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Abstract

A general class of stochastic Runge-Kutta methods for I1t6 and Stratonovich stochas-
tic differential equation systems with a multi-dimensional Wiener process is consid-
ered. The multi—colored rooted tree analysis is applied to calculate order conditions
for the coefficients of explicit and implicit stochastic Runge-Kutta methods assuring
convergence in the weak sense with a prescribed order. Especially, order conditions
and some coefficients for stochastic Runge-Kutta schemes of weak order two are
calculated explicitly.
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1 Introduction

In recent years, derivative free Runge-Kutta type schemes have been pro-
posed for the strong approximation of stochastic differential equations (SDEs),
see e.g. [5,8,9,14]. Burrage and Burrage [1,2] introduced colored trees for
the calculation of order conditions for stochastic Runge-Kutta methods for
strong approximation. However, for the weak approximation of SDEs partic-
ular schemes have to be developed, see e.g. [5,7,8,10-12,15,16]. Komori, Mit-
sui and Sugiura [6] applied colored trees in order to calculate coefficients for
ROW-type schemes for the weak approximation of Stratonovich SDEs with
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an one-dimensional Wiener process.

The aim of the present paper is to calculate order conditions for a general class
of stochastic Runge-Kutta (SRK) methods for the weak approximation of It6
and Stratonovich SDEs with a multi-dimensional Wiener process. Therefore,
the multi-colored rooted tree analysis for weak approximation introduced in
[10,12,13] is applied. It provides an unified and very efficient way to determine
order conditions for SRK methods for both, It6 and Stratonovich SDEs. As
an example, order conditions up to order two are calculated for the introduced
class of explicit or implicit SRK methods by multi-colored trees and some co-
efficients for such schemes are presented.

Let (2, F,P) be a probability space with a filtration (F;);>o fulfilling the
usual conditions and let Z = [ty, T| for some 0 < ty < T < oo. We consider
the solution (X});ez of either a d-dimensional It6 or Stratonovich SDE system

t m t .
X, = X, +/ a(s, X,) ds + Z/ b (s, X,) * AW? (1)
to j=1"to

for d,m > 1 and t € Z, where the jth column of the d X m-matrix function b =
(b%9) is denoted by &’ for j = 1,...,m. The second integral w.r.t. the Wiener
process has to be interpreted either as an It6 integral with *dW7 = dW? or
as a Stratonovich integral with *dW/ = odW/. Let X;, = o € R? be the
Fi,-measurable initial value such that for some [ € N holds E(||X;,[|*) < o
where || - || denotes the Euclidean norm if not stated otherwise. Here, W =
(W, ..., W{™))>0 is an m-dimensional Wiener process w.r.t. (F;)s>o. We sup-
pose that the conditions of the Existence and Uniqueness Theorem are fulfilled
for SDE (1) (see, e.g., [4]).

The solution (X¢)iez of a Stratonovich SDE with drift ¢ and diffusion b is
also solution of an Ito SDE with the same diffusion b, however with the mod-
ified drift @'(t,z) = a'(t, z) + 3 X9—; X, bF (L, ) %”;}k (t,x) fori =1,...,d,
provided b is sufficiently differentiable. In the following, let C%L(R?, R) denote
the space of all g € C'(R?, R) with polynomial growth, i.e. there exists a con-
stant C > 0 and r € N, such that |9.g(z)| < C(1 + ||z||*") for all z € R? and

any partial derivative of order i <[ [5].

Let a discretization Z, = {to,t1,...,tn} with tg < t; < ... < ty =T of the
time interval Z = [ty, T'] with step sizes h, = t,4 1 — t, forn=0,1,...,N —1
be given. Further, let h = maxo<,<n hn, denote the maximum step size.

Definition 1.1 A time discrete approximation process Y converges weakly
with order p to the solution process X of SDE (1) as h — 0 if for each

fe C;(erl)(Rd,R) there exists a constant C'y, which does not depend on h,



and a finite 09 > 0 such that
[E(f(Xy) = E(f(Y(2)] < Cp AP (2)
holds for each h €]0,0¢] and t € I,.

2 Stochastic Runge—Kutta Methods

We consider a very general class of stochastic Runge-Kutta methods which has
been introduced in [10]: Let M be an arbitrary finite set of multi-indices with
k = | M| elements and let 6,(h), v € M, be some suitable random variables.
For the weak approximation of the solution (X;);ez of SDE (1), considered
either with respect to Itd or Stratonovich calculus, a general class of s-stage
stochastic Runge-Kutta methods is then given by

Yo = o
Yorr = Yo+ 3 2% a (t + ¢V b, H) (3)
i=1
+3 33 2F) (tn + ), Hi(k’"))

i=1 k=1veM

forn=0,1,...,N —1with Y,, =Y (¢,), t, € Zp, and

(kw k,v),(0,0) 0,0 0,0
H — y+zz< M09 o (1, 4 OV, HOO)

+ZZ > zEI (b + by, HOY)

j=1r=1 peM

fori=1,...,s,k=0,1,...,m and v € M U{0}. Here, let

Zz-(O’O) = hn Zz(k v Z ’)/ZL (k Y L n)
LEM
ZE00) _ gED00) 5 Z0 0 — 3 Bz] w1 g (h)
LEM
kv v ) (k) (r,
fori,7 =1,...,s and let oaz-,%-(L)( ),Ag?’ )’(0’0),31-8-)( M) € R be the coeffi-

cients of the SRK method. As usual, the weights can be defined by

C(O,O) — 14(0,0),(0,0)6 k (kw) _ A(k v),(0, 0) (4)

I

k,'j ) T’ . . .
withe = (1,...,1)T. If Agf’")’(o’o) = BZ-(;-)( O _ 0 for J > i then (3) is called

an explicit SRK method, otherwise it is called implicit. We assume that the



random variables 6, (h,,) satisfy the moment condition
E (62 (hn) - ... 02 (ha)) = O (n@r+#2)/2) -

for all p; € Ny and v; € M, 1 < ¢ < k. The moment condition ensures a
contribution of each random variable having an order of magnitude O(V/h).
This condition is in accordance with the order of magnitude of the increments
of the Wiener process.

Remark that for a deterministic ordinary differential equation, i.e. SDE (1)
with b = 0, the SRK method reduces to the well known deterministic Runge—
Kutta method, so the introduced class of SRK methods turns out to be a
generalization of deterministic Runge-Kutta methods.

