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ABSTRACT: Given a language of ramified cumulative type theory as introduced in (Zahn
2004). We shall construct and investigate an extension, L, of it, which is a language of
the same sort, but also containes sentences which express that certain sentences of L are
deducible from others (hypotheses) by given rules. To this we introduce ‘names’ of terms
and formulas of L and include them in L. So in L we can not only use but also ‘speak
about’ sentences of that language. Especially, by means of first order sentences we can
speak about higher order sentences. Despite this possibility of ‘reduction’ of order, all
sentences of L are non-circular. The considered deducibility-relations of sentences from
others correspond to systems of labelled modal logic of types K4 and G.

Motivation: In everyday speech and in empirical sciences one does necessarily not
only assert established facts but also uses universal hypotheses or conjectures, which
often do not even get cited. If A is the conjunction of all current hypotheses, we
could use (assert) any sentence B as short for A → B. But as soon as A becomes
rejected, it becomes obviously unserviceable to assert sentences of the form A → B
(or abbreviations for them). Accordingly, if A contains (probably) untrue hypotheses
(such as simplifications of conjectures) we can instead of A → B better use the
statement that B has been deduced from A and already justly asserted sentences
of a given class, K, by the rules of classical logic (e.g.). This statement reminds
of necessity, say “B is necessary with respect to (A, K)”. (The set K should be
chosen considering particular purposes. It might be a set of physical or medical
sentences, e.g., that can possibly be verified.) Then the sets Si of all sentences that are
deducible at successive times ti (i = 0, 1, 2, . . .) form a monotonic increasing sequence
S0, S1, S2, . . . . (The corresponding concept of necessity means that necessary is what
is deducible from given hypotheses and particular established facts by rules that are
admissible by linguistic conventions.)

1 A Language of Cumulative Type Theory

At first we incompletely sketch the construction of the language of a particular rami-
fied cumulative type theory, which has been investigated in (Zahn 2004).

Assume that we already dispose of certain elementary formulas and terms,
which are said to be original terms (of order 0). All variables that occur in those
formulas or terms are also said to be of order 0. Let
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V0 = set of all variables of order 0
Tor = set of all original terms, V0 ⊂ Tor
E = set of all elementary formulas (to be considered).

V0 is permitted to contain variables of several sorts. (Of course, V0 is supposed
to contain denumerably many variables of every of those sorts. Also Tor and E
are supposed to satisfy certain conditions.) Let constants / sentences be closed
terms / formulas, respectively (i.e. without free occurring variables).

In the following, certain properties and relations-in-intension will be given by
constants. They are simply said to be (particular) sets . As such sets we shall
introduce sets of order 1, whose elements are (tuples of) constants of order 0 (or
objects denoted by them), sets of order 2, whose elements are (tuples of) constants
of order 0 or 1, etc. So a set of order n contains only elements that have orders < n.
However, a set of order n will also be said to have any order larger than n.

To this end we shall introduce the following sets of higher order terms and formulas:
Tn = set of all terms of order n,
Fn = set of all formulas of order n.

Here and in the following, m, n range over (signs of) ordinal numbers belonging to a
given set Ω with IN = {0, 0′, 0′′, 0′′′, . . .} ⊆ Ω ⊆ C0 (defined as follows). We define

Cn ⇀↽ set of all constants of order n, i.e. belonging to Tn,
Cn ⇀↽

⋃
j∈IN+ Cj

n,
which is the set of all j-tuples (c1, . . . , cj) of constants ci ∈ Cn with arbitrary length
j ∈ IN+ ⇀↽ IN \ {0}.

We presuppose that we have stipulated that every element of V0 is to be used as a
variable for certain (or all) elements of C0. Let also be given two disjunct denumerable
sets V and V of ‘new’ variables which do not occur in elements of Tor ∪ E . We shall
use the elements of V as variables for elements of C ⇀↽

⋃
n∈Ω Cn, i.e. for constants of

arbitrary order, and the elements of V as variables for elements of C ⇀↽
⋃

n∈Ω Cn, i.e.
for arbitrary tuples of constants. - Moreover, let

T n ⇀↽
⋃

j∈IN+ T j
n ∪ V.

So Cn is the set of all closed elements of T n.

We shall also use the following abbreviations: F ⇀↽
⋃

n∈Ω Fn, T ⇀↽
⋃

n∈Ω Tn,

T ⇀↽
⋃

n∈Ω T n, and A ⇀↽ set of all sentences of F .

For the present, we let the letters x, x1, x2, . . . range over variables of V0 ∪V, and
x, y over variables of V. In the object language we shall use the signs Cm, Cm, and ε
instead of Cm, Cm, and ∈, respectively.

All elements of Cn \ C0 are to be introduced as (signs of) subsets of
⋃

m<n Cm. A

constant of the form {x ε Cm : A(x)} is to denote the set of all elements c ∈ Cm

satisfying A(c). A sentence of the form ∃x ε Cm. A(x) is to mean that there exists
a value c ∈ Cm of x satisfying A(c). By this means, we can define j-ary relations
(j ∈ IN+) thus:
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{(x1, . . . , xj) ε Cj
m : A(x1, . . . , xj)} ⇀↽

{x ε Cm : ∃x1 ε Cm. . . .∃xj ε Cm. (x =m (x1, . . . , xj) ∧ A(x1, . . . , xj))}.

