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Abstract

We present the description of the spectrum of a linear perturbed Stokes–type operator
which arises from equations of motion of a viscous incompressible fluid in the exterior
of a rotating compact body. Considering the operator in the function space L2

σ(Ω)
we prove that the essential spectrum consists of a set of equally spaced half lines
parallel to the negative real half line in the complex plane. Our approach is based on
a reduction to invariant closed subspaces of L2

σ(Ω) and on a Fourier series expansion
with respect to an angular variable in a cylindrical coordinate system attached to the
axis of rotation. Moreover, we show that the operator is normal if and only if the
body is axially symmetric about this axis.

AMS Subject Classification: Primary: 35 Q 35; secondary: 35 P 99, 76 D 07
Keywords: eigenvalues, essential spectrum, modified Stokes operator, normal operator,
rotating obstacle

1 Introduction

Suppose that K is a compact body in R3 which is rotating about the x1–axis with the
angular velocity ω. Put ω = ωe1 where e1 is the unit vector oriented in the direction of
the x1–axis. Denote further by Ω(t) the exterior of K at time t. Assume that Ω(t) is a
domain with boundary of class C1,1. Put

O(t) =

 1 0 0
0 cosωt sinωt
0 − sinωt cosωt

 .

Then x ≡ (x1, x2, x3) ∈ Ω(t) ⇐⇒ x′ ≡ O(t)x ∈ Ω(0). Thus, x′ denotes the Cartesian
coordinates connected with the rotating body. Our assumptions do not exclude the case
when K = ∅ and consequently Ω(t) = R

3 for all t ≥ 0.
Let u denote the velocity and p denote the pressure of a flow of a viscous incompressible

fluid in the exterior of the body K. Then u and p satisfy the Navier–Stokes equation

∂tu− ν∆u+ u · ∇u+∇p = f (1)

and the equation of continuity

∇ · u = 0 (2)
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in the space–time region {(x, t) ∈ R3 × I; t ∈ I, x ∈ Ω(t)} where I is an interval on the
time–axis. The assumption on adherence of the fluid to the body K on the surface of K
leads to the boundary condition

u(x, t) = ω × x, x ∈ ∂Ω(t). (3)

The disadvantage of this description is the variability of the spatial domain Ω(t) which is
filled, at time t, by the moving fluid. This is why many authors use the transformation

u(x, t) = OT (t)u′(x′, t) = OT (t)u′(O(t)x, t), (4)
p(x, t) = p′(x′, t) = p′(O(t)x, t). (5)

Functions u′, p′ satisfy the system of equations

∂tu
′ − ν∆′u′ − (ω × x′) · ∇′u′ + ω × u′ + (u′ · ∇′)u′ +∇′p′ = f ′ (6)

∇′ · u′ = 0 (7)

in Ω(0)×I, where ∇′, respectively ∆′, denote the operator nabla, respectively the Laplace
operator, with respect to x′. The boundary condition (3) is transformed to

u′(x′, t) = ω × x′, x′ ∈ ∂Ω(0). (8)

In order to have a simple notation, we shall further omit the primes in (6)–(8) and we
shall write only Ω instead of Ω(0).

Among a series of results on qualitative properties of the system (6)–(8) or related
linear problems, let us mention T. Hishida [14], [15], [16], G. P. Galdi [8], [9], R. Farwig,
T. Hishida and D. Müller [5], R. Farwig [3], [4], Š. Nečasová [22], [23], M. Geissert, H. Heck
and M. Hieber [10] and S. Kračmar, Š. Nečasová and P. Penel [19].

We shall use the basic notation: Let R0 = max {|x|; x ∈ K} and ΩR = Ω∩BR(0) with
outer normal vector n on ∂Ω. Moreover, we use the following spaces and operators:

◦ (. , .)0,2 and ‖ . ‖0,2 are the scalar product and norm in L2(Ω)3, respectively.

◦ W 1,2
0 (Ω) is the subspace of the Sobolev space W 1,2(Ω) consisting of functions

vanishing on ∂Ω in the sense of traces. As is well-known, W 1,2
0 (Ω) equals the

closure of C∞0 (Ω) in the norm of W 1,2(Ω).
◦ ‖ . ‖k,2 denotes the norm in W k,2(Ω)3, k ∈ N.
◦ C∞0,σ(Ω) denotes the space of all divergence–free functions from C∞0 (Ω)3.

◦ L2
σ(Ω) is the closure of C∞0,σ(Ω) in L2(Ω)3. The space L2

σ(Ω) can be characterized
as the space of all divergence–free (in the sense of distributions) vector functions
u from L2(Ω)3 such that u ·n = 0 on ∂Ω in the sense of traces ([7], pp. 111–115).

◦ Πσ denotes the orthogonal projection of L2(Ω)3 onto L2
σ(Ω).

For the analysis of the problem (6)–(8) we introduce the Stokes–type operators (note
the sign ′+′ in front of Πσν∆)

Aωu = Πσν∆u+ Πσ[(ω × x) · ∇u− ω × u], (9)

Lωu = Aωu+Bu (10)
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in L2
σ(Ω) with the dense domains

D(Aω) = D(Lω) =
{
u ∈W 2,2(Ω)3 ∩W 1,2

0 (Ω)3 ∩ L2
σ(Ω); (ω × x) · ∇u ∈ L2(Ω)3

}
where

Bu = ΠσB(x)u+ Πσb(x) · ∇u.

Here B is supposed to be a 3× 3 matrix with entries in L2
loc(Ω) and b is a vector function

in Lqloc(Ω)3 for some q > 3. Moreover, we assume that

lim
R→+∞

(
ess sup
|x|>R

(|B(x)|+ |b(x)|)
)

= 0. (11)

Now our main theorems read as follows (for definitions of several kinds of spectra see
Section 2 below):

Theorem 1.1 (i) The essential spectrum σess(Aω) of the operator Aω has the form

σess(Aω) = {λ = α+ i kω; k ∈ Z, α ≤ 0}. (12)

(ii) If Ω is axially symmetric about the x1–axis then the point spectrum and the residual
spectrum of Aω are empty. The continuous spectrum coincides with σess(Aω). If, in
addition, the boundary of Ω is of the class C3,1, then the operator Aω is normal.

(iii) If ω 6= 0 and the domain Ω is not axially symmetric about the x1–axis, then the
operator Aω is not normal.

Note, that in the case of an axially symmetric domain Ω, the operator Aω is normal
even in the case that ∂Ω is only of the class C2,1 – see Remark 4.1 below.

Theorem 1.2 (i) The essential spectrum σess(Lω) has the same form (12) as σess(Aω).
(ii) The spectrum σ(Lω) equals σess(Lω) ∪ Λ where Λ consists of an at most countable

set of isolated eigenvalues of Lω which can possibly cluster only at points of σess(Lω) and
each of them has a finite algebraic multiplicity.

2 Preliminaries

Since the main aim of this paper is to study the spectrum of the operators Aω and Lω, we
shall consider all function spaces needed in the following to be spaces of complex–valued
functions.

