \left\| \mathcal{F}_{\sigma}^{-1} (\sqrt{\mu + s^{2}} e^{-\sqrt{\mu + s^{2}} x_{1}} \, \tilde{\Phi}) \right\|_{W_{\omega,\sqrt{\mu}}^{1,r}} \\ &= c \left\| \partial_{1} R_{\mu} \Phi \right\|_{W_{\omega,\sqrt{\mu}}^{1,r}} \end{aligned}$$
(3.27)

where $c = c(r, \varepsilon, \mathcal{A}_r(\omega)) > 0$. Then, by interpolation and (3.21), we get

$$\|\partial_1 R_{\mu} \Phi\|_{W^{1,r}_{\omega,\sqrt{\mu}}} \le c \|R_{\mu} \Phi\|_{W^{2,r}_{\omega,\mu}} \le c \|\Phi\|_{T^{2,r}_{\omega,\mu}} \le c \|\mu U, \nabla'^2 U\|_{r,\omega;\Sigma}$$

where $c = c(r, \varepsilon, \mathcal{A}_r(\omega)) > 0$. Hence, from (3.12), (3.27) we get (3.25).

To complete the proof, we must obtain an estimate for $h := \mathcal{F}_{\sigma}^{-1} \left(\frac{\sqrt{\mu+s^2}}{\sqrt{\xi^2+s^2}} \tilde{v} \right)$; see (3.18), (3.19). Note that $\partial_1 h$ is just the left-hand side of (3.25). Moreover, $\nabla'' h, \xi h$ are represented by the left-hand side of (3.25) with Φ replaced by $\mathcal{F}_{\sigma}^{-1} \left(\frac{\sigma \tilde{\Phi}}{\sqrt{\xi^2+s^2}} \right), \mathcal{F}_{\sigma}^{-1} \left(\frac{\xi \tilde{\Phi}}{\sqrt{\xi^2+s^2}} \right)$, respectively. Therefore, using that $\frac{\sigma_j \sigma_k}{\xi^2+s^2}, \frac{\sigma_k \xi}{\xi^2+s^2}, j, k =$ $2, \ldots, n-1$, and $1 - \frac{\xi^2}{\xi^2+s^2}$ satisfy the assumptions of Lemma 3.2, we get by the same technique as before that

$$\|\nabla''h,\xi h\|_{r,\omega;\Sigma} \le c \left(\|f,\nabla'g,\xi g\|_{r,\omega;\Sigma} + \|\lambda g;\widehat{W}_{\omega}^{-1,r}(\Sigma) + L_{\omega,1/\xi}^{r}(\Sigma) \| \right)$$

with an A_r -consistent constant $c = c(r, \varepsilon, \mathcal{A}_r(\omega)).$

The proof of the lemma is complete.

Now we can prove the following theorem.

Theorem 3.4 With $\Sigma = \mathbb{R}^{n-1}_+$ the assertions of Theorem 3.1 remain true. In particular the a priori estimate (3.8) holds.

Proof: Consider the system

$$(\mu - \Delta')u' = -\nabla'p \quad \text{in } \Sigma$$

$$(\mu - \Delta')u_n = -i\xi p \quad \text{in } \Sigma$$

$$u = U \quad \text{on } \partial\Sigma$$

(3.28)

for (u', u_n) where p is defined by (3.18). By standard techniques, cf. [13], §4.2, and a scaling argument we get that (3.28) has a unique solution $u := (u', u_n) \in W^{2,r}_{\omega}(\Sigma) \cap W^{1,r}_{0,\omega}(\Sigma)$ satisfying

$$\|\mu u, \sqrt{\mu} \nabla' u, \nabla'^2 u\|_{r,\omega;\Sigma} \le c \|\nabla' p, \xi p, \mu U, \nabla'^2 U\|_{r,\omega;\Sigma}$$

with an A_r -consistent constant $c = c(r, \mathcal{A}_r(\omega))$. Thus, by Lemma 3.3 it follows that the functions u, p satisfy (3.8) with $\Sigma = \mathbb{R}^{n-1}_+$.

Now, for the proof of existence, it remains to show that u satisfies the divergence equation. From the expression for p one can infer that

$$(-\Delta' + \xi^2)p = 0. \tag{3.29}$$

Hence, from (3.28) we get

$$(\mu - \Delta')(\operatorname{div}' u' + i\xi u_n) = 0$$
 in Σ .

Furthermore (3.28), (3.29) imply (3.17), (3.18) with $(i\sigma \cdot \tilde{U}'' + i\xi \tilde{U}_n)|_{\partial\Sigma}$ replaced by $(-\partial_1 \tilde{u}_1)|_{\partial\Sigma}$. Therefore we have $(i\sigma \cdot \tilde{U}'' + i\xi \tilde{U}_n)|_{\partial\Sigma} = (-\partial_1 \tilde{u}_1)|_{\partial\Sigma}$, i.e., div $u' + i\xi u_n = 0$ on $\partial\Sigma$. Thus div $u' + i\xi u_n = 0$ in Σ .

For the proof of uniqueness let $(u, p) \in (W^{2,r}_{\omega}(\mathbb{R}^{n-1}_+) \cap W^{1,r}_{0,\omega}(\mathbb{R}^{n-1}_+)) \times W^{1,r}_{\omega}(\mathbb{R}^{n-1}_+)$ be a solution to $(R_{\lambda,\xi})$ with right-hand side 0. Then Proposition 2.5 (3) yields $(u, p) \in (W^{2,s}(\mathbb{R}^{n-1}_+) \cap W^{1,s}_0(\mathbb{R}^{n-1}_+)) \times W^{1,s}(\mathbb{R}^{n-1}_+)$ with some $s \in (1, r)$. Therefore, from the uniqueness result for $(R_{\lambda,\xi})$ in spaces without weight we get (u, p) = 0, see [9], Theorem 2.2.

Now the proof of this theorem is complete.

The third main step of this section concerns $(R_{\lambda,\xi})$ in a bent half space $\Sigma = H_{\sigma}$, see (3.2). Note that as before u, p etc. stand for the Fourier transforms \hat{u}, \hat{p} etc.

Theorem 3.5 Let $n \geq 3$, $1 < r < \infty$, $\omega \in A_r(\mathbb{R}^{n-1})$, $0 < \varepsilon < \pi/2$ and

$$\Sigma = H_{\sigma} = \{ x' = (x_1, x''); \, x_1 > \sigma(x''), x'' \in \mathbb{R}^{n-2} \}$$

for a given function $\sigma \in C^{1,1}(\mathbb{R}^{n-2})$. Then there are A_r -consistent constants $K_0 = K_0(r, \varepsilon, \mathcal{A}_r(\omega)) > 0$ and $\lambda_0 = \lambda_0(r, \varepsilon, \mathcal{A}_r(\omega)) > 0$ such that, provided $\|\nabla'\sigma\|_{\infty} \leq K_0$, for every $\lambda \in S_{\varepsilon}, |\lambda| \geq \lambda_0$, every $\xi \in \mathbb{R}^*$ and

$$f \in L^r_{\omega}(\Sigma), \quad g \in W^{1,r}_{\omega}(\Sigma),$$
(3.30)

the parametrized resolvent problem $(R_{\lambda,\xi})$ has a unique solution $(u, p) \in (W^{2,r}_{\omega}(\Sigma) \cap W^{1,r}_{0,\omega}(\Sigma)) \times W^{1,r}_{\omega}(\Sigma)$. This solution satisfies the estimate $(\mu = |\lambda + \xi^2|^{1/2})$

$$\begin{aligned} \|\mu^{2}u, \mu\nabla' u, \nabla'^{2}u, \nabla' p, \xi p\|_{r,\omega} \\ &\leq c \big(\|f, \nabla' g, \xi g\|_{r,\omega} + \|\lambda g; \widehat{W}_{\omega}^{-1,r}(\Sigma) + L_{\omega,1/\xi}^{r}(\Sigma)\|\big) \end{aligned}$$
(3.31)

with an A_r -consistent constant $c = c(r, \varepsilon, \mathcal{A}_r(\omega))$. If (3.30) is satisfied for an additional exponent $s \in (1, \infty)$ and weight $\nu \in A_r(\mathbb{R}^{n-1})$ and if $\|\nabla'\sigma\|_{\infty} \leq K_0$ for some constant $K_0 = K_0(r, s, \varepsilon, \mathcal{A}_r(\omega), \mathcal{A}_s(\nu)) > 0$, then the assertion (3.31) holds true with L^s_{ν} -norms for all $\lambda \in S_{\varepsilon}, |\lambda| \geq \lambda_0$, for some $\lambda_0 = \lambda_0(r, s, \varepsilon, \mathcal{A}_r(\omega), \mathcal{A}_s(\nu)) > 0$ as well.

Proof: By the transformation

$$\Phi: H_{\sigma} \to \mathbb{R}^{n-1}_{+}, \quad x' \mapsto \tilde{x}' = (\tilde{x}_1, \tilde{x}'') = \Phi(x') = (x_1 - \sigma(x''), x''),$$

the problem $(R_{\lambda,\xi})$ in H_{σ} is reduced to a modified version of $(R_{\lambda,\xi})$ in the half space $H = \mathbb{R}^{n-1}_+$. Note that Φ is a bijection with Jacobian equal to 1. For a function u on H_{σ} define \tilde{u} on H by

$$\tilde{u}(\tilde{x}') = u(\Phi^{-1}(\tilde{x}')) = u(x').$$

Further let $\tilde{\partial}_i = \partial/\partial \tilde{x}_i, i = 1, \dots, n-1, \tilde{\nabla}' = (\tilde{\partial}_1, \tilde{\nabla}'')$ etc. denote the standard differential operators acting on the variable $\tilde{x} \in H$.

Since $\partial_i u = (\partial_i - (\partial_i \sigma) \partial_1) \tilde{u}$ for $i = 1, \dots, n-1$, we easily get

$$\begin{aligned} \Delta' u(x',\xi) &= \left(\tilde{\Delta}' + |\nabla'\sigma|^2 \tilde{\partial}_1^2 - 2\nabla'\sigma \cdot (\tilde{\nabla}'\tilde{\partial}_1) - (\Delta''\sigma)\tilde{\partial}_1 \right) \tilde{u}(\tilde{x}',\xi) \\ \nabla' p(x',\xi) &= \left(\tilde{\nabla}' - (\nabla'\sigma)\tilde{\partial}_1 \right) \tilde{p}(\tilde{x}',\xi) \\ \operatorname{div}' u'(x',\xi) &= \left(\widetilde{\operatorname{div}'} - \nabla'\sigma \cdot \tilde{\partial}_1 \right) \tilde{u}'(\tilde{x}',\xi) \end{aligned}$$
(3.32)

and a similar formula for $\nabla^{2} u(x',\xi)$. Note that by the change of variable $\tilde{x}' = \Phi(x'), x' \in \mathbb{R}^{n-1}$, the Muckenhoupt weight $\omega \in A_r(\mathbb{R}^{n-1})$ is mapped to $\tilde{\omega} \in A_r(\mathbb{R}^{n-1})$ satisfying

$$c^{-1}\mathcal{A}_r(\tilde{\omega}) \le \mathcal{A}_r(\omega) \le c \,\mathcal{A}_r(\tilde{\omega}) \tag{3.33}$$

with c independent of ω , cf. Proposition 2.5 (1). Therefore, it follows from (3.32) that for $u \in W^{2,r}(\Sigma)$

$$\begin{aligned} \|u\|_{r,\omega;H_{\sigma}} &= \|\tilde{u}\|_{r,\tilde{\omega};H} \\ \|\nabla' u\|_{r,\omega;H_{\sigma}} &\leq c(1+K) \|\tilde{\nabla}'\tilde{u}\|_{r,\tilde{\omega};H} \\ \|\nabla'^{2} u\|_{r,\omega;H_{\sigma}} &\leq c(1+K^{2}) \|\tilde{\nabla}'^{2}\tilde{u}\|_{r,\tilde{\omega};H} + cL \|\tilde{\partial}_{1}\tilde{u}\|_{r,\tilde{\omega};H}, \end{aligned}$$
(3.34)

where $K = \|\nabla'\sigma\|_{\infty}, L = \|\nabla'^2\sigma\|_{\infty}$ and c is independent of the weight ω . Furthermore, $\|f, \xi g\|_{r,\omega;H_{\sigma}} = \|\tilde{f}, \xi \tilde{g}\|_{r,\tilde{\omega};H}$ and $\|\nabla'g\|_{r,\omega;H_{\sigma}} \leq c(1+K)\|\tilde{\nabla}'\tilde{g}\|_{r,\tilde{\omega};H}$ with c > 0 independent of ω . Concerning the norm of g in $\widehat{W}_{\omega}^{-1,r}(H_{\sigma}) + L^r_{\omega,1/\xi}(H_{\sigma})$ note that for a function $g_0 \in \widehat{W}_{\omega}^{-1,r}(H_{\sigma}) \cap L^r_{\omega}(H_{\sigma})$ and all test functions $\varphi \in C_0^{\infty}(\bar{H}_{\sigma})$

$$\begin{split} \int_{H_{\sigma}} g_{0} \varphi dx' &= \int_{H} \tilde{g}_{0} \tilde{\varphi} d\tilde{x}' \\ &\leq \|\tilde{g}_{0}\|_{-1,r,\tilde{\omega};H} \|\tilde{\nabla}' \tilde{\varphi}\|_{r',(\tilde{\omega})';H} \\ &\leq c(1 + \|\nabla' \sigma\|_{\infty}) \|\tilde{g}_{0}\|_{-1,r,\tilde{\omega};H} \|\nabla' \varphi\|_{r',\omega';H_{\sigma}} \end{split}$$

with a constant c independent of ω ; here we used that $(\tilde{\omega})' = (\tilde{\omega}'), \omega' = \omega^{-\frac{1}{r-1}}$. Since $C_0^{\infty}(\bar{H}_{\sigma})$ is dense in $\widehat{W}_{\tilde{\omega}'}^{1,r'}(H_{\sigma})$ (see e.g. [13], Corollary 4.1), we get

$$||g_0||_{-1,r,\omega;H_\sigma} \le c(1+K) ||\tilde{g}_0||_{-1,r,\tilde{\omega};H}$$