(To this end, the sign ‘=m’ must previously be introduced suitably.) - So we at first
demand that

t ∈ Tn if t ∈ Tor ∪ V,
{x ε Cm : F} ∈ Tn if F ∈ Fn, m < n,

E ∈ Fn if E ∈ E ,
(F ∧ G), (F ∨ G) ∈ Fn if F, G ∈ Fn,

(¬F ) ∈ Fn if F ∈ Fn,
(∃x ε Cm. F ) ∈ Fn if F ∈ Fn, m < n,

(s ε t) ∈ Fn if s ∈ T n, t ∈ Tn.

Note that we need not deal with complicated types that include information about
‘arities’ of relations. So we may simply identify types with orders.

The latter and certain subsequently adduced ‘demands’ can be formulated as
formal rules to construct terms and formulas of order n. But we need also ‘semantical’
stipulations. Accordingly, in (Zahn 2004) is also introduced an assertion game, which
contains certain ‘primary rules’ to restrict assertions of sentences of arbitrary order.
All inference rules of classical logic can be shown to be admissible in the ‘classical
game’ of assertion which is given by the agreement that a sentence may be asserted
in this game if and only if the assertion of its double negation would not violate a
primary rule. - Note that, for purposes of classical reasoning, the particles →, ↔,
and ∀ can be defined by means of ∧,¬, and ∃.

For mathematical purposes we want also to dispose of sequences R of relations
R(0), R(1), R(2), . . . ∈ Cn satisfying

(c, k) ε R(l) ↔ (c) ε Cm ∧ k < l ∧ A((c), k, R(k))

for all tuples (c) ≡ (c1, . . . , cj) of constants and all k, l ∈ Ω, if any formula A(x, µ, z) ∈
Fn and any ordinal m < n are given. (We write ‘≡’ to denote the literal equality
of strings of symbols.) By this ‘recursive characterization’, R(l) depends upon the
relations R(k) with numbers k < l only. - We designate R by (Jx ε Cm, µ, z :
A(x, µ, z)). Accordingly, we demand:

(Jx ε Cm, µ, z : F )(q) ∈ Tn if F ∈ Fn, q ∈ T (Ω), m < n, µ ∈ V(Ω), z ∈ V

where T (Ω) (⊆ Tor) is a given set of terms whose substitution instances are elements
of Ω, and V(Ω) = V0∩T (Ω) is a set of variables for elements of Ω. (‘J’ is an ‘induction
operator’) - Then it can be shown that if two formulas A(x), B(x, µ, z) ∈ Fn and an
order m < n are given, there also exists a term Sν ∈ Tn such that S0, S1, S2, . . . ∈ Cn

is a sequence of relations satisfying

c ε S0 ↔ c ε Cm ∧ A(c)
c ε Sk+1 ↔ c ε Cm ∧ B(c, k, Sk)
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for all c ∈ C and all k ∈ IN.

We want to introduce equations x = y such that all formulas A(x) of arbitrary
order are invariant under (=), i.e. satisfy c=d ∧A(c) → A(d) for all constants c, d.
To this end, equal constants must especially have the same orders, and equal sets
must contain the same elements:

c = d → ∀µ ε C0. (c ε Cµ ↔ d ε Cµ)
c = d ∧ ¬ (c ε C0) → c ⊆ d ∧ d ⊆ c

where µ ∈ V(Ω) (again), and c ⊆ d means that c is a subset of d (see below). Since
the formulas c ε Cµ and c ⊆ d should belong to the object language considered, we
demand and define the following (where ∃x ε t. F is to be read as “For some x, x ε t
and F”):

(t ε Cq) ∈ Fn if t ∈ Tn, q ∈ T (Ω)
(∃x ε t. F ) ∈ Fn if t ∈ Tn, F ∈ Fn

∀x ε s. F ⇀↽ ¬∃x ε s. ¬F
s ⊆ t ⇀↽ ∀x ε s. x ε t ∧ ¬ (s ε C0) ∧ ¬ (t ε C0).

Notice, however, that if q (is or) contains a variable, we do not rank Cq with the
terms of T .

Now we presuppose: Let (=0) be an equivalence relation on C0 (which has already
been introduced and is suitable for certain purposes). Assume that all terms of Tor
and all formulas of E are invariant under (=0). For terms s, t of any order we define

s ∼ t ⇀↽ ∀µ ε C0. (s ε Cµ ↔ t ε Cµ)
s = t ⇀↽ s =0 t ∨ (s ⊆ t ∧ t ⊆ s ∧ s ∼ t).

Of course, we demand that

(s =0 t) ∈ Fn if s, t ∈ Tn.

Then it can be shown that all formulas of F are invariant under (=).

The ‘type-free’ relations (⊆), (∼), and (=) are definable in our object language,
but they are neither elements of C nor elements of elements of C.

Given a formula A(x), a tuple c ≡ (c1, . . . , cj) ∈ Cm of constants, and some

i = 1, . . . , j. Then A(ci) means that the ith component of c satisfies A(x). Since our
object language also contains variables y for such tuples c of constants, we postulate,

in addition, that the object language contains a formula expressing that the ith

component of any given value of y belongs to Cm and satisfies A(x). For that formula
we take ∃x ε πm(y, i). A(x) (with π for “projection”). Generalizing we demand

(∃x ε πm(s, p). F ) ∈ Fn if m < n, s ε T n, p ∈ T (IN), F ∈ Fn
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where T (IN) (⊆ Tor) is a given set of terms (inclusive of variables) whose substitution
instances are elements of IN. Then all sentences of the form

∃x ε πm((c1, . . . , cj), i). A(x) ↔ ci ε Cm ∧ A(ci)

(i = 1, . . . , j) may be asserted in the correspondingly stipulated classsical game.

