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Abstract

Let Ω = Σ × R be an infinite cylinder of Rn, n ≥ 3, with a bounded cross-
section Σ ⊂ Rn−1 of C1,1-class. We study resolvent estimates and maximal
regularity of the Stokes operator in Lq(R;Lr

ω(Σ)) for 1 < q, r < ∞ and for
arbitrary Muckenhoupt weights ω ∈ Ar with respect to x′ ∈ Σ. The proofs
use an operator-valued Fourier multiplier theorem and techniques of uncon-
ditional Schauder decompositions based on the R-boundedness of the family
of solution operators for a system in Σ parametrized by the phase variable of
the one-dimensional partial Fourier transform.

2000 Mathematical Subject Classification: 35Q30, 76D07
Keywords: Maximal regularity; Muckenhoupt weights; Stokes resolvent system; Stokes
semigroup; infinite cylinder

1 Introduction

In this paper we show that the Stokes operator in the space Lq(Ω), 1 < q < ∞, on
an infinite cylinder Ω = Σ×R of Rn, n ≥ 3, generates a bounded and exponentially
decaying analytic semigroup and has maximal Lp-regularity. We show these prop-
erties to hold even in Lq(R; Lr

ω(Σ)) for 1 < q, r < ∞ and for arbitrary Muckenhoupt
weight ω ∈ Ar(Rn−1) with respect to x′ ∈ Σ (see Section 2 for the definition). We
note that the resolvent estimate gives, when λ = 0, a new result on the existence of
a unique flow with zero flux for the Stokes system in Lq(R, Lr

ω(Σ)).
The proofs in this paper are mainly based on the theory of Fourier analysis. By

the application of the partial Fourier transform along the axis of the cylinder Ω the
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generalized Stokes resolvent system

λu−∆u +∇p = f in Ω

(Rλ) div u = g in Ω

u = 0 on ∂Ω

is reduced to the parametrized Stokes system in the cross-section Σ

(λ + ξ2 −∆′)û′ +∇′p̂ = f̂ ′ in Σ

(λ + ξ2 −∆′)ûn + iξp̂ = f̂n in Σ

(Rλ,ξ) div ′û′ + iξûn = ĝ in Σ

û′ = 0, ûn = 0 on ∂Σ

which involves the Fourier phase variable ξ ∈ R as parameter. We will get
parameter-independent estimates of solutions to (Rλ,ξ), ξ ∈ R∗ := R \ {0}, in
Lr-spaces with Muckenhoupt weights, which yield R-boundedness of the family of
solution operators a(ξ) for (Rλ,ξ) with g = 0 due to an extrapolation property
of operators defined on Lr-spaces with Muckenhoupt weights, see Theorem 5.8.
Then the solution u to (Rλ) with g = 0 in the whole cylinder Ω is represented by
u = F−1(a(ξ)Ff), and an operator-valued Fourier multiplier theorem ([31]) implies
the resolvent estimate. In order to prove maximal regularity we use that maximal
regularity of an operator A in a UMD space X is implied by the R-boundedness of
the operator family

{λ(λ + A)−1 : λ ∈ i R} (1.1)

in L(X), see [31]. We show the R-boundedness of (1.1) for the Stokes operator A :=
Aq,r;ω in Lq(R : Lr

ω(Σ)) by virtue of Schauder decomposition techniques; to be more
precise, we use the Schauder decomposition {∆j}j∈Z where ∆j = F−1χ[2j ,2j+1)F and
again the R-boundedness of the family of solution operators for (Rλ,ξ).

To obtain parameter-independent estimates of the solution to (Rλ,ξ), ξ ∈ R∗, we
start with the case Σ = Rn−1 using Fourier multiplier theory in spaces with Mucken-
houpt weights (Theorem 3.1). Next, for (Rλ,ξ) on the half space Σ = Rn−1

+ (Theorem
3.4), we first consider an estimate for p̂; for this a result on Fourier multipliers in
trace spaces of Sobolev spaces with Muckenhoupt weights is crucial, see Lemma 3.2.
Then the estimate for û is obtained using the Laplace resolvent equation. The result
for the case of bent half spaces Σ = Hσ (Theorem 3.5; see (3.2) for the definition of
Hσ) is obtained by Kato’s perturbation argument. For bounded domains Σ, using
cut-off functions and the results for the whole, half and bent half spaces, we start
with a preliminary a priori estimate in weighted spaces for (Rλ,ξ) (Lemma 4.2) and
are finally led to weighted estimates of the solution to (Rλ,ξ) by a contradiction
argument (Lemma 4.3).

There are many papers dealing with resolvent estimates ([6], [7], [13], [14], [18];
see Introduction of [9] for more details) or maximal regularity (see e.g. [1], [12], [14])
of Stokes operators for domains with compact boundaries as well as for domains
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with noncompact boundaries. General unbounded domains are considered in [5] by
replacing the space Lq by Lq∩L2 or Lq +L2. In [9], [10] the system (Rλ) was studied
in Lq(R; L2(Σ)), 1 < q < ∞, and, when g = 0, in vector-valued homogeneous Besov
space Ḃs

pq(R; Lr(Σ)) for 1 ≤ p, q ≤ ∞, s ∈ R, 1 < r < ∞. For partial results in the
Bloch space of uniformly square integrable functions on a cylinder we refer to [28].
Further results on stationary and instationary Stokes and Navier-Stokes systems in
unbounded cylindrical domains can be found in [2], [15], [16], [19]-[26], [28]-[30].

This paper is organized as follows. In Section 2 the main results of this paper
(Theorem 2.1, Corollary 2.2 and Theorem 2.3) and preliminaries are given. In
Section 3 we obtain the estimates for (Rλ,ξ) on the whole, half and bent half spaces.
Section 4 is devoted to obtain the estimate for (Rλ,ξ) on bounded domains, see
Theorem 4.4. In Section 5 proofs of the main results are given.

2 Main Results and Preliminaries

Let Ω = Σ × R be an infinite cylinder of Rn with bounded cross section Σ ⊂ Rn−1

and with generic point x ∈ Ω written in the form x = (x′, xn) ∈ Ω, where x′ ∈ Σ and
xn ∈ R. Similarly, differential operators in Rn are split, in particular, ∆ = ∆′ + ∂2

n

and ∇ = (∇′, ∂n).
For q ∈ (1,∞) we use the standard notation Lq(Ω) = Lq(R; Lq(Σ)) for classical

Lebesgue spaces with norm ‖·‖q = ‖·‖q;Ω and W k,q(Ω), k ∈ N, for the usual Sobolev
spaces with norm ‖ · ‖k,q;Ω. We do not distinguish between spaces of scalar functions
and vector-valued functions as long as no confusion arises. In particular, we use the
short notation ‖u, v‖r for ‖u‖r + ‖v‖r, even if u and v are tensors of different order.

Let 1 < r < ∞. A function 0 ≤ ω ∈ L1
loc(Rn−1) is called Ar-weight (Muckenhoupt

weight) on Rn−1 iff

Ar(ω) := sup
Q

(
1

|Q|

∫
Q

ω dx′
)
·
(

1

|Q|

∫
Q

ω−1/(r−1) dx′
)r−1

< ∞

where the supremum is taken over all cubes of Rn−1 and |Q| denotes the (n − 1)-
dimensional Lebesgue measure of Q. We call Ar(ω) the Ar-constant of ω and denote
the set of all Ar-weights on Rn−1 by Ar = Ar(Rn−1). Note that

ω ∈ Ar iff ω′ := ω−1/(r−1) ∈ Ar′ , r′ = r/(r − 1)

and Ar′(ω
′) = Ar(ω)r′/r. A constant C = C(ω) is called Ar-consistent if for every

d > 0
sup {C(ω) : ω ∈ Ar, Ar(ω) < d} < ∞.

We write ω(Q) for
∫

Q
ω dx′.

Given ω ∈ Ar, r ∈ (1,∞), and an arbitrary domain Σ ⊂ Rn−1 let

Lr
ω(Σ) =

{
u ∈ L1

loc(Σ̄) : ‖u‖r,ω = ‖u‖r,ω;Σ =
( ∫

Σ

|u|rω dx′
)1/r

< ∞
}

.

For short we will write Lr
ω for Lr

ω(Σ) provided that the underlying domain Σ is
known from the context. It is well-known that Lr

ω is a separable reflexive Banach
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space with dense subspace C∞
0 (Σ). In particular (Lr

ω)∗ = Lr′

ω′ . As usual, W k,r
ω (Σ),

k ∈ N, denotes the weighted Sobolev space with norm

‖u‖k,r,ω =
( ∑
|α|≤k

‖Dαu‖r
r,ω

)1/r
,

where |α| = α1+· · ·+αn−1 is the length of the multi-index α = (α1, . . . , αn−1) ∈ Nn−1
0

and Dα = ∂α1
1 · . . . · ∂αn−1

n−1 ; moreover, W k,r
0,ω(Σ) := C∞

0 (Σ)
‖·‖k,r,ω

and W−k,r
0,ω (Σ) :=

(W k,r′

0,ω′ (Σ))∗, where r′ = r/(r − 1). We introduce the weighted homogeneous Sobolev
space

Ŵ 1,r
ω (Σ) =

{
u ∈ L1

loc(Σ̄)/R : ∇′u ∈ Lr
ω(Σ)

}
with norm ‖∇′u‖r,ω and its dual space Ŵ−1,r′

ω′ := (Ŵ 1,r
ω )∗ with norm ‖ · ‖−1,r′,ω′ =

‖ · ‖−1,r′,ω′;Σ.
Let q, r ∈ (1,∞). On an infinite cylinder Ω = Σ × R, where Σ is a bounded

C1,1-domain of Rn−1, we introduce the function space Lq(Lr
ω) := Lq(R; Lr

ω(Σ)) with
norm

‖u‖Lq(Lr
ω) =

(∫
R

( ∫
Σ

|u(x′, xn)|rω(x′) dx′
)q/r

dxn

)1/q

.

Furthermore, W k;q,r
ω (Ω), k ∈ N, denotes the Banach space of all functions in Ω

whose derivatives of order up to k belong to Lq(Lr
ω) with norm ‖u‖W k;q,r

ω
=

(
∑

|α|≤k ‖Dαu‖2
Lq(Lr

ω))
1/2, where α ∈ Nn

0 , and let W 1;q,r
0,ω (Ω) be the completion of

the set C∞
0 (Ω) in W 1;q,r

ω (Ω). The weighted homogeneous Sobolev space Ŵ 1;q,r
ω (Ω) is

defined by
Ŵ 1;q,r

ω (Ω) = {u ∈ L1
loc(Ω)/R : ∇u ∈ Lq(Lr

ω)}
with norm ‖∇u‖Lq(Lr

ω). Finally, Lq(Lr
ω)σ is the completion in the space Lq(Lr

ω) of
the set

C∞
0,σ(Ω) = {u ∈ C∞

0 (Ω)n; div u = 0}.
The Fourier transform in the variable xn is denoted by F or̂and the inverse Fourier
transform by F−1 or ∨. For ε ∈ (0, π

2
) we define the complex sector

Sε = {λ ∈ C; λ 6= 0, |argλ| < π

2
+ ε}.

The first main theorem of this paper is as follows.

Theorem 2.1 (Weighted Resolvent Estimates) Let Σ be a bounded domain of
C1,1-class with α0 > 0 being the least eigenvalue of the Dirichlet Laplacian in Σ, and
let 0 < ε < π

2
, 1 < q, r < ∞ and ω ∈ Ar. Then for every f ∈ Lq(R; Lr

ω(Σ)), every
α ∈ (0, α0) and λ ∈ −α + Sε there exists a unique solution

(u, p) ∈
(
W 2;q,r

ω (Ω) ∩W 1;q,r
0,ω (Ω)

)
× Ŵ 1;q,r

ω (Ω)

to (Rλ) (with g = 0) satisfying the estimate

‖(λ + α)u,∇2u,∇p‖Lq(Lr
ω) ≤ C‖f‖Lq(Lr

ω) (2.1)

with an Ar-consistent constant C = C(q, r, α, ε, Σ,Ar(ω)) independent of λ.
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In particular we obtain from Theorem 2.1 the following corollary on resolvent
estimates of the Stokes operator in the cylinder Ω.

Corollary 2.2 (Stokes Operator and Stokes Semigroup) Let 1 < q, r < ∞,
ω ∈ Ar(Rn−1) and define the Stokes operator A = Aq,r;ω on Ω by

D(A) = W 2;q,r
ω (Ω) ∩W 1;q,r

0,ω (Ω) ∩ Lq(Lr
ω)σ ⊂ Lq(Lr

ω)σ, Au = −Pq,r;ω∆u, (2.2)

where Pq,r;ω is the Helmholtz projection in Lq(R; Lr
ω(Σ)) (see [8]). Then, for every

ε ∈ (0, π
2
) and α ∈ (0, α0), −α + Sε is contained in the resolvent set of −A, and the

estimate

‖(λ + A)−1‖L(Lq(Lr
ω)σ) ≤

C

|λ + α|
∀λ ∈ −α + Sε (2.3)

holds with an Ar-consistent constant C = C(Σ, q, r, α, ε,Ar(ω)).
As a consequence, the Stokes operator generates a bounded analytic semigroup

{e−tAq,r;ω ; t ≥ 0} on Lq(Lr
ω)σ satisfying the estimate

‖e−tAq,r;ω‖L(Lq(Lr
ω)σ) ≤ C e−αt ∀α ∈ (0, α0),∀t > 0 (2.4)

with a constant C = C(q, r, α, ε, Σ,Ar(ω)).

The second important result of this paper is the maximal regularity of the Stokes
operator in an infinite straight cylinder.

