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Abstract

Let Q = ¥ x R be an infinite cylinder of R",n > 3, with a bounded cross-
section ¥ C R™! of Chl-class. We study resolvent estimates and maximal
regularity of the Stokes operator in LY(R; L],(X)) for 1 < ¢, < oo and for
arbitrary Muckenhoupt weights w € A, with respect to 2’ € 3. The proofs
use an operator-valued Fourier multiplier theorem and techniques of uncon-
ditional Schauder decompositions based on the R-boundedness of the family
of solution operators for a system in ¥ parametrized by the phase variable of
the one-dimensional partial Fourier transform.
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1 Introduction

In this paper we show that the Stokes operator in the space L(2),1 < ¢ < oo, on
an infinite cylinder 2 = ¥ x R of R”, n > 3, generates a bounded and exponentially
decaying analytic semigroup and has maximal LP-regularity. We show these prop-
erties to hold even in LI(R; L7 (X)) for 1 < ¢, < oo and for arbitrary Muckenhoupt
weight w € A, (R™!) with respect to 2/ € ¥ (see Section 2 for the definition). We
note that the resolvent estimate gives, when A = 0, a new result on the existence of
a unique flow with zero flux for the Stokes system in LI(R, L7 (%)).

The proofs in this paper are mainly based on the theory of Fourier analysis. By
the application of the partial Fourier transform along the axis of the cylinder €2 the
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generalized Stokes resolvent system

AM—Au+Vp = f inQ
(Ry) divu = ¢g inQ
u = 0 ondf2

is reduced to the parametrized Stokes system in the cross-section X
A+ AV +V'p = f in Y
A+ —-AYi, +igp = f, %
(R)vf) div /ﬁ,/ + Zfﬁn = g in X
=0 u, = 0 on 0%

which involves the Fourier phase variable ¢ € R as parameter. We will get
parameter-independent estimates of solutions to (Ry¢),& € R* := R\ {0}, in
L"-spaces with Muckenhoupt weights, which yield R-boundedness of the family of
solution operators a(§) for (Ry¢) with ¢ = 0 due to an extrapolation property
of operators defined on L"-spaces with Muckenhoupt weights, see Theorem 5.8.
Then the solution u to (Ry) with ¢ = 0 in the whole cylinder 2 is represented by
u=F " a(&)Ff), and an operator-valued Fourier multiplier theorem ([31]) implies
the resolvent estimate. In order to prove maximal regularity we use that maximal
regularity of an operator A in a UMD space X is implied by the R-boundedness of
the operator family

{AA+ A1 NeiR} (1.1)

in £(X), see [31]. We show the R-boundedness of (1.1) for the Stokes operator A :=
Ayrwin LY(R : L7 (X)) by virtue of Schauder decomposition techniques; to be more
precise, we use the Schauder decomposition {A;};cz where A; = F’1X[2j72j+1)}" and
again the R-boundedness of the family of solution operators for (R, ).

To obtain parameter-independent estimates of the solution to (Ry¢),& € R*, we
start with the case ¥ = R"~! using Fourier multiplier theory in spaces with Mucken-
houpt weights (Theorem 3.1). Next, for (Ry¢) on the half space & = R’ (Theorem
3.4), we first consider an estimate for p; for this a result on Fourier multipliers in
trace spaces of Sobolev spaces with Muckenhoupt weights is crucial, see Lemma 3.2.
Then the estimate for 4 is obtained using the Laplace resolvent equation. The result
for the case of bent half spaces ¥ = H, (Theorem 3.5; see (3.2) for the definition of
H,) is obtained by Kato’s perturbation argument. For bounded domains ¥, using
cut-off functions and the results for the whole, half and bent half spaces, we start
with a preliminary a priori estimate in weighted spaces for (R)¢) (Lemma 4.2) and
are finally led to weighted estimates of the solution to (Ry¢) by a contradiction
argument (Lemma 4.3).

There are many papers dealing with resolvent estimates ([6], [7], [13], [14], [18];
see Introduction of [9] for more details) or maximal regularity (see e.g. [1], [12], [14])
of Stokes operators for domains with compact boundaries as well as for domains



with noncompact boundaries. General unbounded domains are considered in [5] by
replacing the space L? by LYNL? or LY+ L% In [9], [10] the system (R)) was studied
in LY(R; L*(X)),1 < q < oo, and, when g = 0, in vector-valued homogeneous Besov
space B;q(R; L"(%)) for 1 <p,g< o0, s € R, 1 <r < oco. For partial results in the
Bloch space of uniformly square integrable functions on a cylinder we refer to [28].
Further results on stationary and instationary Stokes and Navier-Stokes systems in
unbounded cylindrical domains can be found in [2], [15], [16], [19]-[26], [28]-[30].

This paper is organized as follows. In Section 2 the main results of this paper
(Theorem 2.1, Corollary 2.2 and Theorem 2.3) and preliminaries are given. In
Section 3 we obtain the estimates for (R, ¢) on the whole, half and bent half spaces.
Section 4 is devoted to obtain the estimate for (Ry¢) on bounded domains, see
Theorem 4.4. In Section 5 proofs of the main results are given.

2 Main Results and Preliminaries

Let Q = X x R be an infinite cylinder of R® with bounded cross section ¥ C R*~!
and with generic point z € 2 written in the form z = (2, z,,) € Q, where 2’ € ¥ and
T, € R. Similarly, differential operators in R™ are split, in particular, A = A’ + 9>
and V = (V',0,).

For g € (1,00) we use the standard notation L?(2) = LY(R; L9(X)) for classical
Lebesgue spaces with norm |- ||, = || [|z0 and W*9(Q), k € N, for the usual Sobolev
spaces with norm || - ||x,4.0. We do not distinguish between spaces of scalar functions
and vector-valued functions as long as no confusion arises. In particular, we use the
short notation ||u, v||, for ||ul|, + ||v]., even if u and v are tensors of different order.

Let 1 <7 < oco. A function 0 < w € L] (R"!) is called A,-weight (Muckenhoupt
weight) on R"~1 iff

1 1 -l
. — - d A —1/(r—1)d /
A ) S‘ép(|c2|/Q“’ ) (|@|/Q°" ) <o

where the supremum is taken over all cubes of R"~! and |Q| denotes the (n — 1)-
dimensional Lebesgue measure of Q). We call A, (w) the A,-constant of w and denote
the set of all A,-weights on R"™! by A, = A,.(R""!). Note that

weA, iff W=V VA, =r/(r—1)

and A (W) = A (w)"/". A constant C' = C(w) is called A,-consistent if for every
d>0
sup{C(w): we A,, A.(v) <d} < 0.

We write w(Q) for fQ wdx'.
Given w € A,,r € (1,00), and an arbitrary domain ¥ C R"! let

_ 1/r
L) = {1 € (D) s = el = ([ luwd’)” < o0}
b

For short we will write L7 for L’ (X) provided that the underlying domain > is
known from the context. It is well-known that L], is a separable reflexive Banach
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space with dense subspace C°(¥). In particular (L7)* = L7,. As usual, Wk (%),
k € N, denotes the weighted Sobolev space with norm

y
lullkro = (D ID%ull,) "

loo| <k
where |a| = a4 - -+, is the length of the multi-index o = (g, ..., 0, _1) € Nj~!
and D* = 9" - ... - d'"]"; moreover, W&:(Z) = C’go(E)”'Hk‘T’W and W&j’T(Z) =

(W(i L:,, (32))*, where ' = r/(r — 1). We introduce the weighted homogeneous Sobolev
space . )
Wy (E)={u€ Ly (2)/R: Vue L, ()}

loc
with norm ||V'u||,,, and its dual space WJ“/ = (er)* with norm || « || 10 =
(RN RS
Let ¢,r € (1,00). On an infinite cylinder 2 = ¥ x R, where ¥ is a bounded
Chl-domain of R"™!, we introduce the function space L¢(L") := LY(R; L" (X)) with

norm y
/r q
lullpazr) = (/ (/ lu(x', z,) [ w(x) d:c’)q dmn> )
R \Jy

Furthermore, Wk¢r(Q), k € N, denotes the Banach space of all functions in
whose derivatives of order up to k belong to L?(L]) with norm |julyter =

(X gk 1Dl o)) %, where a € Ng, and let Wy () be the completion of

the set C§°(Q2) in W14 (Q). The weighted homogeneous Sobolev space /Wj;q””(ﬁ) is
defined by .
W (Q) = {u € Lioo()/R : Vu € L(Ly)}

with norm ||Vul|[zeczry. Finally, LY(L],), is the completion in the space LI(L[,) of
the set
Coo() ={u e C5°(Q)";  divu = 0}.

The Fourier transform in the variable x,, is denoted by F or ~ and the inverse Fourier

transform by F~! or V. For € € (0, %) we define the complex sector

S.={\ €T\ #£0, |arg)| < g+g}.
The first main theorem of this paper is as follows.

Theorem 2.1 (Weighted Resolvent Estimates) Let ¥ be a bounded domain of
CYl_class with ag > 0 being the least eigenvalue of the Dirichlet Laplacian in ¥, and
let0 <e < 3,1<qr <ooandw € A.. Then for every f € LY(R; L[,(X)), every
a € (0,a0) and A € —a + S. there exists a unique solution

(u,p) € (W29 (Q) N Wi2"(Q)) x W"(Q)
to (Ry) (with g = 0) satisfying the estimate
I+ @)u, V2, Vplpary) < Cll fllpacs) (2.1)

with an A,-consistent constant C = C(q,r,a,e,%, A.(w)) independent of \.
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In particular we obtain from Theorem 2.1 the following corollary on resolvent
estimates of the Stokes operator in the cylinder €.