3 Colored Rooted Tree Analysis

Following the approach in [10,13] (see also [12]), we give a definition of col-
ored trees which will be suitable for SDEs w.r.t. a multi-dimensional Wiener
process. Since each SDE system can be represented by an autonomous SDE
system

t m t .
X, = X, + /t a(X,)ds+3 /t B(X,) % dW? (6)
0 j:1 0

with one additional equation representing time, we restrict our considerations
to an autonomous SDE system in this section.

Definition 3.1 (1) A monotonically labelled S-tree (stochastic tree) t with
I =1(t) € N nodes is a pair of maps t = (¥, ") with

£o{2,. . = {1,...,1-1}
¢, 0 > A

so that (1) < i fori=2,...,1. Unless otherwise noted, we choose the set
A ={v,7,0j,,k € N} where j is a variable index with j, € {1,...,m}.
(2) LTS denotes the set of all monotonically labelled S-trees w.r.t. A. Here
two trees t = (¢, t") and uw= (W, u") just differing by their colors t' and
u” are considered to be identical if there exists a bijective mapm: A — A
with w(y) = v and w(7) = 7 so that ¢ (i) = w(w" (7)) holds fori =1,...,1.

So t’ defines a father son relation between the nodes, i.e. t'() is the father of
the son 7. Furthermore the color t"(7), which consists of one element of the set
A, is added to the node i for i = 1,...,[(t). Here, 7 = @ 1is a deterministic
node, 0;, = Q,, is a stochastic node with a variable index j; € {1,...,m}
and v = ® is the root of the tree. The variable index j; is associated with



the jxth component of the corresponding m-dimensional Wiener process of
the considered SDE. As an example Figure 1 presents two elements of LT'S.

In the following, we denote by d(t) = #{i : t"(i) = 7} the number of de-
4 Qj, 4 3 Oj

t[: 2 3 jl tII: 2 jl
1 1

Fig. 1. Two elements of LTS with ji,jo € {1,...,m}.

terministic nodes and by s(t) = #{i : t"(:) = oj,,k € N} the number of
stochastic nodes. The order p(t) of the tree t is defined as p(t) = d(t) + 3s(t)
with p(7) = 0. The order of the trees t; and t;; presented in Figure 1 can be
calculated as p(t;) = p(trr) = 2.

Every labelled tree can be written by a combination of three different brackets:
If t1,...,t, are colored trees then we denote by (ti,...,tx), [t1,...,t;] and
{t1,...,tx}; the tree in which t,...,t; are each joined by a single branch
to ®, @ and Oj, respectively. Therefore proceeding recursively, for the two
examples t; and t;; in Figure 1 we obtain t; = ([0%,]>,0% )" = ([0},]?,03,)"
and t;; = ({@%,03,}7)" = ({7, 03, }7)".

Now, two labelled trees t,u € LTS are called equivalent, i.e. t ~ u, if they
are identical except for their monotonically labels. The set of all equivalence
classes under the relation ~ is denoted by T'S = LTS/ ~. We denote by «(t)
the cardinality of t, i.e. the number of possibilities of monotonically labelling
the nodes of t with numbers 1,...,[(t).

312 471 412 .31\1 2 [.413\1
For example, the labelled trees ([o7]%,07,)", ([0},]%,07,)" and (03, [Ojs]_) .be-
long to the same equivalence class as t; in the example above, since the indices
j1 and 7, are just renamed either by j, and j; or jg and j3, respectively. Finally

the graphs differ only in the labelling of their number indices.

For every rooted tree t € T'S, there exists a corresponding elementary differ-
ential. The elementary differential is defined recursively by F(v)(z) = f(z),
F(7)(z) = a(z) and F(o;)(z) = b/ (z) for single nodes and by

f®(z) - (F(t1)(z),..., F(ty)(z)) fort = (ti,...,tz)
) @), ..., Ftp)(x)) fort=[ts,....t]  (7)
PP (z) - (Ft) (@), ..., F(t)(x)) for t = {t,... b}

9.

for a tree t with more than one node. Here f®). a® and v define a symmet-
ric k-linear differential operator, and one can choose the sequence of labelled



S-trees ti,...,t; in an arbitrary order. For example, the Ith component of
a®) - (F(ty),..., F(t)) can be written as

(@® - (F(t1),..., F(t) = > %

J1yeenyJp=1

(F'(t1),..., F7 (ty))

where the components of vectors are denoted by superscript indices, which are
chosen as capitals.

Definition 3.2 For x € {I,S} let LTS(x) denote the set of trees t € LTS
having a root v = ® and which are build by finite many steps of the form

a) adding a deterministic node T = @, or

b) adding two stochastic nodes 0, = O, , where both nodes get the same new
variable index j;, for some k € N. Additionally, in the case of ¥ = I neither
of the two nodes is allowed to be the father of the other.

The nodes are labelled in the order of adding. Further TS(x) = LTS(x)/ ~
denotes the equivalence class under the relation ~ restricted to LTS(x) and
a,(t) denotes the cardinality of t in LTS(x) for x € {I, S}, respectively.

It holds LT S(I) C LTS(S). For example, the tree ({a ]1,{ 2,)! belongs
to LTS(S) but not to LT'S(I). However, the tree ({7},}7, {02, ) belongs to
LTS(I). The only difference is the sequence of the constructlon 1 e. the correct

father-son relationship for the stochastic nodes (see [10,13] for details). Now,
the following Theorem holds (see Thm 3.2, Thm 4.2 and Prop 5.1 in [13]):

Theorem 3.3 For the solution (X;)iez of SDE (6), p € Ny, f: R — R with
fral @t b e CXPTO(RER) fori=1,...,d,j=1,...,m andt = to+h holds

. o~ au(t) F(#)(20)
Etos °(f(Xy)) = Z Z 25072 p(2)] he® +O(hp+1)
teTS(%) Jiyr-Js(t)/2=1 pLY):
p(t)<p

with x = I in the case of Ito6 and * = S in the case of Stratonovich calculus.

Next, we give an expansion for the approximation process (Y (t))tez, defined
by the SRK method (3). For t € T'S let the density (t) be defined recursively
by v(t) = 1ifi(t) =1 and
,Y(t) Hz 17( ) if t:(tla"'at/\)’
IO TS () if 6= [t1,..., 03] or t={t1,...,t2};.