In the above definition of j-ary relations we have already used equations s =m t
between tuples s, t ∈ T . These equations can be defined by

s =m t ⇀↽ s, t ε Cm

∧ ∀κ ε C0. ∀x ε Cm.
(
∃y ε πm(s, κ). x = y ↔ ∃y ε πm(t, κ). x = y

)

where κ ∈ V0 is a variable for elements of IN, and x, y ∈ V are different variables that
do not occur in s or t. - For all a ≡ (a1, . . . , aj) and b ≡ (b1, . . . , bj) we obtain:

a =m b ↔ a1 = b1 ε Cm ∧ . . . ∧ aj = bj ε Cm.

For constructing the object language, we must (among other things) previously
have introduced the set IN (⊆ C0) and a set V(IN) (= V0 ∩ T (IN)) of variables that
range over IN. Thereafter we may use the sign IN also in the object language as an
abbreviation of the element {κ ε C0 : 0 =0 0} of C1 with κ ∈ V(IN). The sign Ω may
be used similarly in the object language.

The main results of (Zahn 2004) are these: All sentences of A are (with respect
to the primary rules of assertion) non-circular and even well-founded. All terms of
T and all formulas of F are invariant under (=).

2 Deducibility of sentences from hypotheses
considered modal-logically

We have just sketched a comprehensive language of a ramified cumulative type theory.
We shall construct and investigate an extension, L, of it, which is a language of the
same sort, but also contains sentences which express that certain sentences of L are
deducible from others by given rules. To this we shall introduce ‘names’ of sentences
of L and include them in L. So in L we can not only use but also ‘speak about’
sentences of that language. But in this section we only deal with the deducibility of
sentences from ‘hypotheses’ by given axioms and rules. (Later we shall show how we
can formulate that deducibility in L.)

Note. A. Tarski and others have already shown that ramified type theory can, in a
certain sense, be used as a metalanguage of itself. But the type theory considered in this
paper is an extension of Russell’s ramified type theory. So it is appropriate to permit the
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use of corresponding additional axioms in deductions from hypotheses. We shall enclose
such axioms in the system S assigned below.

Assume that A ≡ A1 ∧ . . .∧Aj is the conjunction of all ‘current hypotheses’. We
shall introduce sentences of the form A � B which are to mean that B is deducible
from A and certain additional axioms by certain rules. The system of those axioms
and rules will be denoted by S.

Let now be given a language of type theory as described in section 1. Define:
W ⇀↽ V0 ∪ V and W ⇀↽ W ∪ V. We extend F as follows: Let F+ (⊃ F) be the set
of all formulas constructible by the following six rules (where ‘⇒’ indicates the steps
of construction):

⇒ F, if F ∈ F
F ⇒ (¬F ), (∃xF ), if x ∈ W

F, G ⇒ (F ∧ G), (F ∨ G), (F � G).

In the following, the letters x, y, z range over W , x over V , and y, z over all lists

z1, . . . , zj of variables zi ∈ W with arbitrary length j ∈ IN; s, t range over T , s, t
over T , T over T ∪T ; m over Ω; F, G, H over F+; and A, B, C over A+, i.e. the set
of all sentences belonging to F+. Moreover, we let ∀y and ∀z range over all prefices
of the form ∀z1 . . .∀zj with j ≥ 0. (In case j = 0, ∀z F stands for F .)

Note that the quantifications in ∃xF and in ∀z F are not restricted to any order, and
that formulas of F+ \ F do not occur in terms of T .

Now we assign the axioms of S under 1. - 4.:

1. Let PL be the ‘propositional language’ whose formulas are as usual composed of
‘propositional variables’ and ⊥ (⇀↽ 0 = 1) by means of ∧,∨,¬, and (, ). Let TAU
be a particular finite set of tautologies that are formulated in PL. TAU with the rule
of modus ponens is assumed to be ‘complete’. As axioms of S we take at first all
formulas of the shape ∀z F where F results from an element of TAU by replacing all
occurrences of propositional variables with formulas of F+.

Notes. Also the following axioms of S have the shape ∀z F . But, for convenience, they
are permitted to contain free variables, i.e. we do not demand that all variables occurring
free in F are bound by the prefix ∀z. All substitution instances of these axioms may be
asserted due to conventions of the classical game of assertion. - In the following, Fr(t, x, F )
is to mean that t is free for x in F (which is to be defined suitably), and N(y,G) is to
mean that y does not occur free in G.

2. Let all formulas of F+ of the following shapes be axioms of S:

∀z (t = t);
∀z (x = t → (F ↔ Fxt)) with Fr(t, x, F ), x ∈ W;
∀z (Fx T → ∃x Fx) with Fr(T, x, F );

∀z (∀y (Fx y → H) → (∃xF → H)) with Fr(y, x, F ), N(y, (∃xF → H));
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∀z (∃x ε Cm. F ↔ ∃x (x ε Cm ∧ F )) with x ∈ W, F ∈ F ;
∀z (∃x ε t. F ↔ ∃x (x ε t ∧ F )) with F ∈ F ;

∀z (s ε {x ε Cm : F} ↔ s ε Cm ∧ Fx s) with Fr(s, x, F ), F ∈ F ;

∀z
(
(s, p) ε R(q) ↔ (s) ε Cm ∧ p < q ∧ F ((s), p, R(p))

)

with (s) ∈ T , p, q ∈ T (Ω), R ≡ (Jx ε Cm, µ, z : F (x, µ, z)), µ ∈ V(Ω), z ∈ V,
Fr((s), x, F (. . .)), and Fr(p, µ, F (. . .));

∀z (∃x ε πm((t1, . . . , tj), i). F ↔ ti ε Cm ∧ Fx ti),
∀z (∃x ε πm((t1, . . . , tj), p). F → p = 1 ∨ . . . ∨ p = j)

with x ∈ W; t1, . . . , tj ∈ T ; i = 1, . . . , j; F ∈ F , and p ∈ T (IN), where x does not
occur free in t1, . . . , tj or p;

∀z ¬∃x ε πm(t, p). F with x occuring free in (t, p);
∀z (s =0 t ↔ s = t ∧ s ε C0).