Corollary 2.2 (Stokes Operator and Stokes Semigroup) Let 1 < ¢,r < o0,
w € A (R"Y) and define the Stokes operator A = A, .., on Q by

D(A) = W2 (Q) N Wy @" () N LYLL), C LY(LL)y, Au= =Py, 0Au,  (2.2)

where P, ., is the Helmholtz projection in LY(R; L, (X)) (see [8]). Then, for every

€ (0,%) and a € (0,a9), —a+ S. is contained in the resolvent set of —A, and the

estimate

||()\+A)_1||E(L4(LL)U) < VAe —a+ S (2.3)

A+ «af

holds with an A,.-consistent constant C' = C(¥, q,r, o, e, A (w)).
As a consequence, the Stokes operator generates a bounded analytic semigroup
{emHarest > 0} on LI(LL), satisfying the estimate

||6_tAq’T';“’||£(Lq(L£)U) <Ce™ Vace (0, ap),Vt >0 (2.4)
with a constant C = C(q,r, a,e,3, A, (w)).

The second important result of this paper is the mazimal regularity of the Stokes
operator in an infinite straight cylinder.

Theorem 2.3 (Maximal Regularity) Let 1 < p,q,7 < oo and w € A.(R"™1).
Then the Stokes operator A = A, ., has mazimal regularity in LI(L]),. To be more
precise, for each f € LP(Ry; LY(L),) the instationary system

w+ Au=f, u(0)=0 (2.5)
has a unique solution uw € WHP(R; LY(L"),) N LP(Ry; D(A)) such that
[, ey Aull Loy pay)e) < ClFllee@pas)s)- (2.6)
Analogously, for every f € LP(Ry; LI(L!)), the instationary system
u—Au+Vp=f, divu=0, u(0)=0

has a unique solution (u,Vp) € (W'P(Ry;LY(LL),) N LP(Ry; D(A))) x
LP(Ry; LA(LL)) satisfying the a priori estimate

[ues w, Vu, V2, Vpl o@spaer)) < Cllfllor@sspae))- (2.7)

Moreover, if e*'f € LP(Ry;LY(L"),) for some o € (0,cq), then the solution u
satisfies the estimate

le*a, e ur, e Aul| Loy sLazs)e) < Clle™ fllor@yizas)n)- (2.8)

In each estimate C = C(X,q, 7, A (w)) and C' = C(2,q,r, A (w), ), respectively.



Remark 2.4 (1) We note that in (2.5) we may take nonzero initial values u(0) = ug
in the interpolation space (LY(L[,)q, D(Agriw))1-1/pp-

(2) By [1], Theorem 1.3, maximal regularity in L?(2) of ¢/ + A, with some ¢ > 0,
where A, is the Stokes operator in L4(Q2), will follow; this result is weaker than the
particular case ¢ = r and w = 1 in Theorem 2.3.

For the proofs in Section 3 and Section 4, we need some preliminary results for
Muckenhoupt weights.

Proposition 2.5 ([8], Lemma 2.4) Let 1 <r < 0o and w € A,(R"1).

(1) Let T : R — R" be a bijective, bi-Lipschitz vector field. Then also
woT € A.(R"™) and A.(woT) < cA.(w) with a constant ¢ = ¢(T,r) > 0
independent of w.

(2) Define the weight &(z'") = w(|z1|,2") for 2’ = (x1,2") € R"™L. Then @ € A,
and A, (0) < 2" A, (w).

(3) Let ¥ C R™™! be a bounded domain. Then there exist 3, s € (1,00) satisfying

Li(%) — L' (Z) — L*(%).

Here s and % are A,-consistent. Moreover, the embedding constants can be chosen
uniformly on a set W C A, provided that

weW

sup A, (w) < oo, / wdr' =1 forall weW, (2.9)
Q

for a cube Q C R* " with £ C Q.

Proposition 2.6 ([8], Proposition 2.5) Let 3 C R™™! be a bounded Lipschitz do-
main and let 1 < r < 0.
(1) For every w € A, the continuous embedding W " (2) — L' (X) is compact.
(2) Consider a sequence of weights (w;) C A, satisfying (2.9) for W = {w; :
j € N} and a fired cube @ C R"! with & C Q. Further let (u;) be a sequence of
functions on X satisfying

sup |[uj]|1rw, <00 and u; —0 in Whs(x)
J

for j — oo where s is given by Proposition 2.5 (3). Then
50, — 0 for j — oo
(3) Under the same assumptions on (w;) C A, as in (2) consider a sequence of
functions (v;) on X satisfying

sup [|[vjlrw, <00 and v; =0 in L3(X)
J

for j — oo. Then considering v; as functionals on Wiérl(Z)

ij"(wi;’“/(z))* — 0 fOT’j — OQ.

J



Proposition 2.7 Let r € (1,00), w € A, and ¥ C R"™ be a bounded Lipschitz
domain. Then there exists an A,-consistent constant ¢ = c(r, %, A.(w)) > 0 such
that

[ullre < Vil

for all w € W™ (X) with vanishing integral mean [, udz’ = 0.

Proof: See the proof of [14], Corollary 2.1 and its conclusions; checking the proof,
one sees that the constant ¢ = ¢(r, X, A, (w)) is A,-consistent. n

Finally we cite the Fourier multiplier theorem in weighted spaces.

Theorem 2.8 ([17], Ch. IV, Theorem 3.9) Let m € C*(R*\ {0}),k € N, admit a
constant M € R such that

"D m(n)] < M for all 7 € R*\ {0}

and multi-indices v € NE with |y| < k. Then for all 1 < r < oo and w € A,(RF)
the multiplier operator T f = F~*m(-)F defined for all rapidly decreasing functions
f € S(R*) can be uniquely extended to a bounded linear operator from LT (RF) to
LT (R¥). Moreover, there erists an A,-consistent constant C = C(r, A,(w)) such
that

ITfllrw < CM | fllrw,  f € LL(RY).

3 The Problem (R),¢) in Half Spaces

Consider the parametrized resolvent problem (R, ) for all ¢ € R* = R\ {0} and
A€ 5.,0<e < 7. In this section X denotes either R™ ! or the half space

Y=R'={2 = (z1,2"): 2" € R" 2, > 0}, (3.1)
or a bent half space
H, = {2 = (z1,2") : 21 > o(2"), 2" € R"?}, (3.2)

where o is a CY-function. For notational convenience we omit the symbol ~ for the
one-dimensional Fourier transform; thus

u= (u,u,),p, f,g stand for @ = (12’,1[”),15, f,f].

Let w € A.(R"1) be an arbitrary Muckenhoupt weight. For the divergence g
(=g), by the same argument as in Section 2 of [9], we may define, for r € (1, 00)
and ¢ € R*, the spaces

WA (S) N LL(S) = W2 (2)  with norm  max{||V'u, Eul,.}

and . . , /
W 4 Liyje = (W N LG ) = (W5T) r'=r/(r 1),



with £ —dependent norm
Hh;W e well = mf{lholl -1 e+ 1h1/Ellre = b= ho+ha, ho € W by e LT}

Assume that
feLLX), geW; ().
Note that Wl"(X) is obviously contained in the sum W\J“(Z) + L7 1/5(2)
Now we start with the case ¥ = R""!. Since C3°(R"1) is dense in W (R"1),

if g =90+ g1, go € Ww_l”’ and g1 € LLJ/@ is any splitting of g, Hahn-Banach’s
theorem implies the existence of a vector field h € L, such that

=div'h, [lgoll-1re = [hllre.
An elementary calculation shows that p in (R, ¢) satisfies the equation
(€ = A)p=(A+& = A)g— (div'f' +ilfn). (3.3)

Introducing the (n — 1)-dimensional Fourier transform ~ with respect to 2’ and with
phase variable s € R"™! we get

_ _ A is ~ i€
= + - . f! "
= e e
_ Ais ~ AE 15 5 i€ =
= 4+ — - h+ — .
gt Ee e T Er e T E e
Obviously the functions
S;Sk ;€ £

me(s) = ) ) ) 1§7k§n_1a
g Ere @epe
are classical multiplier functions satisfying the pointwise Hormander-Michlin condi-

tion
||| Vime(s)| < oy 0#s€R"™ ae NI ol <n—1, (3.4)

uniformly with respect to & € R*. Then Theorem 2.7 applied to V'p and to £p yields
the estimate

IV, &pllre < e, Vg 89llrw + 1A, Agr /€ ]1re)

(3.5)
< clf,V'9,89llrw + [1AGoll -1, + [Ag1/€lrw)-
Next consider the Laplace resolvent equations for v’ and u,, i.e.,
A+ AW =F in R (3.6)

A+& - A, =F, in Rr!

with resolvent parameters A + 2, where F' := f' — V'p, F,, := f, — ip and p is the
solution to (3.3) satisfying (3.5). Again applying the (n — 1)-dimensional Fourier
transform with respect to 2/ € R"™! to (3.6), we get

L F _ E,
D e D o



Therefore, using the fact that
A+ &2 VA+E2s; 5jSk Eq
AHEF P A+ e+ s A+ T

are Fourier multipliers satisfying (3.4), we get the existence of a solution v = (v, u,,)
to (3.6) satisfying

H )‘ +€2 'V A &2V, VIQUHMJ < CHf V'p, prrw
< c(llf; V'g,€9llrw + 1Agoll -1, + 1Ag1 /€ lr0)

with A,-consistent constants ¢ = c(e, 7, A, (w)).

o,n—1,

Let p = |A 4 €2|Y/2. We can prove the following theorem.

Theorem 3.1 Let X =R" ' 1 <r < oo andw € A (R, If f € L"(2) and
g € WI(X), then for every A € S.,0 < e < %, and § € R* the problem (Ry¢) has a
unique solution (u,p) € W2(%) x Wir(%) satzsfymg

|2, 1w, V2, V', Epllras < e(I1f V'9, €0l + IAG W+ Lo ell)  (3:8)
with an A,-consistent constant ¢ = ¢(e,r, A, (w)).