Then for every $\xi \in \mathbb{R}^*$ and every decomposition of g into $g = g_0 + g_1$ with $g_0 \in \widehat{W}^{-1,r}_{\omega}(H_{\sigma}), g_1 \in L^r_{\omega}(H_{\sigma})$

$$||g_0||_{-1,r,\omega;H_{\sigma}} + ||g_1/\xi||_{r,\omega;H_{\sigma}} \le c(1+K)(||\tilde{g}_0||_{-1,r,\tilde{\omega};H} + ||\tilde{g}_1/\xi||_{r,\tilde{\omega};H}),$$

where c > 0 is independent of ω ; note that $\tilde{g} = \tilde{g}_0 + \tilde{g}_1$ gives all admissible decompositions of $\tilde{g} \in \widehat{W}^{-1,r}_{\tilde{\omega},1/\xi}(H) + L^r_{\tilde{\omega},1/\xi}(H)$. Consequently

$$\|g;\widehat{W}_{\omega}^{-1,r}(H_{\sigma}) + L_{\omega,1/\xi}^{r}(H_{\sigma})\| \le c(1+K) \|\tilde{g};\widehat{W}_{\tilde{\omega}}^{-1,r}(H) + L_{\tilde{\omega},1/\xi}^{r}(H)\|.$$
(3.35)

To apply Kato's perturbation theorem we introduce for every $\xi \in \mathbb{R}^*$ on H_σ the ξ -dependent Banach spaces $(\mu = |\lambda + \xi^2|^{1/2})$

$$\mathcal{X} = (W^{2,r}_{\omega} \cap W^{1,r}_{0,\omega})^n \times W^{1,r}_{\omega}, \quad \|u,p\|_{\mathcal{X}} = \|\mu^2 u, \mu \nabla' u, \nabla'^2 u, \nabla' p, \xi p\|_{r,\omega;H_{\sigma}}, \\ \mathcal{Y} = (L^r_{\omega})^n \times W^{1,r}_{\omega}, \quad \|f,g\|_{\mathcal{Y}} = \|f,\nabla' g, \xi g\|_{r,\omega;H_{\sigma}} + \|\lambda g; \widehat{W}^{-1,r}_{\omega}(H_{\sigma}) + L^r_{\omega,1/\xi}(H_{\sigma})\|,$$

and on H similar spaces $(\tilde{\mathcal{X}}, \|\cdot\|_{\tilde{\mathcal{X}}}), (\tilde{\mathcal{Y}}, \|\cdot\|_{\tilde{\mathcal{Y}}})$ with the weight $\tilde{\omega}$ instead of ω . Then it follows from (3.34), (3.35) that

$$\|(u,p)\|_{\mathcal{X}} \le c(1+K+K^2+L/\mu)\|(\tilde{u},\tilde{p})\|_{\tilde{\mathcal{X}}}, \quad \|(f,g)\|_{\mathcal{Y}} \le c(1+K)\|(\tilde{f},\tilde{g})\|_{\tilde{\mathcal{Y}}}, \quad (3.36)$$

and exchanging the role of the variables x' and \tilde{x}' , we get

$$\|(\tilde{u},\tilde{p})\|_{\tilde{\mathcal{X}}} \le c(1+K+K^2+L/\mu)\|(u,p)\|_{\mathcal{X}}, \quad \|(\tilde{f},\tilde{g})\|_{\tilde{\mathcal{Y}}} \le c(1+K)\|(f,g)\|_{\mathcal{Y}}, \quad (3.37)$$

with constants c > 0 not depending on ω, λ and ξ . Further define the operators

$$\mathcal{S}: \mathcal{X} \to \mathcal{Y}, \quad \mathcal{S}(u, p) = \begin{pmatrix} (\lambda + \xi^2 - \Delta')u' + \nabla'p \\ (\lambda + \xi^2 - \Delta')u_n + i\xi p \\ \operatorname{div}' u' + i\xi u_n \end{pmatrix},$$

and analogously $\tilde{\mathcal{S}}: \tilde{\mathcal{X}} \to \tilde{\mathcal{Y}}$. By (3.32) we get the decomposition

$$\mathcal{S}(u,p) = \tilde{\mathcal{S}}(\tilde{u},\tilde{p}) + \mathcal{R}(\tilde{u},\tilde{p})$$

with a remainder term $\mathcal{R}: \tilde{\mathcal{X}} \to \tilde{\mathcal{Y}}$,

$$\mathcal{R}(\tilde{u},\tilde{p})(\tilde{x}',\xi) = \begin{pmatrix} -(\nabla'\sigma)\tilde{\partial}_{1}\tilde{p} \\ 0 \\ -(\nabla'\sigma)\cdot\tilde{\partial}_{1}\tilde{u}' \end{pmatrix} + \begin{pmatrix} -|\nabla'\sigma|^{2}\tilde{\partial}_{1}^{2}\tilde{u} + 2\nabla'\sigma\cdot\tilde{\nabla}'\tilde{\partial}_{1}\tilde{u} + (\Delta''\sigma)\tilde{\partial}_{1}\tilde{u} \\ 0 \end{pmatrix}$$

not depending explicitly on λ and ξ . Since $\tilde{u}|_{\partial H} = 0$ and $\tilde{\partial}_1(\nabla'\sigma) = 0$, we have

$$\int_{H} -(\nabla'\sigma) \cdot \tilde{\partial}_{1} \tilde{u}' \varphi \, d\tilde{x}' = \int_{H} (\nabla'\sigma) \cdot \tilde{u}' \, \tilde{\partial}_{1} \varphi \, d\tilde{x}'$$

for all $\varphi \in C_0^{\infty}(\bar{H})$; consequently

$$\| - (\nabla'\sigma) \cdot \tilde{\partial}_1 \tilde{u}'; \widehat{W}_{\tilde{\omega}}^{-1,r}(H) + L^r_{\tilde{\omega},1/\xi}(H) \| \le \| - (\nabla'\sigma) \cdot \tilde{\partial}_1 \tilde{u}' \|_{-1,r,\tilde{\omega};H} \le K \| \tilde{u} \|_{r,\tilde{\omega};H}$$

Hence

$$\begin{aligned} \|\mathcal{R}(\tilde{u},\tilde{p})\|_{\tilde{\mathcal{Y}}} &\leq c(K+K^2) \|\lambda \tilde{u}, \xi \tilde{\nabla}' \tilde{u}, \tilde{\nabla}'^2 \tilde{u}, \tilde{\nabla}' \tilde{p}\|_{r,\tilde{\omega};H} + L \|\tilde{\nabla}' \tilde{u}\|_{r,\tilde{\omega};H} \\ &\leq c_{\varepsilon}(K+K^2 + \frac{L}{\mu}) \|(\tilde{u},\tilde{p})\|_{\tilde{\mathcal{X}}} \\ &\leq c_{\varepsilon}(K+K^2 + \frac{L}{\sqrt{|\lambda|}}) \|(\tilde{u},\tilde{p})\|_{\tilde{\mathcal{X}}}, \end{aligned}$$
(3.38)

where $c, c_{\varepsilon} > 0$ are independent of $\omega, \tilde{\omega}$; note that $|\lambda| < \frac{\mu^2}{\cos \varepsilon}$ and $|\xi| < \mu (1 + \frac{1}{\cos \varepsilon})^{1/2}$ for all $\lambda \in S_{\varepsilon}$.

Due to Theorem 3.2 and (3.33) $\tilde{S} : \tilde{X} \to \tilde{Y}$ is an isomorphism such that $\|(\tilde{u},\tilde{p})\|_{\tilde{X}} \leq C_1 \|\tilde{S}(\tilde{u},\tilde{p})\|_{\tilde{\mathcal{Y}}}$ with an A_r -consistent constant $C_1 = C_1(r,\varepsilon,\mathcal{A}_r(\omega))$ independent of $\lambda \in S_{\varepsilon}, \xi \in \mathbb{R}^*$. Therefore, it follows from (3.38) that there exist A_r -consistent constants $\delta_0 = \delta(\varepsilon, r, \mathcal{A}_r(\omega)), \lambda_0 = \lambda(\varepsilon, r, \mathcal{A}_r(\omega))$ such that, if $K \leq \delta_0$ and $\lambda \in S_{\varepsilon}, |\lambda| \geq \lambda_0$, then

$$\|\mathcal{R}(\tilde{u},\tilde{p})\|_{\tilde{\mathcal{Y}}} \le \frac{1}{2} \|\mathcal{S}(\tilde{u},\tilde{p})\|_{\tilde{\mathcal{Y}}} \quad \text{for all } (\tilde{u},\tilde{p}) \in \tilde{\mathcal{X}}.$$

Hence $\tilde{S} + \mathcal{R}$ is an isomorphism from $\tilde{\mathcal{X}}$ to $\tilde{\mathcal{Y}}$ satisfying

$$\|(\tilde{u},\tilde{p})\|_{\tilde{\mathcal{X}}} \le 2C_1 \|(\tilde{\mathcal{S}} + \mathcal{R})(\tilde{u},\tilde{p})\|_{\tilde{\mathcal{Y}}}.$$

Thus, considering (3.32), (3.36) and (3.37), if $\|\nabla''\sigma\|_{\infty} \leq \delta_0$ and $\lambda \in S_{\varepsilon}, |\lambda| \geq \lambda_0$, we get

$$\begin{aligned} \|(u,p)\|_{\mathcal{X}} &\leq C_2 \|(\tilde{u},\tilde{p})\|_{\tilde{\mathcal{X}}} \\ &\leq 2C_1 C_2 \|\tilde{\mathcal{S}}(\tilde{u},\tilde{p})\|_{\tilde{\mathcal{Y}}} \\ &\leq C_3 \|\mathcal{S}(u,p)\|_{\mathcal{Y}}, \end{aligned}$$

where the constants $C_i = C_i(\varepsilon, r, \mathcal{A}_r(\omega)), i = 1, 2, 3$, are A_r -consistent and independent of $\lambda \in S_{\varepsilon}, |\lambda| \geq \lambda_0$ and $\xi \in \mathbb{R}^*$. Thus, existence of a unique solution to $(R_{\lambda,\xi})$ in H_{σ} has been proved.

Assume that (3.30) is satisfied for an additional exponent $s \neq r$ and weight $\nu \in A_s(\mathbb{R}^{n-1})$. Repeating the above argument for the index s, we see \mathcal{S} to be an isomorphism from $\mathcal{X}_s \cap \mathcal{X}_r$ to $\mathcal{Y}_s \cap \mathcal{Y}_r$ for $|\lambda| \geq \lambda_0 = \lambda_0(r, s, \varepsilon, \mathcal{A}_r(\omega), \mathcal{A}_s(\nu))$ under the given smallness condition $\|\nabla''\sigma\|_{\infty} \leq \delta_0(r, s, \varepsilon, \mathcal{A}_r(\omega), \mathcal{A}_s(\nu))$. Now the proof of Theorem 3.3 is complete.

4 The Problem $(R_{\lambda,\xi})$ in Bounded Domains

For a bounded domain the definition of the space for the divergence g has to be modified since it is impossible to think of the sum of $\widehat{W}^{-1,r}(\Sigma)$ and $L^r(\Sigma)$. On the bounded domain $\Sigma \subset \mathbb{R}^{n-1}$ of $C^{1,1}$ -class let α_0 denote the smallest eigenvalue of the Laplacian, i.e.

$$0 < \alpha_0 = \inf\{\|\nabla u\|_2^2 : u \in W_0^{1,2}(\Sigma), \|u\|_2 = 1\}.$$

For fixed $\lambda \in \mathbb{C} \setminus (-\infty, -\alpha_0], \xi \in \mathbb{R}$ and $\omega \in A_r$ we introduce the parametrized Stokes operator $S = S^{\omega}_{r,\lambda,\xi}$ by

$$S(u,p) = \begin{pmatrix} (\lambda + \xi^2 - \Delta')u' + \nabla'p \\ (\lambda + \xi^2 - \Delta')u_n + i\xi p \\ -\operatorname{div}_{\xi} u \end{pmatrix}$$

defined on $\mathcal{D}(S) = \mathcal{D}(\Delta'_{r,\omega}) \times W^{1,r}_{\omega}(\Sigma)$, where $\mathcal{D}(\Delta'_{r,\omega}) = W^{2,r}_{\omega}(\Sigma) \cap W^{1,r}_{0,\omega}(\Sigma)$ and

$$\operatorname{div}_{\xi} u = \operatorname{div}' u' + i\xi u_n.$$

For $\omega \equiv 1$ the operator $S_{r,\lambda,\xi}^{\omega}$ will be denoted by $S_{r,\lambda,\xi}$. Note that the image of $\mathcal{D}(S)$ by div_{ξ} is included in $W_{\omega}^{1,r}(\Sigma)$ and $W_{\omega}^{1,r}(\Sigma) \subset L_{m,\omega}^r(\Sigma) + L_{\omega}^r(\Sigma)$, where

$$L^r_{m,\omega}(\Sigma) := \left\{ u \in L^r_{\omega}(\Sigma) : \int_{\Sigma} u \, dx' = 0 \right\}.$$

Using Poincaré's inequality in weighted spaces, see Proposition 2.7, one can easily check the continuous embedding $L^r_{m,\omega}(\Sigma) \hookrightarrow \widehat{W}^{-1,r}_{\omega}(\Sigma)$; more precisely,

$$\|u\|_{-1,r,\omega} \le c \|u\|_{r,\omega}, \quad u \in L^r_{m,\omega}(\Sigma),$$

with an A_r -consistent constant c > 0. For convenience we use the notation

$$||g; L_{m,\omega}^r + L_{\omega,1/\xi}^r||_0 := \inf\{||g_0||_{-1,r,\omega} + ||g_1/\xi||_{r,\omega}: g = g_0 + g_1, g_0 \in L_{m,\omega}^r, g_1 \in L_{\omega}^r\};$$

note that this norm is equivalent to the norm $\|\cdot\|_{(W^{1,r'}_{\omega',\xi})^*}$ where $W^{1,r'}_{\omega',\xi}$ is the usual weighted Sobolev space on Σ with norm $\|\nabla' u, \xi u\|_{r',\omega'}$.