Since the expansion for (Y'(¢)):cz, contains the coefficients of the SRK method,
we define a coefficient function 5 which assigns to every tree an elementary



weight. So for every t € T'S the function ®4 is defined recursively by

HZ 1@5( ) lft:(tl,,t)\)
Dg(t) = T, OO () if t = [ty,...,t)] (8)
ZueM AT WM () i b= (b, ta)s

where U0 () = W) (() = e with v = (@), 7 = [0], o = {0}, and

Z(kau)a(()’()) ?‘_ \I](Ozo) tz .ft = |t.....t
\I/(k’u)(t) :{ Hz_l ( ) 1 [ 1y ’ )\] (9)

ZueM 7 (kw),(r,1) Hz?\zl P (7518) (tz) ift = {t1, o ,t)\}r )

Here e = (1,...,1)T and the product of vectors in the definition of W®*+) ig
defined by component-wise multiplication, i.e. with (a1, ..., a,)(b1,...,bn) =
(albl, ceey anbn)

Definition 3.4 Let LTS(A) denote the set of trees t = (¢, t") € LTS w.r.t.
A ={y,71,0j, : k € N} such that

a) the root is of type t'(1) = v and all other nodes are either deterministic or
stochastic nodes, i.e. t'(i) € {1,0j, : k € N} for2 <i <I(¢),

b) all stochastic nodes own a different variable index ji, 1 < k < s(¢t), i.e. for
two different stochastic nodes i # 1 holds t'(i) # t'(1).

Further TS(A) = LTS(A)/ ~ denotes the equivalence class under the relation
~ restricted to LTS(A) and aa(t) denotes the cardinality of t in LTS.

It holds LTS(I) ¢ LTS(S) € LTS(A). Further, each tree t € LTS(A) has
5(t) different variable indices ji, ..., js) while a tree u € LT'S(x), * € {I, S},
has only s(u)/2 different variable indices. Then it holds (see Prop 6.1 in [10]):

Proposition 3.5 Let (Y (t))icz, be defined by the SRK method (3). Assume
that for the random variables holds 6,(h) = V'h -9, for 1 € M with a bounded
random variable ¥,. Then for f : R¢ - R, p € Ny and t =ty + h holds

I T T UL LI LIEC H
teTS(A)1 Jtseeda(y =1
p(H)<p+3

provided f,a*, b € CIZD(HI)(]Rd,]R) foralli=1,....dandj=1,...,m



4 Order Conditions for Stochastic Runge—Kutta Methods

In order to calculate order conditions for the random variables and the co-
efficients of the SRK method (3), the approximation Y has to be uniformly
bounded. Therefore, we assume that each random variable can be expressed
as 0,(h) = vVh -9, for L € M with a bounded random variable ,. We remark,
that this condition is not necessary in the case of explicit SRK methods (see
[10,12] for details). Further, we assume that

E(z(k’”)Te) =0 (10)

holds for 1 < k < m and v € M. Then the approximation Y by the SRK
method (3) has uniformly bounded moments (see Prop 6.2 in [10]).

Definition 4.1 Let |t| denote the tree which is obtained if the nodes o}, of t
are replaced by o, i.e. by omitting all variable indices. Let a tree t € T'S(x)
for x € {I, S} with variable indices ji,. .., jsz)/2 be given and let uw € TS(A)
with variable indices 71, . . . ,j’s(u) denote the tree which is equivalent to t except
for the variable indices, i.e. |t| ~ |u| with s(t) = s(wu). For a fized choice of
correlations of type ji, = j1 or jx # Ji, 1 < k <1 < s(t)/2, between the indices
Jis---»Jst)/2, let B(t) denote the number of all possible correlations between

the indices J1,. .., s of tree u such that t ~ wu holds. In the case of s(t) =0
or t € TS(A)\TS(x), x € {I,S}, define B(t) =

For example, for t = (0;,,05,,{0},};) € TS(I) and u = (03,,03,,{03,};,) €
T'S(A), two cases have to be considered. On the one hand we have the correla—
tion j; = j, for t where we get the only possible correlation j; = jo = j5 = Jj4
for u, i.e. B(t) = 1. On the other hand we have j; # j as a correlation for t
allowing us two different correlations j; = Js # jo = js and Jo = Js # J1 = Ja
for u. Thus we get 3(t) = 2 in the latter case.

Here, we note that for every tree t € T'S(*) with variable indices ji, ..., jyt)/2
there exists a tree u € T'S(A) with |u| ~ |t| and variable indices i, .. ., jsu)
such that for some suitable correlation of type jy = ji or jx # ji, 1 <k <1<
s(u), we have t ~ u and thus u € T'S(x) with a,(u) = a.(t) for x € {I,S}.
However, we have a,(u) = 0 for all u € T'S(A) \ T'S(x) for * € {I,S}. The
following theorem for the class of SRK methods (3) yields order conditions
for the coefficients and the random variables of the method such that conver-

gence with some order p in the weak sense is assured (see Thm 6.4 in [10] or
Thm 4.4.3 in [12]).

Theorem 4.2 Let p € N and f,a', @, b € CXP"™(RE,R) fori =1,....d
and j =1,...,m. Then the approzimation (Y (t))icz, by the SRK method (3)
with mazimum step size h is of weak order p, if for all t € TS(A) with



p(t) <p+ % and all correlations of type jx = ji or jx # 1, 1 < k <1< s(?),
between the indices jy, ..., joy € {1,...,m} of t the equations

() - W0 an(t) - B(D) - (t) - E(s(t)) (11)
25(0/2 . p(g)! (I(t) — 1)!

hold for + = I in case of the Ité SDE (1) and x = S in case of the Stratonovich
SDE (1), provided that (4), (5) and (10) hold.

We note that Theorem 4.2 provides uniform weak convergence with order p
in the case of a non-random time discretization Z, [10].

5 Stochastic Runge—-Kutta Methods for It6 SDE Systems

The aim of this section is to deduce conditions for the coefficients of the SRK
method (3) from Theorem 4.2, such that convergence with order 2.0 to the
solution of the It6 SDE (1) in the weak sense is guaranteed. Therefore, we
choose M = {{j1}, {j1, 42} : 1 < j1,J2 <m} and

(0,0) COILON T

(k7l) b
zi = aihy A" =T Ty + 9 N
(0,0),(0,0) _ 4(0,0),(0,0) (0,0),(rs) _ pr)©0:(rs) 2
Zij = Ay P Zij = Bj; Iy
(k,1,(0,0) _ 7 (kD),(0,0) (kD)y(rs) _ (o) (BD:(rs)
0,0),(r,s .
for 1 < k,l,r,s < m. Further, we define Bg)( ) 0 in the case of r # s
k7l ) T"s . . .

and BZ-(J(-))( M ):Oln the case of [ Zrorl#sfori,j=1,...,s.