Proof: Let u be a solution to (3.6) where p is a solution to (3.3). We have already
seen that (u, p) € W27 (X) x W,;"(X) satisfies the estimate (3.8) since g = go + g1 in
the estimate (3.5), (3.7) is an arbitrary splitting of g € W b LT 1/¢- Therefore,
for the proof of the existence of a solution, it is enough to show that (u,p) solves
the divergence equation of (R)¢). A simple calculation with (3.3) and (3.6) yields

A+ & — AN(div'e +i€up —g) =0 in R* L

Hence standard arguments from Fourier analysis show that div’u’ + i€u,, = g. The
uniqueness of the solution is obvious from the above Fourier multiplier technique,
i.e., if (u,p) is a solution to (Ry¢) with f = 0,9 = 0, then u satisfies (3.6) with
f=0and (£ — A")p =0 yielding p = 0, and hence u = 0. [ |

In the next main step we consider the case ¥ = R, see (3.1). Just as for
' = (xq1,2") we write v’ = (uy,u”), f' = (f1, f”). For a function h : ¥ — R define
the even extension h, by

m | h(x,2") for x>0
he(xlax ) - { h(_xhx//) fOI' T < O,

while the odd extension h, of h is defined by
ho(xy,2") = —h(—z1,2") for z; <O0.

Given (Ry¢) in (X), take the even extension f! of f”, f.. of f, and g. of g, but the
odd extension fi, of f;. Then obviously

(Fros £y fe) € LL(R™Y),  g. € W (R"™),

9



where @w(xy,2") = w(|z1],2"). Note that A, (@) < 2" A, (w), see Proposition 2.5 (2).
It is clear that
1ho; hrellrimn—1 < c(r) [|Allrw:s; (3.9)

moreover, for a function h € L7 (R?™') N ﬁ/\; LR we get

HhEHW&_l”(Rn—l) = Sup} hSQOdZL’/|
® Rn—1
= Sup}/hSDdﬁUl—l-/h(p(—xl,x”)dx" (310)
» b >

< QHhHVAVw—M(E)?

where the supremum is taken over all ¢ € C°(R" 1) with || V¢ wrgn-1 < 1.

Now we will solve (Ry¢) in the whole space R"™!' with right-hand side
(f10, [V, fne)s ge- By the uniqueness assertion it is easily seen that the solution (U, P)
of this extended problem is even with respect to x; except for the component U,
which is odd with respect to x;. In particular U; = 0 for x; = 0 and, due to (3.8),

|20, uNV'U,N"?U, V' P, EP||y s

. (3.11)
S C(Hf107 é/a fne> V/gev 596”7",&1;]1@"*1 + ”Age; W@ b (Rn_l) + Lal/g(Rn_l)”)

where p = |\ + €2|'/2 and the constant c is A,-consistent due to Proposition 2.5.
Thus, from (3.9)—(3.11), we get

|1°U, uN'U, V™2U, V' P, EP| s

_ (3.12)
< c(I£, V', 89llrwss + Mg Wb + L )

with an A,-consistent constant ¢ = ¢(g,r, A.(w)).
Subtracting (U, P) in (Ry¢), the parametrized resolvent problem (R)¢) is re-
duced to the homogeneous system

A+E-AW+Vp = 0 in Y=RY!
A+ —A)u, +i€p = 0 in X (3.13)
div'e/ +iéu, = 0 in X
with inhomogeneous boundary values

u=®:=Ulpy on O0X. (3.14)

With the splittings A’ = 92 + A", div/v’ = dyu; +div"u” and V' = (9, V") elemen-
tary operations with (3.13), (3.14) yield the fourth order equation

A+ -ANE =AW = 0 in z
uy = 0 on 0¥ (3.15)
Ouy = —div’®" —iéd, on ox.
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Let us introduce the additional partial Fourier transform F, =" with respect to
the variable z” € R"~2 and with phase variable o € R"2. Applying ~ to (3.15), we
get the fourth order ordinary differential equation (s = |o])

AN+ +2-)(E+s2-0)u, = 0 for x>0
?21 = 0 ~ ~ at T = 0 (316)
01221 = —i0- q)” — chbn at I = 0.

For fixed A € S.,& € R* and 0 € R"2 (3.16) has a unique bounded solution ; in
(0, 00), namely

B e—\//\+§2+s2;t1 _6—\/§2+s2z1 . 5 L
o8 = e e (0 YR (1)

Furthermore (3.13), (3.17) yield after some elementary calculations

p(a',§) = _.7:;1(52%()\_’_52_1_82_8%)31@1)
= _—F-1 VAHE s /2 s _\/52?1‘1 C N 1 ied
F, ( s e (io - D" + z§<1>n)> (3.18)

e V\}%SQ)@),

where - -
v = fg—l( _ e—\/§2+5211 (ZU . " + qu)n)) (319)

For every nonzero complex number y and k = 1,2 let W7 (R"') denote the
weighted Sobolev space W*"(R"1) endowed with the norm

|’uHW£:£(Rn—1) == ”V/ku, Mu|’r7w;Rn—1, k= 1, 2.

Similarly we define the space Wf;;(Rﬁ_l), k = 1,2, on the half space R’'. Using
the trace operator 7, well-defined for functions from W' (R%™!), we may define the
trace space T (R"2),k = 1,2, by

Tho (R'2) = AWALRED), [l sy = 0 sy oy

Obviously the set Cg°(R"") is dense in the Banach space T} (R" %),k = 1,2. We

note that for ¢ € 7727 (R"~?) and p € S. the function R,¢ := Fol(emVrtsiang) ¢
W2r(RY) is the unique solution to the Laplace resolvent equation

(u—ANg=0 inRY"  glgn2=2¢ (3.20)

(see [13], Theorem 4.5). Furthermore, by standard techniques using Fourier multi-
plier theory one can easily see that R, ¢ satisfies the estimates

||Ru¢||W3;L(R1*1) < C(Ta&Ar(w>)||¢||T£;;(Rn—2)= (3.21)

1Bl gt < e, ADlbllgsr oy (322
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Lemma 3.2 Letm € C"2(R"2\{0}). If m(o) as well as —”g?SQm(J), ¢ € R*, are
(n—2)-dimensional multiplier functions satisfying the pointwise Hormander-Michlin
condition, see Theorem 2.8, with a constant K > 0 independent of & € R*, then the
operator M : S(R"2) — S'(R"?) defined by

M¢ = F, ' (m(0)9)
is a bounded operator in L(T, 17"(]R” %)) with ||MH£(T1,2(R”_2)) <c(r,e, A (w))K

Proof: Let ¢ € S(R"?), let 7 be the Fourier phase variable for the partial Fourier
transform with respect to @1, and let = (7,0). Note that F,, (e-VE+lnl) =

Yot and F (R VBl

sz & FE e
of the space T‘i’g(R"*Z), we get

= 1. Hence, by the definition

CE_

1Ml n-2)

_ _1/VE+s%+s [¢21 62|4
= Hfal(m(a)ﬂl(—s e Fa e VNG [y (3.23)
T s2|x
SN
w,€

/€2+82+S 82

Since m(0)¥=——— =1 is easily seen to be an (n — 1)-dimensional Fourier
multiplier by the assumptions on m, we get from (3.23), (3.22) that

M1y < cCADEIF VG
(A (W) K| F; 1 (e*\/§2+s2z1¢)||W$:2(R171)
< clr e A @)K lpayaos

IN

The proof of the lemma is complete. [ ]
Lemma 3.3 The function p defined by (3.18) satisfies the estimate

VP, €Dl s < C(||f7 V'9,84lrws + [ Ag; W, (%) + LZ;/g@)H)
with an A,-consistent constant ¢ = c(r, e, A, (w)).

Proof: First we shall show for the function v in (3.19) the estimate

Hv/UngHTW;E < C(va V/g7§9||r,w;2 + H/\g? (E) L, 1/5( )H) (3-24)
with an A,-consistent constant ¢ = ¢(r,e, A, (w)). Since v solves the equation
(€2 — Ao = 0 in R?! with boundary condition v|py = —div"®"” — i£®,,, stan-

dard techniques (see [13], Theorem 4.4) and a scaling argument yield a constant
¢ =c(r, A.(w)) > 0 independent of & € R* such that

V0, E0lr s < ¢||V(div"U" +i&U,,), E(div"U" + iU, || wix-

12



Hence (3.12) yields (3.24).
Now let g = X + £2. We shall show the auxiliary estimate

HJfJ—l( /ﬂ + 826—\/524-3%1 (U . (f// + gén)) Hr,w;E
S C(Tu g, A’r“(w))(Hfa v/gv fg“r,w;z + ||>‘g’ Ww_l’r(z) w 1/5( )”)
By (3.22) we get

17! (We*vﬁ“s%(o B+ £0,)) ),
— Hal o=V E+s’T1 /M+32 m P 4 m(i ))Her (3.26)
<c|F; (\/u—ksz(\/m il

where ¢ = ¢(r,¢, A (w)) > 0. Note that

(3.25)

_|_

\/5T Dz

_ £
2+82,/{ =2...,n—1 and 1 — T
satisfy the assumption of Lemma 3.2 with a constant K > 0 independent of £ € R*.
Hence Lemma 3.2 and the fact that ||g0HT1,g < (e )||g0HTu for o € T L(R7?) yield

[ (o eV (g gci)n» ||

w2

—1 /
SC”‘FU ( 52_,_2 +82(I)” £2+52> M+82CI) )HT})Z
HIF (it 52 @)l (3.27)
<l 7Vt 52Ol < ol 7N u+52<f>)llwa

< (aF VI e = O RD
w, /I w, /I
where ¢ = ¢(r, ¢, A.(w)) > 0. Then, by interpolation and (3.21), we get
101 Ry @lyyrr < | Ryl < cl| @]l g2 < cl|ulU, VAU |lrass
W,/ w, w,

where ¢ = ¢(r, e, A,(w)) > 0. Hence, from (3.12), (3.27) we get (3.25).

/ 2
To complete the proof, we must obtain an estimate for h := F_ 1(\/%17);
S

see (3.18), (3.19). Note that O1h is just the left-hand side of (3.25). More-
over, V"h,&h are represented by the left-hand side of (3.25) with & replaced by

FoH (=2, 7Y Eq’ ), respectively. Therefore, using that 2% k =

o 21 g2 o £2+2’£2+2’j’
2,...,n—1,and 1— + —— satisfy the assumptions of Lemma 3.2, we get by the same
techmque as before that

IV"h, €l < (1, V9, Egllras + IIAg: T, () + L e (2)])

with an A,-consistent constant ¢ = ¢(r, e, A, (w)).
The proof of the lemma is complete. |

Now we can prove the following theorem.