Theorem 2.3 (Maximal Regularity) Let 1 < p, q, r < ∞ and ω ∈ Ar(Rn−1).
Then the Stokes operator A = Aq,r;ω has maximal regularity in Lq(Lr

ω)σ. To be more
precise, for each f ∈ Lp(R+; Lq(Lr

ω)σ) the instationary system

ut + Au = f, u(0) = 0 (2.5)

has a unique solution u ∈ W 1,p(R+; Lq(Lr
ω)σ) ∩ Lp(R+; D(A)) such that

‖u, ut, Au‖Lp(R+;Lq(Lr
ω)σ) ≤ C‖f‖Lp(R+;Lq(Lr

ω)σ). (2.6)

Analogously, for every f ∈ Lp(R+; Lq(Lr
ω)), the instationary system

ut −∆u +∇p = f, div u = 0, u(0) = 0

has a unique solution (u,∇p) ∈
(
W 1,p(R+; Lq(Lr

ω)σ) ∩ Lp(R+; D(A))
)
×

Lp(R+; Lq(Lr
ω)) satisfying the a priori estimate

‖ut, u,∇u,∇2u,∇p‖Lp(R+;Lq(Lr
ω)) ≤ C‖f‖Lp(R+;Lq(Lr

ω)). (2.7)

Moreover, if eαtf ∈ Lp(R+; Lq(Lr
ω)σ) for some α ∈ (0, α0), then the solution u

satisfies the estimate

‖eαtu, eαtut, e
αtAu‖Lp(R+;Lq(Lr

ω)σ) ≤ C‖eαtf‖Lp(R+;Lq(Lr
ω)σ). (2.8)

In each estimate C = C(Σ, q, r,Ar(ω)) and C = C(Σ, q, r,Ar(ω), α), respectively.
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Remark 2.4 (1) We note that in (2.5) we may take nonzero initial values u(0) = u0

in the interpolation space (Lq(Lr
ω)σ, D(Aq,r;ω))1−1/p,p.

(2) By [1], Theorem 1.3, maximal regularity in Lq(Ω) of cI +Aq with some c > 0,
where Aq is the Stokes operator in Lq(Ω), will follow; this result is weaker than the
particular case q = r and ω ≡ 1 in Theorem 2.3.

For the proofs in Section 3 and Section 4, we need some preliminary results for
Muckenhoupt weights.

Proposition 2.5 ([8], Lemma 2.4) Let 1 < r < ∞ and ω ∈ Ar(Rn−1).
(1) Let T : Rn−1 → Rn−1 be a bijective, bi-Lipschitz vector field. Then also

ω ◦ T ∈ Ar(Rn−1) and Ar(ω ◦ T ) ≤ cAr(ω) with a constant c = c(T, r) > 0
independent of ω.

(2) Define the weight ω̃(x′) = ω(|x1|, x′′) for x′ = (x1, x
′′) ∈ Rn−1. Then ω̃ ∈ Ar

and Ar(ω̃) ≤ 2r Ar(ω).
(3) Let Σ ⊂ Rn−1 be a bounded domain. Then there exist s̃, s ∈ (1,∞) satisfying

Ls̃(Σ) ↪→ Lr
ω(Σ) ↪→ Ls(Σ).

Here s̃ and 1
s

are Ar-consistent. Moreover, the embedding constants can be chosen
uniformly on a set W ⊂ Ar provided that

sup
ω∈W

Ar(ω) < ∞,

∫
Q

ω dx′ = 1 for all ω ∈ W, (2.9)

for a cube Q ⊂ Rn−1 with Σ̄ ⊂ Q.

Proposition 2.6 ([8], Proposition 2.5) Let Σ ⊂ Rn−1 be a bounded Lipschitz do-
main and let 1 < r < ∞.

(1) For every ω ∈ Ar the continuous embedding W 1,r
ω (Σ) ↪→ Lr

ω(Σ) is compact.
(2) Consider a sequence of weights (ωj) ⊂ Ar satisfying (2.9) for W = {ωj :

j ∈ N} and a fixed cube Q ⊂ Rn−1 with Σ̄ ⊂ Q. Further let (uj) be a sequence of
functions on Σ satisfying

sup
j
‖uj‖1,r,ωj

< ∞ and uj ⇀ 0 in W 1,s(Σ)

for j →∞ where s is given by Proposition 2.5 (3). Then

‖uj‖r,ωj
→ 0 for j →∞.

(3) Under the same assumptions on (ωj) ⊂ Ar as in (2) consider a sequence of
functions (vj) on Σ satisfying

sup
j
‖vj‖r,ωj

< ∞ and vj ⇀ 0 in Ls(Σ)

for j →∞. Then considering vj as functionals on W 1,r′

ω′j
(Σ)

‖vj‖(W 1,r′
ω′

j
(Σ))∗

→ 0 for j →∞.
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Proposition 2.7 Let r ∈ (1,∞), ω ∈ Ar and Σ ⊂ Rn−1 be a bounded Lipschitz
domain. Then there exists an Ar-consistent constant c = c(r, Σ,Ar(ω)) > 0 such
that

‖u‖r,ω ≤ c‖∇′u‖r,ω

for all u ∈ W 1,r
ω (Σ) with vanishing integral mean

∫
Σ

u dx′ = 0.

Proof: See the proof of [14], Corollary 2.1 and its conclusions; checking the proof,
one sees that the constant c = c(r, Σ,Ar(ω)) is Ar-consistent.

Finally we cite the Fourier multiplier theorem in weighted spaces.

Theorem 2.8 ([17], Ch. IV, Theorem 3.9) Let m ∈ Ck(Rk \ {0}), k ∈ N, admit a
constant M ∈ R such that

|η|γ|Dγm(η)| ≤ M for all η ∈ Rk \ {0}

and multi-indices γ ∈ Nk
0 with |γ| ≤ k. Then for all 1 < r < ∞ and ω ∈ Ar(Rk)

the multiplier operator Tf = F−1m(·)F defined for all rapidly decreasing functions
f ∈ S(Rk) can be uniquely extended to a bounded linear operator from Lr

ω(Rk) to
Lr

ω(Rk). Moreover, there exists an Ar-consistent constant C = C(r,Ar(ω)) such
that

‖Tf‖r,ω ≤ CM‖f‖r,ω , f ∈ Lr
ω(Rk) .

3 The Problem (Rλ,ξ) in Half Spaces

Consider the parametrized resolvent problem (Rλ,ξ) for all ξ ∈ R∗ = R \ {0} and
λ ∈ Sε, 0 < ε < π

2
. In this section Σ denotes either Rn−1 or the half space

Σ = Rn−1
+ = {x′ = (x1, x

′′) : x′′ ∈ Rn−2, x1 > 0}, (3.1)

or a bent half space

Hσ = {x′ = (x1, x
′′) : x1 > σ(x′′), x′′ ∈ Rn−2}, (3.2)

where σ is a C1,1-function. For notational convenience we omit the symbol ̂ for the
one-dimensional Fourier transform; thus

u = (u′, un), p, f, g stand for û = (û′, ûn), p̂, f̂ , ĝ.

Let ω ∈ Ar(Rn−1) be an arbitrary Muckenhoupt weight. For the divergence g
(=̂ĝ), by the same argument as in Section 2 of [9], we may define, for r ∈ (1,∞)
and ξ ∈ R∗, the spaces

Ŵ 1,r
ω (Σ) ∩ Lr

ω,ξ(Σ) ∼= W 1,r
ω (Σ) with norm max{‖∇′u, ξu‖r,ω}

and
Ŵ−1,r

ω + Lr
ω,1/ξ := (Ŵ 1,r′

ω′ ∩ Lr′

ω′,ξ)
∗ ∼= (W 1,r′

ω′ )∗, r′ = r/(r − 1),
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with ξ−dependent norm

‖h; Ŵ−1,r
ω +Lr

ω,1/ξ‖ = inf{‖h0‖−1,r,ω +‖h1/ξ‖r,ω : h = h0 +h1, h0 ∈ Ŵ−1,r
ω , h1 ∈ Lr

ω}.

Assume that
f ∈ Lr

ω(Σ), g ∈ W 1,r
ω (Σ).

Note that W 1,r
ω (Σ) is obviously contained in the sum Ŵ−1,r

ω (Σ) + Lr
ω,1/ξ(Σ).

Now we start with the case Σ = Rn−1. Since C∞
0 (Rn−1) is dense in Ŵ 1,r′

ω′ (Rn−1),

if g = g0 + g1, g0 ∈ Ŵ−1,r
ω and g1 ∈ Lr

ω,1/ξ, is any splitting of g, Hahn-Banach’s
theorem implies the existence of a vector field h ∈ Lr

ω such that

g0 = div ′h, ‖g0‖−1,r,ω = ‖h‖r,ω.

An elementary calculation shows that p in (Rλ,ξ) satisfies the equation

(ξ2 −∆′)p = (λ + ξ2 −∆′)g − (div ′f ′ + iξfn). (3.3)

Introducing the (n−1)-dimensional Fourier transform ˜ with respect to x′ and with
phase variable s ∈ Rn−1 we get

p̃ = g̃ +
λ

ξ2 + |s|2
g̃ − is

ξ2 + |s|2
· f̃ ′ − iξ

ξ2 + |s|2
f̃n

= g̃ +
λis

ξ2 + |s|2
· h̃ +

λξ

ξ2 + |s|2
(g̃1/ξ)−

is

ξ2 + |s|2
· f̃ ′ − iξ

ξ2 + |s|2
f̃n.

Obviously the functions

mξ(s) =
sjsk

ξ2 + |s|2
,

sjξ

ξ2 + |s|2
,

ξ2

ξ2 + |s|2
, 1 ≤ j, k ≤ n− 1,

are classical multiplier functions satisfying the pointwise Hörmander-Michlin condi-
tion

|s|α|∇α
s mξ(s)| ≤ cα, 0 6= s ∈ Rn−1, α ∈ Nn−1

0 , |α| ≤ n− 1, (3.4)

uniformly with respect to ξ ∈ R∗. Then Theorem 2.7 applied to ∇′p and to ξp yields
the estimate

‖∇′p, ξp‖r,ω ≤ c(‖f,∇′g, ξg‖r,ω + ‖λh, λg1/ξ‖r,ω)

≤ c(‖f,∇′g, ξg‖r,ω + ‖λg0‖−1,r,ω + ‖λg1/ξ‖r,ω).
(3.5)

Next consider the Laplace resolvent equations for u′ and un, i.e.,

(λ + ξ2 −∆′)u′ = F ′ in Rn−1,

(λ + ξ2 −∆′)un = Fn in Rn−1
(3.6)

with resolvent parameters λ + ξ2, where F ′ := f ′ −∇′p, Fn := fn − iξp and p is the
solution to (3.3) satisfying (3.5). Again applying the (n − 1)-dimensional Fourier
transform with respect to x′ ∈ Rn−1 to (3.6), we get

ũ′ =
F̃ ′

λ + ξ2 + |s|2
, ũn =

F̃n

λ + ξ2 + |s|2
.
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Therefore, using the fact that

λ + ξ2

λ + ξ2 + |s|2
,

√
λ + ξ2sj

λ + ξ2 + |s|2
,

sjsk

λ + ξ2 + |s|2
, j, k = 1, . . . , n− 1,

are Fourier multipliers satisfying (3.4), we get the existence of a solution u = (u′, un)
to (3.6) satisfying

‖(λ + ξ2)u,
√

λ + ξ2∇′u,∇′2u‖r,ω ≤ c‖f,∇′p, ξp‖r,ω

≤ c(‖f,∇′g, ξg‖r,ω + ‖λg0‖−1,r,ω + ‖λg1/ξ‖r,ω)
(3.7)

with Ar-consistent constants c = c(ε, r,Ar(ω)).

Let µ = |λ + ξ2|1/2. We can prove the following theorem.

Theorem 3.1 Let Σ = Rn−1, 1 < r < ∞ and ω ∈ Ar(Rn−1). If f ∈ Lr
ω(Σ) and

g ∈ W 1,r
ω (Σ), then for every λ ∈ Sε, 0 < ε < π

2
, and ξ ∈ R∗ the problem (Rλ,ξ) has a

unique solution (u, p) ∈ W 2,r
ω (Σ)×W 1,r

ω (Σ) satisfying

‖µ2u, µ∇′u,∇′2u,∇′p, ξp‖r,ω ≤ c
(
‖f,∇′g, ξg‖r,ω + ‖λg; Ŵ−1,r

ω + Lr
ω,1/ξ‖

)
(3.8)

with an Ar-consistent constant c = c(ε, r,Ar(ω)).

Proof: Let u be a solution to (3.6) where p is a solution to (3.3). We have already
seen that (u, p) ∈ W 2,r

ω (Σ)×W 1,r
ω (Σ) satisfies the estimate (3.8) since g = g0 + g1 in

the estimate (3.5), (3.7) is an arbitrary splitting of g ∈ Ŵ−1,r
ω + Lr

ω,1/ξ. Therefore,

for the proof of the existence of a solution, it is enough to show that (u, p) solves
the divergence equation of (Rλ,ξ). A simple calculation with (3.3) and (3.6) yields

(λ + ξ2 −∆′)(div ′u′ + iξun − g) = 0 in Rn−1.

Hence standard arguments from Fourier analysis show that div ′u′ + iξun = g. The
uniqueness of the solution is obvious from the above Fourier multiplier technique,
i.e., if (u, p) is a solution to (Rλ,ξ) with f = 0, g = 0, then u satisfies (3.6) with
f = 0 and (ξ2 −∆′)p = 0 yielding p = 0, and hence u = 0.

In the next main step we consider the case Σ = Rn−1
+ , see (3.1). Just as for

x′ = (x1, x
′′) we write u′ = (u1, u

′′), f ′ = (f1, f
′′). For a function h : Σ → R define

the even extension he by

he(x1, x
′′) =

{
h(x1, x

′′) for x1 > 0
h(−x1, x

′′) for x1 < 0,

while the odd extension ho of h is defined by

ho(x1, x
′′) = −h(−x1, x

′′) for x1 < 0.

Given (Rλ,ξ) in (Σ), take the even extension f ′′e of f ′′, fne of fn and ge of g, but the
odd extension f1o of f1. Then obviously

(f1o, f
′′
e , fne) ∈ Lr

ω̃(Rn−1), ge ∈ W 1,r
ω̃ (Rn−1),

9



where ω̃(x1, x
′′) = ω(|x1|, x′′). Note that Ar(ω̃) ≤ 2r Ar(ω), see Proposition 2.5 (2).