Lemma 2.1 Suppose that either (a) k = 1 or (b) k = 2 and ∂Ω is of the class C3,1.
There exists c1 > 0 such that if u ∈ D((Aω)k) and f = Aωu, then

‖u‖2k,2 + ‖(ω × x) · ∇u− ω × u‖2k−2,2 ≤ c1 (‖f‖2k−2,2 + ‖u‖2k−2,2). (13)
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Proof. First we assume that Ω = R
3. The case k = 1 is a direct consequence of [5].

Moreover, the Fourier transform of u can be represented by

û(ξ) =
∫ +∞

0
e−ν|ξ|

2tO(t)T Π̂σf(O(t)ξ) dt, ξ ∈ R3. (14)

Hence

|ξ|4 û(ξ) = |ξ|2
∫ +∞

0
e−ν|ξ|

2tO(t)T ĝ(O(t)ξ) dξ

where g = −∆Πσf ∈ L2(R3)3. Now Plancherel’s theorem, see also the proof of Proposition
2.2 in [5], yields ‖∆2u‖0,2 ≤ c2 ‖g‖0,2 ≤ c3 ‖f‖2,2. Thus, we may conclude that

‖u‖4,2 ≤ c4 (‖f‖2,2 + ‖u‖2,2),

and the same estimate can also be derived for ‖∂ϕu‖2,2.
Now we assume that Ω is the exterior domain introduced in Section 1. The case (a)

directly follows from [15]. Estimate (13), in the case (b), can be proved following the same
ideas, using the result in R3 and the localization technique by means of an appropriate
cut–off function. ut

Lemma 2.2 Aω is a closed operator in L2
σ(Ω) and its adjoint has the form

(Aω)∗u = Πσν∆u−Πσ[(ω × x) · ∇u− ω × u] (15)

with D((Aω)∗)= D(Aω).

Proof. Suppose that un ∈ D(Aω), un → u in L2
σ(Ω) and Aωun ≡ fn → f in L2

σ(Ω).
Then Aω(un − um) ≡ fn − fm and due to the estimate (13), we have

‖un − um‖2,2 + ‖(ω × x) · ∇(un − um)‖0,2 ≤ c1 (‖fn − fm‖0,2 + ‖un − um‖0,2).

Thus we get that un → u in W 2,2(Ω)3 ∩W 1,2
0 (Ω)3, and the sequence {(ω × x) · ∇un}

converges to some function h in L2(Ω)3. Since (ω × x) · ∇un → (ω × x) · ∇u in L2(ΩR)3

for each R ≥ R0, we deduce that h = (ω × x) · ∇u. This implies that u ∈ D(Aω) and
Aωu = f which confirms that the operator Aω is closed.

It follows from [10], Proposition 4.3, that for ζ > 0 sufficiently large the range of the
operator ζI −Aω covers the whole space L2

σ(Ω).
Let us denote by Tω the operator on the right hand side of (15) with D(Tω) = D(Aω).

By analogy with Aω, the operator Tω is closed and R(ζI − Tω) = L2
σ(Ω) if ζ > 0 is

sufficiently large. It is easy to verify that operators Aω and Tω are adjoint to each other in
the sense of T. Kato [18], p. 167; hence Tω ⊂ (Aω)∗. In order to show that Tω = (Aω)∗, we
need to verify that Tω is the maximal operator adjoint to Aω. Suppose that v ∈ D((Aω)∗)
and put f = (ζI − (Aω)∗)v. Since f ∈ R(ζI − Tω), there exists w ∈ D(Tω) such that
f = (ζI − Tω)w. Hence (ζI − (Aω)∗)v = (ζI − Tω)w. Multiplying both sides of this
identity by u ∈ D(Aω), we arrive at

(v, (ζI −Aω)u)0,2 = (w, (ζI −Aω)u)0,2 .

As this holds for all u ∈ D(Aω), we get v = w ∈ D(Bω) and consequently, (Aω)∗ = Tω.
ut
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Lemma 2.3 If u ∈ D(Aω), then (ω × x) · ∇u− ω × u belongs to L2
σ(Ω).

Proof. Since the space C∞0,σ(Ω) is dense in D(A0) in the topology of W 1,2(Ω)3, there
exists a sequence of functions un ∈ C∞0,σ(Ω) such that un → u in W 1,2(Ω)3. Let ψ be a
function from W 1,2

loc (Ω) such that ∇ψ ∈ L2(Ω)3. Then we have∫
Ω

[(ω × x) · ∇u− ω × u] · ∇ψ dx = lim
n→+∞

∫
Ω

[(ω × x) · ∇un − ω × un] · ∇ψ dx

= − lim
n→+∞

∫
Ω

div[(ω × x) · ∇un − ω × un]ψ dx.

We simply verify that div[(ω × x) · ∇un −ω × un] = 0 in Ω. Thus the function (ω × x) ·
∇u−ω×u is orthogonal to the subspace of all gradients in L2(Ω)3, which further implies
that it belongs to L2

σ(Ω), see e.g. G. P. Galdi [7], p. 103. ut

Lemma 2.3 enables us to omit the projection Πσ in front of the second and the third
term on the right hand side of (9). Therefore the operator Aω can be simplified to

Aωu = A0u+ (ω × x) · ∇u− ω × u (16)

where A0 ≡ νΠσ∆ is the usual Stokes operator in L2
σ(Ω) with domain D(A0) = W 2,2(Ω)3∩

W 1,2
0 (Ω)3∩L2

σ(Ω). The adjoint operator (Aω)∗ can similarly be simplified. It is well known
that the operator A0 is selfadjoint and generates an analytic semigroup eA

0t, t ≥ 0, in
L2
σ(Ω) (Y. Giga [11] and Y. Giga, H. Sohr [12]).

Lemma 2.4 The operator B is Aω–compact.

Proof. Let {un} be a bounded sequence in L2
σ(Ω) such that the sequence {Aωun}

is also bounded in L2
σ(Ω). Then, due to Lemma 2.1, the sequence {un} is bounded in

W 2,2(Ω)3. Hence there exists a subsequence of {un} (we preserve the same notation {un}
for the subsequence) which converges weakly in W 2,2(Ω)3 to a limit function v. Recall
that b ∈ Lqloc(Ω)3 for some q > 3. Put q′ = 2q/(q − 2). Since q′ < 6 and consequently,
W 2,2(ΩR0)3 ↪→↪→W 1,q′(ΩR0)3, there exists a subsequence {uR0

n } of {un} which converges
in W 1,q′(ΩR0)3. By analogy, there exists a subsequence {uR0+1

n } of {uR0
n } which converges

in W 1,q′(ΩR0+1)3. Proceeding in this way, we get a subsequence {uR0+2
n } of {uR0+1

n }, etc.
If we put vn = uR0+n

n , we obtain a subsequence of {un} which converges in W 1,q′(ΩR)3

for every R ≥ R0 to function v.
We claim that the sequence {Bvn} converges to Bv in L2

σ(Ω). For every m ∈ N and
R ≥ R0, we have

‖Bvm −Bv‖20 ≤ 2
∫

Ω

(
|B(vm − v)|2 + |b · ∇(vm − v)|2

)
dx

= 2
∫

ΩR

. . . + 2
∫

Ω−ΩR

. . . ≤ 2(γ1 + γ2 + γ3 + γ4)

where

γ1 =
∫

ΩR

|B|2 dx
(

ess sup
ΩR

|vm − v|2
)
,
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γ2 =
(

ess sup
Ω−ΩR

|B|2
)∫

Ω−ΩR

|vm − v|2 dx,

γ3 =
(∫

ΩR

|b|q dx
)2/q (∫

ΩR

|∇(vm − v)|q′ dx
)2/q′

,

γ4 =
(

ess sup
Ω−ΩR

|b|2
)∫

Ω−ΩR

|∇(vm − v)|2 dx.