13



Theorem 3.4 With ¥ = R’}r_l the assertions of Theorem 3.1 remain true. In
particular the a priori estimate (3.8) holds.

Proof: Consider the system

(=AW = —-V'p inX
(p—A"u, = —ilp in¥ (3.28)
u = U on 0%

for (u',u,) where p is defined by (3.18). By standard techniques, cf. [13], §4.2,
and a scaling argument we get that (3.28) has a unique solution u := (u/,u,) €
W2r(2) N W&:;(E) satisfying

HILLU, \//_LVIU, V/QuHr,w;E < CHv/pa gpa ILLU7 VIQUHT#UQE

with an A,-consistent constant ¢ = ¢(r, A,(w)). Thus, by Lemma 3.3 it follows that
the functions u, p satisfy (3.8) with ¥ = R’

Now, for the proof of existence, it remains to show that u satisfies the divergence
equation. From the expression for p one can infer that

(A +&)p=0. (3.29)
Hence, from (3.28) we get
(p— AN (div'v' + i€u,) =0 in X,

Furthermore (3.28), (3.29) imply (3.17), (3.18) with (i - U" +i€U,)|sx, replaced by
(—0111)|gs. Therefore we have (io-U”—{—z’fUn)\az = (=0111)]os, i.e., div'u'+ifu, =0
on 0%. Thus div'w’ + i€u, =0 in X.

For the proof of uniqueness let (u,p) € (W2 (R} )N W&z(Ri’l)) x Whr(Rh)
be a solution to (Ry¢) with right-hand side 0. Then Proposition 2.5 (3) yields
(u,p) € (W*(RY )N WOI’S(]R?:I)) x WHs(R%1) with some s € (1,7). Therefore,
from the uniqueness result for (R, ¢) in spaces without weight we get (u,p) = 0, see
[9], Theorem 2.2.

Now the proof of this theorem is complete. [ ]

The third main step of this section concerns (Ry¢) in a bent half space ¥ = H,;,
see (3.2). Note that as before u, p etc. stand for the Fourier transforms , p etc.

Theorem 3.5 Letn >3,1<r <oo,we AR, 0<e<7/2 and
Y =H,={2 = (21,2"); 21 > o(z"), 2" € R"?}

for a given function o € CY1(R"2). Then there are A,-consistent constants Ko =
Ko(r,e, A (w)) > 0 and A\g = Ao(1, €, Ar(w)) > 0 such that, provided ||V'o||s < Ko,
for every A € S.,|\| > Xo, every & € R* and

ferL (s, gewl(n), (3.30)
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the parametrized resolvent problem (Ry¢) has a unique solution (u,p) € (W27 (2) N
W&Z(E)) x WLr (). This solution satisfies the estimate (= |\ + £21/?)

|, 1N "u, V%0, V'p, D]l
<c(l, V', €9l + [Ag; WS (2) + L, 1 (3)]])

with an A,-consistent constant ¢ = c(r,e, A.(w)). If (3.30) is satisfied for an addi-
tional exponent s € (1,00) and weight v € A,.(R"™1) and if |Vl < Ko for some
constant Ko = Ko(r,s,e, A, (w), As(v)) > 0, then the assertion (3.31) holds true
with L3 -norms for all A € S.,|\| > Ao, for some A\g = A\o(1, 5,6, A (w), As(v)) > 0
as well.

(3.31)

Proof: By the transformation
d:H, >R, 23 =(i,7") = o) = (v1 — o(2”),2"),
the problem (R, ¢) in H, is reduced to a modified version of (R) ) in the half space
H = Rfﬁ_l. Note that ® is a bijection with Jacobian equal to 1. For a function u on
H, define @ on H by
(7)) = u(@ (7)) = u(z).
Further let 9; = 0/0%,i =1, ,n—1,V' = (51,@”) etc. denote the standard
differential operators acting on the variable = € H.
Since du = (0; — (0;0)01)u for i =1,--- ,n — 1, we easily get
Au(a', &) = (A +|V'o|20? —2V'o - (V'0)) — (A"a)01 ) (7, €)
Vip(a',§) = (V' = (V'o)dh)p(F'.€) (3.32)
div/u/(z',€) = (div' — V'o-8,)a(&,¢€)
and a similar formula for V?u(z’,€). Note that by the change of variable 7' =
d(2'), 2" € R", the Muckenhoupt weight w € A, (R"!) is mapped to w € A,(R"™1)
satisfying
cA(@) < A (w) < cA(D) (3.33)

with ¢ independent of w, cf. Proposition 2.5 (1). Therefore, it follows from (3.32)
that for u € W27 (%)
llrwimr, = llallrea
IV ullrasr, < e+ K)|[V'illnan (3.34)

IV2ullrwom, < e(l+ K2)Hﬁ/2ﬂ‘|r,&;H + CL’lélﬂHmb;H’

where K = ||[V'0|«, L = ||[V"?0]|o and ¢ is independent of the weight w. Further-
more, |[f,Egllrwn, = f;€Gllram and [|V'gllrwn, < 1+ K)[[V'gllrgm with ¢ >0
independent of w. Concerning the norm of g in W, (H,) + L7, ¢(Hy) note that

for a function g € /W;“(HU) N L7 (H,) and all test functions ¢ € C$°(H,)

fH 9095 di‘l
< MNaoll=1,r0:1IV'@|lr (@)1
< 1+ HVIJHOO)HgOH—LT@;HHv/‘PHT’,w’;Ha

fHU gOSOd'I/
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with a constant ¢ independent of w; here we used that (@) = (W), W' = w
Since Cg°(H,) is dense in Wé,’rl(Ha) (see e.g. [13], Corollary 4.1), we get

Hg(]Hfl,r,w;HU S C(l + K)Hg()Hfl,r,J);H-

Then for every § € R* and every decomposition of g into g = go + g1 with go €
Wﬁl’r(Ha)ugl € LZJ(HU)

w

190l —vrawirt, + [191/€llrwnn, < U+ K)(Goll-1raim + 191/ lram),
where ¢ > 0 is independent of w; note that g = go + g1 gives all admissible decom-
positions of § € W, " (H) + Lf, 1 ¢(H). Consequently
lgs Wb (Ho ) + L1 je (Ho)|| < (14 K) |G W " (H) + L, e (H)I. - (3.35)

To apply Kato’s perturbation theorem we introduce for every £ € R* on H, the
¢-dependent Banach spaces (u = |\ + £2[1/2)

X =W2r W)t x W luplla = |uu, pV'u, V20, V'p, |l
Y= (L) x Wi W, glly =11, V'9,€9llrwsnr, + Mgy Wit (Ho) + L, 1 e (Ho) |,

and on H similar spaces (X, - ||3), (D, | - |y) with the weight & instead of w. Then
it follows from (3.34), (3.35) that

1w Pl < c(1+ K+ K>+ L/p)ll@p)lle,  I1(f9)lly < e+ E)I(f,9)l3, (3.36)

and exchanging the role of the variables 2’ and 7', we get

(@ p)l s < cQ+ K+ K+ L/p)ll(w,p)x. 1(F.9)ly < L+ E)I(f,9)lly. (3.37)

with constants ¢ > 0 not depending on w, A and &. Further define the operators
A+& - AN +V'p
S X =Y, Sup = A+&-A)u, +ilp |,
div'u + i&u,
and analogously S : X — Y. By (3.32) we get the decomposition
S(u,p) = S(a, p) + R(a, p)
with a remainder term R : X — ;)7,

—(V,O')élﬁ
R(u,p)(T',§) = 0
—(V/O) . 01&’

n ( —|V'o|20%u + 2V - V'dyii + (A"0)dvii )
0
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not depending explicitly on A and £. Since 4|y = 0 and 51(V’ o) =0, we have

/ —(V'o) - i pdi’ = / (V'o) - @' Oy di’
H

H

for all ¢ € Cg°(H); consequently

| = (Vo) - 83 Wy (H) + L s (D] < || = (V'0) - 1| -1t < Kl

Hence
IR(@ D)y < (K + K|, V', V200, V'Pllrn + LIVt rao
< (K + K+ 2)(@p)| 5 (3.38)
<co(K+ K+ ﬁ)”(ﬂ?ﬁ)llx,

where ¢, ¢. > 0 are independent of w, @; note that |\ < % and €] < p(1+ )12
for all A € S..

Due to Theorem 3.2 and (3.33) S : X — Y is an isomorphism such that
(@, p)] 3 < C’lH‘SN’(ﬁ,]B)H); with an A,-consistent constant C, = C(r, ¢, A.(w)) in-
dependent of A € S., & € R*. Therefore, it follows from (3.38) that there exist
A,-consistent constants dy = (e, 7, A (w)), Ao = A(e,r, A, (w)) such that, if K < dy
and A € S, |A| > Ao, then

_ Loare - .o D
IR(@ p)lly < SIS(@ D)y forall (a,p) € X.

Hence S + R is an isomorphism from X to ) satisfying
(@ 5)|.& < 2Ci[[(S + R)(@,)|l5-

Thus, considering (3.32), (3.36) and (3.37), if ||V"0|le < dp and X € S, |A| > Ao,
we get
[(w, p)llx < Call(a,p)ll ¢

< CgHS(Uap)Hy?

where the constants C; = C;(e,r, A.(w)),i = 1,2,3, are A,-consistent and indepen-
dent of A € S, |A| > ¢ and & € R*. Thus, existence of a unique solution to (R )
in H, has been proved.

Assume that (3.30) is satisfied for an additional exponent s # r and weight
v € A (R"1). Repeating the above argument for the index s, we see S to be an
isomorphism from X; N X, to Vs N Y, for [N > Ao = No(7, 8, ¢, A, (w), As(v)) under
the given smallness condition ||V"0 || < do(7, 5,6, A, (w), As(v)). Now the proof of
Theorem 3.3 is complete. [ |
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4 The Problem (R)) in Bounded Domains

For a bounded domain the definition of the space for t the divergence ¢ has to be
modified since it is impossible to think of the sum of W= 7(X) and L"(X). On the
bounded domain ¥ C R* ! of Ct!-class let a denote the smallest eigenvalue of the
Laplacian, i.e.