The random variables are defined by I,) = AW/ and Iy = L(AWF AWE +
Vi) Here, the AW could be independent N (0, h,) Gaussian or three-point
distributed random variables with P(AW! = £+/3h,) = ¢ and P(AW! =
0) = % The V},; are independent two-point distributed random variables with
P(Viy = £hy) = % forl =1,...,k—1, Vo, = —h, and V, = =V}, for
Il=k+1,...,mand k=1,...,m [5].

Then the d-dimensional approximation process Y is given by an stochastic



Runge-Kutta method with s stages which is defined by Yy = xy and

Yosr =Y+ 3 aialtn + A, HOD) p,

=1
+Z Z t +C(kl)hn,H( ))j(k) (12)
=1 k,l=1
kb (k1) (k)Y L)
+§Z§3§ F(tn + ¢V b, HY) G
i=1 k=1 Vhn

forn=0,1,..., N — 1 with supporting values

H0= Y+ZA”M>@+$%%@WMH

j=1
+ Z Z B(T (tn + Cgr’r)hn, H](T’T)) A(T)
j=1lr=1
HEV= Y, 4 30 ABDO0 o1 4 00 00y )
j=1

0) (&, (1) 1l Ly |
+ZB() lt'i‘Cz(' )h'fL7HJ( )) hn

fori=1,...,sand k,l=1,....,m

Clearly, the SRK method (12) may be implicit or explicit, which depends
on the choice of the coefficients for the method. It turns out that the num-
ber of coefficients for the SRK method (12) can be reduced by just differing
from the two cases £ = [ in contrast to k£ # [. Thus we can restrict our consid-
erations to the three different support values H; (0.0) , H, (kk) and H; & for k #1.

As we are looking for coefficients, such that the proposed SRK method (12)
converges with order 2.0 in the weak sense, we apply Theorem 4.2. Since
E(z(’“’l)Te) = 0 holds for 1 < k,l < m, Y is uniformly bounded and the fol-
lowing theorem gives general conditions for the coefficients of the stochastic
Runge-Kutta method (12) (see also Thm 5.1.1 in [12]).

Theorem 5.1 If the coefficients of the stochastic Runge—Kutta method (12)
fulfill for k1 =1,...,m the equations

T

1. oTe=1 4. AWEDT gOEIED, _ g
T T

2. (y(k)(k’k) e)’ =1 5. V(k)(k’l) e=0 fork#I

3 7(k,l)(lc,l)Te — 0

then the method converges with order 1.0 in the weak sense to the solution of

10



the Ito SDE (1). If in addition for k,l =1, ..., m the equations

6 aTA(O,O 00, — % 9. aT(B(k)(OaO)(kak)e)Q _ %

7 ,Y(kl A(kl 0.0)p — 0 10. fy(k’l)(k’l)TB(o)(k’l)(l’l)e -1
T

8 ’Y( )(kal) (B(O)(kJ)(l’l)e)Q — O 11. ,_Y(k)(kil) (B(O)(k’l)(l7l)e)3 — 0

(kk)T (0,0)(k,k)
12. () (o B0, =

N |—

13. k) kl (B(O (k:l ”)(A(ll)(OO) )) 0
14. k) (k, l (B (k nEy (B(O) @HEh (B(O) (l,l)(l,l)e))) =0
15. k)kl ARD(0,0) (B(k)(OO)(kk) )) =0

16. aT(B(k)(O,O)(k k) (B(O) (kak)(k7k)6)) — 0

17. (,Y(k)(k’k)Te) (,Y(k)(k,k)TA(k,k)(O,O)e) _
T

18. v(k)(k’l) A®DODe =0 for k #£1

19. A®E (BOEOED ) 4D00) )

1
2

=0

20. 7(k)(lc,l)T (BO (k,l)(l,l)( B(o)(l,l)(l,z)e)) —0

921, (V(k)w,k)Te) (7(k)(k=l)T( B(O)(k,z)<l,l)e)2) _1

2

T
22 ,Y(k,l) (kvl) (B(O) (k5l)(lvl) (B(O) (lvl)(lal)e)) — 0

93. ,y(k)(kyl)T(B(o)(k,l)(l,l) (A(l,l)(o,o) (B(k)(o’o)(k’k)e))) —0

24. aT((B(k)) (050)(k5k)€) (B(k) (050)(k)k) (B(O)

(k:k)(k,k)

€))) =0

25 k;l (k l) (A k; l (0 0) ((B(k;) (an)(kak)e) (B(l) (O,O)U,l)e))) — 0

EI

(0,0)(k.k)
e) (AR OO (B e))) =0

(k,k)(k,k)

o

e))) =

26. " (O

97, k)kl (A (k:)( oo(B(k)(OO)(kk)(B(o)

98, k)kl (B 0) (k.0) ll((B(O)(ll)( ) €)?)) = 0
59 k)kl (BO GO

(
30. kD (k)T (A®DO, 0)(B(l)(0 0) (L) e))

(k,0)(1,0) L0
e)(BY (B €)) =0
=0

are fulfilled then the stochastic Runge—Kutta method (12) converges with order
2.0 in the weak sense to the solution of the Ité SDE (1).

Remark 5.2 The conditions for the coefficients presented in Theorem 5.1

have to be fulfilled for the two cases k =1 and k

# 1. Thus we have to solve

50 equations for m > 1. Howewver in case of m = 1 the 50 conditions reduce

11



to 28 conditions (see also [12]). For explicit SRK methods s > 3 is needed.

Solving the order conditions of Theorem 5.1, it turns out that we can choose
Ag_c,l),(o,o) = 0 in the case of kK # [ for 4,7 = 1,...,s. Thus, we can characterize
the SRK method (3) by the following Butcher array for 1 < k,I < m with

k#1:

C(O’O) A(0,0),(0,0) B(k)((]’())a(kak)
ckk) | A(kk),(0,0) | B0)(kE)(RE) | b0y (ko). (hD)
k)T k&) T
of SO o (hok) (FoH)
kDT kDT
(R D) (ko) (D)

Taking into account the order conditions 1.-5. of Theorem 5.1, we can easily
calculate SRK methods converging with order 1.0 in the weak sense. As an
example the well known Euler-Maruyama scheme (see, e.g., [5]) belongs to
the introduced class of SRK methods having order 1.0 with s = 1 stage. Con-
sidering in addition the conditions 6.—30. of Theorem 5.1, we calculate some
coefficients for an explicit SRK method (12) of weak order two. Due to some
degrees of freedom in choosing the coefficients for the deterministic part, it
is possible to calculate a SRK scheme converging with order three if it is ap-
plied to deterministic ordinary differential equations. Therefore, if the weights
o; and the coefficients AZ(;)’O)’ %) are chosen such that condition 1. and 6. of
Theorem 5.1 and additionally the conditions o (A©0:00(A00.00¢)) = 1
and o (A®0:00¢)2 = 1 are fulfilled (see, e.g. [3]), then the SRK scheme is of
order three in the case of b = 0.