(These axioms can be supplemented by axioms concerning the use of the signs Cm

and Cm with m ∈ Ω. We shall deal with this topic in section 5.)

3. The following axiom schemes, which we include in S, concern the connective � :

∀z (F � F ) [1]
∀z (F � G ∧ G � H → F � H) [2]

∀z (F � ∀y (G → H) → (F � ∀y G → F � ∀y H)) [3]
∀z (F � ∀y H → F � ∀y (G � H)) [4]
∀z ((F ∧ G) � H → F � (G � H)) [5].

Note. [3] and [4] remind of the following axiom schemes of labelled modal logic:
i (B → C) → ( i B → i C ) and i C → i j C, respectively, which are in case i = j

(or without labelles i, j) usually designated by (K) and (4) (cf. (Popkorn 1994), chap. 2).

4. As axioms of S we can (for certain purposes) also take other formulas whose substi-
tution instances may be asserted due to certain rules of assertion, especially formulas
of the shape ∀z (E1 ∧ . . . ∧En → E) with E1, . . . , En, E ∈ E , where E1, . . . , En ⇒ E
(with metavariables for certain elements of C0 in place of variables) is an agreed rule
of assertion (cf. (Zahn 2004, section 0)).

As rules of S we take

∀y (G → H), ∀y G ⇒ ∀y H (modus ponens)
∀y H ⇒ ∀y (G � H) (necessitation).

(Special cases of these rules are (G → H), G ⇒ H and H ⇒ G � H. )
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Let S � B be short for “B is deducible in S (i.e. from the axioms of S by the
rules of S)”, and S(A) � B for “B is deducible in S(A) (i.e. from A and the axioms
of S by the rules of S).” We now interprete A � B as S(A) � B, i.e. we fix the
‘primary rule’ (cf. section 1): Assert A�B only if S(A) � B has been asserted. (This
rule is invertible, since we do not restrict the assertion of A � B by other rules.) But
all sentences of A+ are to be understood classically, i.e. with respect to the classical
game of assertion (mentioned in section 1).

Notes. 1. We have: S � ∀z F if and only if S � F . This can be shown by
induction on S (i.e. on the number of corresponding deduction steps). The same
also holds for S(A) instead of S. Moreover, we have S � ∀z

(
F �∀xG → ∀x (F �G)

)

if N(x, F ); this reminds of the inverse Barcan formula, i ∀xG → ∀x i G.
2. It can be shown that S � A � (B → C) → (A ∧ B) � C, and by axiom [5]
we especially have S � (A ∧ B) � C → A � (B � C). But I do not know whether
A � (B � C) → A � (B → C) is deducible in S or in an expansion of S which also
satisfies the following propositions 2.1 - 2.4 (cf. the end of section 4).

2.1 Lemma: For all A ∈ A+ and all F ∈ F+, if S(A) � F then S � A � F .

Proof, by induction on S(A): Let S(A) � F . If F is an axiom of S, then S � A�F
by necessitation. If F ≡ A, then S � A � F by axiom [1]. - If F ≡ ∀y H has been
deduced in S(A) by applying modus ponens from the premises ∀y (G → H) and
∀y G, say, then we may use the induction hypotheses that S � A � ∀y (G → H) and
S � A�∀y G. Then, by axiom [3] and modus ponens, S � A�∀y H . - If F ≡ ∀y (G�H)
has been deduced in S(A) by applying necessitation from the premise ∀y H , then,
by induction hypothesis, we have S � A � ∀y H and so, by [4] and modus ponens,
S � A � ∀y (G � H).

Similarly we also obtain:

2.2 Lemma: For all A, B ∈ A+ and all F ∈ F+, if S(A∧B) � F then S(A) � B�F .

2.3 Proposition: If S � F , then all substitution instances of F are true (assertible).

Proof (by a well-known model, see (Smullyan 1987), chap. 26, proof of Theorem
1, e.g.): At first we show that all substitution instances of the axioms [1] - [5] are
true. To this, we consider any substitution instance A, B, C of the triple F, G, H .
Ad [1]: Let A be said to be deducible from itself. So S(A) � A, i.e. A � A is true.
Ad [2]: If S(A) � B and S(B) � C, then S(A) � C.
Ad [3]: Let A � ∀y (By → Cy) be a substitution instance of F � ∀y (G → H).
If S(A) � ∀y (By → Cy) and S(A) � ∀y By, then, by modus ponens, S(A) � ∀y Cy.
Ad [4]: If S(A) � ∀y Cy, then, by necessitation, S(A) � ∀y (By � Cy).
Ad [5]: By 2.2, every sentence of the shape [5] is true.
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Also all substitution instances of the residual axioms of S are true. Now we easily
obtain 2.3 by induction on S. To this note the following: To obtain S � ∀y (G � H)
by necessitation, we must previously have S � ∀y H . But then, for any substitution
instance B � C of G � H , C is deducible in S and so in S(B) so that B � C is true.
Thus every substitution instance of ∀y (G � H) is true.