In the following, we consider the resolvent problem $(R_{\lambda,\xi})$ for arbitrary $\lambda \in -\alpha_0 + S_{\varepsilon}, 0 < \varepsilon < \pi/2$.

Lemma 4.1 For every $\lambda \in -\alpha_0 + S_{\varepsilon}$, $0 < \varepsilon < \pi/2$, $\xi \in \mathbb{R}^*$ and $\omega \in A_r$ the operator $S = S^{\omega}_{r,\lambda,\xi}$ is injective and the range $\mathcal{R}(S)$ of S is dense in $L^r_{\omega}(\Sigma) \times W^{1,r}_{\omega}(\Sigma)$.

Proof: Since, by Proposition 2.5 (3), there is an $s \in (1, r)$ such that $L^r_{\omega}(\Sigma) \subset L^s(\Sigma)$, one sees immediately that $\mathcal{D}(S^{\omega}_{r,\lambda,\xi}) \subset \mathcal{D}(S_{s,\lambda,\xi})$. Therefore, $S^{\omega}_{r,\lambda,\xi}(u,p) = 0$ for some $(u,p) \in \mathcal{D}(S^{\omega}_{r,\lambda,\xi})$ yields $(u,p) \in \mathcal{D}(S_{s,\lambda,\xi})$ and $S_{s,\lambda,\xi}(u,p) = 0$. Hence, by [9], Lemma 3.2, u = 0, p = 0.

On the other hand, by Proposition 2.5 (3), there is an $\tilde{s} \in (r, \infty)$ such that $S_{\tilde{s},\lambda,\xi} \subset S_{r,\lambda,\xi}^{\omega}$. Therefore, by [9], Theorem 3.4,

$$L^{\tilde{s}}(\Sigma) \times W^{1,\tilde{s}}(\Sigma) = \mathcal{R}(S_{\tilde{s},\lambda,\xi}) \subset \mathcal{R}(S_{r,\lambda,\xi}^{\omega}) \subset L^{r}_{\omega}(\Sigma) \times W^{1,r}_{\omega}(\Sigma),$$

which proves the assertion on the denseness of $\mathcal{R}(S)$.

The following lemma gives a preliminary *a priori* estimate for a solution (u, p) of S(u, p) = (f, -g).

Lemma 4.2 Let $1 < r < \infty$, $\omega \in A_r$ and $\varepsilon \in (0, \pi/2)$. Then there exists an A_r consistent constant $c = c(\varepsilon, r, \Sigma, \mathcal{A}_r(\omega)) > 0$ such that for every $\lambda \in -\alpha_0 + S_{\varepsilon}, \xi \in \mathbb{R}^*$ and every $(u, p) \in \mathcal{D}(S_{r,\lambda,\xi}^{\omega})$,

$$\|\mu_{+}^{2}u, \mu_{+}\nabla' u, \nabla'^{2}u, \nabla' p, \xi p\|_{r,\omega} \leq c \big(\|f, \nabla' g, g, \xi g\|_{r,\omega} + |\lambda| \|g; L_{m,\omega}^{r} + L_{\omega,1/\xi}^{r}\|_{0} + \|\nabla' u, \xi u, p\|_{r,\omega} + |\lambda| \|u\|_{(W_{\omega'}^{1,r'})^{*}}\big),$$

$$(4.1)$$

where $\mu_{+} = |\lambda + \alpha_{0} + \xi^{2}|^{1/2}, (f, -g) = S(u, p)$ and $(W^{1,r'}_{\omega'})^{*}$ denotes the dual space of $W^{1,r'}_{\omega'}(\Sigma)$.

Proof: The proof is based on a partition of unity in Σ and on the localization procedure reducing the problem to a finite number of problems of type $(R_{\lambda,\xi})$ in bent half spaces and in the whole space \mathbb{R}^{n-1} . Since $\partial \Sigma \in C^{1,1}$, we can cover $\partial \Sigma$ by a finite number of balls $B_j, j \geq 1$, such that, after a translation and rotation of coordinates, $\Sigma \cap B_j$ locally coincides with a bent half space $\Sigma_j = \Sigma_{\sigma_j}$ where $\sigma_j \in C^{1,1}(\mathbb{R}^{n-1})$ has a compact support, $\sigma_j(0) = 0$ and $\nabla'' \sigma_j(0) = 0$. Choosing the balls B_j small enough (and its number large enough) we may assume that $\|\nabla'' \sigma_j\|_{\infty} \leq K_0(\varepsilon, r, \Sigma, \mathcal{A}_r(\omega))$ for all $j \geq 1$ where K_0 was introduced in Theorem 3.3. According to the covering $\partial \Sigma \subset \bigcup_{j>1} B_j$ there are cut-off functions $0 \leq \varphi_0, \varphi_j \in C^{\infty}(\mathbb{R}^{n-1})$ such that

$$\varphi_0 + \sum_{j \ge 1} \varphi_j \equiv 1 \text{ in } \Sigma, \quad \operatorname{supp} \varphi_j \subset B_j \quad \text{and} \quad \operatorname{supp} \varphi_0 \subset \Sigma$$

Given $(u, p) \in \mathcal{D}(S)$ and (f, -g) = S(u, p), we get for each $\varphi_j, j \ge 0$, the local $(R_{\lambda,\xi})$ -problems

$$(\lambda + \xi^2 - \Delta')(\varphi_j u') + \nabla'(\varphi_j p) = f'_j (\lambda + \xi^2 - \Delta')(\varphi_j u_n) + i\xi(\varphi_j p) = f_{jn} \operatorname{div}_{\xi}(\varphi_j u) = g_j$$

$$(4.2)$$

for $(\varphi_j u, \varphi_j p), j \ge 0$, in \mathbb{R}^{n-1} or Σ_j ; here

$$\begin{aligned}
f'_{j} &= \varphi_{j}f' - 2\nabla'\varphi_{j} \cdot \nabla'u' - (\Delta'\varphi_{j})u' + (\nabla'\varphi_{j})p \\
f_{jn} &= \varphi_{j}f_{n} - 2\nabla'\varphi_{j} \cdot \nabla'u_{n} - (\Delta'\varphi_{j})u_{n} \\
g_{j} &= \varphi_{j}g + \nabla'\varphi_{j} \cdot u'.
\end{aligned}$$
(4.3)

To control f_j and g_j note that u = 0 on $\partial \Sigma$; hence Poincaré's inequality for Muckenhoupt weighted space yields for all $j \ge 0$ the estimate

$$\|f_j, \nabla' g_j, \xi g_j\|_{r,\omega;\Sigma_j} \le c(\|f, \nabla' g, g, \xi g\|_{r,\omega;\Sigma} + \|\nabla' u, \xi u, p\|_{r,\omega;\Sigma}),$$
(4.4)

where $\Sigma_0 \equiv \mathbb{R}^{n-1}$ and c > 0 is A_r -consistent. Moreover, let $g = g_0 + g_1$ denote any splitting of $g \in L^r_{m,\omega} + L^r_{\omega,1/\xi}$. Defining the characteristic function χ_j of $\Sigma \cap \Sigma_j$ and the scalar

$$m_j = \frac{1}{|\Sigma \cap \Sigma_j|} \int_{\Sigma \cap \Sigma_j} (\varphi_j g_0 + u' \cdot \nabla' \varphi_j) dx'$$
$$= \frac{1}{|\Sigma \cap \Sigma_j|} \int_{\Sigma \cap \Sigma_j} (i\xi u_n - g_1) \varphi_j dx',$$

we split g_j in the form

$$g_j = g_{j0} + g_{j1} := (\varphi_j g_0 + u' \cdot \nabla' \varphi_j - m_j \chi_j) + (\varphi_j g_1 + m_j \chi_j).$$

Concerning g_{j1} we get

$$\begin{aligned} \|g_{j1}\|_{r,\omega;\Sigma_{j}}^{r} &= \int_{\Sigma\cap\Sigma_{j}} |\varphi_{j}g_{1} + m_{j}|^{r}\omega\,dx' \\ &\leq c(r)\big(\|g_{1}\|_{r,\omega;\Sigma}^{r} + |m_{j}|^{r}\omega(\Sigma\cap\Sigma_{j})\big) \\ &\leq c(r)\Big(\|g_{1}\|_{r,\omega;\Sigma}^{r} + \frac{\omega(\Sigma\cap\Sigma_{j})\cdot\omega'(\Sigma\cap\Sigma_{j})^{r/r'}}{|\Sigma\cap\Sigma_{j}|^{r}}(\|\xi u_{n}\|_{(W^{1,r'}_{\omega'})^{*}}^{r} + \|g_{1}\|_{r,\omega;\Sigma}^{r})\Big) \end{aligned}$$

with c(r) > 0 independent of ω . Since we chose the balls B_j for $j \ge 1$ small enough, for each $j \ge 0$ there is a cube Q_j with $\Sigma \cap \Sigma_j \subset Q_j$ and $|Q_j| < c(n)|\Sigma \cap \Sigma_j|$ where the constant c(n) > 0 is independent of j. Therefore

$$\begin{aligned} \|g_{j1}\|_{r,\omega;\Sigma_{j}} &\leq c(r) \Big(\|g_{1}\|_{r,\omega} + \frac{c(n)\omega(Q_{j})^{1/r} \cdot \omega'(Q_{j})^{1/r'}}{|Q_{j}|} (\|\xi u_{n}\|_{(W^{1,r'}_{\omega'})^{*}} + \|g_{1}\|_{r,\omega}) \Big) \\ &\leq c(r)(1 + \mathcal{A}_{r}(\omega)^{1/r}) \Big(\|\xi u_{n}\|_{(W^{1,r'}_{\omega'})^{*}} + \|g_{1}\|_{r,\omega;\Sigma} \Big) \end{aligned}$$

$$(4.5)$$

for $j \ge 0$. Furthermore, for every test function $\Psi \in C_0^{\infty}(\bar{\Sigma}_j)$ let

$$\tilde{\Psi} = \Psi - \frac{1}{|\Sigma \cap \Sigma_j|} \int_{\Sigma \cap \Sigma_j} \Psi dx'.$$

By the definition of $m_j \chi_j$ we have $\int_{\Sigma_j} g_{j0} dx' = 0$; hence by Poincaré's inequality (see Proposition 2.7)

$$\begin{split} \int_{\Sigma_j} g_{j0} \Psi dx' &= \int_{\Sigma_j} g_{j0} \tilde{\Psi} dx' \\ &= \int_{\Sigma} g_0(\varphi_j \tilde{\Psi}) dx' + \int_{\Sigma} u' \cdot (\nabla' \varphi_j) \tilde{\Psi} dx' \\ &\leq \|g_0\|_{-1,r,\omega} \|\nabla'(\varphi_j \tilde{\Psi})\|_{r',\omega'} + \|u'\|_{(W^{1,r'}_{\omega'})^*} \|(\nabla' \varphi_j) \tilde{\Psi}\|_{1,r',\omega'} \\ &\leq c(\|g_0\|_{-1,r,\omega} + \|u'\|_{(W^{1,r'}_{\omega'})^*}) \|\nabla' \Psi\|_{r',\omega';\Sigma_j}, \end{split}$$

where c > 0 is A_r -consistent. Thus

$$\|g_{j0}\|_{-1,r,\omega;\Sigma_j} \le c \left(\|g_0\|_{-1,r,\omega} + \|u'\|_{(W^{1,r'}_{\omega'})^*}\right) \quad \text{for } j \ge 0.$$
(4.6)

Summarizing (4.5) and (4.6), we get for $j \ge 0$

$$\|g_{j};\widehat{W}_{\omega}^{-1,r}(\Sigma_{j}) + L^{r}_{\omega,1/\xi}(\Sigma_{j})\| \le c \big(\|u'\|_{(W_{\omega'}^{1,r'})^{*}} + \|g;L^{r}_{m,\omega} + L^{r}_{\omega,1/\xi}\|_{0}\big)$$
(4.7)

with an A_r -consistent $c = c(r, \mathcal{A}_r(\omega)) > 0$.

To complete the proof, apply Theorem 3.1 to (4.2), (4.3) when j = 0. Further use Theorem 3.3 in (4.2), (4.3) for $j \ge 1$, but with λ replaced by $\lambda + M$ with $M = \lambda_0 + \alpha_0$, where $\lambda_0 = \lambda_0(\varepsilon, r, \mathcal{A}_r(\omega))$ is the \mathcal{A}_r -consistent constant indicated in Theorem 3.3. This shift in λ implies that f_j has to be replaced by $f_j + M\varphi_j u$ and that (3.31) will be used with λ replaced by $\lambda + M$. Summarizing (3.8), (3.31) as well as (4.4), (4.7) and summing over all j we arrive at (4.1) with the additional terms

$$I = \|Mu\|_{r,\omega} + \|Mu'\|_{(W^{1,r'}_{\omega'})^*} + \|Mg; L^r_{m,\omega} + L^r_{\omega,1/\xi}\|_0$$

on the right-hand side of the inequality. Note that $M = M(\varepsilon, r, \mathcal{A}_r(\omega))$ is A_r consistent and that $g = \operatorname{div}' u' + i\xi u_n$ defines a natural splitting of $g \in L^r_{m,\omega}(\Sigma) + L^r_{\omega}(\Sigma)$. Hence Poincaré's inequality yields

$$I \leq M(\|u\|_{r,\omega;\Sigma} + \|\operatorname{div}' u'\|_{-1,r,\omega} + \|u_n\|_{r,\omega;\Sigma})$$

$$\leq c_1 \|u\|_{r,\omega;\Sigma} \leq c_2 \|\nabla' u\|_{r,\omega;\Sigma}$$

with A_r -consistent constants $c_i = c_i(\varepsilon, r, \Sigma, \mathcal{A}_r(\omega)) > 0, i = 1, 2$. Thus (4.1) is proved.

