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Abstract

Estimates of the generalized Stokes resolvent system, i.e. with prescribed
divergence, in an infinite cylinder Ω = Σ × R with Σ ⊂ Rn−1, a bounded
domain of C1,1-class, are obtained in the space Lq(R;L2(Σ)), q ∈ (1,∞).
For the preparation, spectral decompositions of vector-valued homogeneous
Sobolev spaces are studied. The main theorem is proved using the tech-
niques of Schauder decompositions, operator-valued multiplier functions and
R-boundedness of operator families.
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1 Introduction

In this paper we study the generalized Stokes resolvent system

λu−∆u +∇p = f in Ω

(Rλ) div u = g in Ω

u = 0 on ∂Ω,

where Ω = Σ×R is an infinite straight cylinder with cross-section Σ ⊂ Rn−1, n ≥ 3,
a bounded domain of C1,1-class. This system is a key problem for the study of
instationary Stokes and Navier-Stokes equations. The case of g = 0 in (Rλ) was
studied in [16]. In this paper the general case g 6= 0, i.e. generalized Stokes resolvent
systems in an infinite cylinder, is studied to deal with Stokes systems in more general
unbounded cylindrical domains such as cylindrical domains with several outlets to
infinity using a cut-off procedure.
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There are many papers dealing with generalized Stokes resolvent systems for half
spaces, bounded and exterior domains, aperture domains and layer-like domains (see
e.g. [1] - [5], [12] - [14], [17], [18] and the Introduction of [16] for more details), but
no result for unbounded cylindrical domains has been known up to now. Here we
study the solvability of the system (Rλ) in the space Lq(R; L2(Σ)) for 1 < q < ∞.
The main result of this paper is the following Theorem.

Theorem 1.1 Let Σ ⊂ Rn−1, n ≥ 3, be a bounded domain of C1,1-class, α0 > 0 the
smallest eigenvalue of the Dirichlet Laplacian in Σ, let 0 < ε < π

2
and 1 < q < ∞.

If f ∈ Lq(R; L2(Σ)) and g ∈ W 1;q,2(Ω) ∩ Ŵ−1;q,2(Ω), then for every α ∈ (0, α0) and
λ ∈ −α + Sε there exists a unique solution (u, p) to (Rλ) satisfying u,∇2u,∇p ∈
Lq(R; L2(Σ)) and the estimate

‖(λ + α)u,∇2u,∇p‖Lq(R;L2(Σ))

≤ C(‖f‖Lq(R;L2(Σ)) + ‖g‖W 1;q,2(Ω) + (|λ|+ 1)‖g‖Ŵ−1;q,2(Ω)),
(1.1)

where the constant C is independent of λ and depending only on α, ε, q and Σ. In
particular, if

∫
Σ

g(x′, xn) dx′ = 0 for almost all xn ∈ R, a stronger estimate

‖(λ + α)u,∇2u,∇p‖Lq(R;L2(Σ)) ≤ C(‖f‖Lq(R;L2(Σ)) + ‖g‖W 1;q,2(Ω) + |λ|‖g‖Ŵ−1;q,2(Ω))

(1.2)
holds with C = C(α, ε, q, Σ).

We use the following notations. For ε ∈ (0, π
2
), let Sε denote the sector of the

complex plane

{λ ∈ C; λ 6= 0, |argλ| < π
2

+ ε}.
We do not distinguish among spaces of scalar and vector-valued functions as long as
no confusion arises. In particular, given a norm in some Banach function space, we
use the short notation ‖u, v‖ for ‖u‖ + ‖v‖, even if u and v are tensors of different
order. For a Banach space X let X∗ denote its dual space and Lq(R; X), 1 < q < ∞,
the Bochner space of all X-valued measurable functions with finite norm

‖u‖Lq(R;X) =
( ∫

R
‖u(t)‖q

Xdt
)1/q

.