0 < ap = inf{||Vull?: v e Wy*(D), |Jul. = 1}.

For fixed A € C\ (—o0,—ag|,{ € R and w € A, we introduce the parametrized
Stokes operator S =S¢, by

(>\+€2 _ A’)u’ —l—V’p
S(u,p) = [ (A48 = Ay, +iép
— div5u

defined on D(S) = D(AL,) x W2 (), where D(A! ) = W2"(£) N Wy15(2) and
diveu = div'u’ + i&u,,.
For w = 1 the operator Sy, . will be denoted by S, ¢. Note that the image of D(S5)

by dive is included in W} ’"(E) and W (X) C Ly, ,(¥) + L1, (¥), where

Ly (3 ={ueL,X): /Eudx’ =0}.

Using Poincaré’s inequality in weighted spaces, see Proposition 2.7, one can easily
check the continuous embedding L;, ,(¥) — W Lr(32); more precisely,

HUH—lﬂ",w <cullrw, ue L:n,w(E)7
with an A,-consistent constant ¢ > 0. For convenience we use the notation

19 Ly + L3 1 ello := mf{{|goll -1rw + lg1/¢llrw 9= 90+ 91,90 € L, 91 € L}

note that this norm is equivalent to the norm | - where Wi}ré is the usual

oz
weighted Sobolev space on ¥ with norm ||V'u, {ul|, o
In the following, we consider the resolvent problem (R).) for arbitrary A €

—ap+ S, 0<e<7/2.

Lemma 4.1 For every A € —ap+S:, 0 <e < 7/2, £ € R* andw € A, the operator
S = 8¢, ¢ is injective and the range R(S) of S is dense in L[,(X) x W' (X).

Proof: Since, by Proposition 2.5 (3), there is an s € (1,r) such that L7 (X) C L*(3),
one sees immediately that D(Sy, ;) C D(S,¢). Therefore, S, ((u,p) = 0 for some
(u,p) € D(S¢)¢) vields (u, p) € D(Ssa¢) and Ss s ¢(u,p) = 0. Hence, by [9], Lemma
3.2, u=0,p=0.
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On the other hand, by Proposition 2.5 (3), there is an § € (r,00) such that
Ssae C Sy ¢ Therefore, by [9], Theorem 3.4,

L¥(X) x WH(2) = R(Ssa¢) C R(Syye) C LL(E) X wlin(s),

which proves the assertion on the denseness of R(S). u

The following lemma gives a preliminary a priori estimate for a solution (u, p)

Lemma 4.2 Let 1 <r < oo, w € A, and € € (0,7/2). Then there exists an A,-
consistent constant ¢ = c(e,r, %, A.(w)) > 0 such that for every A € —ap+5;,§ € R*
and every (u,p) € D(Sy) ¢),

i, pse Vi, V72, V'p, Epllrw < C(Hfa V'9,9,89lrw + [Mlg; Ly, + La,l/gHO
IV, €l + Nl gy -y
) s Pllrw (Ww}r </
where jiy = |A+ag + V2 (f,—g) = S(u,p) and (Wi,’r/)* denotes the dual space
of WE'(2).
Proof: The proof is based on a partition of unity in ¥ and on the localization
procedure reducing the problem to a finite number of problems of type (R, ¢) in bent
half spaces and in the whole space R"~!. Since 9% € C*!, we can cover OX by a finite
number of balls B;, j > 1, such that, after a translation and rotation of coordinates,
¥ N B; locally coincides with a bent half space ¥; = 3, where o; € C'(R""!) has
a compact support, 0;(0) = 0 and V”0;(0) = 0. Choosing the balls B, small enough
(and its number large enough) we may assume that [|V"0;||. < Ko(e,r, X, A (w))

for all 7 > 1 where K was introduced in Theorem 3.3. According to the covering
9% C ;5 Bj there are cut-off functions 0 < ¢, p; € C>°(R"") such that

wo + Zgoj =1in 3, suppy; C B; and supp ¢y C 2.

Jz1

Given (u,p) € D(S) and (f,—g) = S(u,p), we get for each ¢;, j > 0, the local
(R.¢)-problems
(A+& = A)(pju') + V'(ep) =
(A +& = A)(pjun) +i&(jp) = fin (4.2)
dive(pju) = g
for (¢ju, p;p),j > 0, in R"! or X;; here

fi = eif =2V'g; - V' — (Apj)u + (V'gs)p
fin = @jfa—2V'¢; - V'u, — (Ag;)u, (4.3)
9 = g+ Vi
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To control f; and g; note that u = 0 on 9%; hence Poincaré’s inequality for
Muckenhoupt weighted space yields for all 7 > 0 the estimate

”fj7 v/gj7 ggj”r,w;ﬁj < c(lIf, V'g, 9, £9llrws + Hvluu §u, pllrwis), (4.4)

where ¥y = R*! and ¢ > 0 is A,-consistent. Moreover, let g = gy + g, denote any
splitting of g € L}, , + L[, , Je- Defining the characteristic function y; of ¥ N %, and
the scalar

1
m. —_ (gp‘go_}_u/'vlw')d‘r/
’ |Zm2]| Eﬂzj ’ ’
1
= A (i€un — g1)pjda’,
’2ﬂ2j| 2N ’

we split g; in the form

9; = gjo+ g1 = (pjgo +u - V'o; —mix;) + (¢ +mjx;).

Concerning g;; we get

lonlos, = / i1+ [
EﬁEj
C(T) (Hgl”:,w;E + |mj|ru)(z N E]))

w(ZNY;) - (ZN)/r
< () (la s + ﬂ :
i PG

(lunllyne. + g lis))

with ¢(r) > 0 independent of w. Since we chose the balls B; for j > 1 small enough,
for each j > 0 there is a cube ); with ¥ N %; C Q; and |Q;| < ¢(n)|X N 3;| where
the constant ¢(n) > 0 is independent of j. Therefore

/T
lg51llss, < ) (llgr o + LD @I (e o+
< () (1 + A ()7) (I§unll 1. + I ]

’”"“)> (4.5)

for j > 0. Furthermore, for every test function ¥ € C5°(3;) let

~ 1
V=vv - ——— Wda'.
|Z N E]’ EmEj

By the definition of m;x; we have fz- gjodz’ = 0; hence by Poincaré’s inequality
J
(see Proposition 2.7)

fzj gjo¥da' = fzj gjo\i/dx’
= [ go(goj\If )dx' +f2 V’gpj)\lfdx
< (190 /|17 1V (259) v or + 12
< clllgoll-1re + 1Ml gy,

(V'%)‘i’ﬂl,w,w'

r W%,
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where ¢ > 0 is A,-consistent. Thus
lgsoll s, < ellgoll s+ 1ol 10.) Tor j 0 (4.6)
Summarizing (4.5) and (4.6), we get for j >0
g5 Wb (5) + L1 e (Z5)]) < (I llgyryye + 1193 Lin o + L sello) (4.7)

with an A,-consistent ¢ = ¢(r, A, (w)) > 0.

To complete the proof, apply Theorem 3.1 to (4.2), (4.3) when j = 0. Further
use Theorem 3.3 in (4.2), (4.3) for j > 1, but with A replaced by A + M with
M = X\ + ag, where \g = \o(e,7, A, (w)) is the A,-consistent constant indicated in
Theorem 3.3. This shift in A implies that f; has to be replaced by f; + My;u and
that (3.31) will be used with A replaced by A+ M. Summarizing (3.8), (3.31) as well
as (4.4), (4.7) and summing over all j we arrive at (4.1) with the additional terms

1= ([ Mullp o+ [ M o+ M g: L+ L el

on the right-hand side of the inequality. Note that M = M(e,r, A.(w)) is A,-
consistent and that g = div’u’ + i€u,, defines a natural splitting of g € Lfnvw(Z) +
L7 (X). Hence Poincaré’s inequality yields
I < M(HUHMJ;E + ||diV Iu/“—l,r,w + ||UN||T,w;Z)
S Cl”uHr,w;E S CQHv/uHr,w;E

with A,-consistent constants ¢; = ¢;(e,r, X, A.(w)) > 0,7 = 1,2. Thus (4.1) is
proved. [ ]

Lemma 4.3 Let1 <r <oo,w € A, and A € —a+ S., e € (0, ) with a € (0,ap).
Then there is an A,-consistent constant ¢ = c(«,e,r, A.(w)) such that for every
(u,p) € D(S) and (f,—g) = S(u,p) the estimate

||,LL3_U, N+V/Ua v/2u7 V/pa ngr,w

(4.8)
< C(Hfa V/gaga gg”?",w + <|)‘| + ]')Hg’ L:n,w + L:;,l/&HO)

holds; here py = |\ + a + 2|2,

Proof of Lemma 4.3: Assume that this lemma is wrong. Then there is a constant
co > 0, a sequence {w;}52, C A, with A,(w;) < ¢ for all j, sequences {\;}52, C
—a+5,{&}52, CR* and (uy,p;) € D(Sﬁj@) for all 7 € N such that

1N + @+ E)uy, (A + o+ ED)V2V"uy, V205, V', £Dj] rw,

. , i ) (4.9)
> j(1f5: V"9 95§95 llro; + (N + Dllgss L, + LL, 1se, llo

T
assume without loss of generality that

where (f;,—g;) = Sujj)'\j,gj(uj,pj). Fix an arbitrary cube ) containing 3. We may

AT(Wj) S Co, wj(Q) =1 \V/] € N, (410)

21



by using the A,-weight @; := w;(Q) 'w; instead of w; if necessary. Note that (4.10)

also holds for +/, {w}} in the following form: A,(w;) < ol wi(Q) < QI

Therefore, by a minor modification of Proposition 2.5 (3), there exist numbers s, s
such that
L (8) = L*(%), L) =L, jeN, (4.11)

with embedding constants independent of 7 € N. Furthermore, we may assume
without loss of generality that

1A+ a+ E)uy, (N + a+ ) 2V'u;, V205, V'Dj, £ llrw; = 1 (4.12)
and consequently that
1£5: V955 95: 695l rw; + (N + Dllgss Lo, + Lo, 176, llo = 0 as j— o0, (4.13)
From (4.11), (4.12) we have
IO\ + a + Euy, (N + a+ E)V2Vuy, VP, Vipy, sl < K, (4.14)

with some K > 0 for all j € N and

115, V'95, 9. §95lls = 0 as j — oc. (4.15)
Without loss of generality let us suppose that as j — oo,
N —AE—a+S. or |\ — o0
§—0 or §—E&#0 or [§]— o0
Thus we have to consider six possibilities.