Lemma 4.3 Let $1 < r < \infty$, $\omega \in A_r$ and $\lambda \in -\alpha + S_{\varepsilon}$, $\varepsilon \in (0, \frac{\pi}{2})$ with $\alpha \in (0, \alpha_0)$. Then there is an A_r -consistent constant $c = c(\alpha, \varepsilon, r, \mathcal{A}_r(\omega))$ such that for every $(u, p) \in \mathcal{D}(S)$ and (f, -g) = S(u, p) the estimate

$$\|\mu_{+}^{2}u, \mu_{+}\nabla' u, \nabla'^{2}u, \nabla' p, \xi p\|_{r,\omega}$$

$$\leq c \big(\|f, \nabla' g, g, \xi g\|_{r,\omega} + (|\lambda|+1)\|g; L_{m,\omega}^{r} + L_{\omega,1/\xi}^{r}\|_{0}\big)$$
(4.8)

holds; here $\mu_+ = |\lambda + \alpha + \xi^2|^{1/2}$.

Proof of Lemma 4.3: Assume that this lemma is wrong. Then there is a constant $c_0 > 0$, a sequence $\{\omega_j\}_{j=1}^{\infty} \subset A_r$ with $\mathcal{A}_r(\omega_j) \leq c_0$ for all j, sequences $\{\lambda_j\}_{j=1}^{\infty} \subset -\alpha + S_{\varepsilon}, \{\xi_j\}_{j=1}^{\infty} \subset \mathbb{R}^*$ and $(u_j, p_j) \in \mathcal{D}(S_{r,\lambda_j,\xi_j}^{\omega_j})$ for all $j \in \mathbb{N}$ such that

$$\begin{aligned} \| (\lambda_j + \alpha + \xi_j^2) u_j, (\lambda_j + \alpha + \xi_j^2)^{1/2} \nabla' u_j, \nabla'^2 u_j, \nabla' p_j, \xi_j p_j \|_{r,\omega_j} \\ & \geq j \big(\| f_j, \nabla' g_j, g_j, \xi_j g_j \|_{r,\omega_j} + (|\lambda_j| + 1) \| g_j; L^r_{m,\omega_j} + L^r_{\omega_j, 1/\xi_j} \|_0 \end{aligned}$$

$$(4.9)$$

where $(f_j, -g_j) = S_{r,\lambda_j,\xi_j}^{\omega_j}(u_j, p_j)$. Fix an arbitrary cube Q containing Σ . We may assume without loss of generality that

$$\mathcal{A}_r(\omega_j) \le c_0, \quad \omega_j(Q) = 1 \quad \forall j \in \mathbb{N},$$

$$(4.10)$$

by using the A_r -weight $\tilde{\omega}_j := \omega_j(Q)^{-1}\omega_j$ instead of ω_j if necessary. Note that (4.10) also holds for $r', \{\omega'_j\}$ in the following form: $\mathcal{A}_r(\omega_j) \leq c_0^{r'/r}, \ \omega'_j(Q) \leq c_0^{r'/r}|Q|^{r'}$. Therefore, by a minor modification of Proposition 2.5 (3), there exist numbers s, s_1 such that

$$L^{r}_{\omega_{j}}(\Sigma) \hookrightarrow L^{s}(\Sigma), \quad L^{s_{1}}(\Sigma) \hookrightarrow L^{r'}_{\omega'_{j}}, \quad j \in \mathbb{N},$$

$$(4.11)$$

with embedding constants independent of $j \in \mathbb{N}$. Furthermore, we may assume without loss of generality that

$$\|(\lambda_j + \alpha + \xi_j^2)u_j, (\lambda_j + \alpha + \xi_j^2)^{1/2} \nabla' u_j, \nabla'^2 u_j, \nabla' p_j, \xi_j p_j\|_{r,\omega_j} = 1$$
(4.12)

and consequently that

 $||f_j, \nabla' g_j, g_j, \xi_j g_j||_{r,\omega_j} + (|\lambda_j| + 1)||g_j; L^r_{m,\omega_j} + L^r_{\omega_j, 1/\xi_j}||_0 \to 0 \text{ as } j \to \infty.$ (4.13) From (4.11), (4.12) we have

$$\|(\lambda_j + \alpha + \xi_j^2)u_j, (\lambda_j + \alpha + \xi_j^2)^{1/2} \nabla' u_j, \nabla'^2 u_j, \nabla' p_j, \xi_j p_j\|_s \le K,$$
(4.14)

with some K > 0 for all $j \in \mathbb{N}$ and

$$||f_j, \nabla' g_j, g_j, \xi_j g_j||_s \to 0 \quad \text{as} \quad j \to \infty.$$
(4.15)

Without loss of generality let us suppose that as $j \to \infty$,

$$\lambda_j \to \lambda \in -\alpha + \bar{S}_{\varepsilon} \quad \text{or} \quad |\lambda_j| \to \infty$$

$$\xi_j \to 0 \quad \text{or} \quad \xi_j \to \xi \neq 0 \quad \text{or} \quad |\xi_j| \to \infty.$$

Thus we have to consider six possibilities.

(i) The case $\lambda_j \to \lambda \in -\alpha + \bar{S}_{\varepsilon}$, $\xi_j \to \xi \neq 0$. Due to (4.14) $\{u_j\} \subset W^{2,s}$ and $\{p_j\} \subset W^{1,s}$ are bounded sequences. In virtue of the compactness of the embedding $W^{1,s}(\Sigma) \hookrightarrow L^s(\Sigma)$ for the bounded domain Σ , we may assume (suppressing indices for subsequences) that

$$\begin{array}{ll} u_{j} \rightarrow u, \nabla' u_{j} \rightarrow \nabla' u & \text{ in } L^{s} & (\text{strong convergence}) \\ \nabla'^{2} u_{j} \rightarrow \nabla'^{2} u & \text{ in } L^{s} & (\text{weak convergence}) \\ p_{j} \rightarrow p & \text{ in } L^{s} & (\text{strong convergence}) \\ \nabla' p_{j} \rightarrow \nabla' p & \text{ in } L^{s} & (\text{weak convergence}) \end{array}$$

$$(4.16)$$

for some $(u, p) \in \mathcal{D}(S_{s,\lambda,\xi})$ as $j \to \infty$. Therefore, $S_{s,\lambda,\xi}(u, p) = 0$ and, consequently, u = 0, p = 0 by Lemma 4.1. On the other hand we get from (4.12) that $\sup_{j\in\mathbb{N}} ||u_j||_{2,r,\omega_j} < \infty$ and $\sup_{j\in\mathbb{N}} ||p_j||_{1,r,\omega_j} < \infty$ which, together with the weak convergences $u_j \to 0$ in $W^{2,s}(\Sigma), p_j \to 0$ in $W^{1,s}(\Sigma)$, yields

$$||u_j||_{1,r,\omega_j} \to 0, \quad ||p_j||_{r,\omega_j} \to 0$$

due to Proposition 2.6 (2). Moreover, since $\sup_{j\in\mathbb{N}} \|\lambda_j u_j\|_{r,\omega_j} < \infty$ and $\lambda_j u_j \rightarrow \lambda u = 0$ in $L^s(\Sigma)$, Proposition 2.6 (3) implies that

$$\|\lambda_j u_j\|_{(W^{1,r'}_{\omega'_j})^*} \to 0.$$
(4.17)

Thus (4.1), (4.12) and (4.13) yield the contradiction 1 < 0.

(ii) The case $\lambda_j \to \lambda \in -\alpha + \bar{S}_{\varepsilon}, \quad \xi_j \to 0.$ Since $u_j|_{\partial\Sigma} = 0, \|\nabla'^2 u_j\|_s \leq K$, we have the convergence (4.16) for some $u \in \Omega$ $W^{2,s}(\Sigma) \cap W^{1,s}_0(\Sigma)$, but concerning p we get the existence of $p \in \widehat{W}^{1,s}$ and $q \in L^s$ such that

$$abla' p_j
ightarrow
abla' p, \quad \xi_j p_j
ightarrow q \quad \text{ in } L^s$$

as $j \to \infty$. Looking at (R_{λ_j,ξ_j}) , the convergence of $\{u_j\}, \{p_j\}$ yields

$$\begin{aligned} &(\lambda - \Delta')u' + \nabla'p &= 0\\ &(\lambda - \Delta')u_n + iq &= 0\\ &\operatorname{div}'u' &= 0 \end{aligned}$$

in Σ . Thus $(u', \nabla' p) = (0, 0)$, see [9], Lemma 3.3 (ii), or [6]. Obviously, q is a constant, since $\xi_j \to 0$, and $u_n \in W^{2,2}(\Sigma) \cap W_0^{1,2}(\Sigma)$ due to elliptic regularity theory.

By (4.13), for all $j \in \mathbb{N}$ there is a splitting $g_j = g_{j0} + g_{j1}$ such that

$$g_{j0} \in L^r_{m,\omega_j}, \ g_{j1} \in L^r_{\omega_j} \quad \text{and} \quad (|\lambda_j|+1) \big(\|g_{j0}\|_{-1,r,\omega_j} + \|g_{j1}/\xi_j\|_{r,\omega_j} \big) \to 0.$$
 (4.18)

Therefore, from the divergence equation $\operatorname{div}_{\xi_i} u_j = g_j$ we get

$$\left(\left|\lambda_{j}\right|+1\right)\left|\int_{\Sigma}u_{jn}\,dx'\right| = \frac{\left|\lambda_{j}\right|+1}{\left|\xi_{j}\right|}\left|\int_{\Sigma}g_{j1}\,dx'\right| \to 0 \quad \text{as } j \to \infty,$$

and consequently $\int_{\Sigma} u_n dx' = 0$. Now, testing the equation $(\lambda - \Delta')u_n + iq = 0$ in Σ with u_n , we see that $\lambda \int_{\Sigma} |u_n|^2 dx' + \int_{\Sigma} |\nabla u_n|^2 dx' = 0$ yielding $u_n = 0$ and also q = 0. Thus $u_j \rightarrow 0$ in $W^{2,s}(\Sigma)$ which, together with $\sup_{i \in \mathbb{N}} \|u_i\|_{2,r,\omega_i} < \infty$, yields

$$||u_j||_{1,r,\omega_j} \to 0 \quad \text{as} \quad j \to \infty$$

$$(4.19)$$

due to Proposition 2.6 (2).

To come to a contradiction consider the equivalent equation $S_{r,\lambda_j,\xi_j}^{\omega_j}(u_j, p_j - p_{jm}) =$ $(f_j - i\xi_j p_{jm} e_n, -g_j)$ with $p_{jm} = \frac{1}{|\Sigma|} \int_{\Sigma} p_j dx'$. Due to Lemma 4.2

$$\| (\lambda_{j} + \alpha + \xi_{j}^{2}) u_{j}, (\lambda_{j} + \alpha + \xi_{j}^{2})^{1/2} \nabla' u_{j}, \nabla'^{2} u_{j}, \nabla' p_{j}, \xi_{j} (p_{j} - p_{jm}) \|_{r,\omega_{j}}$$

$$\leq c (\|f_{j}, \nabla' g_{j}, g_{j}, \xi_{j} g_{j}\|_{r,\omega_{j}} + (|\lambda_{j}| + 1) \|g_{j}; L^{r}_{m,\omega_{j}} + L^{r}_{\omega_{j},1/\xi} \|_{0}$$

$$+ \|\xi_{j} p_{jm}\|_{r,\omega_{j}} + \|\nabla' u_{j}, \xi_{j} u_{j}, p_{j} - p_{jm}\|_{r,\omega_{j}} + \|\lambda_{j} u_{j}\|_{(W^{1,r'}_{\omega'_{j}})^{*}})$$

$$(4.20)$$

where c > 0 is independent of $j \in \mathbb{N}$ due to $\mathcal{A}_r(\omega_j) \leq c_0, j \in \mathbb{N}$. Since $\xi_j p_j \rightharpoonup q = 0$ in L^s , we have $\xi_i p_{im} \to 0$ and, considering (4.10),

$$\|\xi_j p_{jm}\|_{r,\omega_j} = |\xi_j p_{jm}| \omega_j(\Sigma)^{1/r} \le |\xi_j p_{jm}| \to 0.$$
(4.21)

From Poincaré's inequality (Proposition 2.7) and (4.12), we conclude that $\sup_{i} ||p_{i}||$ $p_{jm}||_{1,r,\omega_i} < \infty$, which, together with $p_j - p_{jm} \rightharpoonup 0$ in $W^{1,s}(\Sigma)$, yields

$$||p_j - p_{jm}||_{r,\omega_j} \to 0 \quad \text{as} \quad j \to \infty,$$

$$(4.22)$$

cf. Proposition 2.6 (2). Now, (4.12), (4.13), (4.17), (4.19), (4.21) and (4.22) lead in (4.20) to the contradiction $1 \leq 0$.

(iii) The case $\lambda_j \to \lambda \in -\alpha + \bar{S}_{\varepsilon}$, $|\xi_j| \to \infty$.