Let Ω = Σ×R be an infinite cylinder of Rn with bounded cross section Σ ⊂ Rn−1

and with generic point x ∈ Ω written in the form x = (x′, xn) ∈ Ω, where x′ ∈ Σ and
xn ∈ R. Similarly, differential operators in Rn are splitted, in particular, ∆ = ∆′+∂2

n

and ∇ = (∇′, ∂n).
Let r ∈ (1,∞) and s ∈ (0,∞). Then, Lr(Σ) and W s,r(Σ) are the usual Lebesgue

and Sobolev spaces with norm ‖ · ‖r;Σ and ‖ · ‖s,r;Σ, respectively. Moreover, Ŵ 1,r(Σ)
is the homogeneous Sobolev space, i.e.,

Ŵ 1,r(Σ) = {u ∈ L1
loc(Σ̄)/R;∇′u ∈ Lr(Σ)}, ‖u‖Ŵ 1,r(Σ) = ‖∇′u‖r;Σ,

and Ŵ−1,r(Σ) = (Ŵ 1,r′(Σ))∗ is the dual space of Ŵ 1,r′(Σ), r′ = r
r−1

, with norm

‖ · ‖Ŵ−1,r(Σ). We denote by W k;q,r(Ω), k ∈ N, q ∈ (1,∞), the Banach space of all

functions on Ω whose derivatives of order up to k belong to Lq(R; Lr(Σ)) with norm
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‖u‖W k;q,r(Ω) = (
∑

|α|≤k ‖Dαu‖q
Lq(R;Lr(Σ)))

1/q;

here Dαu = ∂α1
1 · . . . · ∂αn

n u for a multi-index α ∈ Nn
0 of order |α| ≤ k. Moreover,

W 1;q,r
0 (Ω) is the completion of the set C∞

0 (Ω)n in W 1;q,r(Ω). Finally, let Ŵ 1;q,r(Ω)
be the Banach space defined by

Ŵ 1;q,r(Ω) = {u ∈ L1
loc(Ω̄)/R;∇u ∈ Lq(R; Lr(Σ))}

endowed with the norm ‖u‖Ŵ 1;q,r(Ω) = ‖∇u‖Lq(R;Lr(Σ)); its dual space is denoted by

Ŵ−1;q′,r′(Ω) = (Ŵ 1;q,r(Ω))∗, where q′ = q/(q − 1), r′ = r/(r − 1). For notational
convenience, as long as no confusion arises, we denote constants c, C, . . . appearing
in the proofs by the same symbol even though they may be different line by line.

In an n-dimensional infinite layer the Stokes resolvent system is reduced by the
(n − 1)-dimensional partial Fourier transform to a system of ordinary differential
equations with the Fourier phase variable as a parameter; in [2], [3] and [5] the
authors applied Fourier multiplier theorems to the explicit solution of the reduced
system of ordinary differential equations to get the final Stokes resolvent estimates.

However, in an n-dimensional infinite cylinder Ω = Σ × R the Stokes resolvent
system (Rλ) is reduced by the application of the one dimensional partial Fourier
transform F ≡ ˆalong the axis of Ω to the parametrized Stokes system (Rλ,ξ) on
the cross-section Σ

(λ + ξ2 −∆′)U ′ +∇′P = F ′ in Σ

(λ + ξ2 −∆′)Un + iξP = Fn in Σ

(Rλ,ξ) div ′U ′ + iξUn = G in Σ

U ′ = 0, Un = 0 on ∂Σ,

which is elliptic in the sense of Agmon, Douglis and Nirenberg [6]; here U = û, P =
p̂, and U = (U ′, Un), F = (F ′, Fn) etc. In [16] the authors obtained the estimate

‖(λ + α)U, ξ2U, ξ∇′U,∇′2U, ξP,∇′P‖2;Σ ≤ c‖F,∇′G, G, ξG‖2;Σ + . . .

of the solution {U(ξ), P (ξ)} to (Rλ,ξ) where some terms for G have been omitted;
see (3.3) – (3.5) below and [16], Theorem 3.4, for details. Then Fourier multiplier
techniques are used to get the final estimate of (u, p) when g = 0. However, the
estimate of {U(ξ), P (ξ)} for (Rλ,ξ) involves the function G with ξ-dependent param-
eters as well as with norms in the sum and intersection of several Sobolev spaces.
Therefore, the Fourier multiplier technique cannot directly be applied to the case
g 6= 0.

To get an estimate for (Rλ) from the estimate for (Rλ,ξ), we use the uncondi-
tionality of dyadic Schauder decompositions of Lq(R; L2(Σ)) for 1 < q < ∞, vector-
valued homogeneous Sobolev spaces and the R-boundedness of operator families.
Having obtained Stokes resolvent estimates in the straight cylinder Ω = Σ×R, one
can get resolvent estimates in unbounded cylindrical domains with several outlets to
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infinity; at the end of the paper, we briefly mention the main idea using the method
of cut-off functions.