It is clear that
‖ho, he‖r,ω̃;Rn−1 ≤ c(r) ‖h‖r,ω;Σ; (3.9)

moreover, for a function h ∈ Lr
ω(Rn−1

+ ) ∩ Ŵ−1,r
ω (Rn−1

+ ) we get

‖he‖Ŵ−1,r
ω̃ (Rn−1) = sup

ϕ

∣∣ ∫
Rn−1

he ϕ dx′
∣∣

= sup
ϕ

∣∣ ∫
Σ

hϕ dx′ +

∫
Σ

hϕ(−x1, x
′′) dx′

∣∣
≤ 2‖h‖Ŵ−1,r

ω (Σ),

(3.10)

where the supremum is taken over all ϕ ∈ C∞
0 (Rn−1) with ‖∇′ϕ‖r′,ω′;Rn−1 ≤ 1.

Now we will solve (Rλ,ξ) in the whole space Rn−1 with right-hand side
(f1o, f

′′
e , fne), ge. By the uniqueness assertion it is easily seen that the solution (U, P )

of this extended problem is even with respect to x1 except for the component U1

which is odd with respect to x1. In particular U1 = 0 for x1 = 0 and, due to (3.8),

‖µ2U, µ∇′U,∇′2U,∇′P, ξP‖r,ω;Σ

≤ c
(
‖f1o, f

′′
e , fne,∇′ge, ξge‖r,ω̃;Rn−1 + ‖λge; Ŵ

−1,r
ω̃ (Rn−1) + Lr

ω̃,1/ξ(Rn−1)‖
) (3.11)

where µ = |λ + ξ2|1/2 and the constant c is Ar-consistent due to Proposition 2.5.
Thus, from (3.9)–(3.11), we get

‖µ2U, µ∇′U,∇′2U,∇′P, ξP‖r,ω;Σ

≤ c
(
‖f,∇′g, ξg‖r,ω;Σ + ‖λg; Ŵ−1,r

ω + Lr
ω,1/ξ‖

) (3.12)

with an Ar-consistent constant c = c(ε, r,Ar(ω)).
Subtracting (U, P ) in (Rλ,ξ), the parametrized resolvent problem (Rλ,ξ) is re-

duced to the homogeneous system

(λ + ξ2 −∆′)u′ +∇′p = 0 in Σ = Rn−1
+

(λ + ξ2 −∆′)un + iξp = 0 in Σ

div ′u′ + iξun = 0 in Σ

(3.13)

with inhomogeneous boundary values

u = Φ := U |∂Σ on ∂Σ. (3.14)

With the splittings ∆′ = ∂2
1 +∆′′, div ′u′ = ∂1u1 +div ′′u′′ and ∇′ = (∂1,∇′′) elemen-

tary operations with (3.13), (3.14) yield the fourth order equation

(λ + ξ2 −∆′)(ξ2 −∆′)u1 = 0 in Σ
u1 = 0 on ∂Σ

∂1u1 = −div ′′Φ′′ − iξΦn on ∂Σ.
(3.15)
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Let us introduce the additional partial Fourier transform Fσ =˜ with respect to
the variable x′′ ∈ Rn−2 and with phase variable σ ∈ Rn−2. Applying ˜ to (3.15), we
get the fourth order ordinary differential equation (s = |σ|)

(λ + ξ2 + s2 − ∂2
1)(ξ

2 + s2 − ∂2
1)ũ1 = 0 for x1 > 0

ũ1 = 0 at x1 = 0

∂1ũ1 = −iσ · Φ̃′′ − iξΦ̃n at x1 = 0.
(3.16)

For fixed λ ∈ Sε, ξ ∈ R∗ and σ ∈ Rn−2 (3.16) has a unique bounded solution ũ1 in
(0,∞), namely

ũ1(x1, σ, ξ) =
e−
√

λ+ξ2+s2x1 − e−
√

ξ2+s2x1√
λ + ξ2 + s2 −

√
ξ2 + s2

(iσ · Φ̃′′ + iξΦ̃n)|∂Σ. (3.17)

Furthermore (3.13), (3.17) yield after some elementary calculations

p(x′, ξ) = −F−1
σ ( 1

ξ2+s2 (λ + ξ2 + s2 − ∂2
1)∂1ũ1)

= −F−1
σ

(√
λ+ξ2+s2+

√
ξ2+s2√

ξ2+s2
e−
√

ξ2+s2x1(iσ · Φ̃′′ + iξΦ̃n)
)

= F−1
σ

(
(1 +

√
λ+ξ2+s2√

ξ2+s2
)ṽ

)
,

(3.18)

where
v = F−1

σ

(
− e−

√
ξ2+s2x1(iσ · Φ̃′′ + iξΦ̃n)

)
. (3.19)

For every nonzero complex number µ and k = 1, 2 let W k,r
ω,µ(Rn−1) denote the

weighted Sobolev space W k,r
ω (Rn−1) endowed with the norm

‖u‖W k,r
ω,µ(Rn−1) = ‖∇′ku, µu‖r,ω;Rn−1 , k = 1, 2.

Similarly we define the space W k,r
ω,µ(Rn−1

+ ), k = 1, 2, on the half space Rn−1
+ . Using

the trace operator γ, well-defined for functions from W k,r
loc (Rn−1

+ ), we may define the
trace space T k,r

ω,µ(Rn−2), k = 1, 2, by

T k,r
ω,µ(Rn−2) := γW k,r

ω,µ(Rn−1
+ ), ‖φ‖T k,r

ω,µ(Rn−2) = inf
γu=φ

‖u‖W k,r
ω,µ(Rn−1

+ ).

Obviously the set C∞
0 (Rn−1) is dense in the Banach space T k,r

ω,µ(Rn−2), k = 1, 2. We

note that for φ ∈ T 2,r
ω,µ(Rn−2) and µ ∈ Sε the function Rµφ := F−1

σ (e−
√

µ+s2x1φ̃) ∈
W 2,r

ω (Rn−1
+ ) is the unique solution to the Laplace resolvent equation

(µ−∆′)q = 0 in Rn−1
+ , q|Rn−2 = φ (3.20)

(see [13], Theorem 4.5). Furthermore, by standard techniques using Fourier multi-
plier theory one can easily see that Rµφ satisfies the estimates

‖Rµφ‖W 2,r
ω,µ(Rn−1

+ ) ≤ c(r, ε,Ar(ω))‖φ‖T 2,r
ω,µ(Rn−2), (3.21)

‖Rµφ‖W 1,r
ω,
√

µ
(Rn−1

+ ) ≤ c(r, ε,Ar(ω))‖φ‖T 1,r
ω,
√

µ
(Rn−2). (3.22)

11



Lemma 3.2 Let m ∈ Cn−2(Rn−2\{0}). If m(σ) as well as

√
ξ2+s2

s
m(σ), ξ ∈ R∗, are

(n−2)-dimensional multiplier functions satisfying the pointwise Hörmander-Michlin
condition, see Theorem 2.8, with a constant K > 0 independent of ξ ∈ R∗, then the
operator M : S(Rn−2) → S ′(Rn−2) defined by

Mφ = F−1
σ (m(σ)φ̃)

is a bounded operator in L(T 1,r
ω,ξ(Rn−2)) with ‖M‖L(T 1,r

ω,ξ(Rn−2)) ≤ c(r, ε,Ar(ω))K.

Proof: Let φ ∈ S(Rn−2), let τ be the Fourier phase variable for the partial Fourier

transform with respect to x1, and let η = (τ, σ). Note that Fx1

(
e−
√

ξ2+s2|x1|
)

=
2
√

ξ2+s2

ξ2+s2+τ2 and F−1
τ

(√ξ2+s2+s

s
s2

s2+τ2Fx1e
−
√

ξ2+s2|x1|
)∣∣

x1=0
= 1. Hence, by the definition

of the space T 1,r
ω,ξ(Rn−2), we get

‖Mφ‖T 1,r
ω,ξ(Rn−2)

≤
∥∥F−1

σ

(
m(σ)F−1

τ (

√
ξ2+s2+s

s
s2

s2+τ2Fx1e
−
√

ξ2+s2|x1|)φ̃
)∥∥

W 1,r
ω,ξ(Rn−1

+ )

≤
∥∥∥F−1

η

(
m(σ)

(√ξ2+s2+s

s
s2

s2+τ2Fx1e
−
√

ξ2+s2|x1|
)
φ̃
)∥∥∥

W 1,r
ω,ξ(Rn−1)

.

(3.23)

Since m(σ)

√
ξ2+s2+s

s
s2

s2+τ2 is easily seen to be an (n − 1)-dimensional Fourier
multiplier by the assumptions on m, we get from (3.23), (3.22) that

‖Mφ‖T 1,r
ω,ξ(Rn−2) ≤ c(Ar(ω))K‖F−1

σ (e−
√

ξ2+s2|x1|φ̃)‖W 1,r
ω,ξ(Rn−1)

≤ c(Ar(ω))K‖F−1
σ (e−

√
ξ2+s2x1φ̃)‖W 1,r

ω,ξ(Rn−1
+ )

≤ c(r, ε,Ar(ω))K‖φ‖T 1,r
ω,ξ(Rn−2).

The proof of the lemma is complete.

Lemma 3.3 The function p defined by (3.18) satisfies the estimate

‖∇′p, ξp‖r,ω;Σ ≤ c
(
‖f,∇′g, ξg‖r,ω;Σ + ‖λg; Ŵ−1,r

ω (Σ) + Lr
ω,1/ξ(Σ)‖

)
with an Ar-consistent constant c = c(r, ε,Ar(ω)).

Proof: First we shall show for the function v in (3.19) the estimate

‖∇′v, ξv‖r,ω;Σ ≤ c
(
‖f,∇′g, ξg‖r,ω;Σ + ‖λg; Ŵ−1,r

ω (Σ) + Lr
ω,1/ξ(Σ)‖

)
, (3.24)

with an Ar-consistent constant c = c(r, ε,Ar(ω)). Since v solves the equation
(ξ2 − ∆′)v = 0 in Rn−1

+ with boundary condition v|∂Σ = −div ′′Φ′′ − iξΦn, stan-
dard techniques (see [13], Theorem 4.4) and a scaling argument yield a constant
c = c(r,Ar(ω)) > 0 independent of ξ ∈ R∗ such that

‖∇′v, ξv‖r,ω;Σ ≤ c‖∇′(div ′′U ′′ + iξUn), ξ(div ′′U ′′ + iξUn)‖r,ω;Σ.

12



Hence (3.12) yields (3.24).
Now let µ = λ + ξ2. We shall show the auxiliary estimate

‖F−1
σ

(√
µ + s2e−

√
ξ2+s2x1(σ · Φ̃′′ + ξΦ̃n)

)
‖r,ω;Σ

≤ c(r, ε,Ar(ω))
(
‖f,∇′g, ξg‖r,ω;Σ + ‖λg; Ŵ−1,r

ω (Σ) + Lr
ω,1/ξ(Σ)‖

)
.

(3.25)

By (3.22) we get∥∥F−1
σ

(√
µ + s2e−

√
ξ2+s2x1(σ · Φ̃′′ + ξΦ̃n)

)∥∥
r,ω;Σ

=
∥∥∂1F−1

σ

(
e−
√

ξ2+s2x1
√

µ + s2( σ√
ξ2+s2

· Φ̃′′ + ξ√
ξ2+s2

Φ̃n)
)∥∥

r,ω;Σ

≤ c
∥∥F−1

σ

(√
µ + s2( σ√

ξ2+s2
· Φ̃′′ + ξ√

ξ2+s2
Φ̃n)

)∥∥
T 1,r

ω,ξ

(3.26)

where c = c(r, ε,Ar(ω)) > 0. Note that σk√
ξ2+s2

, k = 2, . . . , n − 1, and 1 − ξ√
ξ2+s2

satisfy the assumption of Lemma 3.2 with a constant K > 0 independent of ξ ∈ R∗.
Hence Lemma 3.2 and the fact that ‖ϕ‖T 1,r

ω,ξ
≤ c(ε)‖ϕ‖T 1,r

ω,
√

µ
for ϕ ∈ T 1,r

ω,ξ(R
n−2
+ ) yield∥∥F−1

σ

(√
µ + s2e−

√
ξ2+s2x1(σ · Φ̃′′ + ξΦ̃n)

)∥∥
r,ω;Σ

≤ c
∥∥F−1

σ

(
( σ√

ξ2+s2
·
√

µ + s2 Φ̃′′ + (1− ξ√
ξ2+s2

)
√

µ + s2 Φ̃n)
)∥∥

T 1,r
ω,ξ

+‖F−1
σ (

√
µ + s2 Φ̃n)‖T 1,r

ω,ξ

≤ c‖F−1
σ (

√
µ + s2 Φ̃)‖T 1,r

ω,ξ
≤ c‖F−1

σ (
√

µ + s2 Φ̃)‖T 1,r
ω,
√

µ

≤ c‖F−1
σ (

√
µ + s2e−

√
µ+s2x1 Φ̃)‖W 1,r

ω,
√

µ
= c‖∂1RµΦ‖W 1,r

ω,
√

µ

(3.27)

where c = c(r, ε,Ar(ω)) > 0. Then, by interpolation and (3.21), we get

‖∂1RµΦ‖W 1,r
ω,
√

µ
≤ c‖RµΦ‖W 2,r

ω,µ
≤ c‖Φ‖T 2,r

ω,µ
≤ c‖µU,∇′2U‖r,ω;Σ

where c = c(r, ε,Ar(ω)) > 0. Hence, from (3.12), (3.27) we get (3.25).

To complete the proof, we must obtain an estimate for h := F−1
σ

(√µ+s2√
ξ2+s2

ṽ
)
;

see (3.18), (3.19). Note that ∂1h is just the left-hand side of (3.25). More-
over, ∇′′h, ξh are represented by the left-hand side of (3.25) with Φ replaced by

F−1
σ ( σΦ̃√

ξ2+s2
),F−1

σ ( ξΦ̃√
ξ2+s2

), respectively. Therefore, using that
σjσk

ξ2+s2 ,
σkξ

ξ2+s2 , j, k =

2, . . . , n−1, and 1− ξ2

ξ2+s2 satisfy the assumptions of Lemma 3.2, we get by the same
technique as before that

‖∇′′h, ξh‖r,ω;Σ ≤ c
(
‖f,∇′g, ξg‖r,ω;Σ + ‖λg; Ŵ−1,r

ω (Σ) + Lr
ω,1/ξ(Σ)‖

)
with an Ar-consistent constant c = c(r, ε,Ar(ω)).

