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1. Introduction

Freedman [3] conjectured that any regular closed knotted curve in 3-space
has a tritangent plane, i. e. a plane which is tangent at three points. But
Montesinos Amilibia and Nuño Ballesteros [7] gave an example of a trefoil
knot without tritangent planes, and Morton [8] found a similar trefoil knot
where this property is easy to show. Both examples are (3, 2)-torus curves,
so at first sight they do not look like trefoil knots. In this paper we will show
that trefoil knots of the familiar shape always have at least two supporting
tritangent planes.

If a wire model of such a knot touches a plane at two points, then one
may turn it until it rests on a third point. But it seems difficult to make this
idea precise. Instead we approximate the knot C by a polygon and apply
Sperner’s Lemma to the boundary of its convex hull, more precisely to its
upper and lower parts so that we get two suitable triangles in the boundary
of the convex hull. If we approximate C, their planes converge to planes
supporting C at 3 points.

In section 3 we relate this result to the search for minimum numbers of
vertices and twistings.

2. Existence of tritangent planes

Definition: We call a trefoil knot C a special trefoil knot if it is a continuous
injective image of S1 in R3 with the following properties:

(a) there is a projection Π into a plane such that ΠC has rotation number
2 (i. e. ΠC moves around some point in the plane twice);
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(b) the restriction of ΠC to C is injective except for exactly three double
points.

(c) ΠC is locally convex, i. e. each point of C has a relative neighborhood
which is supported by a straight line.

A special trefoil knot and the projection as shown by Artin [1]

Instead of (c), we will work in the proof of Theorem 1 with the more technical
condition (c*) below which holds for special trefoil knots as can easily be
seen. We think of the projection plane as horizontal. The lower pre-images
Li, i = 1, 2, 3, of the double points divide C into closed subarcs Ci.

(c*) ΠCi ∩ ∂ conv ΠC 6= ∅

(Likewise we can use the upper pre-images.)

Besides Sperner’s Lemma we will use a simple Lemma which we need not
prove here.

Lemma: Assume that Kj, = 1, 2, . . . , are uniformly bounded convex sets in
3-space with Kj ⊂ Kj+1. If Ej is a supporting plane of Kj and if the Ej

converge to a plane E, then E supports the closure of ∪j Kj .

Sperner’s Lemma in 3-space (see e. g. Henle [6] p.38): Let a triangle
with vertices P1, P2, P3 and a triangulation be given and let the vertices be
labelled in the following manner: Pi gets label i, a vertex on the edge PiPj

gets label i or j, and the interior vertices are labelled arbitrarily. Then there
is at least one subtriangle with labels 1, 2, 3.

Theorem 1: A special trefoil knot C has at least two planes which support
C at three or more points. (Of course they are tangent planes if C is a regular
C1-curve.)

Proof: By (c*) we may choose a point Pi on each of the arcs Ci such that

ΠPi ∈ ∂ conv ΠC (i = 1, 2, 3).

We approximate C by a sequence of polygons Qj (j = 1, 2 . . .) starting with
the triangle P1, P2, P3 and adding more and more points of C such that the
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maximum edge length tends to zero. Because of their choice the Pi are ver-
tices of conv Qj for all j. If necessary the facets of the polytope conv Qj are
subdivided into triangles. We now consider the upper part of ∂ conv Qj. It
consists of the facets with normals pointing upwards, the projection plane
again being regarded as horizontal. This part may be considered as a tri-
angulated triangle with vertices P1, P2, P3. We get a Sperner labelling in the
following manner: all vertices of Qj which lie on Ci get label i, especially Pi

gets label i. (If C1 ∩C2 is a vertex it gets label 1 or 2. There are no vertices
of ∂ conv Qj which do not lie on one of the Ci.) Sperner’s Lemma gives us a
triangle labelled 1, 2, 3. Since it is part of ∂ conv Qj , the plane containing
∆j supports Qj in at least 3 points, one on each of the Ci, i = 1, 2, 3. Since
C1×C2×C3 is compact, there is a subsequence such that the vertices of the
∆j converge to three points. We have to show that no two of them coincide.
By the Lemma the planes of the ∆j converge to a supporting plane of conv
C. Since the plane of ∆j supports the upper part of ∂ conv Qj , the limit
plane supports the upper part of ∂ conv C or its relative boundary. So it
does not meet one of the points L1, L2, L3, which lie on the lower side or in
the interior of conv C. Thus, the limit plane supports C at three distinct
points, each lying in the relative interior of the arcs Ci. In the same way we
obtain a plane supporting C from below at three distinct points. �

Remark: As noted above we used the weaker condition (c*) instead of (c).
We could further relax (b). But this seems not to be appropriate if we have
in mind the questions described in Section 3.

3. Vertices of trefoil knots

In this section vertex of a C3-space curve means a point where the torsion
changes sign. Sometimes it is also called flattening point, in German Henkel-
punkt. Barner [2], p. 209, describes a method how to find vertices: Let a
plane tangent at two points roll along the curve until both points coincide.
This method, ascribed by him to Blaschke, is also the essence of Sedykh’s
proof of the four-vertex theorem for closed curves lying on the boundary of
their convex hull, see [10].

The attempt to use this method together with Theorem 1 in order to
find vertices of special trefoil knots was not successful, at least not without
further assumptions about the position of contact points with a tritangent
plane. Nevertheless we express the following

Conjecture: A special trefoil knot in the sense of Section 2 with nonvan-
ishing curvature has at least four (or even six) vertices.

Weiner [11] gave an example of an unknotted closed curve looking similar to
a special trefoil knot. It has constant torsion and therefore no vertices. This
may be a hint that even the existence of two vertices may be difficult to show
for special trefoil knots.

Consider the unit tangent vectors of a space curve C as a spherical curve
Ĉ . The geodesic curvature of Ĉ is τ/κ where τ is the torsion and κ(6= 0)
the curvature of C. The vertices of Ĉ , the extrema of τ/κ, are the points
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where the Darboux vector of C changes its sense of rotation. Therefore they
were called Darboux-vertices of C in [5]. In [9] they were called twistings.
Theorem 1 implies that Ĉ crosses some great circle at least six times. With
the method used in [4] we can prove the following theorem.

Theorem 2: A special trefoil knot with nonvanishing curvature has at least
four twistings.

It is not known if the number four can be attained. Since the proof is
rather lengthy and also since the conjecture above would imply Theorem 2
immediately, we will not present the proof here.

Problems: Find the minimum numbers of vertices and twistings for special
trefoil knots.
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