This paper is organized as follows. Section 2 is devoted to some preliminaries for
the proof of the main theorem including dyadic spectral decompositions of vector-
valued homogeneous Sobolev spaces. Section 3 includes the proof of Theorem 1.1
and a remark concerning the application to unbounded cylindrical domains with
several outlets to infinity (Remark 3.1).

2 Preliminaries

First let us consider vector-valued homogeneous Sobolev spaces. Let X be a reflexive
Banach space and 1 < q < ∞. We define the space Ŵ 1,q(R; X) by

Ŵ 1,q(R; X) := {u ∈ L1
loc(R; X); Du ∈ Lq(R; X)}

endowed with the (semi–)norm

‖u‖Ŵ 1,q(R;X) = ‖Du‖Lq(R;X),

where D is the derivative of first order; here we neglect the technicality that
Ŵ 1,q(R; X) should be defined as a quotient space (of functions modulo constants).

Using the one-dimensional Fourier transform F ≡ ˆ the space Ŵ 1,q(R; X) may be
rewritten as

Ŵ 1,q(R; X) = {u ∈ L1
loc(R; X);F−1(ξû) ∈ Lq(R; X)}

with norm
‖u‖Ŵ 1,q(R;X) = ‖F−1(ξû)‖Lq(R;X),

where ξ is the phase variable of the Fourier transform. It is easy to see that
Ŵ 1,q(R; X), 1 < q < ∞, is a reflexive Banach space.

Let D(R; X) be the space of all compactly supported and infinitely differentiable
X-valued functions and D′(R; X∗) the space of X∗-valued distributions. Moreover,
S(R; X) is the Schwartz space of all rapidly decreasing X-valued functions, with
dual space S ′(R; X∗), the space of tempered X∗-valued distributions.

Lemma 2.1 (i) D(R; X) is dense in Ŵ 1,q(R; X) for each q ∈ (1,∞).

(ii) C∞
0 (Ω) is dense in Ŵ 1;q,r(Ω) for each q, r ∈ (1,∞).

Proof: (i) Let f ∈ (Ŵ 1,q(R; X))∗ vanish on D(R; X). Then, due to the Hahn-
Banach theorem, there exists h ∈ Lq′(R; X∗), q′ = q/(q − 1), such that

0 = 〈f, φ〉 = 〈h,Dφ〉 ∀φ ∈ D(R; X).

In particular, for all ϕ ∈ D(R) and x ∈ X, we have

0 = 〈h,Dϕ · x〉 = 〈 〈h(·), x〉X∗,X , Dϕ〉D′(R),D(R)
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which together with 〈h(·), x〉X∗,X ∈ Lq′(R) yields

〈h(·), x〉X∗,X = const = 0 for all x ∈ X.

Hence h = 0, and f = 0.
(ii) Given u ∈ Ŵ 1;q,r(Ω) define u0(xn) = 1

|Σ|

∫
Σ

u(x′, xn)dx′ where |Σ| denotes the

(n − 1)-dimensional Lebesgue measure of Σ. Since u0 ∈ Ŵ 1,q(R; R), we may apply

part (i) and assume that u ∈ Ŵ 1;q,r(Ω) has vanishing means on Σ for almost all xn ∈
R. Then by Poincaré’s inequality applied to u(·, xn) on Σ it is easy to see that u may

be approximated by elements of the space {v ∈ Ŵ 1;q,r(Ω); supp v is compact in Ω}.
Finally, a standard approximation argument proves that C∞

0 (Ω) is dense in the latter
space with respect to the norm ‖ · ‖Ŵ 1;q,r(Ω).

By the Hahn-Banach theorem, for every f ∈ (Ŵ 1,q(R; X))∗ there is some h ∈
Lq′(R; X∗) such that

f = Dh and ‖f‖(Ŵ 1,q(R;X))∗ = ‖h‖Lq′ (R;X∗),

cf. Lemma 2.1. Conversely, it is obvious from Lemma 2.1 (i) that, if h ∈ Lq′(R; X∗),

then Dh ∈ (Ŵ 1,q(R; X))∗. Thus we conclude that

(Ŵ 1,q(R; X))∗ = {f ∈ S ′(R; X∗); F−1(1
ξ
f̂) ∈ Lq′(R; X∗)},

‖f‖(Ŵ 1,q(R;X))∗ = ‖F−1(1
ξ
f̂)‖Lq′ (R;X∗).

(2.1)

In consideration of (2.1) we shall denote the space (Ŵ 1,q(R; X))∗ by Ŵ−1,q′(R; X∗)
for 1 < q < ∞.