The proof of the lemma is complete.

Now we can prove the following theorem.
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Theorem 3.4 With Σ = Rn−1
+ the assertions of Theorem 3.1 remain true. In

particular the a priori estimate (3.8) holds.

Proof: Consider the system

(µ−∆′)u′ = −∇′p in Σ

(µ−∆′)un = −iξp in Σ

u = U on ∂Σ

(3.28)

for (u′, un) where p is defined by (3.18). By standard techniques, cf. [13], §4.2,
and a scaling argument we get that (3.28) has a unique solution u := (u′, un) ∈
W 2,r

ω (Σ) ∩W 1,r
0,ω(Σ) satisfying

‖µu,
√

µ∇′u,∇′2u‖r,ω;Σ ≤ c‖∇′p, ξp, µU,∇′2U‖r,ω;Σ

with an Ar-consistent constant c = c(r,Ar(ω)). Thus, by Lemma 3.3 it follows that
the functions u, p satisfy (3.8) with Σ = Rn−1

+ .
Now, for the proof of existence, it remains to show that u satisfies the divergence

equation. From the expression for p one can infer that

(−∆′ + ξ2)p = 0. (3.29)

Hence, from (3.28) we get

(µ−∆′)(div ′u′ + iξun) = 0 in Σ.

Furthermore (3.28), (3.29) imply (3.17), (3.18) with (iσ · Ũ ′′ + iξŨn)|∂Σ replaced by
(−∂1ũ1)|∂Σ. Therefore we have (iσ·Ũ ′′+iξŨn)|∂Σ = (−∂1ũ1)|∂Σ, i.e., div ′u′+iξun = 0
on ∂Σ. Thus div ′u′ + iξun = 0 in Σ.

For the proof of uniqueness let (u, p) ∈
(
W 2,r

ω (Rn−1
+ )∩W 1,r

0,ω(Rn−1
+ )

)
×W 1,r

ω (Rn−1
+ )

be a solution to (Rλ,ξ) with right-hand side 0. Then Proposition 2.5 (3) yields
(u, p) ∈

(
W 2,s(Rn−1

+ ) ∩W 1,s
0 (Rn−1

+ )
)
×W 1,s(Rn−1

+ ) with some s ∈ (1, r). Therefore,
from the uniqueness result for (Rλ,ξ) in spaces without weight we get (u, p) = 0, see
[9], Theorem 2.2.

Now the proof of this theorem is complete.

The third main step of this section concerns (Rλ,ξ) in a bent half space Σ = Hσ,
see (3.2). Note that as before u, p etc. stand for the Fourier transforms û, p̂ etc.

Theorem 3.5 Let n ≥ 3, 1 < r < ∞, ω ∈ Ar(Rn−1), 0 < ε < π/2 and

Σ = Hσ = {x′ = (x1, x
′′); x1 > σ(x′′), x′′ ∈ Rn−2}

for a given function σ ∈ C1,1(Rn−2). Then there are Ar-consistent constants K0 =
K0(r, ε,Ar(ω)) > 0 and λ0 = λ0(r, ε,Ar(ω)) > 0 such that, provided ‖∇′σ‖∞ ≤ K0,
for every λ ∈ Sε, |λ| ≥ λ0, every ξ ∈ R∗ and

f ∈ Lr
ω(Σ), g ∈ W 1,r

ω (Σ), (3.30)
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the parametrized resolvent problem (Rλ,ξ) has a unique solution (u, p) ∈ (W 2,r
ω (Σ) ∩

W 1,r
0,ω(Σ))×W 1,r

ω (Σ). This solution satisfies the estimate (µ = |λ + ξ2|1/2)

‖µ2u, µ∇′u,∇′2u,∇′p, ξp‖r,ω

≤ c
(
‖f,∇′g, ξg‖r,ω + ‖λg; Ŵ−1,r

ω (Σ) + Lr
ω,1/ξ(Σ)‖

) (3.31)

with an Ar-consistent constant c = c(r, ε,Ar(ω)). If (3.30) is satisfied for an addi-
tional exponent s ∈ (1,∞) and weight ν ∈ Ar(Rn−1) and if ‖∇′σ‖∞ ≤ K0 for some
constant K0 = K0(r, s, ε,Ar(ω),As(ν)) > 0, then the assertion (3.31) holds true
with Ls

ν-norms for all λ ∈ Sε, |λ| ≥ λ0, for some λ0 = λ0(r, s, ε,Ar(ω),As(ν)) > 0
as well.

Proof: By the transformation

Φ : Hσ → Rn−1
+ , x′ 7→ x̃′ = (x̃1, x̃

′′) = Φ(x′) = (x1 − σ(x′′), x′′),

the problem (Rλ,ξ) in Hσ is reduced to a modified version of (Rλ,ξ) in the half space
H = Rn−1

+ . Note that Φ is a bijection with Jacobian equal to 1. For a function u on
Hσ define ũ on H by

ũ(x̃′) = u(Φ−1(x̃′) = u(x′).

Further let ∂̃i = ∂/∂x̃i, i = 1, · · · , n − 1, ∇̃′ = (∂̃1, ∇̃′′) etc. denote the standard
differential operators acting on the variable x̃ ∈ H.

Since ∂iu = (∂̃i − (∂iσ)∂̃1)ũ for i = 1, · · · , n− 1, we easily get

∆′u(x′, ξ) =
(
∆̃′ + |∇′σ|2∂̃2

1 − 2∇′σ · (∇̃′∂̃1)− (∆′′σ)∂̃1

)
ũ(x̃′, ξ)

∇′p(x′, ξ) =
(
∇̃′ − (∇′σ)∂̃1

)
p̃(x̃′, ξ)

div ′u′(x′, ξ) =
(
d̃iv ′ −∇′σ · ∂̃1

)
ũ′(x̃′, ξ)

(3.32)

and a similar formula for ∇′2u(x′, ξ). Note that by the change of variable x̃′ =
Φ(x′), x′ ∈ Rn−1, the Muckenhoupt weight ω ∈ Ar(Rn−1) is mapped to ω̃ ∈ Ar(Rn−1)
satisfying

c−1Ar(ω̃) ≤ Ar(ω) ≤ cAr(ω̃) (3.33)

with c independent of ω, cf. Proposition 2.5 (1). Therefore, it follows from (3.32)
that for u ∈ W 2,r(Σ)

‖u‖r,ω;Hσ = ‖ũ‖r,ω̃;H

‖∇′u‖r,ω;Hσ ≤ c(1 + K)‖∇̃′ũ‖r,ω̃;H

‖∇′2u‖r,ω;Hσ ≤ c(1 + K2)‖∇̃′2ũ‖r,ω̃;H + cL‖∂̃1ũ‖r,ω̃;H ,

(3.34)

where K = ‖∇′σ‖∞, L = ‖∇′2σ‖∞ and c is independent of the weight ω. Further-
more, ‖f, ξg‖r,ω;Hσ = ‖f̃ , ξg̃‖r,ω̃;H and ‖∇′g‖r,ω;Hσ ≤ c(1 + K)‖∇̃′g̃‖r,ω̃;H with c > 0

independent of ω. Concerning the norm of g in Ŵ−1,r
ω (Hσ) + Lr

ω,1/ξ(Hσ) note that

for a function g0 ∈ Ŵ−1,r
ω (Hσ) ∩ Lr

ω(Hσ) and all test functions ϕ ∈ C∞
0 (H̄σ)∫

Hσ
g0ϕdx′ =

∫
H

g̃0ϕ̃ dx̃′

≤ ‖g̃0‖−1,r,ω̃;H‖∇̃′ϕ̃‖r′,(ω̃)′;H

≤ c(1 + ‖∇′σ‖∞)‖g̃0‖−1,r,ω̃;H‖∇′ϕ‖r′,ω′;Hσ
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with a constant c independent of ω; here we used that (ω̃)′ = (̃ω′), ω′ = ω− 1
r−1 .

Since C∞
0 (H̄σ) is dense in Ŵ 1,r′

ω̃′ (Hσ) (see e.g. [13], Corollary 4.1), we get

‖g0‖−1,r,ω;Hσ ≤ c(1 + K)‖g̃0‖−1,r,ω̃;H .

Then for every ξ ∈ R∗ and every decomposition of g into g = g0 + g1 with g0 ∈
Ŵ−1,r

ω (Hσ), g1 ∈ Lr
ω(Hσ)

‖g0‖−1,r,ω;Hσ + ‖g1/ξ‖r,ω;Hσ ≤ c(1 + K)(‖g̃0‖−1,r,ω̃;H + ‖g̃1/ξ‖r,ω̃;H),

where c > 0 is independent of ω; note that g̃ = g̃0 + g̃1 gives all admissible decom-
positions of g̃ ∈ Ŵ−1,r

ω̃ (H) + Lr
ω̃,1/ξ(H). Consequently

‖g; Ŵ−1,r
ω (Hσ) + Lr

ω,1/ξ(Hσ)‖ ≤ c(1 + K) ‖g̃; Ŵ−1,r
ω̃ (H) + Lr

ω̃,1/ξ(H)‖. (3.35)

To apply Kato’s perturbation theorem we introduce for every ξ ∈ R∗ on Hσ the
ξ-dependent Banach spaces (µ = |λ + ξ2|1/2)

X = (W 2,r
ω ∩W 1,r

0,ω)n ×W 1,r
ω , ‖u, p‖X = ‖µ2u, µ∇′u,∇′2u,∇′p, ξp‖r,ω;Hσ ,

Y = (Lr
ω)n ×W 1,r

ω , ‖f, g‖Y = ‖f,∇′g, ξg‖r,ω;Hσ + ‖λg; Ŵ−1,r
ω (Hσ) + Lr

ω,1/ξ(Hσ)‖,

and on H similar spaces (X̃ , ‖ · ‖X̃ ), (Ỹ , ‖ · ‖Ỹ) with the weight ω̃ instead of ω. Then
it follows from (3.34), (3.35) that

‖(u, p)‖X ≤ c(1+K +K2 +L/µ)‖(ũ, p̃)‖X̃ , ‖(f, g)‖Y ≤ c(1+K)‖(f̃ , g̃)‖Ỹ , (3.36)

and exchanging the role of the variables x′ and x̃′, we get

‖(ũ, p̃)‖X̃ ≤ c(1+K +K2 +L/µ)‖(u, p)‖X , ‖(f̃ , g̃)‖Ỹ ≤ c(1+K)‖(f, g)‖Y , (3.37)

with constants c > 0 not depending on ω, λ and ξ. Further define the operators

S : X → Y , S(u, p) =

 (λ + ξ2 −∆′)u′ +∇′p
(λ + ξ2 −∆′)un + iξp

div ′u′ + iξun

 ,

and analogously S̃ : X̃ → Ỹ . By (3.32) we get the decomposition

S(u, p) = S̃(ũ, p̃) +R(ũ, p̃)

with a remainder term R : X̃ → Ỹ ,

R(ũ, p̃)(x̃′, ξ) =

 −(∇′σ)∂̃1p̃
0

−(∇′σ) · ∂̃1ũ
′


+

(
−|∇′σ|2∂̃2

1 ũ + 2∇′σ · ∇̃′∂̃1ũ + (∆′′σ)∂̃1ũ
0

)
16



not depending explicitly on λ and ξ. Since ũ|∂H = 0 and ∂̃1(∇′σ) = 0, we have∫
H

−(∇′σ) · ∂̃1ũ
′ ϕ dx̃′ =

∫
H

(∇′σ) · ũ′ ∂̃1ϕ dx̃′

for all ϕ ∈ C∞
0 (H̄); consequently

‖ − (∇′σ) · ∂̃1ũ
′; Ŵ−1,r

ω̃ (H) + Lr
ω̃,1/ξ(H)‖ ≤ ‖ − (∇′σ) · ∂̃1ũ

′‖−1,r,ω̃;H ≤ K‖ũ‖r,ω̃;H .

Hence

‖R(ũ, p̃)‖Ỹ ≤ c(K + K2)‖λũ, ξ∇̃′ũ, ∇̃′2ũ, ∇̃′p̃‖r,ω̃;H + L‖∇̃′ũ‖r,ω̃;H

≤ cε(K + K2 + L
µ
)‖(ũ, p̃)‖X̃

≤ cε(K + K2 + L√
|λ|

)‖(ũ, p̃)‖X̃ ,

(3.38)

where c, cε > 0 are independent of ω, ω̃; note that |λ| < µ2

cos ε
and |ξ| < µ(1 + 1

cos ε
)1/2

for all λ ∈ Sε.
Due to Theorem 3.2 and (3.33) S̃ : X̃ → Ỹ is an isomorphism such that

‖(ũ, p̃)‖X̃ ≤ C1‖S̃(ũ, p̃)‖Ỹ with an Ar-consistent constant C1 = C1(r, ε,Ar(ω)) in-
dependent of λ ∈ Sε, ξ ∈ R∗. Therefore, it follows from (3.38) that there exist
Ar-consistent constants δ0 = δ(ε, r,Ar(ω)), λ0 = λ(ε, r,Ar(ω)) such that, if K ≤ δ0

and λ ∈ Sε, |λ| ≥ λ0, then

‖R(ũ, p̃)‖Ỹ ≤
1

2
‖S(ũ, p̃)‖Ỹ for all (ũ, p̃) ∈ X̃ .

Hence S̃ +R is an isomorphism from X̃ to Ỹ satisfying

‖(ũ, p̃)‖X̃ ≤ 2C1‖(S̃ +R)(ũ, p̃)‖Ỹ .