In the following let (pp,ps) with pp > ps denote the order of convergence
of the SRK scheme if it is applied to a deterministic or stochastic differen-
tial equation, respectively. Thus, the scheme converges at least with order
p = ps in the weak sense and we suppose better convergence for schemes
with pp > pg, particularly for SDEs with small noise. The schemes RITWM,

0 0
2|1 2 20 2 1
3| 3 1 3 3 3
2 1 2 1 4
331 |00 31731 |30
0 0
11 1 1 11 1 1
110 |-10 |-10 1110 |=10 |-10
I 11/L 11|l L _1 I 111 11|l L _1
4 2 4| 2 4 4 2 2 4 2 4| 2 4 4 2 2
111l L _1 111l L_1
2 4 4 2 2 2 4 4 2 2

Table 1
SRK scheme RIITWM and RI2WM of order pp = 3.0 and ps = 2.0.
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0 0

21 2 1

2 2 0 1)1 1

0]-35 |10 t5|i01 1 |~6 O

0 0

11 R | 11 1 1

4| 4 2 2 4| 4 2 2

1 1 1 1 1 1 1

1037 |30 15 0 ils 0 =50 —30

131 1 3 24

~13 111100 —11 o3 A 1100 1-1

—211/0 —-11 2 —-1-1/0 1-1
Table 2

SRK scheme RI4WM and RISWM of order pp = 3.0 and ps = 2.0.

RI2ZWM, RI4WM and RISGWM presented in Table 1 and Table 2, respectively,
are of order pg = 2.0 and pp = 3.0 in the weak sense. The explicit weak
order 2.0 scheme proposed by Platen [5] of order pp, = ps = 2.0 is also of the
considered class of SRK methods. For coefficients of this scheme and further
coefficients we refer to [12].

6 Stochastic Runge-Kutta Methods for Stratonovich SDE Systems
with Commutative Noise

We consider SRK schemes for the approximation of Stratonovich SDE systems
with commutative noise. The main advantage of such schemes is that they do
not need the simulation of correlated random variables which saves compu-
tational effort. Therefore, we assume that the diffusion b of the Stratonovich
SDE (1) satisfies the commutativity condition

d Obkiz a Obkin
bt —— = b2 —— 13
Z.Z::l oxt ZZ: or’ (13)

—1

for every ji,jo=1,...,m, k=1,...,d. SDEs satisfying (13) are called SDEs
with commutative noise. For a SRK method for SDEs with commutative noise
(see also [11,12]) we choose M = {j:1 < j <m} and

LY
Zlgo,o) — a;h, ZZ(l,l) _ %(z)( )I(l)
k.k), (LD ~
ZERO0 . 4kR100 p ZEP 0 — ot

for k e MU{0},l e Mandi,j=1,...,s The coefficients of such a method
can be represented by the Butcher array taking for k,l € M with k # [ the

13



form
0,0) | £(00),(00) | pk)©0):(k:k)

C(k’k) A(k,k),(0,0) B(k)(kak)7(k7k) B(l) (kak)a(lal)

T y (k)T

o 'y(k

Then the d-dimensional approximation process Y is given by a SRK method
with s stages defined by Yy = x( and

Yopr=Yo+2 aia(ta+ A", HOOY b,
i=1 (14)
SO g R R

=1 k=1

forn=20,1,..., N — 1 with supporting values

HOO— Y, +3° AL ot + O, HOOY hy,

7j=1

+Y 3By

]17"1

k.k (k,k)(0,0 0,0 0,0
HEP— Y+ZA 00 oty + Py, HOOY by

7j=1

00 rr A
X b ( i CZ(_T,T) h,, ngr,r)) I(r)

Ic k)(ryr) A
s (tn + Cgr’r)hn, H](-T’T)) (r)

+Y 3By

j=1lr=1

fori=1,....,sand k=1,...,m

The commutativity condition can be illustrated in the light of rooted trees
Ijl Ijk
< Jk = - ji

Fig. 2. Two equivalent endings of a tree in case of commutative noise.

as follows: If the commutativity condition (13) holds, then the endings {o}, };,
and {0}, of a rooted tree, presented in Figure 2, are equal and we can
substitute one of the two endings of a rooted tree by the other one. This is
a direct consequence from the corresponding elementary differentials. By the

use of this item it is possible to calculate conditions for the coefficients of the
SRK method (see [11,12]).

14



Theorem 6.1 If the coefficients of the stochastic Runge—Kutta method (14)
fulfill for k =1,...,m the equations

T T
1. afe=1 2. (V(k)(k’k) e)’ =1 3. fy(k)(k’k) g ERER :

then the method converges with order 1.0 in the weak sense to the solution of
the Stratonovich SDE (1). If in addition for k,l = 1,...,m with k # [ the
equations

(k,k)T (0,0) (k)
4 oL A0000), — % 7 (’y(k) e) (aTB(k) e) = %
5. o (B(k) (0 0) k k)6)2 8 O{T(B(k) (0,0)(k,k) (B(k) (k,k)(k,k)e)) — i
(k)T (kR)LD) (k)T (k,k) (k)
6 ,Y(k) BO — % 9 ,y(lc) (B(k) 6)3 _ i

(k)T (k)T
10. (v® e) (%) ARR)00) ) — %

11, 7( k) (ks KT (B(k)(kk (k,k) (A(kk 00)6)) %

19, ’Y( k) (ks KT ((A(k ,k)(0,0) )(B(k)(k’k)(k’k)e)) _ i

13. (y® k) (k)T e) (v (k) (k)T (B(k)(k:k)(k,k)e)Q) =1

14 (@ (O - )

15 (006 (@I (BOEI ) (O EDIER ) o
16. (7 k) (k.k) e)(fy(k)(k,k)T(B(k)(k,k)(k,k)(B( )(k,k)(k,k)e))) _ %
17, (7 k) (ksk) Te) (V(k)(k,k)T(B(l) (k,k)(1,0) (B(l)(l,l)(l,l)e))) _ i