Here γ2, γ4 can be made arbitrarily small by choosing R sufficiently large. Then γ1, γ3

can be made arbitrarily small by choosing m sufficiently large. ut

Lemma 2.2 and Lemma 2.4 imply that the operator Lω is closed in L2
σ(Ω). Note that

under slightly different conditions on B and b, it is proved in [10] that the operator Lω

generates a C0–semigroup in L2
σ(Ω), which also directly implies the closedness of Lω.

It will be further advantageous to work in cylindrical coordinates. We shall denote
by x1, r and ϕ the cylindrical coordinate system whose axis is the x1–axis and angle ϕ
is measured from the positive part of the x2–axis towards the positive part of the x3–
axis. The corresponding cylindrical components of vector functions will be denoted by the
indices 1, r and ϕ, e.g. u1, ur and uϕ. In order to distinguish between the Cartesian and the
cylindrical components of vectors, we shall write the Cartesian components in parentheses
and the cylindrical components in brackets. Thus, we have (u1, u2, u3) , [u1, ur, uϕ].
Using the transformations

ur = u2 cosϕ+ u3 sinϕ,
uϕ = −u2 sinϕ+ u3 cosϕ,

u2 = ur cosϕ− uϕ sinϕ,
u3 = ur sinϕ+ uϕ cosϕ,

we can calculate that

(ω × x) · ∇u− ω × u = ω ∂ϕu− (ω × u) = ω ∂ϕ(u1, u2, u3)− ω (0,−u3, u2)

= ω ∂ϕ

 u1

ur cosϕ− uϕ sinϕ
ur sinϕ+ uϕ cosϕ

T − ω
 0
−ur sinϕ− uϕ cosϕ
ur cosϕ− uϕ sinϕ

T

= ω

 ∂ϕu1

(∂ϕur) cosϕ− (∂ϕuϕ) sinϕ
(∂ϕur) sinϕ+ (∂ϕuϕ) cosϕ

T , ω

 ∂ϕu1

∂ϕur
∂ϕuϕ

T = ω ∂ϕ [u1, ur, uϕ].

We shall further consistently identify u with [u1, ur, uϕ]; the same holds for other vectors.
Thus, we can write the relation (16) between the operator Aω and the Stokes operator A0

in the form

Aωu = A0u+ ω ∂ϕu (17)

where A0 naturally denotes the Stokes operator acting in cylindrical coordinates.
As there is no conformity in the names of various types of spectra in the literature, we

recall some general notions. Suppose that H is a Hilbert space with norm ‖ . ‖ and T is
a closed linear operator in H with a dense domain D(T ). Then N(T ) denotes the null
space of T , R(T ) its range, and T ∗ the adjoint operator to T . Moreover, we shall use the
following notation:
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◦ nul(T ) (the nullity of T ) = dim N(T )

◦ def(T ) (the deficiency of T ) = dim H/R(T )

◦ ind(T ) (the index of T ) = nul(T )− def(T )

◦ nul′(T ) (the approximate nullity of T ) – the greatest number m ∈ N ∪ {+∞}
such that to any ε > 0 there exists an m–dimensional closed linear manifold
Mε ⊂ D(T ) with the property that ‖Tu‖ ≤ ε ‖u‖ for all u ∈Mε

◦ def ′(T ) (the approximate deficiency of T ) = nul′(T ∗)

These numbers satisfy the inequalities, see T. Kato [18], pp. 230–233:

nul′(T ) ≥ nul(T ), def ′(T ) ≥ def(T ),

and, if R(T ) is closed, which is automatic if def(T ) < +∞, then nul′(T ) = nul(T ),
def ′(T ) = def(T ). On the other hand, if R(T ) is not closed, then nul′(T ) = def ′(T ) = +∞.

◦ ρ(T ) (the resolvent set of T ) is the open set of all λ ∈ C such that T − λI has
a bounded inverse operator defined in the whole space H. It is the set of λ ∈ C
such that

nul(T − λI) = def(T − λI) = nul′(T − λI) = def ′(T − λI) = 0.

◦ σp(T ) (the point spectrum of T ) consists of eigenvalues of T . It is the set of
λ ∈ C such that nul(T − λI) > 0. It can also be defined as the set of all λ ∈ C
such that the operator T − λI is not injective.

◦ σc(T ) (the continuous spectrum of T ) is the set of such λ ∈ C that nul(T −λI) =
0, R(T − λI) is dense in H, but R(T − λI) 6= H. In this case,

nul′(T − λI) = def(T − λI) = def ′(T − λI) = +∞.

◦ σr(T ) (the residual spectrum of T ) is the set of such λ ∈ C that nul(T − λI) = 0
and R(T − λI) is not dense in H. In this case, def(T − λI) > 0.

◦ σ(T ) (the spectrum of T ) = σp(T ) ∪ σc(T ) ∪ σr(T ). It follows from the previous
definitions that σ(T ) is the complement of ρ(T ) in C.

◦ σess(T ) (the essential spectrum of T ) is the set of all λ ∈ C such that nul′(T −
λI) = def ′(T − λI) = +∞.

◦ σ̃c(T ) denotes the set of those λ ∈ C for which there exists a non–compact
sequence {un} in the unit sphere in H such that (T − λI)un → 0 for n→ +∞.
It is equivalent with the equality nul′(T − λI) = +∞ ([18], Theorem IV.5.11).

The three parts σp(T ), σc(T ) and σr(T ) of σ(T ) are mutually disjoint. The residual
spectrum σr(T ) can be characterized as the set of λ ∈ C such that λ̄ ∈ σp(T ∗) and
λ 6∈ σp(T ).

The essential spectrum σess(T ) is defined e.g. in T. Kato [18]. Calling the operator T
semi–Fredholm if at least one of the numbers nul′(T ), def ′(T ) is finite, σess(T ) is the set
of those λ ∈ C for which T −λI is not semi–Fredholm. It is shown that σess(T ) is a closed
subset of C and ind(T − λI) is constant in each component G of C− σess(T ). Moreover,
nul(T − λI) and def(T − λI) are constant in G with the possible exception of an at most
countable set of isolated eigenvalues of finite algebraic multiplicities which can cluster only
at points of σess(T ) ([18], p. 243).
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The definition of σ̃c(T ) is due to I. M. Glazman [13] calling σ̃c(T ) the continuous spec-
trum; however, we shall not use this name for σ̃c(T ) because it would contradict the
previous definition. It is known ([13], p. 20) that the set σ̃c(T ) is closed in C. Obviously
σc(T ) ⊂ σess(T ) ⊂ σ̃c(T ) ⊂ σ(T ).