From 2.1 and 2.3 we obtain

2.4 Corollary: For all A, B ∈ A+, S(A) � B if and only if S � A � B.

3 A language of ramified cumulative type theory
containing names of terms and formulas

In the following we construct a language of that sort. By means of first order sentences
of it we can also speak about higher order sentences. Despite this possibility of
‘reduction’ of order, all sentences of that language are non-circular.

In the context of section 1 we say that the ‘language’ T ,F results from Tor, E ,V0,
V,V [namely by the rules of construction (‘demands’) fixed in section 1]. Now we
presuppose that a given language T ◦,F◦ results from T ◦

or, E◦,V◦
0 ,V,V. We shall de-

fine extensions Tor ⊃ T ◦
or, E ⊇ E◦, and V0 ⊃ V◦

0 such that the language T ,F , say,
which results from Tor, E ,V0,V,V contains sentences expressing that S(A) � B, for S
as above and any sentences A, B of A+. Regard that this language is also a language
of ramified cumulative type theory.

Note. Instead of constructing the extensions T ⊃ T ◦ and F ⊃ F◦, and using certain
names of terms an formulas, we could apply arithmetization - on the condition that IN ∪
V(IN) ⊂ T (IN) ⊆ T ◦

or (cf. section 1) where IN = {0, 0′, 0′′, 0′′′, . . .} and κ′, κ′′, κ′′′, . . . ∈ T (IN)
for all κ ∈ V(IN), and (s =0 t) ∈ E◦ for all s, t ∈ T (IN). Here, for all m,n ∈ IN, m =0 n is
to mean that m is literally equal to n. - But for practical use it is more convenient to take
something of names of terms and formulas as substitutes for their Gödel numbers.

For the definitions of Tor and E we need some preparations: Let VN be a denu-
merable set of ‘new variables’ that do not occur in the elements of T ◦ ∪F◦. (N will
be defined below.) Let the set Σ◦ contain all atomic symbols occurring in elements
of T ◦∪F◦∪VN , and the additional symbols �, N, Fr, and Sub. Let the symbol set Σ
result from Σ◦ by adding the new symbols �α�, ��α��, ���α���, . . ., for every α ∈ Σ◦.
The symbols �, � are supposed not to belong to Σ◦. We do also not include them in
Σ. So we may consider all elements of Σ as atomic symbols.

Let Σ∗ be the set of all strings α1 . . . αj (j ≥ 0) of symbols αi ∈ Σ. So, especially,
the ‘empty word’ belongs to Σ∗ (case j = 0). For α1, . . . , αj ∈ Σ (j ≥ 0) we define

�α1α2 . . . αj� ⇀↽ �α1��α2� . . . �αj�.
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Let this figure be said to be the name of α1α2 . . . αj . Especially � � stands for the
empty word, which is its own name. Let N be the set of all such names of elements
of Σ∗. We shall use the elements of VN as variables for (all or particular) elements
of N . All variables occurring in an element of N are considered to be bound (by the
‘quotation marks’ �, �).

For our purpose we have also to define a set of terms, whose substitution instances
are names: Let T (N ) be the set of all figures t1t2 . . . tj with ti ∈ N ∪ VN and j ≥ 0.

Now we can introduce the extensions T ⊃ T ◦ and F ⊃ F◦:
Let V0 ⇀↽ V◦

0 ∪ VN , Tor ⇀↽ T ◦
or ∪ T (N ), and let E contain all elements of E◦, all

equations (σ =0 τ) with σ, τ ∈ T (N ), and certain further formulas, which we shall
specify below. Let, as announced, T ,F result from Tor, E ,V0,V,V by the rules of
construction fixed in section 1.

We define the meaning of equations a =0 b between names a, b thus: For β, γ ∈ Σ∗

let �β� =0 �γ� mean that ( β, γ ∈ C0 and β =0 γ ) or ( β, γ /∈ C0 and β ≡ γ ).

Examples of tuples containing the empty word are: ( ), (t, ), ( , ), ( , , t), for any t ∈ T .
Such tuples are particular elements of T .

Given a system S of axioms and rules as indicated in section 2. We want to
define sets R0, R1, R2, . . . ∈ C1 such that, for all n ∈ IN, Rn is the set of all names of
formulas that are deducible in S by ≤ n steps of deduction.

So long we have used the letters F, G, H, x, y, x, s, t, T, m, . . . as metavariables.
However, to make the following definitions easier to understand, we now write these
and some other letters for particular variables of VN that range over certain subsets
of N . (This will be specified below.) By this means we at first define a formula
‘Axiom(X)’ of F1, which can be read as “X is the name of an axiom of S” and will
be explained below:

Axiom(X) ⇀↽ ∃F, G, H, P, Q, w, x, y, x, η, ζ, s, t, T, m ε C0.
(
X =0 ζ �(F̌ � F̌ )�

∨ X =0 ζ �(F̌ � Ǧ ∧ Ǧ � Ȟ → F̌ � Ȟ)�
∨ X =0 ζ �(F̌ � η̌ (Ǧ → Ȟ) → (F̌ � η̌ Ǧ → F̌ � η̌ Ȟ))�
∨ . . .
∨

(
X =0 ζ �(Ǧ → ∃x̌ F̌ )� ∧ Sub(G, F, T, x) ∧ Fr(T, x, F )

)

∨
(
X =0 ζ �(∀y̌ (Ǧ → Ȟ) → (∃x̌ F̌ → Ȟ))�
∧ Sub(G, F, y, x) ∧ Fr(y, x, F ) ∧ N(y, �∃x̌ F̌ → Ȟ�)

)

∨ X =0 ζ �(∃w̌ ε Cm̌. P̌ ↔ ∃w̌ (w̌ ε Cm̌ ∧ P̌ ))�
∨ X =0 ζ �(∃x̌ ε ť. P̌ ↔ ∃x̌ (x̌ ε ť ∧ P̌ ))�
∨

(
X =0 ζ �(š ε {x̌ ε Cm̌ : P̌} ↔ š ε Cm̌ ∧ Q̌)�
∧ Sub(Q, P, s, x) ∧ Fr(s, x, P )

)

∨ . . .
)
.