From (4.12) we get $\|\nabla' u_j, \xi_j u_j, p_j\|_{r,\omega_j} \to 0$. On the other hand, since $\|u_j\|_{r,\omega_j} \to 0$ and $u_j \to 0$ in L^s as $j \to \infty$, Proposition 2.6 (3) implies (4.17). Thus, from (4.1), (4.12) and (4.13) we get the contradiction $1 \leq 0$.

(iv) The case $|\lambda_j| \to \infty$, $\xi_j \to \xi \neq 0$. By (4.12)

$$|\nabla' u_j, \xi_j u_j||_{r,\omega_j} \to 0 \quad \text{as} \quad j \to \infty.$$
(4.23)

Further, (4.14) yields the convergence

$$\begin{array}{ll} u_j \to 0, \nabla' u_j \to 0 & \text{and} & \nabla'^2 u_j \rightharpoonup 0, \lambda_j u_j \rightharpoonup v, \\ p_j \to p & \text{and} & \nabla' p_j \rightharpoonup \nabla' p, \end{array}$$

in L^s , which, together with (4.15), leads to

$$v' + \nabla' p = 0, \quad v_n + i\xi p = 0.$$
 (4.24)

From (4.11), (4.18) we see that

$$\begin{aligned} |\langle \lambda_j g_j, \varphi \rangle| &= |\langle \lambda_j g_{j0}, \varphi \rangle + \langle \lambda_j g_{j1}, \varphi \rangle| \\ &\leq \|\lambda_j g_{j0}\|_{-1, r, \omega_j} \|\nabla' \varphi\|_{r', \omega'_j} + \|\lambda_j g_{j1}\|_{r, \omega_j} \|\varphi\|_{r', \omega'_j} \\ &\leq c \big(\|\lambda_j g_{j0}\|_{-1, r, \omega_j} \| + \|\lambda_j g_{j1}\|_{r, \omega_j} \big) \|\varphi\|_{W^{1, s_1}(\Sigma)}. \end{aligned}$$

Consequently,

$$\lambda_j g_j \in (W^{1,s_1}(\Sigma))^*$$
 and $\|\lambda_j g_j\|_{(W^{1,s_1}(\Sigma))^*} \to 0$ as $j \to \infty$. (4.25)

Therefore, it follows from the divergence equation $\operatorname{div}'_{\xi_j} u_j = g_j$ that for all $\varphi \in C^{\infty}(\bar{\Sigma})$

$$\begin{aligned} \langle v', -\nabla'\varphi \rangle + \langle i\xi v_n, \varphi \rangle &= \lim_{j \to \infty} \langle \operatorname{div}'\lambda_j u'_j + i\lambda_j\xi_j u_{jn}, \varphi \rangle \\ &= \lim_{j \to \infty} \langle \lambda_j g_j, \varphi \rangle = 0, \end{aligned}$$

yielding div' $v' = -i\xi v_n$, $v' \cdot N|_{\partial \Sigma} = 0$. Therefore (4.24) implies

$$-\Delta' p + \xi^2 p = 0$$
 in Σ , $\frac{\partial p}{\partial N} = 0$ on $\partial \Sigma$

hence $p \equiv 0$ and also $v \equiv 0$. Now, due to Proposition 2.6 (2), (3), we get (4.17) and the convergence $\|p_j\|_{r,\omega_j} \to 0$, since $\lambda_j u_j \to 0$ in L^s , $p_j \to 0$ in $W^{1,s}$ and $\sup_{j \in \mathbb{N}} \|\lambda_j u_j\|_{r,\omega_j} < \infty$, $\sup_{j \in \mathbb{N}} \|p_j\|_{1,r,\omega_j} < \infty$. Thus (4.1), (4.12), (4.13) and (4.23) lead to the contradiction $1 \leq 0$.

(v) The case $|\lambda_j| \to \infty$, $\xi_j \to 0$. It follows from (4.12) that in L^s

$$\begin{array}{ll} u_j \to 0, \nabla' u_j \to 0 \quad \text{and} \quad \nabla'^2 u_j \to 0, \lambda_j u_j \to v, \\ \nabla' p_j \to \nabla' p, \quad \xi_j p_j \to q, \end{array}$$

which, looking at $(R_{\lambda,\xi})$, yields in the weak limit

$$v' + \nabla' p = 0, \quad v_n + iq = 0;$$

moreover, q is a constant. Note that (4.25) holds true in this case as well. Therefore, using (4.25), for any function φ in $C^{\infty}(\bar{\Sigma})$

$$0 = -\lim_{j \to \infty} \langle \lambda_j g_j, \varphi \rangle = \lim_{j \to \infty} \left(\langle \lambda_j u'_j, \nabla' \varphi \rangle - \langle i \lambda_j \xi_j u_{jn}, \varphi \rangle \right) = \int_{\Sigma} v' \cdot \overline{\nabla' \varphi} \, dx'$$

yielding div' $v' = 0, v' \cdot N|_{\partial \Sigma} = 0$. Thus the equation $v' + \nabla' p = 0$ is just the Helmholtz decomposition of the null vector field; therefore, $v' \equiv 0, \nabla' p \equiv 0$.

On the other hand, looking at (4.18) we get from the divergence equation and (4.11) that

$$\int_{\Sigma} \lambda_j u_{jn} \, dx' = \int_{\Sigma} \frac{\lambda_j}{\xi_j} (g_{j0} + g_{j1} - \operatorname{div}' u'_j) \, dx' = \int_{\Sigma} \frac{\lambda_j g_{j1}}{\xi_j} \, dx' \to 0.$$

Consequently, the weak convergence $\lambda_j u_{jn} \rightharpoonup v_n$ in L^s yields $\int_{\Sigma} v_n dx' = 0$; since q is a constant, we get $v_n = 0$, q = 0. Then Proposition 2.6 (3) implies (4.17).

Now we repeat the argument as in the case (ii) to get (4.20), (4.21) and (4.22), and are finally led to the contradiction $1 \leq 0$.

(vi) The case $|\lambda_j| \to \infty$, $|\xi_j| \to \infty$. To come to a contradiction, it is enough to prove (4.17) since $\|\nabla' u_j, \xi_j u_j, p_j\|_{r,\omega_j} \to 0$ as $j \to \infty$. From (4.12) we get the convergence

$$\begin{array}{ll} u_j \to 0, \nabla' u_j \to 0 & \text{ and } & \nabla'^2 u_j \rightharpoonup 0, (\lambda_j + \xi_j^2) u_j \rightharpoonup v, \\ p_j \to 0 & \text{ and } & \nabla' p_j \rightharpoonup 0, \quad \xi_j p_j \rightharpoonup q \end{array}$$

in L^s with some $v, q \in L^s$. Therefore, (4.15) and (R_{λ_j,ξ_j}) yield

$$v' = 0, \quad v_n + iq = 0.$$

Since $\|\lambda_j u_j\|_s \leq c_{\varepsilon} \|(\lambda_j + \xi_j^2) u_j\|_s$, there exists $w = (w', w_n) \in L^s$ such that, for a suitable subsequence, $\lambda_j u_j \rightharpoonup w$. Let $g_j = g_{j0} + g_{j1}, j \in \mathbb{N}$, be a sequence of splittings satisfying (4.18). By (4.11) we get for all $\varphi \in C^{\infty}(\bar{\Sigma})$

$$\left|\langle\lambda_j g_{j0}, \varphi\rangle\right| + \left|\langle\frac{\lambda_j g_{j1}}{\xi_j}, \varphi\rangle\right| \to 0 \quad \text{as} \quad j \to \infty,$$

cf. (4.25) and (4.25). Hence, the divergence equation implies that for $j \to \infty$

$$\langle \lambda_j u_{jn}, \varphi \rangle = \frac{1}{i\xi_j} \langle \lambda_j g_{j0}, \varphi \rangle + \langle \frac{\lambda_j g_{j1}}{i\xi_j}, \varphi \rangle + \frac{1}{i\xi_j} \langle \lambda_j u'_j, \nabla' \varphi \rangle \to 0$$

for all $\varphi \in C^{\infty}(\overline{\Sigma})$ yielding $\langle w_n, \varphi \rangle = 0$ and consequently $w_n = 0$.

Obviously, $\xi_j u_j \to 0$ in L^s as $j \to \infty$. Therefore, by (4.15) and the boundedness of the sequence $\{\|\xi_j \nabla u_j\|_{r,\omega_j}\}$, we get from the identity $\operatorname{div}'(\xi_j u'_j) + i\xi_j^2 u_{jn} = \xi_j g_j$ that

$$\xi_j^2 u_{jn} \rightharpoonup 0 \quad \text{in } L^s \text{ as } j \rightarrow \infty.$$

Thus we proved $v_n = 0$. Now v = 0 together with the estimate $\|(\lambda_j + \xi_j^2)u_j\|_{r,\omega_j} \leq 1$ imply due to Proposition 2.6 (3) that $\|(\lambda_j + \xi_j^2)u_j\| \to 0$ in $(W^{1,r'}_{\omega'_j})^*$ as $j \to \infty$. Hence also (4.17) is proved.

Now the proof of this lemma is complete.

Theorem 4.4 Let $\Sigma \subset \mathbb{R}^{n-1}$ be a bounded domain of $C^{1,1}$ -class, $1 < r < \infty$, $\omega \in A_r(\mathbb{R}^{n-1})$ and $\alpha \in (0, \alpha_0)$, $0 < \varepsilon < \frac{\pi}{2}$. Then for every $\lambda \in -\alpha + S_{\varepsilon}$, $\xi \in \mathbb{R}^*$ and $f \in L^r_{\omega}(\Sigma)$, $g \in W^{1,r}_{\omega}(\Sigma)$ the parametrized resolvent problem $(R_{\lambda,\xi})$ has a unique solution $(u, p) \in (W^{2,r}_{\omega}(\Sigma) \cap W^{1,r}_{0,\omega}(\Sigma)) \times W^{1,r}_{\omega}(\Sigma)$. Moreover, this solution satisfies the estimate (4.8) with an A_r -consistent constant $c = c(\alpha, \varepsilon, r, \Sigma, \mathcal{A}_r(\omega)) > 0$.

Proof: The existence is obvious since, for every $\lambda \in -\alpha + S_{\varepsilon}, \xi \in \mathbb{R}^*$ and $\omega \in A_r(\mathbb{R}^{n-1})$, the range $\mathcal{R}(S_{r,\lambda,\xi}^{\omega})$ is closed and dense in $L_{\omega}^r(\Sigma) \times W_{\omega}^{1,r}(\Sigma)$ by Lemma 4.3 and by Lemma 4.1, respectively. Here note that for fixed $\lambda \in \mathbb{C}, \xi \in \mathbb{R}^*$ the norm $\|\nabla' g, g, \xi g\|_{1,r,\omega} + (1+|\lambda|) \|g; L_{m,\omega}^r + L_{\omega,1/\xi}^r\|_0$ is equivalent to the norm of $W_{\omega}^{1,r}(\Sigma)$. The uniqueness of solutions is obvious from Lemma 4.1.

Now, for fixed $\omega \in A_r, 1 < r < \infty$, define the operator-valued functions

$$a_1 : \mathbb{R}^* \to \mathcal{L}(L^r_{\omega}(\Sigma); W^{2,r}_{0,\omega}(\Sigma) \cap W^{1,r}_{\omega}(\Sigma)),$$

$$b_1 : \mathbb{R}^* \to \mathcal{L}(L^r_{\omega}(\Sigma); W^{1,r}_{\omega}(\Sigma))$$

by

$$a_1(\xi)f := u_1(\xi), \quad b_1(\xi)f := p_1(\xi),$$
(4.26)

where $(u_1(\xi), p_1(\xi))$ is the solution to $(R_{\lambda,\xi})$ corresponding to $f \in L^r_{\omega}(\Sigma)$ and g = 0. Further, define

$$a_2 : \mathbb{R}^* \to \mathcal{L}(W^{1,r}_{\omega}(\Sigma); W^{2,r}_{0,\omega}(\Sigma) \cap W^{1,r}_{\omega}(\Sigma)), b_2 : \mathbb{R}^* \to \mathcal{L}(W^{1,r}_{\omega}(\Sigma); W^{1,r}_{\omega}(\Sigma))$$

by

$$a_2(\xi)g := u_2(\xi), \quad b_2(\xi)g := p_2(\xi).$$
 (4.27)

with $(u_2(\xi), p_2(\xi))$ the solution to $(R_{\lambda,\xi})$ corresponding to f = 0 and $g \in W^{1,r}_{\omega}(\Sigma)$.

Corollary 4.5 For every $\alpha \in (0, \alpha_0)$ and $\lambda \in -\alpha + S_{\varepsilon}$ the operator-valued functions a_1, b_1 and a_2, b_2 defined by (4.26), (4.27) are Fréchet differentiable in $\xi \in \mathbb{R}^*$. Furthermore, their derivatives $w_1 = \frac{d}{d\xi}a_1(\xi)f$, $q_1 = \frac{d}{d\xi}b_1(\xi)f$ for fixed $f \in L^r_{\omega}(\Sigma)$ and $w_2 = \frac{d}{d\xi}a_2(\xi)g$, $q_2 = \frac{d}{d\xi}b_2(\xi)g$ for fixed $g \in W^{1,r}_{\omega}(\Sigma)$ satisfy the estimates

$$\|(\lambda + \alpha)\xi w_1, \xi \nabla'^2 w_1, \xi^3 w_1, \xi \nabla' q_1, \xi^2 q_1\|_{r,\omega} \le c \|f\|_{r,\omega}$$
(4.28)

and

$$\| (\lambda + \alpha) \xi w_2, \xi \nabla'^2 w_2, \xi^3 w_2, \xi \nabla' q_2, \xi^2 q_2 \|_{r,\omega}$$

$$\leq c \big(\| \nabla' g, g, \xi g \|_{r,\omega} + (|\lambda| + 1) \| g; L^r_{m,\omega} + L^r_{\omega,1/\xi} \|_0 \big),$$
 (4.29)

with an A_r -consistent constant $c = c(\alpha, r, \varepsilon, \Sigma, \mathcal{A}_r(\omega))$ independent of $\lambda \in -\alpha + S_{\varepsilon}$ and $\xi \in \mathbb{R}^*$.