The equality nul′(T − λI) = +∞ for the points λ ∈ σ̃c(T ) enables us to construct, by
mathematical induction, an orthonormal sequence {vn} in the unit sphere in H such that
(T − λI)vn → 0 for n → +∞: Suppose that we have already constructed v1, . . . , vn so
that ‖(T − λI)vj‖ ≤ 1/j for j = 1, . . . , n. Denote by Nn the linear hull of v1, . . . , vn.
To εn+1 = 1/(n + 1) there exists an infinite dimensional linear manifold Mn+1 such that
‖(T − λI)u‖ ≤ 1/(n + 1) for all u ∈ Mn+1. Due to Lemma IV.2.3 in [18], there exists
vn+1 ∈Mn+1 such that ‖vn+1‖ = 1 and the distance between vn+1 and Nn also equals 1.
It can be simply shown that vn+1 is orthogonal to Nn.

An operator T is said to be normal if T ∗T = TT ∗. If T is normal then T and T ∗

have the same null space ([18], p. 277). It is well known that the residual spectrum of a
normal operator is empty, see e.g. [2], Problem XII.9.13. (It is an easy consequence of the
identities R(T − λI)⊥ = N(T ∗ − λ̄I) = N(T − λI).)

Lemma 2.5 If the operator T is normal, then σess(T ) = σ̃c(T ).

Proof. If λ ∈ σ̃c(T )− σess(T ) then R(T − λI) is closed and consequently, R(T ∗ − λ̄I) is
also closed. So we get

+∞ = nul′(T − λI) = nul(T − λI) = nul(T ∗ − λ̄I) = nul′(T ∗ − λ̄I).

Since N(T ∗ − λ̄I) = R(T − λI)⊥ and N(T − λI) = R(T ∗ − λ̄I)⊥, we have R(T − λI) =
R(T ∗ − λ̄I) and consequently,

+∞ > def ′(T − λI) = def(T − λI) = def(T ∗ − λ̄I) = def ′(T ∗ − λ̄I).

This implies that ind(T − λI) = ind(T ∗ − λ̄I) = +∞. However, this is a contradiction
to the equality ind(T − λI) = −ind(T ∗ − λ̄I) which holds if T − λI is a semi–Fredholm
operator, see [18], p. 234. We have proved that σ̃c(T ) ⊂ σess(T ). The opposite inclusion
is obvious. ut

Let us conclude this section by recalling known results on the spectrum of the Stokes
operator A0.

Lemma 2.6 σp(A0) = σr(A0) = ∅ and σ(A0) = σc(A0) = (−∞, 0].

The residual spectrum of A0 is empty because A0 is normal. The identity σ(A0) =
(−∞, 0] is well known and can be deduced from I. M. Glazman [13] and O. A. Ladyzhen-
skaya [20]. The non–existence of an eigenvalue is only rarely mentioned in the literature.
However, it can be shown by means of results on the growth of a strong solution of the
equation ∆w+q(x)w = 0 for |x| → +∞ proved by T. Kato [17]: If λ is an eigenvalue of A0

and u 6≡ 0 is an associated eigenfunction then λ ∈ R. Multiplying the equation A0u = λu
by ū, we can show that λ < 0. The vector field w = curlu satisfies ∆w − λw = 0 in Ω.
Then Theorem 1 from [17] implies that w = 0 for all x such that |x| > R0 (here x denotes
the Cartesian variables). Due to the unique continuation principle, see R. Leis [21], we
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have w = 0 in Ω. This implies, together with the boundary condition u = 0 on ∂Ω, that
the circulation of u on each closed piecewise smooth curve in Ω equals zero. Thus, u has
the form ∇φ where φ is an appropriate scalar function in Ω. Using now the equation of
continuity ∇ ·u = 0 in Ω and the boundary condition, we derive that u = 0 in Ω. This is
a contradiction with the assumption that u 6≡ 0.

3 Axially symmetric domains – decomposition of L2
σ(Ω)

and of A0

We shall assume that the domain Ω ⊂ R3 is axially symmetric with respect to the x1–axis
in Sections 3 and 4. Clearly, this assumption is satisfied if the considered body K is
rotationally symmetric about the axis of rotation x1.

Let k be an integer. Then we introduce the following spaces:

◦ L2(Ω)3
k = {v ∈ L2(Ω)3; v = V (x1, r) eikϕ}

◦ C∞0 (Ω)3
k = C∞0 (Ω)3 ∩ L2(Ω)3

k

◦ C∞0,σ(Ω)k = C∞0 (Ω)3
k ∩ C∞0,σ(Ω)

◦ L2
σ(Ω)k = the closure of C∞0,σ(Ω)k in L2(Ω)3

k

Obviously, L2(Ω)3
k, k ∈ Z, is a closed subspace of L2(Ω)3, and L2

σ(Ω)k is a closed subspace
of L2

σ(Ω). The spaces L2(Ω)3
k and L2

σ(Ω)k are infinite dimensional. We further define the
operators

◦ Pk – the orthogonal projection of L2(Ω)3 onto L2(Ω)3
k

◦ A0
k – the restriction of the operator A0 to the space L2

σ(Ω)k

Hence the domain of A0
k equals D(A0) ∩ L2

σ(Ω)k.
Each function from L2(Ω)3 can uniquely be written in the form of a convergent Fourier

series – with respect to the variable ϕ – of terms from L2(Ω)3
k, k ∈ Z. To be more precise,

if v ∈ L2(Ω)3, then

v(x1, r, ϕ) =
+∞∑

k=−∞
V k(x1, r) eikϕ; V k(x1, r) =

1
2π

∫ 2π

0
v(x1, r, ϕ) e−ikϕ dϕ. (18)

Thus, we have L2(Ω)3 = . . .⊕ L2(Ω)3
−2 ⊕ L2(Ω)3

−1 ⊕ L2(Ω)3
0 ⊕ L2(Ω)3

1 ⊕ L2(Ω)3
2 ⊕ . . . .

Lemma 3.1 Let k ∈ Z. Then Πσ L
2(Ω)3

k = L2
σ(Ω) ∩ L2(Ω)3

k = L2
σ(Ω)k = PkL

2
σ(Ω).

Proof. Suppose that v ∈W 1,2(Ω)3 ∩ L2(Ω)3
k. The analysis of the Neumann problem

∆φ = div v in Ω,
∂φ

∂n
= v · n on ∂Ω,

shows that the solution φ can be found in the form φ = Φ(x1, r) eikϕ. Then Πσv =
v −∇φ ∈ L2(Ω)k. Using the density of W 1,2(Ω)3 ∩ L2(Ω)3

k in L2(Ω)3
k, we can show that

this is true for all v ∈ L2(Ω)3
k, i.e. ΠσL

2(Ω)3
k ⊂ L2

σ(Ω) ∩ L2(Ω)3
k. The opposite inclusion

is obvious.
Since C∞0,σ(Ω)k is dense in L2

σ(Ω) ∩ L2(Ω)3
k, its closure L2

σ(Ω)k equals L2
σ(Ω) ∩ L2(Ω)3

k.