18, (7 k) (k:k) Te) (fy(l)(l,l)T(B(k)(l,l)(k,k)(B(l)(k,lc)(l,l)e))) —0

19. (7 k) (koK) Te)(fy(l)(l 1) (B( )(l,l)(l,l)(B(k)(l 1) (k,k) ) = i

20, WD (BN ) (ORI 2y 4

91 ’Y(k)(k’k)T((B (k) (ksk) (k) e)(B ) (ksk)( kk)(B( )(Ic,lc)(k,lc)e))) _ %
99. 7(k)(lc,lc)T((B 1y (k.R)(LD) ¢)(B® ) (kE)( kk)(B(l)(k,k)(l,l)e))) _1
93, ’Y(k)(k7k)T((B ) (ksk) (11 )(B ) (esk) (1, l)(B(k)(l,l)(k,k)e))) —0
24 fy(k)(k,]c)T((B (k) (k) (k k) e)( (1) (k:k) (1) (B(l)(l,l)(l,l)e))) _ %
o5, q/(k)(lc,lc)T(B(k (k) (k k) (B(k)(k k) (k k) ¢)?) = %

9%. 7(k)(lc,lc)T B(k (kk)(k,k) B (R k)( ll)e 2y _ 1

97 fy(k)(k,k)TEB(l k.k) ll)(((B(k LU)(k, k)ei()B(l)(il)(l,l)e))) -0
98, ’Y(k)(k,k)T(B(k (k,k)(k,k) (B(k)(k k) (k, k)(B(k)(k k) (k,k) ¢))) = 21_4

15



29. A®ERTBEHERED paEDLD GaEIED ), _1
30, k) (kk)T (B(l (ko) ( ll)(B(k)(l 1) (k, k)(B(l ) (kk)(1,0) &) = 0
31 k) (e, k)T(B(l (k,k)( ll)(B(l)(l,l)(l,l)(B(k) (l,l)(k,k)e))) -0
39, ) (koke) T (A(k k)(0,0) (B(k)(o 0)(k:k) e)) =0

are fulfilled then the stochastic Runge—Kutta method (14) converges with order
2.0 in the weak sense to the solution of the Stratonovich SDE (1).

Remark 6.2 The 32 conditions of Theorem 6.1 reduce to 17 conditions in
the case of m = 1. Further we need s > 4 for an explicit SRK method (see

[11,12]).

Some explicit SRK schemes of order 2.0 are given by RSITWM and RS2WM
with the coefficients presented in Table 3. Due to s = 4 stages needed for

0 0
0[0 0 212 0
3 3 211 1 1 3
110 —i1 3|6 2 11
0000 |1 00 0000 [0 00
0 0
0[0 2 0 0|0 2 0
1 1 1 3 1 1 1 3
1110 71 i1 110 71 i1
1100 [(-222 |F20 11100 |-2172 |30
1 11 3 3 1 1 1 1 1 3 3 1
0033/ 5 553 117305 §838
Table 3

SRK scheme RSIWM with pp = pg = 2.0 and RS2WM with pp = 3.0 and pg = 2.0.

the Stratonovich SRK methods, it is possible to calculate schemes of a higher
order of convergence for the deterministic part, represented by the coefficients
A0 and a. For example, RS2WM is of order (3.0, 2.0) while RSTWM is
of order (2.0, 2.0). Clearly, for s = 4 it is also possible to calculate coefficients
for a scheme of order (4.0, 2.0) (see [12]).

7 Numerical Results

The SRK schemes for 1t6 SDEs are compared with the order 1.0 Euler-
Maruyama scheme (EM), the order 2.0 scheme (PL1WM) due to Platen [5] and
a scheme proposed by Milstein (MI) [8] of order 2.0 which is not derivative free.
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In order to have nearly the same computational effort, the Euler-Maruyama
scheme is applied with step size h/3. The test equation is the linear SDE

dXt = CLXt dt + bXt th, X() = Ty, (15)
with a = 1.5, b = 0.1, f(z) =z, o = 0.1 and T = 1. The expectation of the
solution at 7" is given by E(Xy) = x¢ - exp(aT). We approximate E(f(X}))
by a Monte Carlo simulation using the sample average - >4t f(Yr(wk)) of
M independent simulated realizations of Y7. Then, the mean error is denoted
by i and the empirical variance of the mean error is denoted by 62. Now,
M = 80000000 trajectories are simulated with step sizes 272, ...,27% and the
error |fi| is considered at time 7' = 1. The results are presented in Table 4 and
plotted in Figure 3 with double logarithmic scale. Then, the empirical order
of convergence is the slope of the printed lines. The first two lines with slope

Fig. 3. Order of confergence of scheme RIITWM and RI2ZWM.

log_2(error)
Iy

log_2(error)
Iy

log_2(stepsize)

16 ¢ EM (h) —— | 16 1 EM(h) —— 1

18 + EM (h/3) e J 18 b EM (h/3) -~ ]
PLIWM (h) ~=- PLIWM (h) ~=

220 MI (h) 1 20 MI (h) J
29 , RIIWM (h) ------- RI2WM (h) ------

s 4 3 2 4 3 2

log_2(stepsize)

of & 1.0 correspond to the scheme EM with step size h and h/3, respectively.
The third and fourth lines with a slope of &~ 2.0 coincide and correspond to
PL1WM and MI. The fifth line represents the results of the SRK scheme.
The empirical order of convergence of the schemes RIITWM, RI2ZWM, RI4WM
and RISWM is significantly higher than 2.0 which is due to the determinsitic
order pp = 3.0 of the SRK schemes. Clearly, the better performance depends
on the order of magnitude of the diffusion. Thus, the improved performance
decreases as the coefficient b increases. However, also for higher values of b, the
SRK schemes still perform better than the other schemes under consideration,
as additional simulations revealed (see [12]). Similar results for the schemes
RS1IWM and RS2WM can be found in [11].