Proof: Since ξ enters in $(R_{\lambda,\xi})$ in a polynomial way, it is easy to prove that $a_j(\xi), b_j(\xi), j = 1, 2$, are Fréchet differentiable and their derivatives w_j, q_j solve the system

$$(\lambda + \xi^2 - \Delta')w'_j + \nabla' q_j = -2\xi u'_j$$

$$(\lambda + \xi^2 - \Delta')w_{jn} + i\xi q_j = -2\xi u_{jn} - ip_j$$

$$\operatorname{div}' w'_j + i\xi w_{jn} = -iu_{jn},$$
(4.30)

where $(u_1, p_1), (u_2, p_2)$ are the solutions to $(R_{\lambda,\xi})$ for $f \in L^r_{\omega}(\Sigma), g = 0$ and $f = 0, g \in W^{1,r}_{\omega}(\Sigma)$, respectively.

We get from (4.30) and Theorem 4.4 for j = 1, 2,

$$\begin{aligned} \|(\lambda+\alpha)\xi w_{j},\xi\nabla'^{2}w_{j},\xi^{3}w_{j},\xi\nabla'q_{j},\xi^{2}q_{j}\|_{r,\omega} \\ &\leq c\big(\|\xi^{2}u_{j}',\xi p_{j},\nabla'\xi u_{jn},\xi^{2}u_{jn}\|_{r,\omega}+(|\lambda|+1)\|i\xi u_{jn};L_{m,\omega}^{r}+L_{\omega,1/\xi}^{r}\|_{0}\big) \\ &\leq c\big(\|\xi^{2}u_{j},\xi p_{j},\nabla'\xi u_{j}\|_{r,\omega}+(|\lambda|+1)\|u_{j}\|_{r,\omega}\big) \\ &\leq c\|u_{j},(\lambda+\alpha+\xi^{2})u_{j},\sqrt{\lambda+\alpha+\xi^{2}}\nabla'u_{j},\xi p_{j}\|_{r,\omega} \\ &\leq c\|(\lambda+\alpha+\xi^{2})u_{j},\sqrt{\lambda+\alpha+\xi^{2}}\nabla'u_{j},\nabla'^{2}u_{j},\xi p_{j}\|_{r,\omega}, \end{aligned}$$
(4.31)

with an A_r -consistent constant $c = c(\alpha, r, \varepsilon, \Sigma, \mathcal{A}_r(\omega))$; here we used the fact that $\xi^2 + |\lambda + \alpha| \leq c(\varepsilon, \alpha) |\lambda + \alpha + \xi^2|$ for all $\lambda \in -\alpha + S_{\varepsilon}, \xi \in \mathbb{R}$ and $||u_j||_{r,\omega} \leq c(\mathcal{A}_r(\omega)) ||\nabla'^2 u_j||_{r,\omega}$ (see [14], Corollary 2.2). Thus Theorem 4.4 and (4.31) prove (4.28), (4.29).

Remark 4.6 The estimates (4.29) for the operator-valued multipliers a_2, b_2 will be used in a forthcoming paper [11] to obtain estimates for the generalized Stokes resolvent systems in an infinite cylinder of \mathbb{R}^n with application to the Stokes resolvent systems on unbounded cylindrical domains with several outlets to infinity.

5 Proof of the Main Results

The proof of Theorem 2.1 is based on the theory of operator-valued Fourier multipliers. The classical Hörmander-Michlin theorem for scalar-valued multipliers for $L^q(\mathbb{R}^k), q \in (1, \infty), k \in \mathbb{N}$, extends to an operator-valued version for Bochner spaces $L^q(\mathbb{R}^k; X)$ provided that X is a UMD space and that the boundedness condition for the derivatives of the multipliers is strengthened to \mathcal{R} -boundedness.

Definition 5.1 A Banach space X is called a UMD space if the Hilbert transform

$$Hf(t) = -\frac{1}{\pi} PV \int \frac{f(s)}{t-s} ds \quad \text{for } f \in \mathcal{S}(\mathbb{R}; X),$$

where $\mathcal{S}(\mathbb{R}; X)$ is the Schwartz space of all rapidly decreasing X-valued functions, extends to a bounded linear operator in $L^q(\mathbb{R}; X)$ for some $q \in (1, \infty)$.

It is well known that, if X is a *UMD* space, then the Hilbert transform is bounded in $L^q(\mathbb{R}; X)$ for all $q \in (1, \infty)$ (see e.g. [27], Theorem 1.3) and that weighted Lebesgue spaces $L^r_{\omega}(\Sigma), 1 < r < \infty, \omega \in A_r$, are *UMD* spaces. **Definition 5.2** Let X, Y be Banach spaces. An operator family $\mathcal{T} \subset \mathcal{L}(X;Y)$ is called \mathcal{R} -bounded if there is a constant c > 0 such that for all $T_1, \ldots, T_N \in \mathcal{T}$, $x_1, \ldots, x_N \in X$ and $N \in \mathbb{N}$

$$\left\|\sum_{j=1}^{N} \varepsilon_{j}(s) T_{j} x_{j}\right\|_{L^{q}(0,1;Y)} \leq c \left\|\sum_{j=1}^{N} \varepsilon_{j}(s) x_{j}\right\|_{L^{q}(0,1;X)}$$
(5.1)

for some $q \in [1, \infty)$, where (ε_j) is any sequence of independent, symmetric $\{-1, 1\}$ -valued random variables on [0, 1]. The smallest constant c for which (5.1) holds is denoted by $R_q(\mathcal{T})$, the \mathcal{R} -bound of \mathcal{T} .

Remark 5.3 (1) Due to Kahane's inequality ([4])

$$\left\|\sum_{j=1}^{N}\varepsilon_{j}(s)x_{j}\right\|_{L^{q_{1}}(0,1;X)} \leq c(q_{1},q_{2},X)\left\|\sum_{j=1}^{N}\varepsilon_{j}(s)x_{j}\right\|_{L^{q_{2}}(0,1;X)}, \ 1 \leq q_{1},q_{2} < \infty, \ (5.2)$$

the inequality (5.1) holds for all $q \in [1, \infty)$ if it holds for some $q \in [1, \infty)$.

(2) If an operator family $\mathcal{T} \subset \mathcal{L}(L^r_{\omega}(\Sigma)), 1 < r < \infty, \omega \in A_r(\mathbb{R}^{n-1})$, is \mathcal{R} bounded, then $\mathcal{R}_{q_1}(\mathcal{T}) \leq C\mathcal{R}_{q_2}(\mathcal{T})$ for all $q_1, q_2 \in [1, \infty)$ with a constant $C = C(q_1, q_2) > 0$ independent of ω . In fact, introducing the isometric isomorphism

$$I_{\omega}: L^r_{\omega}(\Sigma) \to L^r(\Sigma), \quad I_{\omega}f = f\omega^{1/r},$$

for all $T \in \mathcal{L}(L^r_{\omega}(\Sigma))$ we have $\tilde{T}_{\omega} = I_{\omega}TI^{-1}_{\omega} \in \mathcal{L}(L^r(\Sigma))$ and $||T||_{\mathcal{L}(L^r_{\omega}(\Sigma))} = ||\tilde{T}_{\omega}||_{\mathcal{L}(L^r(\Sigma))}$. Then it is easily seen that $\tilde{T}_{\omega} := \{I_{\omega}TI^{-1}_{\omega} : T \in \mathcal{T}\} \subset \mathcal{L}(L^r(\Sigma))$ is \mathcal{R} -bounded and $\mathcal{R}_q(\tilde{T}_{\omega}) = \mathcal{R}_q(\mathcal{T})$ for all $q \in [1, \infty)$. Thus the assertion follows.

Definition 5.4 (1) Let X be a Banach space and $(x_n)_{n=1}^{\infty} \subset X$. A series $\sum_{n=1}^{\infty} x_n$ is called unconditionally convergent if $\sum_{n=1}^{\infty} x_{\sigma(n)}$ is convergent in norm for every permutation $\sigma : \mathbb{N} \to \mathbb{N}$.

(2) A sequence of projections $(\Delta_j)_{j \in \mathbb{N}} \subset \mathcal{L}(X)$ is called a Schauder decomposition of a Banach space X if

$$\Delta_i \Delta_j = 0$$
 for all $i \neq j$, $\sum_{j=1}^{\infty} \Delta_j x = x$ for each $x \in X$.

A Schauder decomposition $(\Delta_j)_{j\in\mathbb{N}}$ is called unconditional if the series $\sum_{j=1}^{\infty} \Delta_j x$ converges unconditionally for each $x \in X$.

Remark 5.5 (1) If $(\Delta_j)_{j \in \mathbb{N}}$ is an unconditional Schauder decomposition of a Banach space Y, then for each $p \in [1, \infty)$ there is a constant $c_{\Delta} = c_{\Delta}(p) > 0$ such that for all x_j in the range $\mathcal{R}(\Delta_j)$ of Δ_j the inequalities

$$c_{\Delta}^{-1} \left\| \sum_{j=l}^{k} x_{j} \right\|_{Y} \leq \left\| \sum_{j=l}^{k} \varepsilon_{j}(s) x_{j} \right\|_{L^{p}(0,1;Y)} \leq c_{\Delta} \left\| \sum_{j=l}^{k} x_{j} \right\|_{Y}$$
(5.3)

are valid for any sequence $(\varepsilon_j(s))$ of independent, symmetric $\{-1, 1\}$ -valued random variables defined on (0, 1) and for all $l \leq k \in \mathbb{Z}$, see e.g. [3], (3.8).

(2) Let $Y = L^q(\mathbb{R}; L^r_{\omega}(\Sigma))$ and assume that each Δ_j commutes with the isomorphism I_{ω} introduced in Remark 5.3 (2). Then the constant c_{Δ} is easily seen to be independent of the weight ω .

(3) In the previous definitions and results the set of indices \mathbb{N} may be replaced by \mathbb{Z} without any further changes.

(4) Let X be a UMD space and $\chi_{[a,b)}$ denote the characteristic function for the interval [a, b). Let $R_s = \mathcal{F}^{-1}\chi_{[s,\infty)}\mathcal{F}$ and

$$\Delta_j := R_{2^j} - R_{2^{j+1}}, \ j \in \mathbb{Z}.$$

It is well known that the Riesz projection R_0 is bounded in $L^q(\mathbb{R}; X)$ and that the set $\{R_s - R_t : s, t \in \mathbb{R}\}$ is \mathcal{R} -bounded in $\mathcal{L}(L^q(\mathbb{R}; X))$ for each $q \in (1, \infty)$. In particular, $\{\Delta_j : j \in \mathbb{Z}\}$ is \mathcal{R} -bounded in $\mathcal{L}(L^q(\mathbb{R}; X))$ and an unconditional Schauder decomposition of $R_0L^q(\mathbb{R}; X)$, the image of $L^q(\mathbb{R}; X)$ by the Riesz projection R_0 , see [3], proof of Theorem 3.19.

We recall an operator-valued Fourier multiplier theorem in Banach spaces. Let $\mathcal{D}_0(\mathbb{R}; X)$ denote the set of C^{∞} -functions $f : \mathbb{R} \to X$ with compact support in \mathbb{R}^* .

Theorem 5.6 ([3], Theorem 3.19, [31], Theorem 3.4) Let X and Y be UMD spaces and $1 < q < \infty$. Let $M : \mathbb{R}^* \to \mathcal{L}(X, Y)$ be a differentiable function such that

$$\mathcal{R}_q\big(\{M(t), tM'(t): t \in \mathbb{R}^*\}\big) \le A.$$

Then the operator

$$Tf = \left(M(\cdot)\hat{f}(\cdot) \right)^{\vee}, \quad f \in \mathcal{D}_0(X),$$

extends to a bounded operator $T : L^q(\mathbb{R}; X) \to L^q(\mathbb{R}; Y)$ with operator norm $||T||_{\mathcal{L}(L^q(\mathbb{R};X);L^q(\mathbb{R};Y))} \leq CA$ where C > 0 depends only on q, X and Y.

Remark 5.7 Let \mathcal{X} be a *UMD*-space and $X = Y = L^q(\mathbb{R}; \mathcal{X})$. Checking the proof of [3], Theorem 3.19, one can see that the constant C in Theorem 5.6 equals

$$C = \mathcal{R}(\mathcal{P}) \cdot (c_{\Delta})^2$$

where $\mathcal{R}(\mathcal{P})$ is the \mathcal{R} -bound of the operator family $\mathcal{P} = \{R_s - R_t : s, t \in \mathbb{R}\}$ in $\mathcal{L}(L^q(\mathbb{R}; \mathcal{X}))$ and c_Δ is the unconditional constant of the Schauder decomposition $\{\Delta_j : j \in \mathbb{Z}\}$ of the space $R_0 L^q(\mathbb{R}; \mathcal{X})$; see [3], Section 3, for details. In particular, for $\mathcal{X} = L^r_{\omega}(\Sigma)$, $1 < r < \infty$, $\omega \in A_r$, using the isometry I_{ω} of Remark 5.3 (2), we get that the constants $\mathcal{R}(\mathcal{P})$, see Remark 5.3 (2), and c_Δ do not depend on the weight ω ; concerning c_Δ we again use that I_{ω} commutes with each Δ_j .