9



Let us finally verify the last equality. Consider v ∈ C∞0,σ(Ω)3, let (18) be its Fourier
expansion in the variable ϕ and V k = [V k

1 , V
k
r , V

k
ϕ ]. Since

0 =
+∞∑

k=−∞
div
[
V k(x1, r) eikϕ

]
=

+∞∑
k=−∞

[
(∂1V

k
1 ) +

1
r
∂r(rV k

r ) +
1
r

i k V k
ϕ

]
eikϕ,

we get div [V k(x1, r) eikϕ] = 0 for each k ∈ Z. Hence Pkv = V k(x1, r) eikϕ ∈ C∞0,σ(Ω)k
which is a subset of L2

σ(Ω) ∩ L2(Ω)3
k. Since C∞0,σ(Ω) is dense in L2

σ(Ω), we obtain the
inclusion PkL

2
σ(Ω) ⊂ L2

σ(Ω) ∩ L2(Ω)3
k. On the other hand, if v ∈ L2

σ(Ω) ∩ L2(Ω)3
k, then

Pkv = v, hence it also belongs to PkL2
σ(Ω). Thus, the opposite inclusion L2

σ(Ω)∩L2(Ω)3
k ⊂

PkL
2
σ(Ω) is also true. ut

Lemma 3.2 (i) D(A0
k) = Pk[D(A0)]

(ii) R(A0
k) ⊂ L2

σ(Ω)k
(iii) The operator A0

k is selfadjoint in L2
σ(Ω)k.

Proof. Let v ∈ D(A0) ≡ W 2,2(Ω)3 ∩ W 1,2
0 (Ω)3 ∩ L2

σ(Ω) and let (18) be its Fourier
expansion in the variable ϕ. Then V k(x1, r) eikϕ ≡ Pkv ∈W 2,2(Ω)3, and, due to the axial
symmetry of Ω and the boundary condition satisfied by v on ∂Ω, V k(x1, r) eikϕ also belongs
toW 1,2

0 (Ω)3. We have already seen in the proof of Lemma 3.1 that V k(x1, r) eikϕ ∈ L2
σ(Ω)k.

Hence Pk[D(A0)] ⊂ D(A0
k).

On the other hand, if v ∈ D(A0
k), then it belongs to D(A0), and since Pkv = v, it also

belongs to L2(Ω)3
k. Hence v ∈ D(A0) ∩ L2(Ω)3

k = D(A0) ∩ L2
σ(Ω)k = Pk[D(A0)].

If v ∈ D(A0
k), then ∆v ∈ L2(Ω)3

k, and due to Lemma 3.1, A0v = νΠσ∆v ∈ L2
σ(Ω)k.

Hence A0 is reduced onto L2
σ(Ω)k.

The domain D(A0
k) is dense in L2

σ(Ω)k because it contains C∞0,σ(Ω)k. Moreover, the
operator A0

k is symmetric because it is the part of the symmetric operator A0 in L2
σ(Ω)k,

and A0
k is closed because it is the restriction of the closed operator A0 to a closed subspace

of L2
σ(Ω). Thus, in order to show that A0

k is selfadjoint, it is sufficient to show that ρ(A0
k)

contains at least one real number ([18], p. 271). Indeed, if ζ ∈ R, ζ > 0, and f ∈ L2
σ(Ω)k,

then it can be verified that u = (A0−ζI)−1f represents the unique solution of the equation
(A0

k − ζI)u = f in L2
σ(Ω)k. Thus, ζ ∈ ρ(A0

k). ut

Lemma 3.3 σ(A0
k) = σc(A0

k) = (−∞, 0]

Proof – part 1. Since the operator A0
k is a part of A0, Lemma 2.6 yields σ̃c(A0

k) ⊂
σ̃c(A0) = (−∞, 0].

Let us prove that σ̃c(A0
k) covers the whole interval (−∞, 0]. Since σ̃c(A0

k) is a closed set,
it is sufficient to show that it is also open in (−∞, 0] and non–empty. The last property
is clear because A0

k is selfadjoint: if σ̃c(A0
k) = ∅ then σ(A0

k) = σp(A0
k), which is impossible

because each eigenvalue of A0
k is also an eigenvalue of A0 (with the same eigenfunction)

and σp(A0) = ∅.
Let us show that σ̃c(A0

k) is open in (−∞, 0]. Suppose that λ ∈ σ̃c(A0
k). Then nul′(A0

k −
λI) = +∞. This enables us, cf. Section 2, to choose an orthonormal sequence {vn} ⊂
D(A0

k) in L2
σ(Ω)k such that

(A0
k − λI)vn = εn −→ 0 in L2

σ(Ω)k for n→ +∞. (19)

We shall further use the next lemma.
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Lemma 3.4 Let {vn} ⊂ D(A0
k) be an orthonormal sequence satisfying (19). Then there

exists R > R0 and a non–compact sequence {un} in D(A0
k) such that ‖un‖0,2 = 1, un = 0

in ΩR and

(A0
k − λI)un −→ 0 in L2

σ(Ω)k for n→ +∞. (20)

Proof. Obviously {vn} converges to the zero function weakly in L2
σ(Ω)k. The estimate

‖∇v‖0,2 + ‖∇2v‖0,2 ≤ c5

(
‖A0v‖0,2 + ‖v‖0,2

)
(21)

(G. P. Galdi and M. Padula [6], pp. 205, 279) shows that the sequence {vn} is bounded
in W 1,2

0 (Ω)3 ∩W 2,2(Ω)3. Then there exists a subsequence, again denoted by {vn}, which
is weakly convergent to 0 in W 1,2

0 (Ω)3 ∩W 2,2(Ω)3. Suppose that R ≥ R0 + 3 is a fixed
number. The compact imbedding W 2,2(ΩR)3 ↪→ ↪→W 1,2(ΩR)3 yields

vn −→ 0 strongly in W 1,2(ΩR)3. (22)

The first part of (19) can be written in the form

ν∆vn − λvn +∇qn = εn (23)

where qn is an appropriate scalar function. It follows from (23) that ∇qn → 0 weakly in
L2(Ω)3. Thus, functions qn (which are given uniquely up to an additive constant by (23))
can be chosen so that qn → q ≡ const. strongly in L2(ΩR). The constant can be chosen
so that q = 0.

Denote by η an infinitely differentiable cut–off function in Ω such that

η(x) =
{

0 if |x| < R− 2,
1 if |x| > R− 1,

0 ≤ η(x) ≤ 1 if R− 2 ≤ |x| ≤ R− 1, and that η is independent of ϕ. Put un = ηvn − Vn
where divVn = ∇η · vn. Although Vn is not given uniquely, the results on solutions of
the equation divV = f (see e.g. [1]) show that the function Vn can be chosen such that
suppVn ⊂ {x ∈ Ω; R− 3 < |x| < R} and there exist c6, c7 > 0 such that

‖Vn‖2,2 ≤ c6 ‖∇η · vn‖1,2 ≤ c7 (24)

for all n ∈ N. Moreover, since ∇η is independent of ϕ and vn ∈ L2
σ(Ω)k, the function Vn

can be constructed so that it belongs to L2(Ω)3
k.