A Proofs

Proof of Theorem 5.1. Apply Theorem 4.2 for all trees t € T'S(A) of or-
der p(t) < 2.5. All necessary trees are also specified in [10] and [12]. Leaving
out the trees whose conditions are fulfilled for any choice of the coefficients,

17



Table 4
Numerical results for the orders of convergence with SDE (15).

h ] 5 2 7] 5
272 | 1.093351e-03 | 1.633037e-09 272 [ 1.093384e-03 | 1.578671e-09
= | 27% | 1.570481e-04 | 1.602722¢-09 = 273 | 1.570562¢-04 | 1.586961e-09
= | 274 | 1.827831e-05 | 1.368048e-09 || = | 24 | 1.828247e-05 | 1.364314e-09
g 275 | 3.720047¢-06 | 1.677291e-09 g 275 | 3.719851e-06 | 1.676111e-09
276 | 5.398320e-07 | 2.090135e-09 276 | 5.397594e-07 | 2.089757e-09
272 | 1.093387e-03 | 1.603532e-09 272 | 1.097347e-03 | 1.524668e-09
= | 27% | 1.570634e-04 | 1.594753¢-09 = 273 | 1.581176e-04 | 1.620628e-09
= | 274 | 1.827862¢-05 | 1.365900e-09 || = | 274 | 2.235743e-05 | 1.683908e-09
E 275 | 3.719930e-06 | 1.676535¢-09 E 275 | 5.568290e-06 | 2.133419¢-09
276 | 5.394784e-07 | 2.089904e-09 276 | 1.857481e-06 | 2.756024e-09
2771 9.072138¢-02 | 5.872681e-10 || [ 272 | 3.717815e-02 | 1.154897e-09
= | 273 | 5.274061e-02 | 8.745436e-10 || 2| 273 | 1.972579e-02 | 1.282961e-09
‘E“ 274 | 2.870995e-02 | 1.275816e-09 || = | 274 | 1.017250e-02 | 1.566993e-09
[ | 275 | 1.502008¢-02 | 1.789500e-09 || = | 275 | 5.165140e-03 | 1.985171e-09
276 | 7.693292¢-03 | 2.628478e-09 276 | 2.607984e-03 | 2.774675e-09
272 | 1.180486e-02 | 1.496554e-09 2-2 | 1.180486e-02 | 1.496554e-09
273 | 3.414500e-03 | 1.517499e-09 || = | 272 | 3.414500e-03 | 1.517499¢-09
S| 27" |9.167149e-04 | 1.723751e-09 || B | 27* | 9.167149¢-04 | 1.723751e-09
275 | 2.348662e-04 | 2.086635¢-09 || = | 275 | 2.348662¢-04 | 2.086635¢-09
26 | 6.369378¢-05 | 2.850095¢-09 || T | 276 | 6.369378¢-05 | 2.850095¢-09

i.e. trees which don’t supply any new restrictions, we calculate the following
conditions (see also [12] for details):

For order 1 trees: ., = (7): (27 ¢) = h yields the condition aTe = 1.

tro = (0,,05,): B((Z, 20097 €)?) = h results in

m m . - T
(DA yGnh T e)? +1 (v(fl,l)(“’l) e)? = 1.
=1 =1

For order 1.5 trees:  ty54 = (0j,,0j,,0;,) corresponds to

Since E(I(,)1(j,)1(j5)) = 0 and due to the different values of E(1(;,)1(j,)L(js 1))
and E(I(, 1,)1(j,12)L(js,15)) for any choice of the indices (see [5]), and taking

k)T

into account the case m = 1, we determine the condition v*/"™" e = 0 for

k,il=1,...,m
t155 = ({05}, 03): B8, 20007 (T, Z00002s)e)) (T, 200" ) = 0.

Since we have BOU %) _ o for s £ 4, or for | # j» and keeping in mind
that E(I(;)I,y) = 0 and that E(I,)I;,)) takes either the value h if j; = js
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or the value 0 if j; # j3 (see [5]), we get with the conditions for tree t;5.4:

f: e YT fy(jl)(jl’j?)TB(O) (jl,j2)(j2,j2)€) —0.
=1

For order 2 trees: to, = ([r]): E(22007 Z0000)¢) = p2 = 4T 40000 = :
too = (7,7): E((z(O’O)Te)Q) = h? implies the condition (afe)? = 1.
toy = ([O'jl, O'jz])i Case A) jl = jg with ty 4 € TS(I) y1€ldS

E(3 Z(O’O)T(Z Z(O,O)(jl,s)e)Q) _ %hQ N aT((B(jl)(0,0)(3'1,9'1)6)2) =

s=1

Case B) jl §£ jg with t2_4 ¢ TS(I) ylelds E((bs(t24)) = 0.

1
3

t2_5 = (O’jl, [O'jz])i Case A) jl = j2 with t2_5 c TS(I) yields

( ZZ J1:l) )(22 (0,0) (i Z(an)(jl;s)e))) — h2.

=1 s=1

S

T _ .
As a result of this, we obtain (37", fy(ﬁ)(jl’l) e) (aTBUl)(O’O)(’I’“)e) =1
Case B): j; # jo with to5 & T'S(I) results in E(®s(ts5)) = 0.

tor = (0j,,0j,,7): Case A): j; = jo with to7 € T'S(I) yields
E((Z z(jl’l)Te)Q(z(O’O)Te)) = h2.
=1

Thus, we calculate ((X]%, ’y(jl)(jl’l) e)? + L3 (v pG)" e)?)(ale) = 1.
Case B): j; # jo with to7 ¢ TS(I) 1mp11es E(®5(ter)) = 0.

tos = (05, {7}),): Case A): j; = j, with to g € T'S(I) provides

(]ljl) 2 Z(]l, J1,l) (0 0)6 — h2.
Zz €) Z )

Therefore, we determine the condition

m

i'y(]l (]1, Z,le ,715 jl,l)(O 0)6)

l:

+§: (a, )G (,Yoll)(ﬂl’) AGDO0) ) — 1,
=1

—

Case B): j; # jo with tog ¢ T'S(I) implies E(®Pg(t2s)) = 0.
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to11 = (O'jl,O'jz,O'js,O'j4)I Case A) jl = j3 and jg = j4 with to11 € TS(I)

results in E((Z;ll 2 ey (ym z(j2’l)Te)2). Using the conditions calculated

for t1.5.4, two cases are considered: Case a): j1 = Ja, as(to114) = 1, B(t2.114) = 1
T

and E(I}) = 3k imply (X7, ) )b e)* =1. Case b): j1 # Jo, oq(tz 1) =

1’ B(tZ.llb) — 3’ E(I2 I2) — h2 yleld (Zm '}/(Jl (Jl; ) (Em (J2) (.725) 6)2 = 1.