Thus, considering (3.32), (3.36) and (3.37), if ‖∇′′σ‖∞ ≤ δ0 and λ ∈ Sε, |λ| ≥ λ0,
we get

‖(u, p)‖X ≤ C2‖(ũ, p̃)‖X̃
≤ 2C1C2‖S̃(ũ, p̃)‖Ỹ
≤ C3‖S(u, p)‖Y ,

where the constants Ci = Ci(ε, r,Ar(ω)), i = 1, 2, 3, are Ar-consistent and indepen-
dent of λ ∈ Sε, |λ| ≥ λ0 and ξ ∈ R∗. Thus, existence of a unique solution to (Rλ,ξ)
in Hσ has been proved.

Assume that (3.30) is satisfied for an additional exponent s 6= r and weight
ν ∈ As(Rn−1). Repeating the above argument for the index s, we see S to be an
isomorphism from Xs ∩ Xr to Ys ∩ Yr for |λ| ≥ λ0 = λ0(r, s, ε,Ar(ω),As(ν)) under
the given smallness condition ‖∇′′σ‖∞ ≤ δ0(r, s, ε,Ar(ω),As(ν)). Now the proof of
Theorem 3.3 is complete.
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4 The Problem (Rλ,ξ) in Bounded Domains

For a bounded domain the definition of the space for the divergence g has to be
modified since it is impossible to think of the sum of Ŵ−1,r(Σ) and Lr(Σ). On the
bounded domain Σ ⊂ Rn−1 of C1,1-class let α0 denote the smallest eigenvalue of the
Laplacian, i.e.

0 < α0 = inf{‖∇u‖2
2 : u ∈ W 1,2

0 (Σ), ‖u‖2 = 1}.

For fixed λ ∈ C \ (−∞,−α0], ξ ∈ R and ω ∈ Ar we introduce the parametrized
Stokes operator S = Sω

r,λ,ξ by

S(u, p) =

 (λ + ξ2 −∆′)u′ +∇′p
(λ + ξ2 −∆′)un + iξp

− divξu


defined on D(S) = D(∆′

r,ω)×W 1,r
ω (Σ), where D(∆′

r,ω) = W 2,r
ω (Σ) ∩W 1,r

0,ω(Σ) and

divξu = div ′u′ + iξun.

For ω ≡ 1 the operator Sω
r,λ,ξ will be denoted by Sr,λ,ξ. Note that the image of D(S)

by divξ is included in W 1,r
ω (Σ) and W 1,r

ω (Σ) ⊂ Lr
m,ω(Σ) + Lr

ω(Σ), where

Lr
m,ω(Σ) :=

{
u ∈ Lr

ω(Σ) :

∫
Σ

u dx′ = 0
}
.

Using Poincaré’s inequality in weighted spaces, see Proposition 2.7, one can easily
check the continuous embedding Lr

m,ω(Σ) ↪→ Ŵ−1,r
ω (Σ); more precisely,

‖u‖−1,r,ω ≤ c‖u‖r,ω , u ∈ Lr
m,ω(Σ),

with an Ar-consistent constant c > 0. For convenience we use the notation

‖g; Lr
m,ω + Lr

ω,1/ξ‖0 := inf{‖g0‖−1,r,ω + ‖g1/ξ‖r,ω : g = g0 + g1, g0 ∈ Lr
m,ω, g1 ∈ Lr

ω};

note that this norm is equivalent to the norm ‖ · ‖
(W 1,r′

ω′,ξ)∗
where W 1,r′

ω′,ξ is the usual

weighted Sobolev space on Σ with norm ‖∇′u, ξu‖r′,ω′ .
In the following, we consider the resolvent problem (Rλ,ξ) for arbitrary λ ∈

−α0 + Sε, 0 < ε < π/2.

Lemma 4.1 For every λ ∈ −α0 +Sε, 0 < ε < π/2, ξ ∈ R∗ and ω ∈ Ar the operator
S = Sω

r,λ,ξ is injective and the range R(S) of S is dense in Lr
ω(Σ)×W 1,r

ω (Σ).

Proof: Since, by Proposition 2.5 (3), there is an s ∈ (1, r) such that Lr
ω(Σ) ⊂ Ls(Σ),

one sees immediately that D(Sω
r,λ,ξ) ⊂ D(Ss,λ,ξ). Therefore, Sω

r,λ,ξ(u, p) = 0 for some
(u, p) ∈ D(Sω

r,λ,ξ) yields (u, p) ∈ D(Ss,λ,ξ) and Ss,λ,ξ(u, p) = 0. Hence, by [9], Lemma
3.2, u = 0, p = 0.
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On the other hand, by Proposition 2.5 (3), there is an s̃ ∈ (r,∞) such that
Ss̃,λ,ξ ⊂ Sω

r,λ,ξ. Therefore, by [9], Theorem 3.4,

Ls̃(Σ)×W 1,s̃(Σ) = R(Ss̃,λ,ξ) ⊂ R(Sω
r,λ,ξ) ⊂ Lr

ω(Σ)×W 1,r
ω (Σ),

which proves the assertion on the denseness of R(S).

The following lemma gives a preliminary a priori estimate for a solution (u, p)
of S(u, p) = (f,−g).

Lemma 4.2 Let 1 < r < ∞, ω ∈ Ar and ε ∈ (0, π/2). Then there exists an Ar-
consistent constant c = c(ε, r, Σ,Ar(ω)) > 0 such that for every λ ∈ −α0+Sε, ξ ∈ R∗

and every (u, p) ∈ D(Sω
r,λ,ξ),

‖µ2
+u, µ+∇′u,∇′2u,∇′p, ξp‖r,ω ≤ c

(
‖f,∇′g, g, ξg‖r,ω + |λ|‖g; Lr

m,ω + Lr
ω,1/ξ‖0

+‖∇′u, ξu, p‖r,ω + |λ|‖u‖
(W 1,r′

ω′ )∗

)
,

(4.1)

where µ+ = |λ + α0 + ξ2|1/2, (f,−g) = S(u, p) and (W 1,r′

ω′ )∗ denotes the dual space

of W 1,r′

ω′ (Σ).

Proof: The proof is based on a partition of unity in Σ and on the localization
procedure reducing the problem to a finite number of problems of type (Rλ,ξ) in bent
half spaces and in the whole space Rn−1. Since ∂Σ ∈ C1,1, we can cover ∂Σ by a finite
number of balls Bj, j ≥ 1, such that, after a translation and rotation of coordinates,
Σ∩Bj locally coincides with a bent half space Σj = Σσj

where σj ∈ C1,1(Rn−1) has
a compact support, σj(0) = 0 and ∇′′σj(0) = 0. Choosing the balls Bj small enough
(and its number large enough) we may assume that ‖∇′′σj‖∞ ≤ K0(ε, r, Σ,Ar(ω))
for all j ≥ 1 where K0 was introduced in Theorem 3.3. According to the covering
∂Σ ⊂

⋃
j≥1 Bj there are cut-off functions 0 ≤ ϕ0, ϕj ∈ C∞(Rn−1) such that

ϕ0 +
∑
j≥1

ϕj ≡ 1 in Σ, supp ϕj ⊂ Bj and supp ϕ0 ⊂ Σ.

Given (u, p) ∈ D(S) and (f,−g) = S(u, p), we get for each ϕj, j ≥ 0, the local
(Rλ,ξ)-problems

(λ + ξ2 −∆′)(ϕju
′) +∇′(ϕjp) = f ′j

(λ + ξ2 −∆′)(ϕjun) + iξ(ϕjp) = fjn

divξ(ϕju) = gj

(4.2)

for (ϕju, ϕjp), j ≥ 0, in Rn−1 or Σj; here

f ′j = ϕjf
′ − 2∇′ϕj · ∇′u′ − (∆′ϕj)u

′ + (∇′ϕj)p

fjn = ϕjfn − 2∇′ϕj · ∇′un − (∆′ϕj)un

gj = ϕjg +∇′ϕj · u′.
(4.3)
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To control fj and gj note that u = 0 on ∂Σ; hence Poincaré’s inequality for
Muckenhoupt weighted space yields for all j ≥ 0 the estimate

‖fj,∇′gj, ξgj‖r,ω;Σj
≤ c(‖f,∇′g, g, ξg‖r,ω;Σ + ‖∇′u, ξu, p‖r,ω;Σ), (4.4)

where Σ0 ≡ Rn−1 and c > 0 is Ar-consistent. Moreover, let g = g0 + g1 denote any
splitting of g ∈ Lr

m,ω + Lr
ω,1/ξ. Defining the characteristic function χj of Σ ∩Σj and

the scalar

mj =
1

|Σ ∩ Σj|

∫
Σ∩Σj

(ϕjg0 + u′ · ∇′ϕj)dx′

=
1

|Σ ∩ Σj|

∫
Σ∩Σj

(iξun − g1)ϕjdx′,

we split gj in the form

gj = gj0 + gj1 := (ϕjg0 + u′ · ∇′ϕj −mjχj) + (ϕjg1 + mjχj).

Concerning gj1 we get

‖gj1‖r
r,ω;Σj

=

∫
Σ∩Σj

|ϕjg1 + mj|rω dx′

≤ c(r)
(
‖g1‖r

r,ω;Σ + |mj|rω(Σ ∩ Σj)
)

≤ c(r)
(
‖g1‖r

r,ω;Σ +
ω(Σ ∩ Σj) · ω′(Σ ∩ Σj)

r/r′

|Σ ∩ Σj|r
(‖ξun‖r

(W 1,r′
ω′ )∗

+ ‖g1‖r
r,ω;Σ)

)
with c(r) > 0 independent of ω. Since we chose the balls Bj for j ≥ 1 small enough,
for each j ≥ 0 there is a cube Qj with Σ ∩ Σj ⊂ Qj and |Qj| < c(n)|Σ ∩ Σj| where
the constant c(n) > 0 is independent of j. Therefore

‖gj1‖r,ω;Σj
≤ c(r)

(
‖g1‖r,ω +

c(n)ω(Qj)
1/r·ω′(Qj)

1/r′

|Qj | (‖ξun‖(W 1,r′
ω′ )∗

+ ‖g1‖r,ω)
)

≤ c(r)(1 +Ar(ω)1/r)
(
‖ξun‖(W 1,r′

ω′ )∗
+ ‖g1‖r,ω;Σ

) (4.5)

for j ≥ 0. Furthermore, for every test function Ψ ∈ C∞
0 (Σ̄j) let

Ψ̃ = Ψ− 1

|Σ ∩ Σj|

∫
Σ∩Σj

Ψdx′.

By the definition of mjχj we have
∫

Σj
gj0 dx′ = 0; hence by Poincaré’s inequality

(see Proposition 2.7)∫
Σj

gj0Ψdx′ =
∫

Σj
gj0Ψ̃dx′

=
∫

Σ
g0(ϕjΨ̃)dx′ +

∫
Σ

u′ · (∇′ϕj)Ψ̃dx′

≤ ‖g0‖−1,r,ω‖∇′(ϕjΨ̃)‖r′,ω′ + ‖u′‖
(W 1,r′

ω′ )∗
‖(∇′ϕj)Ψ̃‖1,r′,ω′

≤ c(‖g0‖−1,r,ω + ‖u′‖
(W 1,r′

ω′ )∗
)‖∇′Ψ‖r′,ω′;Σj

,
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where c > 0 is Ar-consistent. Thus

‖gj0‖−1,r,ω;Σj
≤ c

(
‖g0‖−1,r,ω + ‖u′‖

(W 1,r′
ω′ )∗

)
for j ≥ 0. (4.6)

Summarizing (4.5) and (4.6), we get for j ≥ 0

‖gj; Ŵ
−1,r
ω (Σj) + Lr

ω,1/ξ(Σj)‖ ≤ c
(
‖u′‖

(W 1,r′
ω′ )∗

+ ‖g; Lr
m,ω + Lr

ω,1/ξ‖0

)
(4.7)

with an Ar-consistent c = c(r,Ar(ω)) > 0.
To complete the proof, apply Theorem 3.1 to (4.2), (4.3) when j = 0. Further

use Theorem 3.3 in (4.2), (4.3) for j ≥ 1, but with λ replaced by λ + M with
M = λ0 + α0, where λ0 = λ0(ε, r,Ar(ω)) is the Ar-consistent constant indicated in
Theorem 3.3. This shift in λ implies that fj has to be replaced by fj + Mϕju and
that (3.31) will be used with λ replaced by λ+M . Summarizing (3.8), (3.31) as well
as (4.4), (4.7) and summing over all j we arrive at (4.1) with the additional terms

I = ‖Mu‖r,ω + ‖Mu′‖
(W 1,r′

ω′ )∗
+ ‖Mg; Lr

m,ω + Lr
ω,1/ξ‖0

on the right-hand side of the inequality. Note that M = M(ε, r,Ar(ω)) is Ar-
consistent and that g = div ′u′ + iξun defines a natural splitting of g ∈ Lr

m,ω(Σ) +
Lr

ω(Σ). Hence Poincaré’s inequality yields

I ≤ M
(
‖u‖r,ω;Σ + ‖div ′u′‖−1,r,ω + ‖un‖r,ω;Σ

)
≤ c1‖u‖r,ω;Σ ≤ c2‖∇′u‖r,ω;Σ

with Ar-consistent constants ci = ci(ε, r, Σ,Ar(ω)) > 0, i = 1, 2. Thus (4.1) is
proved.

Lemma 4.3 Let 1 < r < ∞, ω ∈ Ar and λ ∈ −α + Sε, ε ∈ (0, π
2
) with α ∈ (0, α0).

Then there is an Ar-consistent constant c = c(α, ε, r,Ar(ω)) such that for every
(u, p) ∈ D(S) and (f,−g) = S(u, p) the estimate

‖µ2
+u, µ+∇′u,∇′2u,∇′p, ξp‖r,ω

≤ c
(
‖f,∇′g, g, ξg‖r,ω + (|λ|+ 1)‖g; Lr

m,ω + Lr
ω,1/ξ‖0

) (4.8)

holds; here µ+ = |λ + α + ξ2|1/2.