To explain this definition, we need some preliminary definitions and conventions.
For any U ⊆ Σ∗ let U �� be the set of all names �u� of elements u of U . (So we have
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U �� ⊆ Σ∗�� = N .) In the defintion of ‘Axiom(X)’, let w (∈ VN ) range over W��, x, y

over W��
, x over V��

, t over T ��, s over T ��
, T over T �� ∪ T ��

, m over Ω��, F, G,
H, X over F+��, P, Q over F �� only, and η, ζ over names �∀z1 . . . ∀zj� of prefices with
variables zi ∈ W and length j ≥ 0. . (Of course, we presuppose that VN contains
denumerably many variables of each of those sorts.)

Moreover, �. . . F̌ - - -� stands for �. . .�F �- - -� (wherein F occurs free), and
�. . . η̌ Ǧ - - -� for �. . .�η G�- - -�, e.g.

Of course, a sentence of the shape Fr(T, x, F ) with names T, x, F (in place of
variables) is to mean that T ′ is free for x′ in F ′ where T ′ is the term denoted by T , x′

is the variable denoted by x, and F ′ is the formula denoted by F . Similarly, N(y, G)
is to mean that y′ does not occur free in G′, and Sub(G, F, T, x) is to mean that G′

results from F ′ by substituting T ′ for x′. We include all formulas of those shapes
in E . To formulate this in more detail, we at first define: For U ⊆ Σ∗ let T (U ��)
be the set of all elements of T (N ) whose substitution instances are elements of U ��.
Now let E also contain all formulas Fr(T, x, F ), N(y, G), and Sub(G, F, T, x) with

x, y ∈ T (W��
); F, G ∈ T (F+��), and T ∈ T (T �� ∪ T ��

). (We have ommited several
brackets in the definition of ‘Axiom(X)’.)

Regard that, by certain appropriate requirements on T ◦
or and E◦, we have

Tor∩F+ = ∅ so that the sign ‘=0’ occurring in ‘Axiom(X)’ means the literal equality
of formulas.

As announced, we now recursively define sets R0, R1, R2, . . . such that Rn is the
set of all names of formulas that are deducible in S by ≤ n steps:

R0 =
{
X ε C0 : Axiom(X)

}

Rn+1 =
{
X ε C0 : X ε Rn

∨ ∃G, H, η ε C0. (η �(Ǧ → Ȟ)� ε Rn ∧ η G ε Rn ∧ X =0 η H)
∨ ∃G, H, η ε C0. (η H ε Rn ∧ X =0 η �(Ǧ � Ȟ)�)

}
.

For a variable ν ∈ V(Ω), Rν can also be defined as a first order term, i.e. as an
element of T1 (cf. section 1). Let R ⇀↽

⋃
ν ε IN Rν . So R ∈ C1, and for any B ∈ A+,

the sentence �B� ε R belongs to A1 and means that B is deducible in S. So, by 2.4,
�A � B� ε R means that B is deducible in S(A) (i.e. ‘from A in S’).

Result: Deducibility from hypotheses can be formulated within the object lan-
guage. So this language can serve as its own metalanguage, to some extend.

Remarks: In the above definition of R0, R1, R2, . . . it has been convenient to use
several sorts of variables belonging to VN , namely for every set U ∈ {W,V ,W ,T ,T , T ∪
T ,Ω,F ,F+} variables ranging over U��, and variables ranging over names �∀z1 . . . ∀zj� of
prefices with zi ∈ W and j ≥ 0. To this use we must previously have introduced such
variables. But instead of them we need only one sort of variables, namely variables ranging
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over N . Then we have to reformulate Axiom(X) thus:

∃F, . . . , ζ, . . . ε C0.
(
F ε F+�� ∧ . . . ∧ ζ ε Π�� ∧ . . . ∧ (X =0 ζ �(F̌ � F̌ )� ∨ . . . )

)

where X,F, ζ, . . . are elements of VN that range over N . Here we have added the clauses
F ε F+��, ζ ε Π��, . . ., where Π denotes the set of the above mentioned prefices. (To avoid
misunderstandings we can replace ‘F+’ by a new sign in this context.) We can effect that
the latter clauses are in F1 - provided that T ◦or, E◦,V◦

0 ,V, and V are recursively enumerable
(i.e. constructible by formal rules). Indeed, in this case also the sets T ,T ,F ,F+,Π, . . .
are recursively enumerable so that the corresponding sets of names for elements of those
sets can be introduced as elements of C1 (namely on the model of the above introduction
of R ⇀↽

⋃
ν ε IN Rν). - Complete reformulations of ‘Axiom(X)’ and the definition of Rn+1

are left to the reader.

The predicates N(·, ·), Fr(·, ·, ·), and Sub(., ., .) have recursively enumerable extents and
can, therefore, be defined to be elements of C1. So it suffices to take E to be the union of
E◦ and the set of all equations (σ =0 τ) with σ, τ ∈ T (N ). So we may also omit the signs
N, Fr, and Sub from Σ◦. - We shall, however, not employ these reductions of basic means
of the object language.