(i) The case \j; = A\ € —a+ 5., & — E#0.
Due to (4.14) {u;} € W** and {p;} C W'* are bounded sequences. In virtue of
the compactness of the embedding W'#(X) «— L*(X) for the bounded domain 3,
we may assume (suppressing indices for subsequences) that

uj — u, Vu; — V'u in L° (strong convergence)
V?2u; — V2 in L® (weak convergence)
’ (4.16)
pj — P in L® (strong convergence)
V'p; = V'p in L* (weak convergence)

for some (u,p) € D(Sspre) as j — oo. Therefore, Ssye(u,p) = 0 and, conse-
quently, v = 0, p = 0 by Lemma 4.1. On the other hand we get from (4.12) that
supjey |[wll2,rw; < 00 and sup;ey [|pjll1rw; < o0 which, together with the weak
convergences u; — 0 in W#5(X), p; — 0 in W'#(X), yields

[uillre; =0, Ipillrw; =0

due to Proposition 2.6 (2). Moreover, since sup ey || A0, < 00 and Aju; — Au =
0 in L*(X), Proposition 2.6 (3) implies that

1Al gy, — 0. (4.17)
W)

J
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Thus (4.1), (4.12) and (4.13) yield the contradiction 1 < 0.
(it) The case \j = A € —a+ 5., & — 0.
Since ujlps = 0,]|V?u;lls < K, we have the convergence (4.16) for some u €
W25(2) N W, *(X), but concerning p we get the existence of p € Wi and g € L*
such that
Vi =V'p, &pj—q in L’
as j — oo. Looking at (R, ¢, ), the convergence of {u;}, {p;} yields

A=A +V'p = 0
A=AYu,+ig = 0

divi/ = 0

in ¥. Thus («,V'p) = (0,0), see [9], Lemma 3.3 (ii), or [6]. Obviously, ¢ is a
constant, since £; — 0, and u,, € W?(X)NW, () due to elliptic regularity theory.
By (4.13), for all j € N there is a splitting g; = gjo + gj1 such that

9j0 € Lyyrs 91 € LT, and (1IN + 1) (llgjoll1,rw; + [1gj1/&jlIrw,) — 0. (4.18)

Therefore, from the divergence equation dive,u; = g; we get

Al +1
-Sr | e
J

and consequently [ u, dz’ = 0. Now, testing the equation (A — A")u, +ig = 0 in
¥ with w,, we see that X [ |up|?d2’ + [ |[V'up|* dz’ = 0 yielding u,, = 0 and also
q=0. Thus u; — 0 in W>*(X) which, together with sup;cy [|u;|2,rw, < 00, yields

—0 asj— oo,

(Il +1) | / Uy
x

[ujll1rw, =0 as j— o0 (4.19)

due to Proposition 2.6 (2).
To come to a contradiction consider the equivalent equation S:f’ §j7§j (Uj, Dj—Pjm) =

(fj — i&pjmen, —g;) With pj, = |—§| [ pjda’. Due to Lemma 4.2
IO+ a+&)uy, (N 4+ a+ )2V 0, V205, V'ps, & (0 — Djm) e,

< c([1£5: V95 955 € Gjllroy + (N1 + D953 Ly, + L, 1 jello (4.20)
+H£jpijr,wj + Hv/uj7£juj>pj _pijT,wj + H)\jujH(Wl;T/)*)

J

where ¢ > 0 is independent of j € N due to A, (w;) < ¢, j € N. Since &p; — ¢=10
in L*, we have {;p;,, — 0 and, considering (4.10),

1€Djmllriw; = [€5Djmlw; (E)YT < [€ipjm| — 0. (4.21)

From Poincaré’s inequality (Proposition 2.7) and (4.12), we conclude that sup; ||p; —
Pjmll1rw; < 00, which, together with p; — pjn,, — 0 in W¥(X), yields

Hpj _pijr,wj —0 as j— o0, (4.22)
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cf. Proposition 2.6 (2). Now, (4.12), (4.13), (4.17), (4.19), (4.21) and (4.22) lead in
(4.20) to the contradiction 1 < 0.

(iii) The case \; — X\ € —a + S., |&] — oo.
From (4.12) we get ||V'u;, {u;, pjllrw, — 0. On the other hand, since [|u;|y., — 0
and u; — 0 in L*® as j — oo, Proposition 2.6 (3) implies (4.17). Thus, from (4.1),
(4.12) and (4.13) we get the contradiction 1 < 0.

() The case |\j| — o0, & — & #0.

By (4.12)
|V uj, &ujllrw, — 0 as  j — oo. (4.23)
Further, (4.14) yields the convergence
u; — 0,V'u; — 0 and V?2u; — 0, \ju; — v,
p; — D and  V'p; = V'p,

in L*, which, together with (4.15), leads to
vV +Vp=0, wv,+ifp=0. (4.24)
From (4.11), (4.18) we see that
[(Ajgi- ol = [{Ag50. ) + (Ajgjn, @)
< H)‘jgjOH—l,r,wjHV,SOHT’,w} + ||)‘jgj1”7",wj”90||r’,w}
< c(INgjoll-vres I + 12 g1 llrw) 1w -
Consequently,

Ajg; € (W () and || Ngsllwrs )y — 0 as j — oo. (4.25)
Therefore, it follows from the divergence equation div ’éjuj = g, that for all p €
C>(3)

(', =V'@) + (i€vn, o) = limy_oo(div'Nju] + iX;€jun, ¢)
= limjo(Njg5,0) =0,

yielding div'v" = —ifv,, v' - N|ss = 0. Therefore (4.24) implies

~Ap+&p=0in X, g—]z\?[ =0 on 0%;
hence p = 0 and also v = 0. Now, due to Proposition 2.6 (2), (3), we get (4.17)
and the convergence ||p;llr., — 0, since Aju; — 0 in L*, p; — 0 in W' and
supjey || Ajtjllrw;, < 00, supjen [IPjll1,rw; < 00. Thus (4.1), (4.12), (4.13) and (4.23)
lead to the contradiction 1 < 0.
(v) The case |\j| — oo, & — 0.
It follows from (4.12) that in L*

u; — 0,V'u; = 0 and V7?u; — 0, \ju; — v,
Vip; = V'p, &y — g,
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which, looking at (R, ¢), yields in the weak limit
V+Vp=0, wv,+ig=0;

moreover, ¢ is a constant. Note that (4.25) holds true in this case as well. Therefore,
using (4.25), for any function ¢ in C*(X)

0= — lim (X;g;,0) = lim ((Ajuf, V') — (iAj&jun, 9)) = / v Vipda!
j—o0 j—oo 5
yielding div’v’ = 0,v" - N|gpx = 0. Thus the equation v' + V'p = 0 is just the
Helmholtz decomposition of the null vector field; therefore, v = 0,V'p = 0.
On the other hand, looking at (4.18) we get from the divergence equation and
(4.11) that

/ N de' = / ﬁ(gjo + gj1 — div'u}) do’ = / Agit dr’ — 0.
by s & DIEN]
Consequently, the weak convergence \ju;, — v, in L* yields fz v, dz’ = 0; since ¢
is a constant, we get v, = 0, ¢ = 0. Then Proposition 2.6 (3) implies (4.17).

Now we repeat the argument as in the case (ii) to get (4.20), (4.21) and (4.22),
and are finally led to the contradiction 1 < 0.

(vi) The case |\j| — oo, || — oo.
To come to a contradiction, it is enough to prove (4.17) since ||V'uy, §uj, pjllrw, — 0
as j — oo. From (4.12) we get the convergence

u; — 0,V'u; — 0 and V?2u; — 0, (N + fgz)uj -,
pi — 0 and V'p; =0, &pj—q

in L* with some v,q € L°. Therefore, (4.15) and (Ry,¢,) yield

v'=0, wv,+ig=0.
Since [|[Ajuslls < co||(A; 4 & )uylls, there exists w = (w',w,) € L* such that, for
a suitable subsequence, Aju; — w. Let g; = gjo + g, J € N, be a sequence of
splittings satisfying (4.18). By (4.11) we get for all p € C*(X)

Ajgi

[Psgio. )]+ [(ZE2 0| = 0 as G — oo,
J

cf. (4.25) and (4.25). Hence, the divergence equation implies that for j — oo

1 \igin 1
(Njtjn, @) = Eﬂjgjo, @) + <ZT; ©) + @WUQ, Vig) =0

for all o € C(X) yielding (w,, ) = 0 and consequently w, = 0.
Obviously, {ju; — 0in L*® as j — oo. Therefore, by (4.15) and the boundedness
of the sequence {||&;Vu,ll,w, }, we get from the identity div'(&uf) + i ugm = &9
that
§?ujn —0 in L® as j — oo.

25



Thus we proved v, = 0. Now v = 0 together with the estimate ||(A; + &7 )u;]lrw, <1

imply due to Proposition 2.6 (3) that ||(A; + &)u,]| — 0 in (Wi}_rl)* as j — 00.
J

Hence also (4.17) is proved.

Now the proof of this lemma is complete. [ ]

Theorem 4.4 Let ¥ C R"! be a bounded domain of C*'-class, 1 < r < oo, w €

A (R 1) and a € (0,a9), 0 < € < 5. Then for every A € —a + S, & € R* and

f e L(X),g € Wh(X) the parametrized resolvent problem (Ryg¢) has a unique
solution (u,p) € (W2"(X) N W()I;(Z)) x WL(3). Moreover, this solution satisfies
the estimate (4.8) with an A,-consistent constant ¢ = c(«,e,1, %, A (w)) > 0.