Proof of Lemma 4.3: Assume that this lemma is wrong. Then there is a constant
c0 > 0, a sequence {ωj}∞j=1 ⊂ Ar with Ar(ωj) ≤ c0 for all j, sequences {λj}∞j=1 ⊂
−α + Sε, {ξj}∞j=1 ⊂ R∗ and (uj, pj) ∈ D(S

ωj

r,λj ,ξj
) for all j ∈ N such that

‖(λj + α + ξ2
j )uj, (λj + α + ξ2

j )
1/2∇′uj,∇′2uj,∇′pj, ξjpj‖r,ωj

≥ j
(
‖fj,∇′gj, gj, ξjgj‖r,ωj

+ (|λj|+ 1)‖gj; L
r
m,ωj

+ Lr
ωj ,1/ξj

‖0

(4.9)

where (fj,−gj) = S
ωj

r,λj ,ξj
(uj, pj). Fix an arbitrary cube Q containing Σ. We may

assume without loss of generality that

Ar(ωj) ≤ c0, ωj(Q) = 1 ∀j ∈ N, (4.10)
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by using the Ar-weight ω̃j := ωj(Q)−1ωj instead of ωj if necessary. Note that (4.10)

also holds for r′, {ω′
j} in the following form: Ar(ωj) ≤ c

r′/r
0 , ω′

j(Q) ≤ c
r′/r
0 |Q|r′ .

Therefore, by a minor modification of Proposition 2.5 (3), there exist numbers s, s1

such that
Lr

ωj
(Σ) ↪→ Ls(Σ), Ls1(Σ) ↪→ Lr′

ω′j
, j ∈ N, (4.11)

with embedding constants independent of j ∈ N. Furthermore, we may assume
without loss of generality that

‖(λj + α + ξ2
j )uj, (λj + α + ξ2

j )
1/2∇′uj,∇′2uj,∇′pj, ξjpj‖r,ωj

= 1 (4.12)

and consequently that

‖fj,∇′gj, gj, ξjgj‖r,ωj
+ (|λj|+ 1)‖gj; L

r
m,ωj

+ Lr
ωj ,1/ξj

‖0 → 0 as j →∞. (4.13)

From (4.11), (4.12) we have

‖(λj + α + ξ2
j )uj, (λj + α + ξ2

j )
1/2∇′uj,∇′2uj,∇′pj, ξjpj‖s ≤ K, (4.14)

with some K > 0 for all j ∈ N and

‖fj,∇′gj, gj, ξjgj‖s → 0 as j →∞. (4.15)

Without loss of generality let us suppose that as j →∞,

λj → λ ∈ −α + S̄ε or |λj| → ∞
ξj → 0 or ξj → ξ 6= 0 or |ξj| → ∞.

Thus we have to consider six possibilities.

(i) The case λj → λ ∈ −α + S̄ε, ξj → ξ 6= 0.
Due to (4.14) {uj} ⊂ W 2,s and {pj} ⊂ W 1,s are bounded sequences. In virtue of
the compactness of the embedding W 1,s(Σ) ↪→ Ls(Σ) for the bounded domain Σ,
we may assume (suppressing indices for subsequences) that

uj → u,∇′uj → ∇′u in Ls (strong convergence)

∇′2uj ⇀ ∇′2u in Ls (weak convergence)

pj → p in Ls (strong convergence)

∇′pj ⇀ ∇′p in Ls (weak convergence)

(4.16)

for some (u, p) ∈ D(Ss,λ,ξ) as j → ∞. Therefore, Ss,λ,ξ(u, p) = 0 and, conse-
quently, u = 0, p = 0 by Lemma 4.1. On the other hand we get from (4.12) that
supj∈N ‖uj‖2,r,ωj

< ∞ and supj∈N ‖pj‖1,r,ωj
< ∞ which, together with the weak

convergences uj ⇀ 0 in W 2,s(Σ), pj ⇀ 0 in W 1,s(Σ), yields

‖uj‖1,r,ωj
→ 0, ‖pj‖r,ωj

→ 0

due to Proposition 2.6 (2). Moreover, since supj∈N ‖λjuj‖r,ωj
< ∞ and λjuj ⇀ λu =

0 in Ls(Σ), Proposition 2.6 (3) implies that

‖λjuj‖(W 1,r′
ω′

j
)∗
→ 0. (4.17)
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Thus (4.1), (4.12) and (4.13) yield the contradiction 1 ≤ 0.
(ii) The case λj → λ ∈ −α + S̄ε, ξj → 0.

Since uj|∂Σ = 0, ‖∇′2uj‖s ≤ K, we have the convergence (4.16) for some u ∈
W 2,s(Σ) ∩ W 1,s

0 (Σ), but concerning p we get the existence of p ∈ Ŵ 1,s and q ∈ Ls

such that
∇′pj ⇀ ∇′p, ξjpj ⇀ q in Ls

as j →∞. Looking at (Rλj ,ξj
), the convergence of {uj}, {pj} yields

(λ−∆′)u′ +∇′p = 0
(λ−∆′)un + iq = 0

div ′u′ = 0

in Σ. Thus (u′,∇′p) = (0, 0), see [9], Lemma 3.3 (ii), or [6]. Obviously, q is a
constant, since ξj → 0, and un ∈ W 2,2(Σ)∩W 1,2

0 (Σ) due to elliptic regularity theory.
By (4.13), for all j ∈ N there is a splitting gj = gj0 + gj1 such that

gj0 ∈ Lr
m,ωj

, gj1 ∈ Lr
ωj

and (|λj|+ 1)
(
‖gj0‖−1,r,ωj

+ ‖gj1/ξj‖r,ωj

)
→ 0. (4.18)

Therefore, from the divergence equation divξj
uj = gj we get

(|λj|+ 1)
∣∣∣ ∫

Σ

ujn dx′
∣∣∣ =

|λj|+ 1

|ξj|

∣∣∣ ∫
Σ

gj1 dx′
∣∣∣ → 0 as j →∞,

and consequently
∫

Σ
un dx′ = 0. Now, testing the equation (λ − ∆′)un + iq = 0 in

Σ with un, we see that λ
∫

Σ
|un|2 dx′ +

∫
Σ
|∇′un|2 dx′ = 0 yielding un = 0 and also

q = 0. Thus uj ⇀ 0 in W 2,s(Σ) which, together with supj∈N ‖uj‖2,r,ωj
< ∞, yields

‖uj‖1,r,ωj
→ 0 as j →∞ (4.19)

due to Proposition 2.6 (2).
To come to a contradiction consider the equivalent equation S

ωj

r,λj ,ξj
(uj, pj−pjm) =

(fj − iξjpjmen,−gj) with pjm = 1
|Σ|

∫
Σ

pj dx′. Due to Lemma 4.2

‖(λj + α + ξ2
j )uj, (λj + α + ξ2

j )
1/2∇′uj,∇′2uj,∇′pj, ξj(pj − pjm)‖r,ωj

≤ c
(
‖fj,∇′gj, gj, ξjgj‖r,ωj

+ (|λj|+ 1)‖gj; L
r
m,ωj

+ Lr
ωj ,1/ξ‖0

+‖ξjpjm‖r,ωj
+ ‖∇′uj, ξjuj, pj − pjm‖r,ωj

+ ‖λjuj‖(W 1,r′
ω′

j
)∗

) (4.20)

where c > 0 is independent of j ∈ N due to Ar(ωj) ≤ c0, j ∈ N. Since ξjpj ⇀ q = 0
in Ls, we have ξjpjm → 0 and, considering (4.10),

‖ξjpjm‖r,ωj
= |ξjpjm|ωj(Σ)1/r ≤ |ξjpjm| → 0. (4.21)

From Poincaré’s inequality (Proposition 2.7) and (4.12), we conclude that supj ‖pj−
pjm‖1,r,ωj

< ∞, which, together with pj − pjm ⇀ 0 in W 1,s(Σ), yields

‖pj − pjm‖r,ωj
→ 0 as j →∞, (4.22)
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cf. Proposition 2.6 (2). Now, (4.12), (4.13), (4.17), (4.19), (4.21) and (4.22) lead in
(4.20) to the contradiction 1 ≤ 0.

(iii) The case λj → λ ∈ −α + S̄ε, |ξj| → ∞.
From (4.12) we get ‖∇′uj, ξjuj, pj‖r,ωj

→ 0. On the other hand, since ‖uj‖r,ωj
→ 0

and uj → 0 in Ls as j → ∞, Proposition 2.6 (3) implies (4.17). Thus, from (4.1),
(4.12) and (4.13) we get the contradiction 1 ≤ 0.

(iv) The case |λj| → ∞, ξj → ξ 6= 0.
By (4.12)

‖∇′uj, ξjuj‖r,ωj
→ 0 as j →∞. (4.23)

Further, (4.14) yields the convergence

uj → 0,∇′uj → 0 and ∇′2uj ⇀ 0, λjuj ⇀ v,
pj → p and ∇′pj ⇀ ∇′p,

in Ls, which, together with (4.15), leads to

v′ +∇′p = 0, vn + iξp = 0. (4.24)

From (4.11), (4.18) we see that

|〈λjgj, ϕ〉| = |〈λjgj0, ϕ〉+ 〈λjgj1, ϕ〉|
≤ ‖λjgj0‖−1,r,ωj

‖∇′ϕ‖r′,ω′j
+ ‖λjgj1‖r,ωj

‖ϕ‖r′,ω′j

≤ c
(
‖λjgj0‖−1,r,ωj

‖+ ‖λjgj1‖r,ωj

)
‖ϕ‖W 1,s1 (Σ).

Consequently,

λjgj ∈ (W 1,s1(Σ))∗ and ‖λjgj‖(W 1,s1 (Σ))∗ → 0 as j →∞. (4.25)

Therefore, it follows from the divergence equation div ′
ξj

uj = gj that for all ϕ ∈
C∞(Σ̄)

〈v′,−∇′ϕ〉+ 〈iξvn, ϕ〉 = limj→∞〈div ′λju
′
j + iλjξjujn, ϕ〉

= limj→∞〈λjgj, ϕ〉 = 0,

yielding div ′v′ = −iξvn, v′ ·N |∂Σ = 0. Therefore (4.24) implies

−∆′p + ξ2p = 0 in Σ,
∂p

∂N
= 0 on ∂Σ;

hence p ≡ 0 and also v ≡ 0. Now, due to Proposition 2.6 (2), (3), we get (4.17)
and the convergence ‖pj‖r,ωj

→ 0, since λjuj ⇀ 0 in Ls, pj ⇀ 0 in W 1,s and
supj∈N ‖λjuj‖r,ωj

< ∞, supj∈N ‖pj‖1,r,ωj
< ∞. Thus (4.1), (4.12), (4.13) and (4.23)

lead to the contradiction 1 ≤ 0.
(v) The case |λj| → ∞, ξj → 0.

It follows from (4.12) that in Ls

uj → 0,∇′uj → 0 and ∇′2uj ⇀ 0, λjuj ⇀ v,
∇′pj ⇀ ∇′p, ξjpj ⇀ q,
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which, looking at (Rλ,ξ), yields in the weak limit

v′ +∇′p = 0, vn + iq = 0;

moreover, q is a constant. Note that (4.25) holds true in this case as well. Therefore,
using (4.25), for any function ϕ in C∞(Σ̄)

0 = − lim
j→∞

〈λjgj, ϕ〉 = lim
j→∞

(
〈λju

′
j,∇′ϕ〉 − 〈iλjξjujn, ϕ〉

)
=

∫
Σ

v′ · ∇′ϕ dx′

yielding div ′v′ = 0, v′ · N |∂Σ = 0. Thus the equation v′ + ∇′p = 0 is just the
Helmholtz decomposition of the null vector field; therefore, v′ ≡ 0,∇′p ≡ 0.

On the other hand, looking at (4.18) we get from the divergence equation and
(4.11) that∫

Σ

λjujn dx′ =

∫
Σ

λj

ξj

(gj0 + gj1 − div ′u′j) dx′ =

∫
Σ

λjgj1

ξj

dx′ → 0.

Consequently, the weak convergence λjujn ⇀ vn in Ls yields
∫

Σ
vn dx′ = 0; since q

is a constant, we get vn = 0, q = 0. Then Proposition 2.6 (3) implies (4.17).
Now we repeat the argument as in the case (ii) to get (4.20), (4.21) and (4.22),

and are finally led to the contradiction 1 ≤ 0.
(vi) The case |λj| → ∞, |ξj| → ∞.

To come to a contradiction, it is enough to prove (4.17) since ‖∇′uj, ξjuj, pj‖r,ωj
→ 0

as j →∞. From (4.12) we get the convergence

uj → 0,∇′uj → 0 and ∇′2uj ⇀ 0, (λj + ξ2
j )uj ⇀ v,

pj → 0 and ∇′pj ⇀ 0, ξjpj ⇀ q

in Ls with some v, q ∈ Ls. Therefore, (4.15) and (Rλj ,ξj
) yield

v′ = 0, vn + iq = 0.

Since ‖λjuj‖s ≤ cε‖(λj + ξ2
j )uj‖s, there exists w = (w′, wn) ∈ Ls such that, for

a suitable subsequence, λjuj ⇀ w. Let gj = gj0 + gj1, j ∈ N, be a sequence of
splittings satisfying (4.18). By (4.11) we get for all ϕ ∈ C∞(Σ̄)

|〈λjgj0, ϕ〉|+
∣∣∣〈λjgj1

ξj

, ϕ〉
∣∣∣ → 0 as j →∞,

cf. (4.25) and (4.25). Hence, the divergence equation implies that for j →∞

〈λjujn, ϕ〉 =
1

iξj

〈λjgj0, ϕ〉+ 〈λjgj1

iξj

, ϕ〉+
1

iξj

〈λju
′
j,∇′ϕ〉 → 0

for all ϕ ∈ C∞(Σ̄) yielding 〈wn, ϕ〉 = 0 and consequently wn = 0.
Obviously, ξjuj → 0 in Ls as j →∞. Therefore, by (4.15) and the boundedness

of the sequence
{
‖ξj∇uj‖r,ωj

}
, we get from the identity div ′(ξju

′
j) + iξ2

j ujn = ξjgj

that
ξ2
j ujn ⇀ 0 in Ls as j →∞.
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Thus we proved vn = 0. Now v = 0 together with the estimate ‖(λj + ξ2
j )uj‖r,ωj

≤ 1

imply due to Proposition 2.6 (3) that ‖(λj + ξ2
j )uj‖ → 0 in (W 1,r′

ω′j
)∗ as j → ∞.