The function un is divergence–free, equals 0 in ΩR−3, equals vn in Ω−ΩR and belongs
to L2(Ω)3

k. Due to the properties of the functions η and Vn we get un ∈ D(A0
k). Obviously

un satisfies

ν∆un − λun +∇(ηqn)

= η[ν∆vn − λvn] + 2ν∇η · ∇vn + ν(∆η)vn − ν∆Vn + λVn +∇(ηqn)

= ηεn + 2ν∇η · ∇vn + ν(∆η)vn − ν∆Vn + λVn + (∇η)qn (25)

where ηεn → 0 in L2(Ω)3 due to (19), and ν[2∇η · ∇vn + (∆η)vn]→ 0 in L2(Ω)3 because
∇η and ∆η are supported in ΩR and due to (22). Furthermore, (ν∆Vn − λVn) → 0 in
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L2(Ω)3 due to (24), (22). Finally, (∇η)qn → 0 in L2(Ω)3 because qn → 0 in L2(ΩR) and
∇η is supported in ΩR. Thus,

ν∆un − λun +∇(ηqn) −→ 0 in L2(Ω)3 for n→ +∞,

and therefore {un} satisfies (20). We have

‖un‖20,2 ≥
∫
|x|>R

|un(x)|2 dx =
∫
|x|>R

|vn(x)|2 dx −→ 1 for n→ +∞

because ‖vn‖0,2 = 1 and due to (22). If we divide each of the functions un by its norm
‖un‖0,2 and denote the new function again by un, we obtain the sequence {un} with all
the properties stated in Lemma 3.4. Finally, the orthonormality of {vn} and (22) imply
the non–compactness of the sequence {un}. ut
Proof of Lemma 3.3 – part 2. Consider the sequence {un} constructed in Lemma
3.4. There exists 0 < ζ0 < 1 such that for any ζ > ζ0 the functions

uζn(x) =


1
ζ3/2

un

(x
ζ

)
for x/ζ ∈ Ω,

0 for x/ζ 6∈ Ω

have their supports outside ΩR0 . Thus uζn ∈ D(A0
k), {u

ζ
n} is a non–compact sequence in

L2
σ(Ω)k and

‖uζn‖20,2 =
∫

Ω
|uζn(x)|2 dx =

1
ζ3

∫
x/ζ∈Ω

∣∣∣un(x
ζ

)∣∣∣2 dx =
∫

Ω
|un(y)|2 dy = 1.

Since ν∆xu
ζ
n(x)− λ

ζ2 u
ζ
n(x) = 1

ζ7/2 (∆yun(y)− λun(y)) for all x and y from Ω such that
y = x/ζ,(

A0
ku

ζ
n −

λ

ζ2
I
)
uζn −→ 0 for n→ +∞. (26)

This shows that λ/ζ2 ∈ σ̃c(A0
k). Since ζ can be chosen arbitrarily in the interval (ζ0,+∞),

some neighborhood of λ in (−∞, 0] is contained in σ̃c(A0
k).

We have proved that σ̃c(A0
k) = (−∞, 0]. Lemma 2.5 shows that σ̃c(A0

k) = σess(A0
k), and

both sets are also equal to σc(A0
k) because σp(A0

k) = σr(A0
k) = ∅. ut

The restriction of eA
0t, t ≥ 0, to L2

σ(Ω)k defines an analytic semigroup in L2
σ(Ω)k. It

can be verified that its generator is the operator A0
k.

4 Axially symmetric domains Ω – operator Aω and
its decomposition

Let k ∈ Z. We shall denote by Aωk the restriction of Aω to L2
σ(Ω)k. The domain of Aωk is

the same as the domain of A0
k, i.e.,

D(Aωk ) = D(A0
k) ≡W 2,2(Ω)3 ∩W 1,2

0 (Ω)3 ∩ L2
σ(Ω)k.

If u ∈ L2
σ(Ω)k, then it has the form U(x1, r) eikϕ and ∂ϕu = i kU eikϕ = i ku. Therefore,

Aωk can be rewritten as

Aωku = A0
ku+ ω ∂ϕu = A0

ku+ i kωu. (27)
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Lemma 4.1 Aωk is a normal operator in L2
σ(Ω)k and

σ(Aωk ) = σc(Aωk ) = {λ = α+ i kω; α ≤ 0}.

Proof. Since A0
k is reduced by L2

σ(Ω)k, the operator Aωk is an operator in L2
σ(Ω)k due to

(27). Moreover, as A0
k is selfadjoint, the operator Aωk is densely defined and closed. The

adjoint operator to Aωk has the form

(Aωk )∗u = A0
ku− ω ∂ϕu = A0

ku− i kωu. (28)

This operator commutes with Aωk , hence Aωk is normal. The characterization of σ(Aωk )
follows from the representation (27) of Aωk and from Lemma 3.3. ut

Since A0
k generates an analytic semigroup in L2

σ(Ω)k and Aωk equals A0
k plus a bounded

operator in L2
σ(Ω)k, Aωk also generates an analytic semigroup in L2

σ(Ω)k.

Lemma 4.2 If ∂Ω is of the class C3,1 then Aω is a normal operator in L2
σ(Ω).

Proof. Equality (17) implies that (Aω)∗u = A0u− ω ∂ϕu = Πσ∆u− ω ∂ϕu.
Suppose that u ∈ D((Aω)∗Aω), i.e. u ∈ D(Aω) and Aω ∈ D((Aω)∗) = D(Aω). The

latter means that A0u + ω∂ϕu ∈ D(A0) and ∂ϕ(A0u + ω∂ϕu) ∈ L2(Ω)3, implying that
u ∈ D((Aω)2). We will show that u ∈ D(Aω(Aω)∗).

Lemma 2.1 yields u ∈ W 4,2(Ω)3 and ∂ϕu ∈ W 2,2(Ω)3. Since div ∂ϕu = 0 in Ω and
∂ϕu = 0 on ∂Ω (which follows from the axial symmetry of Ω), we have ∂ϕu ∈ D(A0).
This, together with the inclusion A0u + ω∂ϕu ∈ D(Aω) ⊂ D(A0), implies that A0u also
belongs to D(A0) and consequently, (Aω)∗u ∈ D(A0).

We still need to prove that ∂ϕ(Aω)∗u ≡ ∂ϕA0u−ω∂2
ϕu ∈ L2(Ω)3. Due to the inclusion

∂ϕA
0u+ ω∂2

ϕu ∈ L2(Ω)3, it is sufficient to show that ∂ϕA0u ≡ ν∂ϕΠσ∆u ∈ L2(Ω)3. Let
us at first verify that ∂ϕ can be interchanged with Πσ. Denote for simplicity v = ∆u. The
Helmholtz decomposition of v is v = Πσv+∇φ where ∆φ = div v in Ω and ∂φ/∂n = v ·n
on ∂Ω. Hence

∂ϕv = ∂ϕΠσv + ∂ϕ∇φ = ∂ϕΠσv +∇∂ϕφ. (29)

The term ∂ϕΠσv satisfies div ∂ϕΠσv = 0 in Ω and, using the axial symmetry of Ω, also
∂ϕΠσv · n = ∂ϕ(Πσv · n) = 0 on ∂Ω. Hence ∂ϕΠσv ∈ L2

σ(Ω) and the right hand side of
(29) represents the Helmholtz decomposition of ∂ϕv. Thus, we have ∂ϕΠσv = Πσ∂ϕv. It
means that ν∂ϕΠσ∆u = νΠσ∂ϕ∆u = νΠσ∆∂ϕu. The last function obviously belongs to
L2(Ω)3.