Theorem 5.8 (Extrapolation Theorem) Let $1 < r, s < \infty, \omega \in A_r(\mathbb{R}^{n-1})$ and $\Sigma \subset \mathbb{R}^{n-1}$ be an open set. Moreover let \mathcal{T} be a family of linear operators with the property that there exists an A_s -consistent constant $C_{\mathcal{T}} = C_{\mathcal{T}}(\mathcal{A}_s(\nu)) > 0$ such that for all $\nu \in A_s$

$$||Tf||_{s,\nu} \le C_T ||f||_{s,\nu}$$

for all $T \in \mathcal{T}$ and all $f \in L^s_{\nu}(\Sigma)$. Then every $T \in \mathcal{T}$ can be extended to $L^r_{\omega}(\Sigma)$ and \mathcal{T} is \mathcal{R} -bounded in $\mathcal{L}(L^r_{\omega}(\Sigma))$ with an A_r -consistent \mathcal{R} -bound $c_{\mathcal{T}}(q, r, \mathcal{A}_r(\omega))$, i.e.,

$$\mathcal{R}_q(\mathcal{T}) \le c_{\mathcal{T}}(q, r, \mathcal{A}_r(\omega)) \quad \text{for all} \quad q \in (1, \infty).$$
 (5.4)

Proof: From the proof of [14], Theorem 4.3, it can be deduced that \mathcal{T} is \mathcal{R} -bounded in $\mathcal{L}(L^r_{\omega}(\Sigma))$ and that (5.4) is satisfied for q = r. Then Remark 5.3 yields (5.4) for every $1 < q < \infty$.

Now we are in a position to prove Theorem 2.1.

Proof of Theorem 2.1: Let us define u, p in the cylinder $\Omega = \Sigma \times \mathbb{R}$ by

$$u(x) = \mathcal{F}^{-1}(a_1\hat{f})(x), \quad p(x) = \mathcal{F}^{-1}(b_1\hat{f})(x),$$

where a_1, b_1 are the operator-valued multiplier functions defined in (4.26). We will show that (u, p) is the unique solution to (R_{λ}) with g = 0 satisfying

$$(u,p) \in \left(W^{2;q,r}_{\omega}(\Omega) \cap W^{1;q,r}_{0,\omega}(\Omega)\right) \times \widehat{W}^{1;q,r}_{\omega}(\Omega)$$
(5.5)

and the estimate (2.1). Obviously, (u, p) solves the resolvent problem (R_{λ}) with g = 0. For $\xi \in \mathbb{R}^*$ define $m_{\lambda}(\xi) : L^r_{\omega}(\Sigma) \to L^r_{\omega}(\Sigma)$ by

$$m_{\lambda}(\xi)f := \left((\lambda + \alpha)a_1(\xi)\hat{f}, \xi \nabla' a_1(\xi)\hat{f}, \nabla'^2 a_1(\xi)\hat{f}, \xi^2 a_1(\xi)\hat{f}, \nabla' b_1(\xi)\hat{f}, \xi b_1(\xi)\hat{f} \right).$$

Theorem 4.4 and Corollary 4.5 show that the operator family $\{m_{\lambda}(\xi), \xi m'_{\lambda}(\xi) : \xi \in \mathbb{R}^*\}$ satisfies the assumptions of Theorem 5.8, e.g., with s = r. Therefore, this operator family is \mathcal{R} -bounded in $\mathcal{L}(L^r_{\omega}(\Sigma))$; to be more precise,

$$\mathcal{R}_q\big(\{m_\lambda(\xi), \xi m'_\lambda(\xi) : \xi \in \mathbb{R}^*\}\big) \le c(q, r, \alpha, \varepsilon, \Sigma, \mathcal{A}_r(\omega)) < \infty.$$

Hence Theorem 5.6 and Remark 5.7 imply that

$$\|(m_{\lambda}\hat{f})^{\vee}\|_{L^{q}(L^{r}_{\omega})} \leq C \|f\|_{L^{q}(L^{r}_{\omega})}$$

with an A_r -consistent constant $C = C(q, r, \alpha, \varepsilon, \Sigma, \mathcal{A}_r(\omega)) > 0$ independent of the resolvent parameter $\lambda \in -\alpha + S_{\varepsilon}$. Note that, due to the definition of the multiplier $m_{\lambda}(\xi)$, we have $(\lambda + \alpha)u, \nabla^2 u, \nabla p \in L^q(L^r_{\omega})$ and

$$\|(\lambda+\alpha)u,\nabla^2 u,\nabla p\|_{L^q(L^r_{\omega})} \le \|(m\hat{f})^{\vee}\|_{L^q(L^r_{\omega})}.$$

Thus the existence of a solution satisfying (2.1) is proved.

For the uniqueness of solutions let $(u, p) \in (W^{2;q,r}_{\omega}(\Omega) \cap W^{1;q,r}_{0,\omega}(\Omega)) \times \widehat{W}^{1;q,r}_{\omega}(\Omega)$ satisfy (R_{λ}) with f = 0, g = 0. Fix $h \in L^{q'}(L^{r'}_{\omega'})$ arbitrarily and let $(v, z) \in (W^{2;q',r'}_{\omega'}(\Omega) \cap W^{1;q',r'}_{0,\omega'}(\Omega) \cap L^{q'}(L^{r'}_{\omega'})_{\sigma}) \times \widehat{W}^{1;q',r'}_{\omega'}(\Omega)$ be a solution to $(R_{\overline{\lambda}})$ with righthand side h. Then using the denseness of $C^{\infty}_{0,\sigma}(\Omega)$ in $W^{1;q',r'}_{0,\omega}(\Omega) \cap L^{q'}(L^{r'}_{\omega'})_{\sigma}$ we get

$$0 = (\lambda u - \Delta u + \nabla p, v) = (u, \bar{\lambda}v - \Delta v + \nabla z) = (u, h)_{L^q(L^r_\omega), L^{q'}(L^{r'}_{\omega'})}$$

yielding u = 0, and consequently, $\nabla p = 0$. Now the proof of Theorem 2.1 is complete.

Proof of Corollary 2.2: Defining the Stokes operator $A = A_{q,r;\omega}$ by (2.2), due to the Helmholtz decomposition of the space $L^q(L^r_{\omega})$ on the cylinder Ω , see [8], we get that for $F \in L^q(L^r_{\omega})_{\sigma}$ the solvability of the equation

$$(\lambda + A)u = F \quad \text{in} \quad L^q (L^r_\omega)_\sigma \tag{5.6}$$

is equivalent to the solvability of (R_{λ}) with right-hand side $f \equiv F, g \equiv 0$. By virtue of Theorem 2.1 for every $\lambda \in -\alpha + S_{\varepsilon}$ there exists a unique solution $u = (\lambda + A)^{-1}F \in D(A)$ to (5.6) satisfying the estimate

$$\|(\lambda + \alpha)u\|_{L^q(L^r_{\omega})_{\sigma}} \le C \|F\|_{L^q(L^r_{\omega})_{\sigma}}$$

with $C = C(q, r, \alpha, \varepsilon, \Sigma, \mathcal{A}_r(\omega))$ independent of λ ; hence (2.3) is proved. Then (2.4) is a direct consequence of (2.3) using semigroup theory.

Proof of Theorem 2.3: We shall show that the operator family

$$\mathcal{T} = \{\lambda(\lambda + A_{q,r;\omega})^{-1} : \lambda \in i\mathbb{R}\}$$

is \mathcal{R} -bounded in $\mathcal{L}(L^q(L^r_{\omega}))$. To this end, for $\xi \in \mathbb{R}^*$ and $\lambda \in S_{\varepsilon}$, let $m_{\lambda}(\xi) := \lambda a_1(\xi)$ where $a_1(\xi)$ is the solution operator for $(R_{\lambda,\xi})$ with g = 0 defined by (4.26). Then $\lambda(\lambda + A_{q,r;\omega})^{-1}f = (m_{\lambda}(\xi)\hat{f})^{\vee}$ for $f \in \mathcal{S}(\mathbb{R}; L^r_{\omega}(\Sigma)_{\sigma})$. In view of Definition 5.2 and the denseness of $\mathcal{S}(\mathbb{R}; L^r_{\omega}(\Sigma)_{\sigma})$ in $L^q(\mathbb{R}; L^r_{\omega}(\Sigma)_{\sigma})$ we will prove that there is a constant C > 0 such that

$$\left\|\sum_{i=1}^{N}\varepsilon_{i}(m_{\lambda_{i}}\hat{f}_{i})^{\vee}\right\|_{L^{q}(0,1;L^{q}(\mathbb{R}:L^{r}_{\omega}(\Sigma)))} \leq C\left\|\sum_{i=1}^{N}\varepsilon_{i}f_{i}\right\|_{L^{q}(0,1;L^{q}(\mathbb{R}:L^{r}_{\omega}(\Sigma)))}$$
(5.7)

for any independent, symmetric and $\{-1, 1\}$ -valued random variables $(\varepsilon_i(s))$ defined on (0, 1), for all $(\lambda_i) \subset i\mathbb{R}$ and $(f_i) \subset \mathcal{S}(\mathbb{R}; L^r_{\omega}(\Sigma)_{\sigma})$. Without loss of generality we may assume that $(f_i) \subset Y := R_0 L^q(\mathbb{R}; L^r_{\omega}(\Sigma)_{\sigma})$, since R_0 is continuous in $L^q(\mathbb{R}; L^r_{\omega}(\Sigma)_{\sigma})$ and

$$f_i(x', x_n) = (\chi_{[0,\infty)} \hat{f}_i(\xi))^{\vee} (x', x_n) + (\chi_{[0,\infty)} \hat{f}_i(-\xi))^{\vee} (x', -x_n).$$

Therefore, we shall show that \mathcal{T} is \mathcal{R} -bounded in $\mathcal{L}(Y)$; note that, if $\operatorname{supp} \hat{f} \subset [0, \infty)$, then $\operatorname{supp}(m_{\lambda} \hat{f}) \subset [0, \infty)$ as well.

Obviously $m_{\lambda}(\xi) = m_{\lambda}(2^{j}) + \int_{2^{j}}^{\xi} m'_{\lambda}(\tau) d\tau$ for $\xi \in [2^{j}, 2^{j+1}), j \in \mathbb{Z}$, and $(m_{\lambda}(2^{j})\widehat{\Delta_{j}f})^{\vee} = m_{\lambda}(2^{j})\Delta_{j}f$ for $f \in \mathcal{S}(\mathbb{R}; L^{r}_{\omega}(\Sigma)_{\sigma})$. Furthermore,

$$\left(\int_{2^{j}}^{\xi} m_{\lambda}'(\tau) \, d\tau \, \widehat{\Delta_{j}f}(\xi)\right)^{\vee} = \left(\int_{2^{j}}^{2^{j+1}} m_{\lambda}'(\tau) \chi_{[2^{j},\xi)}(\tau) \widehat{\Delta_{j}f}(\xi) \, d\tau\right)^{\vee} \\ = \left(\int_{0}^{1} 2^{j} m_{\lambda}'(2^{j}(1+t)) \chi_{[2^{j},\xi)}(2^{j}(1+t)) \chi_{[2^{j},2^{j+1})}(\xi) \, \widehat{f}(\xi) \, dt\right)^{\vee} \\ = \int_{0}^{1} 2^{j} m_{\lambda}'(2^{j}(1+t)) B_{j,t} \Delta_{j} f \, dt.$$

where $B_{j,t} = R_{2^{j}(1+t)} - R_{2^{j+1}}$. Thus we get

$$(m_{\lambda}(\xi)\widehat{f}(\xi))^{\vee} = \sum_{j\in\mathbb{Z}} \left((m_{\lambda}(2^{j}) + \int_{2^{j}}^{\xi} m_{\lambda}'(\tau) \, d\tau \right) \widehat{\Delta_{j}f} \right)^{\vee}$$

$$= \sum_{j\in\mathbb{Z}} \left(m_{\lambda}(2^{j})\widehat{\Delta_{j}f} \right)^{\vee} + \sum_{j\in\mathbb{Z}} \left(\int_{2^{j}}^{\xi} m_{\lambda}'(\tau) \, d\tau \, \widehat{\Delta_{j}f} \right)^{\vee}$$

$$= \sum_{j\in\mathbb{Z}} m_{\lambda}(2^{j})\Delta_{j}f + \sum_{j\in\mathbb{Z}} \int_{0}^{1} 2^{j}m_{\lambda}'(2^{j}(1+t))B_{j,t}\Delta_{j}f \, dt.$$

$$(5.8)$$

First let us prove

$$\left\|\sum_{i=1}^{N}\varepsilon_{i}(s)\sum_{j\in\mathbb{Z}}m_{\lambda_{i}}(2^{j})\Delta_{j}f_{i}\right\|_{L^{q}(0,1;Y)} \leq C\left\|\sum_{i=1}^{N}\varepsilon_{i}(s)f_{i}\right\|_{L^{q}(0,1;Y)}.$$
(5.9)