Hence also (4.17) is proved.

Now the proof of this lemma is complete.

Theorem 4.4 Let Σ ⊂ Rn−1 be a bounded domain of C1,1-class, 1 < r < ∞, ω ∈
Ar(Rn−1) and α ∈ (0, α0), 0 < ε < π

2
. Then for every λ ∈ −α + Sε, ξ ∈ R∗ and

f ∈ Lr
ω(Σ), g ∈ W 1,r

ω (Σ) the parametrized resolvent problem (Rλ,ξ) has a unique
solution (u, p) ∈

(
W 2,r

ω (Σ) ∩ W 1,r
0,ω(Σ)

)
× W 1,r

ω (Σ). Moreover, this solution satisfies
the estimate (4.8) with an Ar-consistent constant c = c(α, ε, r, Σ,Ar(ω)) > 0.

Proof: The existence is obvious since, for every λ ∈ −α + Sε, ξ ∈ R∗ and ω ∈
Ar(Rn−1), the range R(Sω

r,λ,ξ) is closed and dense in Lr
ω(Σ)×W 1,r

ω (Σ) by Lemma 4.3
and by Lemma 4.1, respectively. Here note that for fixed λ ∈ C, ξ ∈ R∗ the norm
‖∇′g, g, ξg‖1,r,ω + (1 + |λ|)‖g; Lr

m,ω + Lr
ω,1/ξ‖0 is equivalent to the norm of W 1,r

ω (Σ).
The uniqueness of solutions is obvious from Lemma 4.1.

Now, for fixed ω ∈ Ar, 1 < r < ∞, define the operator-valued functions

a1 : R∗ → L(Lr
ω(Σ); W 2,r

0,ω(Σ) ∩W 1,r
ω (Σ)),

b1 : R∗ → L(Lr
ω(Σ); W 1,r

ω (Σ))

by
a1(ξ)f := u1(ξ), b1(ξ)f := p1(ξ), (4.26)

where (u1(ξ), p1(ξ)) is the solution to (Rλ,ξ) corresponding to f ∈ Lr
ω(Σ) and g = 0.

Further, define
a2 : R∗ → L(W 1,r

ω (Σ); W 2,r
0,ω(Σ) ∩W 1,r

ω (Σ)),

b2 : R∗ → L(W 1,r
ω (Σ); W 1,r

ω (Σ))

by
a2(ξ)g := u2(ξ), b2(ξ)g := p2(ξ). (4.27)

with (u2(ξ), p2(ξ)) the solution to (Rλ,ξ) corresponding to f = 0 and g ∈ W 1,r
ω (Σ).

Corollary 4.5 For every α ∈ (0, α0) and λ ∈ −α + Sε the operator-valued func-
tions a1, b1 and a2, b2 defined by (4.26), (4.27) are Fréchet differentiable in ξ ∈ R∗.
Furthermore, their derivatives w1 = d

dξ
a1(ξ)f, q1 = d

dξ
b1(ξ)f for fixed f ∈ Lr

ω(Σ)

and w2 = d
dξ

a2(ξ)g, q2 = d
dξ

b2(ξ)g for fixed g ∈ W 1,r
ω (Σ) satisfy the estimates

‖(λ + α)ξw1, ξ∇′2w1, ξ
3w1, ξ∇′q1, ξ

2q1‖r,ω ≤ c‖f‖r,ω (4.28)

and
‖(λ + α)ξw2, ξ∇′2w2, ξ

3w2, ξ∇′q2, ξ
2q2‖r,ω

≤ c
(
‖∇′g, g, ξg‖r,ω + (|λ|+ 1)‖g; Lr

m,ω + Lr
ω,1/ξ‖0

)
,

(4.29)

with an Ar-consistent constant c = c(α, r, ε, Σ,Ar(ω)) independent of λ ∈ −α + Sε

and ξ ∈ R∗.
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Proof: Since ξ enters in (Rλ,ξ) in a polynomial way, it is easy to prove that
aj(ξ), bj(ξ), j = 1, 2, are Fréchet differentiable and their derivatives wj, qj solve the
system

(λ + ξ2 −∆′)w′
j +∇′qj = −2ξu′j

(λ + ξ2 −∆′)wjn + iξqj = −2ξujn − ipj

div ′w′
j + iξwjn = −iujn,

(4.30)

where (u1, p1), (u2, p2) are the solutions to (Rλ,ξ) for f ∈ Lr
ω(Σ), g = 0 and f =

0, g ∈ W 1,r
ω (Σ), respectively.

We get from (4.30) and Theorem 4.4 for j = 1, 2,

‖(λ + α)ξwj, ξ∇′2wj, ξ
3wj, ξ∇′qj, ξ

2qj‖r,ω

≤ c
(
‖ξ2u′j, ξpj,∇′ξujn, ξ

2ujn‖r,ω + (|λ|+ 1)‖iξujn; Lr
m,ω + Lr

ω,1/ξ‖0

)
≤ c

(
‖ξ2uj, ξpj,∇′ξuj‖r,ω + (|λ|+ 1)‖uj‖r,ω

)
≤ c‖uj, (λ + α + ξ2)uj,

√
λ + α + ξ2∇′uj, ξpj‖r,ω

≤ c‖(λ + α + ξ2)uj,
√

λ + α + ξ2∇′uj,∇′2uj, ξpj‖r,ω,

(4.31)

with an Ar-consistent constant c = c(α, r, ε, Σ,Ar(ω)); here we used the fact that
ξ2 + |λ + α| ≤ c(ε, α)|λ + α + ξ2| for all λ ∈ −α + Sε, ξ ∈ R and ‖uj‖r,ω ≤
c(Ar(ω))‖∇′2uj‖r,ω (see [14], Corollary 2.2). Thus Theorem 4.4 and (4.31) prove
(4.28), (4.29).

Remark 4.6 The estimates (4.29) for the operator-valued multipliers a2, b2 will
be used in a forthcoming paper [11] to obtain estimates for the generalized Stokes
resolvent systems in an infinite cylinder of Rn with application to the Stokes resolvent
systems on unbounded cylindrical domains with several outlets to infinity.

5 Proof of the Main Results

The proof of Theorem 2.1 is based on the theory of operator-valued Fourier mul-
tipliers. The classical Hörmander-Michlin theorem for scalar-valued multipliers for
Lq(Rk), q ∈ (1,∞), k ∈ N, extends to an operator-valued version for Bochner spaces
Lq(Rk; X) provided that X is a UMD space and that the boundedness condition for
the derivatives of the multipliers is strengthened to R-boundedness.

Definition 5.1 A Banach space X is called a UMD space if the Hilbert transform

Hf(t) = − 1

π
PV

∫
f(s)

t− s
ds for f ∈ S(R; X),

where S(R; X) is the Schwartz space of all rapidly decreasing X-valued functions,
extends to a bounded linear operator in Lq(R; X) for some q ∈ (1,∞).

It is well known that, if X is a UMD space, then the Hilbert transform is bounded
in Lq(R; X) for all q ∈ (1,∞) (see e.g. [27], Theorem 1.3) and that weighted
Lebesgue spaces Lr

ω(Σ), 1 < r < ∞, ω ∈ Ar, are UMD spaces.
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Definition 5.2 Let X, Y be Banach spaces. An operator family T ⊂ L(X; Y ) is
called R-bounded if there is a constant c > 0 such that for all T1, . . . , TN ∈ T ,
x1, . . . , xN ∈ X and N ∈ N

∥∥ N∑
j=1

εj(s)Tjxj

∥∥
Lq(0,1;Y )

≤ c
∥∥ N∑

j=1

εj(s)xj

∥∥
Lq(0,1;X)

(5.1)

for some q ∈ [1,∞), where (εj) is any sequence of independent, symmetric {−1, 1}-
valued random variables on [0, 1]. The smallest constant c for which (5.1) holds is
denoted by Rq(T ), the R-bound of T .

Remark 5.3 (1) Due to Kahane’s inequality ([4])

∥∥ N∑
j=1

εj(s)xj

∥∥
Lq1 (0,1;X)

≤ c(q1, q2, X)
∥∥ N∑

j=1

εj(s)xj

∥∥
Lq2 (0,1;X)

, 1 ≤ q1, q2 < ∞, (5.2)

the inequality (5.1) holds for all q ∈ [1,∞) if it holds for some q ∈ [1,∞).
(2) If an operator family T ⊂ L(Lr

ω(Σ)), 1 < r < ∞, ω ∈ Ar(Rn−1), is R-
bounded, then Rq1(T ) ≤ CRq2(T ) for all q1, q2 ∈ [1,∞) with a constant C =
C(q1, q2) > 0 independent of ω. In fact, introducing the isometric isomorphism

Iω : Lr
ω(Σ) → Lr(Σ), Iωf = fω1/r,

for all T ∈ L(Lr
ω(Σ)) we have T̃ω = IωTI−1

ω ∈ L(Lr(Σ)) and ‖T‖L(Lr
ω(Σ)) =

‖T̃ω‖L(Lr(Σ)). Then it is easily seen that T̃ω := {IωTI−1
ω : T ∈ T } ⊂ L(Lr(Σ))

is R-bounded and Rq(T̃ω) = Rq(T ) for all q ∈ [1,∞). Thus the assertion follows.

Definition 5.4 (1) Let X be a Banach space and (xn)∞n=1 ⊂ X. A series
∑∞

n=1 xn

is called unconditionally convergent if
∑∞

n=1 xσ(n) is convergent in norm for every
permutation σ : N → N.

(2) A sequence of projections (∆j)j∈N ⊂ L(X) is called a Schauder decomposition
of a Banach space X if

∆i∆j = 0 for all i 6= j,

∞∑
j=1

∆jx = x for each x ∈ X.

A Schauder decomposition (∆j)j∈N is called unconditional if the series
∑∞

j=1 ∆jx
converges unconditionally for each x ∈ X.

Remark 5.5 (1) If (∆j)j∈N is an unconditional Schauder decomposition of a Banach
space Y , then for each p ∈ [1,∞) there is a constant c∆ = c∆(p) > 0 such that for
all xj in the range R(∆j) of ∆j the inequalities

c−1
∆

∥∥∥ k∑
j=l

xj

∥∥∥
Y

≤
∥∥∥ k∑

j=l

εj(s)xj

∥∥∥
Lp(0,1;Y )

≤ c∆

∥∥∥ k∑
j=l

xj

∥∥∥
Y

(5.3)
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are valid for any sequence (εj(s)) of independent, symmetric {−1, 1}-valued random
variables defined on (0, 1) and for all l ≤ k ∈ Z, see e.g. [3], (3.8).

(2) Let Y = Lq(R; Lr
ω(Σ)) and assume that each ∆j commutes with the isomor-

phism Iω introduced in Remark 5.3 (2). Then the constant c∆ is easily seen to be
independent of the weight ω.

(3) In the previous definitions and results the set of indices N may be replaced
by Z without any further changes.

(4) Let X be a UMD space and χ[a,b) denote the characteristic function for the
interval [a, b). Let Rs = F−1χ[s,∞)F and

∆j := R2j −R2j+1 , j ∈ Z.

It is well known that the Riesz projection R0 is bounded in Lq(R; X) and that the
set {Rs − Rt : s, t ∈ R} is R-bounded in L(Lq(R; X)) for each q ∈ (1,∞). In par-
ticular, {∆j : j ∈ Z} is R-bounded in L(Lq(R; X)) and an unconditional Schauder
decomposition of R0L

q(R; X), the image of Lq(R; X) by the Riesz projection R0,
see [3], proof of Theorem 3.19.

We recall an operator-valued Fourier multiplier theorem in Banach spaces. Let
D0(R; X) denote the set of C∞-functions f : R → X with compact support in R∗.

Theorem 5.6 ([3], Theorem 3.19, [31], Theorem 3.4) Let X and Y be UMD spaces
and 1 < q < ∞. Let M : R∗ → L(X, Y ) be a differentiable function such that

Rq

(
{M(t), tM ′(t) : t ∈ R∗}

)
≤ A.

Then the operator
Tf =

(
M(·)f̂(·)

)∨
, f ∈ D0(X),

extends to a bounded operator T : Lq(R; X) → Lq(R; Y ) with operator norm
‖T‖L(Lq(R;X);Lq(R;Y )) ≤ CA where C > 0 depends only on q, X and Y .

Remark 5.7 Let X be a UMD-space and X = Y = Lq(R;X ). Checking the proof
of [3], Theorem 3.19, one can see that the constant C in Theorem 5.6 equals

C = R(P) · (c∆)2

where R(P) is the R-bound of the operator family P = {Rs − Rt : s, t ∈ R} in
L(Lq(R;X )) and c∆ is the unconditional constant of the Schauder decomposition
{∆j : j ∈ Z} of the space R0L

q(R;X ); see [3], Section 3, for details. In particular,
for X = Lr

ω(Σ), 1 < r < ∞, ω ∈ Ar, using the isometry Iω of Remark 5.3 (2), we get
that the constants R(P), see Remark 5.3 (2), and c∆ do not depend on the weight
ω; concerning c∆ we again use that Iω commutes with each ∆j.

Theorem 5.8 (Extrapolation Theorem) Let 1 < r, s < ∞, ω ∈ Ar(Rn−1) and
Σ ⊂ Rn−1 be an open set. Moreover let T be a family of linear operators with the
property that there exists an As-consistent constant CT = CT (As(ν)) > 0 such that
for all ν ∈ As

‖Tf‖s,ν ≤ CT ‖f‖s,ν
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for all T ∈ T and all f ∈ Ls
ν(Σ). Then every T ∈ T can be extended to Lr

ω(Σ) and
T is R-bounded in L(Lr

ω(Σ)) with an Ar-consistent R-bound cT (q, r,Ar(ω)), i.e.,

Rq(T ) ≤ cT (q, r,Ar(ω)) for all q ∈ (1,∞). (5.4)

Proof: From the proof of [14], Theorem 4.3, it can be deduced that T is R-bounded
in L(Lr

ω(Σ)) and that (5.4) is satisfied for q = r. Then Remark 5.3 yields (5.4) for
every 1 < q < ∞.