Proof: The existence is obvious since, for every A € —a + S.,§ € R* and w €
A, (R"1), the range R(SY, ) is closed and dense in L[,(3) x W} "(X) by Lemma 4.3
and by Lemma 4.1, respectively. Here note that for fixed A € C, £ € R* the norm
IV'9,9,€9ll1,rw + (L + [ADNg3 Ly o + L 1 jello is equivalent to the norm of Wir(s).
The uniqueness of solutions is obvious from Lemma 4.1. [ ]

Now, for fixed w € A,,1 < r < oo, define the operator-valued functions
ay i R — L(LL(X); Wo(2) N WL (R),
by : R* — L(LL(Z); WL (%))
by
ar(§)f =wui(§), bi(&)f = p(S), (4.26)
where (u1(£),p1(§)) is the solution to (Ry¢) corresponding to f € L[ (X) and g = 0.
Further, define
ay : R* — LWL (2); Wi (B) n WL (%)),
by : R — LW (2); W57 (E))
by
ax(§)g = u2(§),  b2(§)g = p2(§). (4.27)
with (ug(&),p2(£)) the solution to (Ry¢) corresponding to f =0 and g € W2"(X).
Corollary 4.5 For every a € (0,a9) and A € —a + S, the operator-valued func-

tions a1, by and ag, by defined by (4.26), (4.27) are Fréchet differentiable in £ € R*.
Furthermore, their derivatives w; = d%al(é)f, G = d%bl(g)f for fized f € LI (X)

and wy = d%ag(f)g, Go = d%bg(f)g for fized g € WT(X) satisfy the estimates

(A + a)fwlyfvawhf?’whfvlf,lh52€Z1||r,w < || fllrw (4.28)

and
|| ()\ + Oé)éw27 vawQu €3w27 év,qQa €2q2 HT7W

< c(IV'9,9:69llrw + (A + Dllgs Lo + L2 1 jello)

with an A.-consistent constant ¢ = c¢(a,r,e, %, A.(w)) independent of X € —a + S.
and & € R*.

(4.29)
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Proof: Since ¢ enters in (Ry¢) in a polynomial way, it is easy to prove that
a;(§),b;(€),j = 1,2, are Fréchet differentiable and their derivatives wj, g; solve the
system

A+ &% — Al +V'g; = —28u]
div'w) + iwj, = —iugy,

where (u1,p1), (ug, p2) are the solutions to (Ry¢) for f € L (X), g = 0 and f =
0, g € WLT(Z), respectively.
We get from (4.30) and Theorem 4.4 for j = 1,2,

(A + @) w;, EV"%w;, Ew;, EV/q5, €2 |
< (€%}, €py, V'€jn, Eujnllrw + (Al + Dli€usns Ly, o, + LE  ello)
< c(l1€%u5, €ps, V'€l + (AT + Dllylre) (4.31)
< cflug, (A + o+ E)uj, A+ a + V', Epj
<A+ @+ E)uj, /A + o+ VU, V2, Epjrw,
with an A,-consistent constant ¢ = c(a, 7, e, %, A.(w)); here we used the fact that
E+N+al < cea)dtate?forall A € —a+ 8.6 € R and [y, <

(A (W) |[V?u;]l,0 (see [14], Corollary 2.2). Thus Theorem 4.4 and (4.31) prove
(4.28), (4.29). .

Remark 4.6 The estimates (4.29) for the operator-valued multipliers ag, by will
be used in a forthcoming paper [11] to obtain estimates for the generalized Stokes
resolvent systems in an infinite cylinder of R” with application to the Stokes resolvent
systems on unbounded cylindrical domains with several outlets to infinity.

5 Proof of the Main Results

The proof of Theorem 2.1 is based on the theory of operator-valued Fourier mul-
tipliers. The classical Hormander-Michlin theorem for scalar-valued multipliers for
L1(R*), g € (1,00), k € N, extends to an operator-valued version for Bochner spaces
L(RF; X)) provided that X is a UMD space and that the boundedness condition for
the derivatives of the multipliers is strengthened to R-boundedness.

Definition 5.1 A Banach space X is called a UMD space if the Hilbert transform

thS)S ds  for f € S(R; X),

1
Hf(t)=—— PV /
T
where S(R; X)) is the Schwartz space of all rapidly decreasing X -valued functions,

extends to a bounded linear operator in L4(R; X) for some q € (1, 00).

It is well known that, if X is a UMD space, then the Hilbert transform is bounded
in LY(R; X) for all ¢ € (1,00) (see e.g. [27], Theorem 1.3) and that weighted
Lebesgue spaces L] (X),1 <1 < 00, w € A,, are UMD spaces.
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Definition 5.2 Let X,Y be Banach spaces. An operator family T C L(X;Y) is
called R-bounded if there is a constant ¢ > 0 such that for all Ty,..., Ty € T,
x1,...,ony € X and N € N

N N

H Z 5j(5)7}xj"Lq(071;y) S c H Z€j<s)xj}|Lq(0,1;X) (51)

Jj=1 J=1

for some q € [1,00), where (¢;) is any sequence of independent, symmetric {—1,1}-
valued random wvariables on [0,1]. The smallest constant ¢ for which (5.1) holds is
denoted by R,(T), the R-bound of T.

Remark 5.3 (1) Due to Kahane’s inequality ([4])

N

N
H Zgj(s)xj”muo,l;x) = C(qh‘D’X)H Zgj(s)xjHL%(O,l;X)’ 1< qig2 <00, (5.2)
j=1 j=1

the inequality (5.1) holds for all q € [1,00) if it holds for some ¢ € [1,00).
(2) If an operator family 7 C L(L7 (X)), 1 < r < oo, w € A (R™!), is R-
bounded, then R, (7) < CR,,(T) for all ¢,¢2 € [1,00) with a constant C' =

C(q1,42) > 0 independent of w. In fact, introducing the isometric isomorphism
L LI(S) = L'(E), L.f=fuo'",

for all T € L(L7(%)) we have T, = L,TI;' € L(L"(2)) and | T ey =
|To|lzezr(z))- Then it is easily seen that T, := {[,TI;' : T € T} C L(L"(X))

is R-bounded and R,(7,) = R4(7) for all g € [1,00). Thus the assertion follows.

Definition 5.4 (1) Let X be a Banach space and (x,)52, C X. A series Y -, @y,
is called unconditionally convergent if > | Ty is convergent in norm for every
permutation o : N — N.

(2) A sequence of projections (A;)jen C L(X) is called a Schauder decomposition
of a Banach space X if

AA; =0 forall i # j, Zij =x for each = € X.
j=1

A Schauder decomposition (Aj)jen is called unconditional if the series 22| Ajx
converges unconditionally for each x € X.

Remark 5.5 (1) If (A;),ey is an unconditional Schauder decomposition of a Banach
space Y, then for each p € [1,00) there is a constant ca = ca(p) > 0 such that for
all z; in the range R(A;) of A; the inequalities

k k
> , = H > ei(s)z;
: —

j=l
28

—1
CA

(5.3)

k
>
J=l

<ca
LP(0,1;,Y) %



are valid for any sequence (¢;(s)) of independent, symmetric {—1, 1}-valued random
variables defined on (0,1) and for all [ < k € Z, see e.g. [3], (3.8).

(2) Let Y = LY(R; L7,(¥)) and assume that each A; commutes with the isomor-
phism [, introduced in Remark 5.3 (2). Then the constant ca is easily seen to be
independent of the weight w.

(3) In the previous definitions and results the set of indices N may be replaced
by Z without any further changes.

(4) Let X be a UMD space and x4 denote the characteristic function for the
interval [a,b). Let Ry = F ' x[5,00)F and

Aj = Ry — Roin1, j € Z.

It is well known that the Riesz projection Ry is bounded in L?(R; X) and that the
set {Rs — R;: s,t € R} is R-bounded in £(L(R; X)) for each ¢ € (1,00). In par-
ticular, {A; : j € Z} is R-bounded in £(L(R; X)) and an unconditional Schauder
decomposition of RyL%(R; X), the image of LY(R; X) by the Riesz projection R,
see [3], proof of Theorem 3.19.

We recall an operator-valued Fourier multiplier theorem in Banach spaces. Let
Do(R; X) denote the set of C*°-functions f : R — X with compact support in R*.

Theorem 5.6 ([3], Theorem 3.19, [31], Theorem 3.4) Let X andY be UMD spaces
and 1 < g < oo. Let M :R* — L(X,Y) be a differentiable function such that

Ro({M(t), tM'(t) : t € R*}) < A,

Then the operator

n \2
extends to a bounded operator T : LU(R;X) — LYR;Y) with operator norm
T £Larix);La@yy) < CA where C > 0 depends only on ¢, X and Y.

Remark 5.7 Let X be a UMD-space and X =Y = LI(R; X'). Checking the proof
of [3], Theorem 3.19, one can see that the constant C' in Theorem 5.6 equals

C'=R(P) - (ca)’

where R(P) is the R-bound of the operator family P = {R, — R; : s,t € R} in
L(LY(R; X)) and ca is the unconditional constant of the Schauder decomposition
{A; : j € Z} of the space RyLI(R; X); see [3], Section 3, for details. In particular,
for X = L (3), 1 <r < oo, w € A,, using the isometry I, of Remark 5.3 (2), we get
that the constants R(P), see Remark 5.3 (2), and ¢ do not depend on the weight
w; concerning ca we again use that I, commutes with each A;.

Theorem 5.8 (Extrapolation Theorem) Let 1 < r,s < oo, w € A.(R"™) and
Y C R™! be an open set. Moreover let T be a family of linear operators with the

property that there exists an Ag-consistent constant Cr = Cr(Ag(v)) > 0 such that
for all v € A

1T fllsr < Crllfllsw
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for allT € T and all f € L5(X). Then every T € T can be extended to L (X) and
T is R-bounded in L(L'(X)) with an A,-consistent R-bound cr(q,r, A, (w)), i.e.,

Ry(T) < er(q,r, Ar(w))  forall g€ (1,00). (5.4)

Proof: From the proof of [14], Theorem 4.3, it can be deduced that 7 is R-bounded
in £(L](3)) and that (5.4) is satisfied for ¢ = r. Then Remark 5.3 yields (5.4) for
every 1 < g < oo. [

Now we are in a position to prove Theorem 2.1.