Note that the operator $m_{\lambda_i}(2^j)$ commutes with Δ_j , $j \in \mathbb{Z}$; hence, for almost all $s \in (0, 1)$, the sum $\sum_{i=1}^N \varepsilon_i(s) m_{\lambda_i}(2^j) \Delta_j f_i$ belongs to the range of Δ_j . Therefore, for any $l, k \in \mathbb{Z}$ we get by (5.3) that

$$\begin{split} \left\|\sum_{i=1}^{N} \varepsilon_{i} \sum_{j=l}^{k} m_{\lambda_{i}}(2^{j}) \Delta_{j} f_{i}\right\|_{L^{q}(0,1;Y)} \\ &= \left(\int_{0}^{1} \left\|\sum_{j=l}^{k} \sum_{i=1}^{N} \varepsilon_{i}(s) m_{\lambda_{i}}(2^{j}) \Delta_{j} f_{i}\right\|_{Y}^{q} ds\right)^{1/q} \\ &\leq c_{\Delta} \left(\int_{0}^{1} \int_{0}^{1} \left\|\sum_{j=l}^{k} \varepsilon_{j}(\tau) \sum_{i=1}^{N} \varepsilon_{i}(s) m_{\lambda_{i}}(2^{j}) \Delta_{j} f_{i}\right\|_{Y}^{q} d\tau ds\right)^{1/q} \\ &= c_{\Delta} \left\|\sum_{i=1}^{N} \sum_{j=l}^{k} \varepsilon_{ij}(s,\tau) m_{\lambda_{i}}(2^{j}) \Delta_{j} f_{i}\right\|_{L^{q}((0,1)^{2};Y)} \end{split}$$
(5.10)

where $\varepsilon_{ij}(s,\tau) = \varepsilon_i(s)\varepsilon_j(\tau)$; note that $(\varepsilon_{ij})_{i,j\in\mathbb{Z}}$ is a sequence of independent, symmetric and $\{-1,1\}$ -valued random variables defined on $(0,1) \times (0,1)$. Furthermore, due to Theorem 4.4, the operator family $\{m_\lambda(\xi) : \lambda \in i\mathbb{R}, \xi \in \mathbb{R}^*\} \subset \mathcal{L}(L^r_{\omega}(\Sigma))$ is uniformly bounded by an A_r -consistent constant, and hence it is \mathcal{R} -bounded by Theorem 5.8. Therefore, using Fubini's theorem and (5.3), we proceed in (5.10) as follows:

$$= c_{\Delta} \Big\| \sum_{i=1}^{N} \sum_{j=l}^{k} \varepsilon_{ij}(s,\tau) m_{\lambda_{i}}(2^{j}) \Delta_{j} f_{i} \Big\|_{L^{q}(\mathbb{R};L^{q}((0,1)^{2};L^{r}_{\omega}(\Sigma)))} \\ \leq Cc_{\Delta} \Big\| \sum_{i=1}^{N} \sum_{j=l}^{k} \varepsilon_{ij}(s,\tau) \Delta_{j} f_{i} \Big\|_{L^{q}(\mathbb{R};L^{q}((0,1)^{2};L^{r}_{\omega}(\Sigma)))} \\ = Cc_{\Delta} \Big\| \sum_{i=1}^{N} \sum_{j=l}^{k} \varepsilon_{ij}(s,\tau) \Delta_{j} f_{i} \Big\|_{L^{q}((0,1)^{2};Y)} \leq Cc_{\Delta}^{2} \Big\| \sum_{i=1}^{N} \varepsilon_{i} \sum_{j=l}^{k} \Delta_{j} f_{i} \Big\|_{L^{q}(0,1;Y)}.$$
(5.11)

Since $\{\sum_{j=l}^{k} \Delta_j : l, k \in \mathbb{Z}\}$ is \mathcal{R} -bounded in $\mathcal{L}(Y)$ and (Δ_j) is a Schauder decomposition of Y, we see by Lebesgue's theorem that the right-hand side of (5.11) converges to 0 as either $l, k \to \infty$ or $l, k \to -\infty$. Thus, by (5.10), (5.11), the series $\sum_{i=1}^{N} \varepsilon_i(s) \sum_{j \in \mathbb{Z}} m_{\lambda_i}(2^j) \Delta_j f_i$ converges in $L^q(0, 1; Y)$, and (5.9) holds.

Next let us show that

$$\left\|\sum_{i=1}^{N}\varepsilon_{i}(s)\sum_{j\in\mathbb{Z}}\int_{0}^{1}2^{j}m_{\lambda_{i}}'(2^{j}(1+t))B_{j,t}\Delta_{j}f_{i}\,dt\right\|_{L^{q}(0,1;Y)} \leq C\left\|\sum_{i=1}^{N}\varepsilon_{i}(s)f_{i}\right\|_{L^{q}(0,1;Y)}.$$
(5.12)

Using the same argument as in the proof of (5.9) and the \mathcal{R} -boundedness of the operator families $\{B_{j,t}: j \in \mathbb{Z}, t \in (0,1)\} \subset \mathcal{L}(Y)$ and $\{2^j(1+t)m'_{\lambda}(2^j(1+t)): \lambda \in i\mathbb{R}, j \in \mathbb{Z}, t \in (0,1)\} \subset \mathcal{L}(L^r_{\omega}(\Sigma))$, see Corollary 4.5, we have

$$\begin{split} \big| \sum_{i=1}^{N} \varepsilon_{i}(s) \sum_{j=l}^{k} \int_{0}^{1} 2^{j} m_{\lambda_{i}}'(2^{j}(1+t)) B_{j,t} \Delta_{j} f_{i} dt \big\|_{L^{q}(0,1;Y)} \\ & \leq \int_{0}^{1} \big\| \sum_{i=1}^{N} \varepsilon_{i}(s) \sum_{j=l}^{k} 2^{j} m_{\lambda_{i}}'(2^{j}(1+t)) B_{j,t} \Delta_{j} f_{i} \big\|_{L^{q}(0,1;Y)} dt \\ & \leq c_{\Delta} \int_{0}^{1} \big\| \sum_{i=1}^{N} \sum_{j=l}^{k} \varepsilon_{ij}(s,\tau) 2^{j} m_{\lambda_{i}}'(2^{j}(1+t)) B_{j,t} \Delta_{j} f_{i} \big\|_{L^{q}((0,1)^{2};Y)} dt \\ & \leq c_{\Delta} \int_{0}^{1} \big\| \sum_{i=1}^{N} \sum_{j=l}^{k} \varepsilon_{ij}(s,\tau) 2^{j}(1+t) m_{\lambda_{i}}'(2^{j}(1+t)) \Delta_{j} f_{i} \big\|_{L^{q}((0,1)^{2};Y)} dt \\ & \leq Cc_{\Delta}^{2} \big\| \sum_{i=1}^{N} \varepsilon_{i}(s) \sum_{j=l}^{k} \Delta_{j} f_{i} \big\|_{L^{q}((0,1);Y)} \end{split}$$

for all $l, k \in \mathbb{Z}$. Thus (5.12) is proved.

By (5.9), (5.12) we conclude that the operator family $\mathcal{T} = \{\lambda(\lambda + A_{q,r;\omega})^{-1} : \lambda \in i\mathbb{R}\}$ is \mathcal{R} -bounded in $\mathcal{L}(L^q(L^r_{\omega}))$. Then, by [31], Corollary 4.4, for each $f \in L^p(\mathbb{R}_+; L^q(L^r_{\omega})_{\sigma}), 1 , the mild solution <math>u$ to the system

$$u_t + A_{q,r;\omega}u = f, \quad u(0) = 0$$
 (5.13)

belongs to $L^p(\mathbb{R}_+; L^q(L^r_{\omega})_{\sigma}) \cap L^p(\mathbb{R}_+; D(A_{q,r;\omega}))$ and satisfies the estimate

$$||u_t, A_{q,r;\omega}u||_{L^p(\mathbb{R}_+;L^q(L^r_{\omega})_{\sigma})} \le C||f||_{L^p(\mathbb{R}_+;L^q(L^r_{\omega})_{\sigma})}.$$

Furthermore, (2.3) with $\lambda = 0$ implies that even u satisfies this inequality. If $f \in L^p(\mathbb{R}_+; L^q(L^r_{\omega}))$, let u be the solution of (5.13) with f replaced by Pf, where $P = P_{q,r;\omega}$ denotes the Helmholtz projection in $L^p(\mathbb{R}_+; L^q(L^r_{\omega}))$, and define p by $\nabla p = (I - P)(f - u_t + \Delta u)$. By (2.1) with $\lambda = 0$ and the boundedness of P we get (2.7). Finally, assume $e^{\alpha t} f \in L^p(\mathbb{R}_+; L^q(L^r_{\omega})_{\sigma})$ for some $\alpha \in (0, \alpha_0)$ and let v be the solution of the system $v_t + (A - \alpha)v = e^{\alpha t}f$, v(0) = 0. Obviously, replacing A by $A - \alpha$ in the previous arguments, v is easily seen to satisfy estimate (2.6). Then $u(t) = e^{-\alpha t}v(t)$ solves (5.13) and satisfies (2.8). In each case the constant C depends only on $\mathcal{A}_r(\omega)$ due to Remark 5.7.

The proof of Theorem 2.3 is complete.

References

- [1] H. Abels, Bounded imaginary powers and H_{∞} -calculus of the Stokes operator in unbounded domains, Preprint No. 2362, FB Mathematik, TU Darmstadt, 2004
- [2] C. J. Amick, Steady solutions of the Navier-Stokes equations in unbounded channels and pipes, Ann. Scuola Norm. Sup. Pisa 4 (1977), 473-513
- [3] R. Denk, M. Hieber and J. Prüss, *R*-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc. 788, 114 p. (2003)
- [4] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge University Press, 1995
- [5] R. Farwig, H. Kozono and H. Sohr, An L^q -approach to Stokes and Navier-Stokes equations in general domains, Acta Math., to appear 2005
- [6] R. Farwig and H. Sohr, Generalized Resolvent estimates for the Stokes system in bounded and unbounded domains, J. Math. Soc. Japan 46 (1994), 607-643
- [7] R. Farwig and H. Sohr, Weighted L^q-theory for the Stokes resolvent in exterior domains, J. Math. Soc. Japan 49 (1997), 251-288
- [8] R. Farwig, Weighted L^q-Helmholtz decompositions in infinite cylinders and in infinite layers, Adv. Differ. Equ. 8 (2003), 357-384
- [9] R. Farwig and Ri Myong-Hwan, Stokes resolvent estimates in an infinite cylinder, Preprint No. 2410, FB Mathematik, TU Darmstadt, 2005
- [10] R. Farwig and Ri Myong-Hwan, An $L^q(L^2)$ theory of generalized Stokes resolvent estimates in an infinite cylinder, Preprint No. 2415, FB Mathematik, TU Darmstadt, 2005
- [11] R. Farwig and Ri Myong-Hwan, The resolvent problem and H^{∞} -calculus of the Stokes operator in unbounded cylinders with several exits to infinity, In preparation
- [12] A. Fröhlich, Maximal regularity for the non-stationary Stokes system in an aperture domain, J. Evol. Eq. 2 (2002), 471-493
- [13] A. Fröhlich, The Stokes operator in weighted L^q -spaces I: Weighted estimates for the Stokes resolvent problem in a half space, J. Math. Fluid Mech. 5 (2003), 166-199
- [14] A. Fröhlich, The Stokes operator in weighted L^q -spaces II: Weighted resolvent estimates and maximal regularity, Preprint No. 2173, FB Mathematik, TU Darmstadt, 2001

- [15] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. 1: Linearized Steady Problems, Springer Tracts in Natural Philosophy, 38, Springer, 1994
- [16] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. II: Nonlinear Steady Problems, Springer Tracts in Natural Philosophy, 39, Springer, 1994
- [17] J. Garcia-Cuerva, J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North Holland, Amsterdam, 1985
- [18] Y. Giga, Analyticity of the semigroup generated by the Stokes operator in L_r spaces, Math. Z. 178 (1981), 297-329
- [19] O. A. Ladyzhenskaya and V. A. Solonnikov, On the solvability of boundary and initial boundary value problems for Navier-Stokes equations with noncompact boundaries, Vestnik Leningrad Univ. 13 (1977), 39-47
- [20] O. A. Ladyzhenskaya and V. A. Solonnikov, Determination of solutions of boundary value problems for stationary Stokes and Navier-Stokes equations having an unbounded Dirichlet integral, J. Sov. Math. 21 (1983), 728 -761
- [21] S. A. Nazarov and K. I. Pileckas, Asymptotic conditions at infinity for the Stokes and Navier-Stokes problems in domains with cylindrical outlets to infinity, Maremonti, P. (ed.), Advances in fluid dynamics, Rome: Aracne, Quad. Mat. 4, 141-243 (1999).
- [22] S. Nazarov, M. Specovius-Neugenbauer and G. Thäter, Full steady Stokes system in domains with cylindrical outlets, Math. Ann. 314 (1999), 729-762
- [23] S. A. Nazarov, M. Specovius-Neugebauer and G. Thäter, Quiet flows for Stokes and Navier-Stokes problems in domains with cylindrical outlets to infinity, Kyushu J. Math. 53 (1999), 369-394
- [24] M. Padula and K. I. Pileckas, On the existence of steady motions of a viscous isothermal fluid in a pipe, Sequeira, A. (ed.), Navier-Stokes equations and related nonlinear problems. Proc. 3rd Intern. Conf., 1994, Funchal, Portugal, Funchal: Plenum Press, 171-188 (1995).
- [25] A. Passerini and G. Thäter, The Stokes system in domains with outlets of bounded connected cross-sections, Z. Anal. Anwend. 17 (1998), 615-639
- [26] K. Pileckas, On the nonstationary linearized Navier-Stokes problem in domains with cylindrical outlets to infinity, Math. Ann. 332 (2005), 395-419
- [27] J. L. Rubio de Francia, F. J. Ruiz and J. L. Torrea, Calderón-Zygmund theory for operator-valued kernels, Adv. in Math. 62 (1986), 7-48
- [28] G. Schneider, Nonlinear stability of Taylor vortices in infinite cylinders, Arch. Rational Mech. Anal. 144 (1998), 121-200

- [29] V. A. Solonnikov and K. I. Pileckas, On some spaces of divergence-free vector fields and on the solvability of a boundary-value problem for Navier-Stokes equations in domains with non- compact boundaries, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 73 (1977), 136-151
- [30] M. Specovius-Neugebauer, Approximation of the Stokes Dirichlet problem in domains with cylindrical outlets, SIAM J. Math. Anal. 30 (1999), 645-677
- [31] L. Weis, Operator-valued Fourier multiplier theorems and maximal L_p -regularity, Math. Ann. 319 (2001), 735-758