We have proved the inclusion D((Aω)∗Aω) ⊂ D(Aω(Aω)∗). The opposite inclusion can
be proved in the same way. Hence D((Aω)∗Aω) = D(Aω(Aω)∗).

Since we have already proved that ∂ϕA0u = A0∂ϕu for u ∈ D((Aω)∗Aω),

(A0 − ω∂ϕ)(A0 + ω∂ϕ)u = (A0)2u+ ωA0∂ϕu− ω∂ϕA0u− ω2∂2
ϕu

= (A0)2u+ ω∂ϕA
0u− ωA0∂ϕu− ω2∂2

ϕu = (A0 + ω∂ϕ)(A0 − ω∂ϕ)u

which completes the proof. ut
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Remark 4.1 The requirement on the higher smoothness of ∂Ω can be weakened to C2,1

if we separate the problem, by means of a cut–off function procedure, to two parts. In
the part “near ∂Ω”, we can use the relative boundedness of ∂ϕ with respect to A0. In the
part “near infinity”, the regularity estimates for the whole space problem, cf. the proof of
Lemma 2.1, may be applied.

Lemma 4.3 σp(Aω) = σr(Aω) = ∅

Proof. Note that σr(Aω) = ∅ because Aω is normal. Suppose that λ is an eigenvalue of
Aω and u is a corresponding eigenfunction. The equation Aωu−λu = 0 means that there
exists a scalar function p such that ν∆u + ω∂ϕu +∇p − λu = 0 in Ω. Multiplying this
equation by ū and integrating on Ω, we can verify that Reλ < 0. Furthermore, expanding
u and p to the Fourier series in variable ϕ and denoting the coefficients by Uk(x1, r) and
P k(x1, r) (for k ∈ Z), we can deduce that

ν∆(Uk eikϕ) + ω i kUk eikϕ +∇(P k eikϕ)− λUk eikϕ = 0 (30)

in Ω. Moreover, div(Ukeikϕ) = 0 and Uk = 0 on ∂Ω. This implies that [A0 + (ω i k −
λ)](Ukeikϕ) = 0. Since the Stokes operator A0 has no eigenvalues, we obtain Uk = 0. This
identity holds for all k ∈ Z, hence u = 0. This is the contradiction with the assumption
that u is the eigenfunction. ut

Lemma 4.4 σc(Aω) = {z = α+ i kω; k ∈ Z, α ≤ 0}

Proof. Lemma 4.3 and the inclusion σc(Aω) ⊂ σ̃c(Aω) imply that σc(Aω) = σ̃c(Aω).
Suppose that λ = α+ iβ ∈ σ̃c(Aω). Then there exists a non–compact sequence {un} in

the unit sphere in L2
σ(Ω) such that

(Aω − λI)un = εn −→ 0 in L2
σ(Ω) as n→ +∞. (31)

Let us write un in the form u−∞,K1
n + uK1,K2

n + uK2,+∞
n where K1, K2 ∈ Z, K1 ≤ K2,

u−∞,K1
n (x1, r, ϕ) =

K1−1∑
m=−∞

Um
n (x1, r) eimϕ

and uK1,K2
n , uK2,+∞

n are defined by similar sums where m runs from K1 to K2 or from
K2 + 1 to +∞. Obviously, Um

n eimϕ = Pmun. Since un ∈ D(Aω) ⊂ D(A0), part a) of
Lemma 3.2 implies that Um

n eimϕ ∈ D(A0
m) ≡ D(Aωm). The identity

1 = ‖un‖20,2 = ‖u−∞,K1
n ‖20,2 + ‖u−K1,K2

n ‖20,2 + ‖uK2,+∞
n ‖20,2 (32)

implies that there exists a sub–sequence of {un} (we shall preserve the same notation for
the sub–sequence) such that at least one of the following three statements is true:

(A) There exists an increasing sequence {Kn
2 } of integer numbers which tends to +∞ as

n→ +∞ and ‖uK
n
2 ,+∞

n ‖0,2 > 1/
√

3 for all n ∈ N.

(B) There exists a decreasing sequence {Kn
1 } of integer numbers which tends to −∞ as

n→ +∞ and ‖u−∞,K
n
1

n ‖0,2 > 1/
√

3 for all n ∈ N.
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(C) There exist fixed K1, K2 ∈ Z, K1 < K2, such that ‖uK1,K2
n ‖0,2 > 1/

√
3 for all n ∈ N.

Suppose that statement (A) is true. Let us multiply (31) by Um
n e−imϕ, integrate on Ω

and sum over m from Kn
2 to +∞. We obtain

− ‖∇uK
n
2 ,+∞

n ‖20,2 − λ ‖u
Kn

2 ,+∞
n ‖20,2 + iω

+∞∑
m=Kn

2

m ‖Um
n eimϕ‖20,2 = (εn,u

Kn
2 ,+∞

n )0,2 . (33)

Note that the right hand side tends to zero as n→ +∞. However, the imaginary part of
the left hand side is

− β ‖uK
n
2 ,+∞

n ‖20,2 + ω

+∞∑
m=Kn

2

m ‖Um
n eimϕ‖20,2 > −β ‖uK

n
2 ,+∞

n ‖20,2 + ωKn
2

+∞∑
m=Kn

2

‖Um
n eimϕ‖20,2

= (−β + ωKn
2 ) ‖uK

n
2 ,+∞

n ‖20,2 ≥
1
3

(−β + ωKn
2 )

and tends to +∞. This is a contradiction. If statement (B) is true, then we arrive at a
similar contradiction.

Let us finally assume that (C) is true. Then there exists an integer k in the interval
[K1,K2], a δ > 0 and a subsequence of {un} (again denoted by {un}) such that ‖uk,kn ‖0,2 ≡
‖Uk

n eikϕ‖0,2 > δ. The first part of (31) can be written in the form

+∞∑
m=−∞

(Aω − λI) [Um
n eimϕ] =

+∞∑
m=−∞

(A0 − λI + imωI) [Um
n eimϕ] =

+∞∑
m=−∞

Emn eimϕ

where Emn are the coefficients in the Fourier expansion of εn in the variable ϕ. Hence

(A0 − λI + i kωI) [Uk
n eikϕ] = Ekn eikϕ (34)

for all n ∈ N. Multiplying (34) by Uk
n e−ikϕ and integrating on Ω, we obtain

−‖∇(Uk
n eikϕ)‖20,2 − (λ− i kω) ‖Uk

n eikϕ‖20,2 =
(
Ekn eikϕ,Uk

n eikϕ
)

0,2
. (35)

The imaginary part of the left hand side is −(β−kω) ‖Uk
n eikϕ‖20,2, whereas the right hand

side tends to zero for n → +∞, due to (31). Hence β = kω. Finally, (34) shows that
λ− i kω = α ∈ σ(A0). However, since σ(A0) = (−∞, 0], α is non–positive.

We have proved the inclusion σ̃c(Aω) ⊂ {z = α + i kω; k ∈ Z, α ≤ 0}. The opposite
inclusion follows from the fact that each of the operators Aωk is a part of Aω and so
σ̃c(Aωk ) ≡ {z = α+ i kω; α ≤ 0} ⊂ σ̃c(Aω) for all k ∈ Z. ut

Using Lemmas 4.2, 4.3 and 4.4, we proved Theorem 1.1, part (ii).