Now we are in a position to prove Theorem 2.1.

Proof of Theorem 2.1: Let us define u, p in the cylinder Ω = Σ× R by

u(x) = F−1(a1f̂)(x), p(x) = F−1(b1f̂)(x),

where a1, b1 are the operator-valued multiplier functions defined in (4.26). We will
show that (u, p) is the unique solution to (Rλ) with g = 0 satisfying

(u, p) ∈
(
W 2;q,r

ω (Ω) ∩W 1;q,r
0,ω (Ω)

)
× Ŵ 1;q,r

ω (Ω) (5.5)

and the estimate (2.1). Obviously, (u, p) solves the resolvent problem (Rλ) with
g = 0. For ξ ∈ R∗ define mλ(ξ) : Lr

ω(Σ) → Lr
ω(Σ) by

mλ(ξ)f :=
(
(λ + α)a1(ξ)f̂ , ξ∇′a1(ξ)f̂ ,∇′2a1(ξ)f̂ , ξ2a1(ξ)f̂ ,∇′b1(ξ)f̂ , ξb1(ξ)f̂

)
.

Theorem 4.4 and Corollary 4.5 show that the operator family {mλ(ξ), ξm
′
λ(ξ) : ξ ∈

R∗} satisfies the assumptions of Theorem 5.8, e.g., with s = r. Therefore, this
operator family is R-bounded in L(Lr

ω(Σ)); to be more precise,

Rq

(
{mλ(ξ), ξm

′
λ(ξ) : ξ ∈ R∗}

)
≤ c(q, r, α, ε, Σ,Ar(ω)) < ∞.

Hence Theorem 5.6 and Remark 5.7 imply that

‖(mλf̂)∨‖Lq(Lr
ω) ≤ C‖f‖Lq(Lr

ω)

with an Ar-consistent constant C = C(q, r, α, ε, Σ,Ar(ω)) > 0 independent of the
resolvent parameter λ ∈ −α + Sε. Note that, due to the definition of the multiplier
mλ(ξ), we have (λ + α)u,∇2u,∇p ∈ Lq(Lr

ω) and

‖(λ + α)u,∇2u,∇p‖Lq(Lr
ω) ≤ ‖(mf̂)∨‖Lq(Lr

ω).

Thus the existence of a solution satisfying (2.1) is proved.

For the uniqueness of solutions let (u, p) ∈
(
W 2;q,r

ω (Ω) ∩W 1;q,r
0,ω (Ω)

)
× Ŵ 1;q,r

ω (Ω)

satisfy (Rλ) with f = 0, g = 0. Fix h ∈ Lq′(Lr′

ω′) arbitrarily and let (v, z) ∈(
W 2;q′,r′

ω′ (Ω)∩W 1;q′,r′

0,ω′ (Ω)∩Lq′(Lr′

ω′)σ

)
× Ŵ 1;q′,r′

ω′ (Ω) be a solution to (Rλ̄) with right-

hand side h. Then using the denseness of C∞
0,σ(Ω) in W 1;q′,r′

0,ω (Ω) ∩ Lq′(Lr′

ω′)σ we
get

0 = (λu−∆u +∇p, v) = (u, λ̄v −∆v +∇z) = (u, h)Lq(Lr
ω),Lq′ (Lr′

ω′ )
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yielding u = 0, and consequently,∇p = 0. Now the proof of Theorem 2.1 is complete.

Proof of Corollary 2.2: Defining the Stokes operator A = Aq,r;ω by (2.2), due to
the Helmholtz decomposition of the space Lq(Lr

ω) on the cylinder Ω, see [8], we get
that for F ∈ Lq(Lr

ω)σ the solvability of the equation

(λ + A)u = F in Lq(Lr
ω)σ (5.6)

is equivalent to the solvability of (Rλ) with right-hand side f ≡ F, g ≡ 0. By virtue
of Theorem 2.1 for every λ ∈ −α+Sε there exists a unique solution u = (λ+A)−1F ∈
D(A) to (5.6) satisfying the estimate

‖(λ + α)u‖Lq(Lr
ω)σ ≤ C‖F‖Lq(Lr

ω)σ

with C = C(q, r, α, ε, Σ,Ar(ω)) independent of λ; hence (2.3) is proved. Then (2.4)
is a direct consequence of (2.3) using semigroup theory.

Proof of Theorem 2.3: We shall show that the operator family

T = {λ(λ + Aq,r;ω)−1 : λ ∈ iR}

is R-bounded in L(Lq(Lr
ω)). To this end, for ξ ∈ R∗ and λ ∈ Sε, let mλ(ξ) := λa1(ξ)

where a1(ξ) is the solution operator for (Rλ,ξ) with g = 0 defined by (4.26). Then

λ(λ + Aq,r;ω)−1f = (mλ(ξ)f̂)∨ for f ∈ S(R; Lr
ω(Σ)σ). In view of Definition 5.2

and the denseness of S(R; Lr
ω(Σ)σ) in Lq(R; Lr

ω(Σ)σ) we will prove that there is a
constant C > 0 such that∥∥ N∑

i=1

εi(mλi
f̂i)

∨∥∥
Lq(0,1;Lq(R:Lr

ω(Σ)))
≤ C

∥∥ N∑
i=1

εifi

∥∥
Lq(0,1;Lq(R:Lr

ω(Σ)))
(5.7)

for any independent, symmetric and {−1, 1}-valued random variables (εi(s)) de-
fined on (0, 1), for all (λi) ⊂ iR and (fi) ⊂ S(R; Lr

ω(Σ)σ). Without loss of gener-
ality we may assume that (fi) ⊂ Y := R0L

q(R; Lr
ω(Σ)σ), since R0 is continuous in

Lq(R; Lr
ω(Σ)σ) and

fi(x
′, xn) = (χ[0,∞)f̂i(ξ))

∨(x′, xn) + (χ[0,∞)f̂i(−ξ))∨(x′,−xn).

Therefore, we shall show that T is R-bounded in L(Y ); note that, if suppf̂ ⊂ [0,∞),
then supp(mλf̂) ⊂ [0,∞) as well.

Obviously mλ(ξ) = mλ(2
j) +

∫ ξ

2j m′
λ(τ) dτ for ξ ∈ [2j, 2j+1), j ∈ Z, and(

mλ(2
j)∆̂jf

)∨
= mλ(2

j)∆jf for f ∈ S(R; Lr
ω(Σ)σ). Furthermore,( ∫ ξ

2j

m′
λ(τ) dτ ∆̂jf(ξ)

)∨
=

( ∫ 2j+1

2j

m′
λ(τ)χ[2j ,ξ)(τ)∆̂jf(ξ) dτ

)∨
=

( ∫ 1

0

2jm′
λ(2

j(1 + t))χ[2j ,ξ)(2
j(1 + t))χ[2j ,2j+1)(ξ)f̂(ξ) dt

)∨
=

∫ 1

0

2jm′
λ(2

j(1 + t))Bj,t∆jf dt.
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where Bj,t = R2j(1+t) −R2j+1 . Thus we get

(
mλ(ξ)f̂(ξ)

)∨
=

∑
j∈Z

((
mλ(2

j) +

∫ ξ

2j

m′
λ(τ) dτ

)
∆̂jf

)∨
=

∑
j∈Z

(
mλ(2

j)∆̂jf
)∨

+
∑
j∈Z

( ∫ ξ

2j

m′
λ(τ) dτ ∆̂jf

)∨
=

∑
j∈Z

mλ(2
j)∆jf +

∑
j∈Z

∫ 1

0

2jm′
λ(2

j(1 + t))Bj,t∆jf dt.

(5.8)

First let us prove

∥∥ N∑
i=1

εi(s)
∑
j∈Z

mλi
(2j)∆jfi

∥∥
Lq(0,1;Y )

≤ C
∥∥ N∑

i=1

εi(s)fi

∥∥
Lq(0,1;Y )

. (5.9)

Note that the operator mλi
(2j) commutes with ∆j, j ∈ Z; hence, for almost all

s ∈ (0, 1), the sum
∑N

i=1 εi(s)mλi
(2j)∆jfi belongs to the range of ∆j. Therefore, for

any l, k ∈ Z we get by (5.3) that

∥∥ N∑
i=1

εi

k∑
j=l

mλi
(2j)∆jfi

∥∥
Lq(0,1;Y )

=
( ∫ 1

0

∥∥ k∑
j=l

N∑
i=1

εi(s)mλi
(2j)∆jfi

∥∥q

Y
ds

)1/q

≤ c∆

( ∫ 1

0

∫ 1

0

∥∥ k∑
j=l

εj(τ)
N∑

i=1

εi(s)mλi
(2j)∆jfi

∥∥q

Y
dτ ds

)1/q

= c∆

∥∥ N∑
i=1

k∑
j=l

εij(s, τ)mλi
(2j)∆jfi

∥∥
Lq((0,1)2;Y )

(5.10)

where εij(s, τ) = εi(s)εj(τ); note that (εij)i,j∈Z is a sequence of independent, sym-
metric and {−1, 1}-valued random variables defined on (0, 1)× (0, 1). Furthermore,
due to Theorem 4.4, the operator family {mλ(ξ) : λ ∈ iR, ξ ∈ R∗} ⊂ L(Lr

ω(Σ))
is uniformly bounded by an Ar-consistent constant, and hence it is R-bounded by
Theorem 5.8. Therefore, using Fubini’s theorem and (5.3), we proceed in (5.10) as
follows:

= c∆

∥∥ N∑
i=1

k∑
j=l

εij(s, τ)mλi
(2j)∆jfi

∥∥
Lq(R;Lq((0,1)2;Lr

ω(Σ)))

≤ Cc∆

∥∥ N∑
i=1

k∑
j=l

εij(s, τ)∆jfi

∥∥
Lq(R;Lq((0,1)2;Lr

ω(Σ)))

= Cc∆

∥∥ N∑
i=1

k∑
j=l

εij(s, τ)∆jfi

∥∥
Lq((0,1)2;Y )

≤ Cc2
∆

∥∥ N∑
i=1

εi

k∑
j=l

∆jfi

∥∥
Lq(0,1;Y )

.

(5.11)
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Since {
∑k

j=l ∆j : l, k ∈ Z} is R-bounded in L(Y ) and (∆j) is a Schauder de-
composition of Y , we see by Lebesgue’s theorem that the right-hand side of (5.11)
converges to 0 as either l, k →∞ or l, k → −∞. Thus, by (5.10), (5.11), the series∑N

i=1 εi(s)
∑

j∈Z mλi
(2j)∆jfi converges in Lq(0, 1; Y ), and (5.9) holds.

Next let us show that∥∥ N∑
i=1

εi(s)
∑
j∈Z

∫ 1

0

2jm′
λi

(2j(1 + t))Bj,t∆jfi dt
∥∥

Lq(0,1;Y )
≤ C

∥∥ N∑
i=1

εi(s)fi

∥∥
Lq(0,1;Y )

.

(5.12)
Using the same argument as in the proof of (5.9) and the R-boundedness of the
operator families {Bj,t : j ∈ Z, t ∈ (0, 1)} ⊂ L(Y ) and {2j(1+ t)m′

λ(2
j(1+ t)) : λ ∈

iR, j ∈ Z, t ∈ (0, 1)} ⊂ L(Lr
ω(Σ)), see Corollary 4.5, we have

∥∥ N∑
i=1

εi(s)
k∑

j=l

∫ 1

0

2jm′
λi

(2j(1 + t))Bj,t∆jfi dt
∥∥

Lq(0,1;Y )

≤
∫ 1

0

∥∥ N∑
i=1

εi(s)
k∑

j=l

2jm′
λi

(2j(1 + t))Bj,t∆jfi

∥∥
Lq(0,1;Y )

dt

≤ c∆

∫ 1

0

∥∥ N∑
i=1

k∑
j=l

εij(s, τ)2jm′
λi

(2j(1 + t))Bj,t∆jfi

∥∥
Lq((0,1)2;Y )

dt

≤ c∆

∫ 1

0

∥∥ N∑
i=1

k∑
j=l

εij(s, τ)2j(1 + t)m′
λi

(2j(1 + t))∆jfi

∥∥
Lq((0,1)2;Y )

dt

≤ Cc2
∆

∥∥ N∑
i=1

εi(s)
k∑

j=l

∆jfi

∥∥
Lq((0,1);Y )

for all l, k ∈ Z. Thus (5.12) is proved.
By (5.9), (5.12) we conclude that the operator family T = {λ(λ + Aq,r;ω)−1 :

λ ∈ iR} is R-bounded in L(Lq(Lr
ω)). Then, by [31], Corollary 4.4, for each f ∈

Lp(R+; Lq(Lr
ω)σ), 1 < p < ∞, the mild solution u to the system

ut + Aq,r;ωu = f, u(0) = 0 (5.13)

belongs to Lp(R+; Lq(Lr
ω)σ) ∩ Lp(R+; D(Aq,r;ω)) and satisfies the estimate

‖ut, Aq,r;ωu‖Lp(R+;Lq(Lr
ω)σ) ≤ C‖f‖Lp(R+;Lq(Lr

ω)σ).

Furthermore, (2.3) with λ = 0 implies that even u satisfies this inequality. If f ∈
Lp(R+; Lq(Lr

ω)), let u be the solution of (5.13) with f replaced by Pf , where P =
Pq,r;ω denotes the Helmholtz projection in Lp(R+; Lq(Lr

ω)), and define p by ∇p =
(I − P )(f − ut + ∆u). By (2.1) with λ = 0 and the boundedness of P we get
(2.7). Finally, assume eαtf ∈ Lp(R+; Lq(Lr

ω)σ) for some α ∈ (0, α0) and let v be the
solution of the system vt + (A − α)v = eαtf, v(0) = 0. Obviously, replacing A by
A − α in the previous arguments, v is easily seen to satisfy estimate (2.6). Then
u(t) = e−αtv(t) solves (5.13) and satisfies (2.8). In each case the constant C depends
only on Ar(ω) due to Remark 5.7.

The proof of Theorem 2.3 is complete.
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