Ji17J2
For the special case m = 1 we obtain from case a) and b) Wlth ji=7J2 =1

G T
that (7(71)(]1”1) e)* =1 and thus 709" ¢ = 0 for j; #1.
Case B): All remaining cases with to1; ¢ T'S(I) imply E(®g(t211)) = 0.

to12 = (04,,05,,{0j,};5): Case A): For to1o € T'S(I) with the conditions of
tree t1_5_4 and t2_11 we get

m

E((Z Z(J'hl)Te) (i L (32:0) )(2 Z Z(Js,l) Z 703:1)(54:8) )

=1 =1

Case a): jo = js # Jj1 = J3 (gr J2 = J3 #le = Ja) WithTal(tz.lza) = 4 and
6(t2.12a) = 2 yields (,Y(jl)(jl,jl) e)(,_y(j:))(j%j?) e)(,y(jl,j2)(j1aj2) B(o)(j17j2)(j2aj2)e) _
1. Case b) jl = j2 = j3 = j4 with a[(tg_lgb) =4 and ,B(tg_lgb) =1 we specify

the condition (,Y(jl)(jl,jl)Te)Q(,y(jl,jl)(jlajl)TB(o)(jl,jl)(jl,jl)e) -1
Case B): All remaining cases with to 12 ¢ T'S(I) imply E(®s(ts12)) = 0.

t2_13 = (Uj17{0j3a0j4}j2): Case A) jl = j2 and j3 = j4 Wlth t2_13 € TS(I)
supplies E((Z{il 20T e)(3m | LT (o 710 s:9) )2 )) = 3% Case a):

V(71,71 T 1,J1 1,71)(71,71
1= jo = j3 = ja gives (700D ¢) (40 2 (BOULIIGLI) y2y 5. Case

ENTRERY A ENZRFRYA PRYI
b)i jl = jg 75 j3 = j4 yields (7(71)(]1’31) e)(,y(p)(J.z,Js) (B(O)(]27.73)(.737]3)e)2) — %
Case B): j1 # ja or jz # ja with o153 ¢ TS(I) imply E(®g(ta13)) = 0.

to1s = (Uju {{0j4}]'3}j2):

m

m m m
( Z G T Zz(p,l)T(zZZ(jz,l)(js,s)(z Z(js,s)(j4,k)e)))) =0
=1 =1

s=1 k:l
contributes the condition

(’y(jl)(jl’jl)Te) (fy(jl)(jl’jB)T(B(O) (41,43)(43,33) (B(o)(js,js)(jsajs)e)) -0

t2_15 = ({O'j3}j1, {O-j4}j2): Case A) jl = jQ and j3 = j4 with t2_15 c TS(I)

E((Q 3 z(jl,Z)T(Z 20039 6)) (2 Z AT Z Z<j2,l>(j4,s)e))) — 2R?
=1 s=1

s=1
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Case a): j; = jo = j3 = ja results in the condition

2(7(1'1)(jl,jl)TB(o)ul,j1)<j1=j1)e)2 (jl,jl)(J'l’jl)TB“’)(jl’jl)(jl’jl)e)2 =1

+ (v
Case b): j1 = jo # js = j4 provides the condition

2(7(3'1)(jl,js)TB(o)(jl,js)(js,js)e)z n (ry(jlvj3)(jl’jS)TB(O)(jl’js)(jS’j3)6)2 -1

Case B): to.15 ¢ T'S(I). Case c¢): ji # jo implies E(®g(t215)) = 0. Case d):
FOI‘ j3 ?é j4 hOldS E(I(jl,j3)I(j2,j4)) = 0 and E(I(]l)I(J2)) = 0 lf jl 7£ jg. ThllS we
have to consider the case j; = jo where we calculate the condition

(,Y(j1)(j1’j3)TB(0) (j1,j3)(j37j3)e) (’)/(jl)(jl’j4)TB(0) (j1,j4)(j4,j4)6) = 0.

t2_20 = ({[0-]2]}.71): E(3 Z’ln;l Z(jl,l)T(QZ(jl,l)(O,O) (Z;n:l Z(070)(j2’5)e))) = 0 Since
E(I(;,)1(,)) = 0 for j; # ja, only the case j; = j, has to be considered, and for

e nT _ ) o
I =1,...,m the condition results in 707" (46000 (BUHNENULIg)y — g

Finally, we have to consider all trees t € T'S(A) with p(t) = 2.5 for which the
condition E(®g(t)) = 0 has to be fulfilled. As the calculations are analogous
to the ones already performed, repetition is avoided. Now, we just have to
summarize the calculated conditions in order to arrive at the conditions in
Theorem 5.1. O

Proof of Theorem 6.1. Apply Theorem 4.2 for all trees t € T'S(A) of order
p(t) < 2.5, which are specified in [10] and [12]. Since E(®g(t)) = 0 holds for
all t with an odd number of stochastic nodes, trees of order 0.5, 1.5 and 2.5
can be ignored. The calculations are analogously to the ones performed in the
proof of Theorem 5.1 (see also [11,12] for details). Therefore, we restrict our
considerations to the case of tree t9 15 where the commutativity condition has
to be applied.

to1s = ({05} {0 }in): E((2 ZninT 70000 02d2) ) (2 2l3:09) T ZUs3s)in)e) ).
Case A): to15 € T'S(S). Case a): j1 = jo = js = ja with ag(te.15,) = 3 and
B(ta.154) = 1 results in (y(jl)(jl’jl)TB(jl)(jl’jl)(jhjl)e)z _ i

Case b): j1 = ja # j3 = ja With as(ta.15) =1 and B(t2.15) = 1 yields

(’_y(jl)(jlajl)TB(jl)(jlajl)(jl ’jl)e) (,y(ja)(j3’j3)TB(j3)(j3’j3)(j3’j3)e) 1

1°

Case ¢): j1 = J3 # jo = ja with ag(ta15.) = 2 and S(ta.15.) = 1 gives

)T

(,Y(ﬁ)(jl’jl B(jz)(jl,jl)(jg,jz)e)(,Y(jl)(jlsjl)TB(jQ)(jl:jl)(jZajZ)e) _ 1

=3

21



Case B): to15 ¢ T'S(S). Case d): j; = js # j2 = js contributes the condition

(’y(jl)(jl’jl)TB(jz)(jl’jl)(j2’j2)e) (,Y(jZ)(j2’j2)TB(j1)(j2’j2)(j1’j1)e) —0.

Since there is a contradiction between the conditions of the cases ¢) and d),
there exist no coefficients such that we get a SRK method with the proposed
choice of random variables having order 2.0 in general. In order to overcome
this problem, we make use of the commutativity condition, which gives us
{oj}x = {ok};. Then the cases c) and d) are recalculated as follows:

Case ¢'): j1 = j3 # Jo = ja with as(teis¢) = 2 and S(ta.15¢) = 2 due to

the commutativity condition yields ()" pu2)0ral2:52) y2 L

Case d'): ji = ju # j2 = j3 is the same as case c’). a
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