When we say that a sentence B is deducible in S(A), we do not use the sentences A
and B, we only refer to them. To indicate this fact we can put them in quotation marks.
Accordingly, it would be adequate to understand A � B as a shorthand of �A� � �B�. But
then the definiens of ‘Axiom(X)’ turns in

∃F, . . . , ζ, . . . ε C0.
(
X =0 ζ �(F � F )� ∨ . . .

)
,

where several occurrences of F are bound by �, �, which misses the intended meaning. We
do no further discuss that matter, but we shall deal with similar problems in section 5.

4 A version of the Theorem of Löb

Modifying an idea of Craig (see (Smullyan 1987), chap. 26, e.g.) we now extend F+

by the following rule: For all F, G ∈ F+ let ∆(F, G) be a formula of E (⊂ F ⊂ F+).
For all A, B ∈ A+ let

∆(A, B) mean that S(A) � (∆(A, B) → B).

(Note that the latter deducibility relation does not depend on the meaning of ∆(A, B).)
So for all F, G ∈ F+, all substitution instances of

∀z
(
∆(F, G) ↔ F � (∆(F, G) → G)

)

are true. We now take all formulas of this form as additional axioms of S. (These
axioms can also easily be enclosed in ‘Axiom(X)’.) So all formulas of the following
form are deducible in S:

∀z
{

(∆(F, G) → G) ↔ [ F � (∆(F, G) → G) → G]
}
.
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Writing H for (∆(F, G) → G) we obtain this version of the

Diagonal Lemma: For all F, G ∈ F+ there is an H ∈ F+ satisfying
S � ∀z

{
H ↔ (F � H → G)

}
.

The special case with A+ instead of F+ implies the following version of the

Theorem of Löb: For all B, C ∈ A+, if S � (B � C → C), then S � C.

The proof given in (Boolos 1989), p.187, can easily be transformed into a proof
of this version of Löb’s theorem. By another well known theorem of modal logic, this
version yields

S � (B � (B � C → C) → B � C),

which reminds of the modal scheme i ( i C → C) → i C. Obviously, all results of
this section also hold for S(A) instead of S.

Notes: Let � ⇀↽ ¬⊥, e.g. Because of S �� ⊥, Löb’s theorem especially implies
S �� ¬ (� � ⊥) (cf. Gödel’s second incompleteness theorem). So, for some sentences
A, B, we have S �� ¬(A �B) but S � ¬(A → B), and thus S �� (A � B) → (A → B).

5 Supplementary axiom schemes

The axioms of S can be supplemented in several respects. So it may be useful for
certain purposes to expand S by axioms concerning IN, Ω, the order relation (<)
between elements of Ω, and the basic equality relation (=0). Examples are the
following axioms of induction on IN and Ω, respectively:

∀z
(
Fκ0 ∧ ∀κ (F → Fκκ

′) → ∀κ F
)
,

∀z
(
∀ν (∀µ < ν. Fνµ → F ) → ∀νF

)
,

where z is any list of variables of W , F ∈ F+, κ ∈ V(IN), and µ, ν ∈ V(Ω) with
N(µ, F ) and Fr(µ, ν, F ). But as long as we have only presupposed that a set Ω and
relations (<) and (=0) with certain properties are given, we could only outline these
properties by axioms concerning Ω, (<), and (=0), .

The grammar of our object language is essentially determined by the sets Fn, Tn

and T n with n ∈ Ω (which depend on each other). But that language contains the
signs Cn and Cn for the sets Cn and Cn, which are particular subsets of Tn and T n,
respectively. Moreover, we have

b ε {x ε Cn : A(x)} ↔ b ε Cn ∧ A(b),
∃x ε Cn. A(x) ↔ ∃x (x ε Cn ∧ A(x)).
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So the semantics (the assertibility of sentences) of the object language is also deter-
mined by the constructions of Tn and Fn (and thus by the grammar of that language).
This shows that the axiom system S is incomplete in a corresponding manner.

First we can partially characterize T ��
n (in place of Tn) with n ∈ Ω by the following

axioms (with any prefices ∀z as above), which we can add to S; we write them in an
abbreviated shape and shall explain them subsequently:

∀z
{
t ε T ��

ν ↔ t ε T ��
or ∪ V�� ∨

∃x ε V��
. ∃m ε Ω��. ∃F ε F ��

ν . ∃λ ε V(Ω)��. ∃z ε V��. ∃q ε T (Ω)��.(
(t =0 �{x̌ ε Cm̌ : F̌}� ∨ t =0 �(Jx̌ ε Cm̌, λ̌, ž. F̌ )(q̌)�)
∧ m < ν

)}

where ν ∈ V(Ω), and t, x, m, F, λ, z, q ∈ VN are particular variables that range over
N . (Essential is the case that z consists of t and ν.) At the end of these axioms the
ineqation m < ν occurs where m ‘stands for’ the name of an element of Ω, and ν for
any element of Ω. Of course, this inequation is to mean that the ordinal denoted by
m is smaller than ν. We shall define this ineqation as an abbreviation of a compound
formula.

In the latter axioms we have used the signs ‘Tor’, ‘V’, etc., which we have intro-
duced in the metalanguage. To avoid misunderstandings, they can be replaced here
by new signs. Notice, for instance, that if the set Tor is recursively enumerable, we
can introduce first order formulas (t ε T ��

or) with t ∈ T (N ) such that, for any a ∈ N ,

the sentence (a ε T ��
or) means that a ∈ T ��

or.