5 General exterior domains – operators Aω and Lω

We denote by Âω the operator which is defined in the same way as Aω, however on
the whole space R3 instead of the exterior Ω ⊂ R3. Obviously, the operator Âω has all
properties derived in Sections 3 and 4.

Lemma 5.1 σ̃c(Aω) = σ̃c(Âω)
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Proof. Suppose that λ ∈ σ̃c(Aω). Then there exists an orthonormal sequence {vn} ⊂
D(Aω) in L2

σ(Ω) such that ‖vn‖0,2 = 1 and {vn} satisfies

(Aω − λI)vn −→ 0 in L2
σ(Ω) for n→ +∞. (36)

Using exactly the same procedure as in the proof of Lemma 3.4, we can prove that there
exists a non–compact sequence {un} in D(Aω) such that ‖un‖0,2 = 1, un = 0 in ΩR and

(Aω − λI)un −→ 0 in L2
σ(Ω) for n→ +∞. (37)

All functions un, extended by zero from Ω to the whole R3, belong to the domain of
operator Âω. Thus, (37) shows that λ ∈ σ̃c(Âω).

On the other hand, if λ ∈ σ̃c(Âω) then we can use analogous arguments and prove that
λ also belongs to σ̃c(Aω). ut

Note that σ̃c(Âω) equals σc(Âω) and is described by Lemma 4.4. Since σess(Aω) is
closed and a subset of σ̃c(Aω), the open set G = C−σess(Aω) has just one component and
ind(Aω − λI) is constant in G. Using ρ(Aω) ⊂ G, we get ind(Aω − λI) = 0 in G. This
shows that G ∩ σ̃c(Aω) = ∅ and consequently,

σess(Aω) = σ̃c(Aω) = {z = α+ ikω; k ∈ Z, α ≤ 0} (38)

proving Theorem 1.1 (i).

Lemma 5.2 If ω 6= 0 and if the domain Ω is not axially symmetric about the x1–axis,
then the operator Aω is not normal.

Proof. By proving the existence of a function z ∈ D((Aω)∗Aω) which is not in
D(Aω(Aω)∗), we show that the domains D((Aω)∗Aω) and D(Aω(Aω)∗) do not coincide.

Let R > R0 and let us denote by A0
R the Stokes operator in the space L2

σ(ΩR) with the
dense domain D(A0

R) = W 2,2(ΩR)3 ∩W 1,2
0 (ΩR)3 ∩ L2

σ(ΩR). The spectrum of A0
R (as well

as the spectrum of A0
R +ω∂ϕ) consists of a countable number of isolated eigenvalues with

finite multiplicities and negative real parts. Choose an eigenvalue ζ of A0
R and denote by

v an associated eigenfunction. The equation

A0
Ru+ ω∂ϕu = v (39)

has a unique solution u ∈ D(A0
R), u 6≡ 0. Let us show, by contradiction, that ∂ϕu 6≡ 0 on

∂Ω. Assume the opposite, i.e. ∂ϕu ≡ 0 on ∂Ω. Then ∂ϕu ∈ VR where VR := W 1,2
0 (ΩR)3 ∩

L2
σ(ΩR). The operator A0

R can be extended to the one–to–one continuous linear operator
mapping VR onto the dual space V ′R. Moreover, ∂ϕ maps VR into L2

σ(Ω) and A0
R + ω∂ϕ is

an injection from VR into V ′R, because 0 is not an eigenvalue of A0
R + ω∂ϕ. The equation

(39) shows that A0
Ru also belongs to VR. Now, A0

R∂ϕu ∈ V ′R and it can simply be shown
that it equals ∂ϕA0

Ru (∈ L2
σ(Ω)). Indeed, if φ ∈ C∞0,σ(ΩR), the duality between the spaces

V ′R and VR yields

〈A0
R∂ϕu, φ〉 = −

∫
ΩR

∇∂ϕu · ∇φ dx =
∫

ΩR

∂ϕu ·∆φ dx = −
∫

ΩR

u · ∂ϕ∆φ dx

= −
∫

ΩR

u ·∆∂ϕφ dx = −
∫

ΩR

u ·A0
R∂ϕφ dx = −

∫
ΩR

A0
Ru · ∂ϕφ dx

=
∫

ΩR

∂ϕA
0
Ru · φ dx.
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Hence, as identities in V ′R, we have

0 = (A0
R − ζI)v = (A0

R − ζI)(A0
R + ω∂ϕ)u = (A0

R)2u+ ωA0
R∂ϕu− ζA0

Ru− ζω∂ϕu
= (A0

R)2u+ ω∂ϕA
0
Ru−A0

Rζu− ω∂ϕζu = (A0
R + ω∂ϕ)(A0

R − ζI)u.

This implies that (A0
R−ζI)u = 0 which means that u is an eigenfunction of A0

R associated
with the eigenvalue ζ, too. Since the space generated by such eigenfunctions is finite–
dimensional, v can be chosen so that µu = v for some µ ∈ C. Then equation (39) implies

ω∂ϕu = (µ− ζ)u (40)

in ΩR. Since ΩR is not axially symmetric, we find a point x0 ∈ ∂Ω such that in a
neighborhood U ⊂ ∂Ω of this point ∂ϕ is not the tangential derivative at x ∈ U. Consider
(40) as a first order linear differential equation in ϕ with initial values related to points in
U . The boundary condition u = 0 on ∂Ω enables us to conclude that u vanishes identically
in an open subset of ΩR. Now the unique continuation principle applied to ω = curlu,
cf. the proof of Lemma 2.6, shows that ω ≡ 0 and consequently that also u ≡ 0 in ΩR

which is impossible because u 6= 0 in ΩR. The assumption ∂ϕu ≡ 0 on ∂Ω thus leads to
the contradiction, hence ∂ϕu 6≡ 0 on ∂Ω.

Using an appropriate cut–off function procedure, cf. the proof of Lemma 3.4, we can
construct a function z in D((Aω)∗Aω) which coincides with the function u constructed
just before in the neighborhood of ∂Ω and equals 0 outside ΩR. Hence ∂ϕz 6≡ 0 on ∂Ω.
However, then z cannot belong to D(Aω(Aω)∗) because all functions z ∈ D((Aω)∗Aω) ∩
D(Aω(Aω)∗) satisfy z = A0z + ω ∂ϕz = A0z − ω ∂ϕz = 0 on ∂Ω, which implies that
∂ϕz ≡ 0 on ∂Ω. ut

Now Lemma 5.2 yields item (iii) of Theorem 1.1. Theorem IV.5.35 in [18] and Lemma
2.4 imply that the essential spectrum of the operator Lω is also given by (38). Moreover,
since ind(Lω − λI) = 0 in G = C − σess(Lω) and due to Theorem IV.5.31 in [18], G
can contain at most countably many eigenvalues λ of Lω, which can cluster only on the
boundary of G and 0 < nul(Lω−λI) = def(Lω−λI) < +∞ at each of them. This implies
Theorem 1.2.
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