Proof of Theorem 2.1: Let us define u, p in the cylinder Q2 = ¥ x R by

u(z) = F N arf)(x), plx)=F ' (buf)(@),

where ay,b; are the operator-valued multiplier functions defined in (4.26). We will
show that (u,p) is the unique solution to (R,) with g = 0 satisfying

(u,p) € (W22 (Q) N Wd" () x Whe(Q) (5.5)

and the estimate (2.1). Obviously, (u,p) solves the resolvent problem (R,) with
g = 0. For £ € R* define my (&) : LL(X) — LI (X) by

ma(€)f = (A + a)ar(€)f.EV'a1(€) £, V"%a1 () f, Ear(€) f, V'bi(€) f, b1 () f).

Theorem 4.4 and Corollary 4.5 show that the operator family {m(&),&{m) (&) : € €
R*} satisfies the assumptions of Theorem 5.8, e.g., with s = r. Therefore, this
operator family is R-bounded in £(L7(X)); to be more precise,

Rq({ma(§),&mi (&) - € e R*}) < (g, 7, 0,6, %, A (w)) < o0.

Hence Theorem 5.6 and Remark 5.7 imply that

() N ey < Cll fllnacer)

with an A,-consistent constant C' = C(q,r, a,e,%, A.(w)) > 0 independent of the
resolvent parameter A € —a + S.. Note that, due to the definition of the multiplier
my (), we have (A + a)u, V*u, Vp € LY(L!) and

IO+ @)u, V2u, Vil pagzy < 10mf)Y [[zoe)-

Thus the existence of a solution satisfying (2.1) is proved.

For the uniqueness of solutions let (u,p) € (W2 (Q) N W(}g’“(ﬂ)) X /WJ‘I’T(Q)
satisfy (Ry) with f = 0,¢g = 0. Fix h € LY(L’,) arbitrarily and let (v,z) €
(Wifq/’r’(Q) N WOI,;E:’T/(Q) NLY(LL),) x /V[Zi,;q/’r,(Q) be a solution to (Ry) with right-
hand side h. Then using the denseness of Cg%, () in W&g,r'<9) N LY(LL), we
get

0= (M\u— Au+ Vp,v) = (u, \v — Av + Vz) = (u, h)Lq(Lqu/(L;//)
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yielding v = 0, and consequently, Vp = 0. Now the proof of Theorem 2.1 is complete.
[

Proof of Corollary 2.2: Defining the Stokes operator A = A, ,., by (2.2), due to
the Helmholtz decomposition of the space LI(L!)) on the cylinder , see [8], we get
that for F' € LI(L!), the solvability of the equation

A+ Au=F in LIYL), (5.6)

is equivalent to the solvability of (R,) with right-hand side f = F, g = 0. By virtue
of Theorem 2.1 for every A\ € —a+S. there exists a unique solution u = (A+A) ' F €
D(A) to (5.6) satisfying the estimate

IO+ @)ullzacery, < CIF| o),

with C' = C(q,r,a, ¢, %, A.(w)) independent of \; hence (2.3) is proved. Then (2.4)
is a direct consequence of (2.3) using semigroup theory. ]

Proof of Theorem 2.3: We shall show that the operator family
T={AA+A4,,.)"": N€iR}

is R-bounded in L£(L?(L!))). To this end, for £ € R* and A € S, let m, (&) := Aay(§)
where a4 (&) is the solution operator for (Ry¢) with g = 0 defined by (4.26). Then
AN+ Agp) M = (mA(E)f)Y for f € S(R;LL,(%),). In view of Definition 5.2
and the denseness of S(R; L], (X),) in LY(R; L] (X),) we will prove that there is a
constant C' > 0 such that

N ) N
H Z 5i(m/\ifi)vHLq(o,th(R;LQ(Z))) = CH Z; 5ifiHLq(O,l;Lq(R:L@(Z))) (5.7)

=1

for any independent, symmetric and {—1, 1}-valued random variables (g;(s)) de-
fined on (0,1), for all (\;) C iR and (f;) € S(R; L] (3),). Without loss of gener-
ality we may assume that (f;) C Y := RyLY(R; L] (X),), since Ry is continuous in
LY(R; L (X),) and

fi<m,7 l‘n) - (X[O,oo)fi<€>>v(xlv In) + (X[on)fi(—f))v(l‘/, _xn)'

Therefore, we shall show that 7 is R-bounded in £(Y); note that, if supp fc 0, 00),
then supp(my f) C [0,00) as well.

Obviously my(£) = my(27) + ffj mh(7)dr for & € [27,27tY) j € Z, and
(m,\(Qj)Zj\f)v =my(2)A,; f for f € S(R; L (X),). Furthermore,

3

(L,

= ([ 2me 0+ 0na o0+ Dxpan©F© &)
= /1 27m)\ (27(1 4 1)) B A f dt.
0

() dr 857(8)) = ( / (1) (D AT () dr)

Y
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where Bj; = Rj(144) — [ps+1. Thus we get

(mA(©)f(6))" = Z((mx(2j)+/;m&(f)d7)5j\f)v

JEZ

= Y (@A N +Y (/: mi\(T) dr Zj\f>v (58)

jeZ jeZl
= Zm,\(Qj)Ajf+Z/ 29mA\ (27(1 + 1)) Bj A f dt.
JEL jez 70

First let us prove

N N
H Zsi(s) Z m’\i(2j)Ajfi“Lq(0,1;Y) = C” Z €i<8)fiHLq(0,1;Y)' (5.9)
i=1 =1

JEZ

Note that the operator m,,(27) commutes with A;, j € Z; hence, for almost all
s € (0,1), the sum Zf\il ei(s)my, (27)A, fi belongs to the range of A;. Therefore, for
t

any [, k € Z we get by (5.3) that

N k

H Z &i Z mAi(Qj)Ajfi{‘Lq(O,l;Y)

i=1  j=l

B </01 | i igi(s)m)‘i(2j>AJ’fiH§/ ds) "

=t =l (5.10)

= CA</01 /O I jE}m é&(S)mAi(Qj)AjfiHideS)l/q

N k
- CAH Z Z eij (s, 7-)m/\i(2]')A1'f7?||sz((0,1)2;Y)

i=1 j=I

where ¢;;(s,7) = €;(s)e;(7); note that (g,5); jez is a sequence of independent, sym-
metric and {—1, 1}-valued random variables defined on (0,1) x (0,1). Furthermore,
due to Theorem 4.4, the operator family {m,(§) : A € iR, £ € R*} C L(L[ (X))
is uniformly bounded by an A,-consistent constant, and hence it is R-bounded by
Theorem 5.8. Therefore, using Fubini’s theorem and (5.3), we proceed in (5.10) as
follows:

N &k
=Ca H Z Z e (5, T)m&(Qj)Ajfi ||Lq(R;Lq((o,1)2;L;(z)))

i=1 j=I
N k

< Cea Z Zgij(3= DA fill ooz (5.11)
11:\71 ]:l N )

- CCAH Z Zgij(‘g’ T)AjfiHLq((o,l)2;Y) < CCQA” Z i Z AjfiHL‘I(O,l;Y)'
i=1 j=l i=1  j=I
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Since {Zf:l A; : I,k € Z} is R-bounded in L£(Y) and (4;) is a Schauder de-
composition of Y, we see by Lebesgue’s theorem that the right-hand side of (5.11)
converges to 0 as either [,k — oo or [,k — —oo. Thus, by (5.10), (5.11), the series
SV eils) > ez M (27)A; f; converges in L(0,1;Y), and (5.9) holds.

Next let us show that

||Zez S [ om0+ 0) tAfzdtHmecuza illiaorry

JEZ
(5.12)
Using the same argument as in the proof of (5.9) and the R-boundedness of the
operator families {B;;: j € Z,t € (0,1)} C L(Y) and {27(1+t)m)(2/(1+1)): X €
iR,jeZ,te(0,1)} C L(L (X)), see Corollary 4.5, we have

N k 1
H Zsi(s) Z/o 27mi\ (27(1+ 1)) BjeA fi dt”Lq(O,l;Y)
i=1 j=l X N i
< / H ZEZ Z m)\ 2‘7 1+ t)) jvtAjfiHLq(O,l;Y) dt

<cA/ ”ZZ% (5, 7)27m} (27(1 + 1)) By A, fZHLq(Ol)Qy)

zl]l

<CA/ 1523 el Z 0+ O 0+ DDA

=1 j=I
< CA Z gi(s) Z A fill oy
i=1 g=l

for all [,k € Z. Thus (5.12) is proved.

By (5.9), (5.12) we conclude that the operator family 7 = {A\\ + Ay ,0) 7"
A € iR} is R-bounded in L£(L9(L])). Then, by [31], Corollary 4.4, for each f €
LP(Ry; L9(L])s), 1 < p < oo, the mild solution u to the system

w+Agrou=f, u(0)=0 (5.13)
belongs to LP(R; LI(L]),) N LP(Ry; D(A, ) and satisfies the estimate

vt Ag it Lo sar)) < CllfllLe@eLan).)-

Furthermore, (2.3) with A = 0 implies that even wu satisfies this inequality. If f €
LP(Ry; LI(L!)), let u be the solution of (5.13) with f replaced by Pf, where P =
P, ;. denotes the Helmholtz projection in LP(R; LY(L!)), and define p by Vp =
(I — P)(f —us + Au). By (2.1) with A = 0 and the boundedness of P we get
(2.7). Finally, assume e f € LP(R,; LY(L"),) for some a € (0, ) and let v be the
solution of the system v, + (A — a)v = e*f, v(0) = 0. Obviously, replacing A by
A — a in the previous arguments, v is easily seen to satisfy estimate (2.6). Then
u(t) = e~ *wv(t) solves (5.13) and satisfies (2.8). In each case the constant C' depends
only on A, (w) due to Remark 5.7.

The proof of Theorem 2.3 is complete. ]
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