The sets T ��
n , C��

n , C��
n , and F ��

n can also partially be characterized by axioms, which

we can add to S. Desirable are also axioms for characterizing T ��
or, E��, etc. But we

need, above all, axioms for characterizing Cn instead of C��
n , namely general axioms

that sum up the sentences
c ε Cn ↔ �c� ε C��

n

with arbitrary constants c ∈ C and n ∈ Ω, and corresponding axioms for Cn in place
of Cn. Axioms of the shape

∀z (x ε Cν ↔ �x� ε C��
ν )

are not suitable for that purpose since the latter occurrence of x is bound by the
quotation marks. So we take, instead, as additional axioms of S

∀z (x ε Cν ↔ �x� ε C��
ν ),

∀z (x ε Cν ↔ �x� ε C��
ν ).

To this we stipulate that any variable y (∈ W) occurs free in �y�, and that in any
term or formula in which a constant c (∈ C ∪ C) is to be substituted for y, its name
�c� is to be substituted for �y�.
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As further axioms of S we also take, for distinct variables x, y ∈ V0:

∀z (�x� =0 �y� ↔ x = y).

The inequation m < ν occurring in the above adduced axiom concerning T ��
ν can

now be defined by
m < ν ⇀↽ ∃µ (m =0 �µ� ∧ µ < ν).

Since the latter axioms contain the new signs � and �, we have to expand the
object language. To this end we add these signs to Σ and stipulate the following:
For any term T ∈ T ∪ T let �T � result from �T � by substituting �y� for �y�, for
every free occurrence of a variable y (∈ W) in T . This means that if

T ≡ β0y1β1y2β2 . . . ykβk

(where y1, . . . , yk is the list of all free occurrences of variables in T , and βi may also
be empty (i = 0, . . . , k)), then

�T � ≡ �β0��y1��β1��y2��β2� . . . �yk��βk�.

Especially for constants c we have �c� ≡ �c�.

Now we can expand F+ by including the (new) formulas (�t� ε C
��
q ) and (�s� ε C

��
q )

with t ∈ T , s ∈ T , and q ∈ T (Ω), and the formulas (�s0� =0 �t0�), (σ =0 �t0�), and
(�s0� =0 τ) with s0, t0 ∈ Tor and σ, τ ∈ T (N ). Of course, we stipulate that (as in
section 2) further formulas of F+ may be composed of others. But we do not include
�T � in T for any T ∈ T ∪ T .

Correspondingly, we supplement the primary rules of assertion by the following
rule, e.g.: Assert ∃xA(x, �x�) only if we have asserted A(c, �c�) for some value c of
x. This rule may also be inverted.

Of course, we also expand the system S by admitting that its axioms are formulas
of the expanded set F+. In view of 2.3 we have to show that all axioms of the system
expanded so are true.

Proof: At first we deal with axioms of the shape

∀z (F (T, �T �) → ∃x F (x, �x�))

with x ∈ W and Fr(T, x, F ). Let T ≡ β0y1β1y2β2 . . . ykβk as above. We assume that
ai is a value of yi, and that ai ≡ aj if yi ≡ yj (i, j = 1, . . . , k). Let �T �y a result from
�T � by substituting �ai� for �yi� (i = 1, . . . , k). Then we have

�T �y a ≡ �β0a1β1a2β2 . . . akβk� ≡ �Ty a�.

Let T be free for x in a formula B(x, �x�). Then we have, for all values a of y,

B(T, �T �)y a ≡ B(Ty a, �Ty a�)
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so that we may assert: B(T, �T �) y a → ∃xB(x, �x�). Thus all substitution instances
of axioms of the shape ∀z (F (T, �T �) → ∃x F (x, �x�)) are true.

Also all substitution instances of axioms of the shape

∀z (x = y → (F ↔ Fx y))

are true. The simple proof by induction on F+ begins as follows: 1. We have

a = b → (txa ε Cn ↔ txb ε Cn) → (�txa� ε C��
n ↔ �txb� ε C��

n ),

if t is a term in which only the variable x occurs free, and a, b are values of x.
2. If especially t ∈ Tor, we have x ∈ V0; a, b ∈ C0; txa, txb ∈ C0 (by a requirement
on T ◦

or), and so

a = b → a =0 b → txa =0 txb → �txa� =0 �txb�.
The truth of the residual axioms of S is not problematic.

Remark: For constants a, b /∈ C0, the sentence a = b → �a� = �b� is generally not
true. But equations of the shape (�x� = �y�) with x, y ∈ V do not belong to F+.

By the mentioned and similar means we cannot complete S, not even with respect
to F (instead of F+). We can at best take axioms which are sufficient for particular
purposes. - All axioms which we have considered in this section can also be enclosed
in the formula ‘Axiom(X)’.
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Tarski, A. 1933: The concept of truth in formalized languages, in Tarski 1983.
Tarski, A. 1936: On the concept of logical consequence, in Tarski 1983.
Tarski, A. 1983: (J. Corcoran, editor), Hackett, second ed.
Wray, D.O. 1987: Logic in Quotes. Journal of Philosophical Logic 16, 77-144.
Zahn, P. 2004: A Normative Model of Classical Reasoning in Higher Order Languages.

to appear in Synthese.

2000 Mathematics Subject Classification: 03B15, 03B45.
Keywords: Deducibility from hypotheses, necessity, labelled modal logic, quotation
marks, reduction of order, non-circularity

16