Now we introduce the notions of UMD-spaces, Schauder decompositions of Ba-
nach spaces and R-boundedness of operator families.

Definition 2.2 A Banach space X is called a UMD-space if the Hilbert transform

Hf(t) = − 1

π
PV

∫
R

f(s)

t− s
ds , f ∈ S(R; X),

extends to a bounded linear operator in Lq(R; X) for some q ∈ (1,∞).

It is well known that, if X is a UMD space, then X is reflexive (see e.g. [9]) and the
Hilbert transform is bounded in Lq(R; X) for all q ∈ (1,∞) (see e.g. [23], Theorem
1.3, [21], Proposition 2.3). Closed subspaces of, the dual of, and the quotient of
UMD spaces are UMD spaces as well. If X is a UMD space, then Lq(G; X) for
1 < q < ∞ and for any open set G of Rd, d ∈ N, is also a UMD space.

Definition 2.3 Let X be a Banach space and (xn)∞n=1 ⊂ X. A series
∑∞

n=1 xn

is called unconditionally convergent if
∑∞

n=1 xσ(n) is convergent in norm for every
permutation σ : N → N.

Note that if
∑∞

n=1 xn is unconditionally convergent, then the sum
∑∞

n=1 xσ(n) is
independent of the permutation σ, see e.g. [10], §3.2.
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Definition 2.4 A sequence of projections (∆j)j∈N ⊂ L(X ) is called a Schauder
decomposition of a Banach space X if

∆i∆j = 0 for all i 6= j

and
∞∑

j=1

∆jx = x for each x ∈ X .

A Schauder decomposition (∆j)j∈N is called unconditional if the series
∑∞

j=1 ∆jx
converges unconditionally for each x ∈ X .

If (∆j)j∈N is an unconditional Schauder decomposition of a Banach space X ,
then there is a constant c > 0 such that∥∥∥ N∑

j=1

εj∆jx
∥∥∥
X
≤ c

∥∥∥ N∑
j=1

∆jx
∥∥∥
X

for all N ∈ N, x ∈ X , εj ∈ {−1, 1}, (2.2)

see e.g. [10], Proposition 3.14. Moreover, there is a constant c∆ > 0 such that for
all xj in the range R(∆j) of ∆j the inequalities

c−1
∆

∥∥∥ k∑
j=l

xj

∥∥∥
X

≤
∥∥∥ k∑

j=l

εj(s)xj

∥∥∥
Lp(0,1;X )

≤ c∆

∥∥∥ k∑
j=l

xj

∥∥∥
X
, (2.3)

are valid for any sequence (εj(s)) of independent, symmetric {−1, 1}-valued random
variables defined on (0,1), for all l ≤ k ∈ Z and for each p ∈ [1,∞), see e.g. [10],
(3.8). Given an interpolation couple X1, X2 of Banach spaces, it is easily seen that a
Schauder decomposition of both X1 and X2 is a Schauder decomposition of X1 ∩X2

and X1 +X2 as well. We note that in the previous definitions and results the set of
indices N may be replaced by Z without any further changes.

Let X be a UMD space and χ[a,b) denote the characteristic function for the
interval [a, b). Let R be the Riesz projection, i.e.

R := F−1χ[0,∞)F ,

and define
∆j := F−1χ[2j ,2j+1)F , j ∈ Z.

It is well known that R and ∆j, j ∈ Z, are bounded in Lq(R; X) for each q ∈ (1,∞)
and that {∆j; j ∈ Z} is an unconditional Schauder decomposition of RLq(R; X),
the image of Lq(R; X) by the Riesz projection R, see [10], proof of Theorem 3.19.
Furthermore, {∆j; j ∈ Z} is an unconditional Schauder decomposition of both

RŴ 1,q(R; X) and RŴ−1,q(R; X) for each q ∈ (1,∞) since for every permutation

σ of N, every l < k ∈ Z and any u ∈ RŴ 1,q(R; X)

∥∥∥u−
k∑

j=l

∆σ(j)u
∥∥∥

Ŵ 1,q(R;X)
=

∥∥∥Du−
k∑

j=l

∆σ(j)Du
∥∥∥

Lq(R;X)
,
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as well as for any v ∈ RŴ−1,q(R; X)

∥∥∥v −
k∑

j=l

∆σ(j)v
∥∥∥

Ŵ−1,q(R;X)
=

∥∥∥F−1(ξ−1v̂)−
k∑

j=l

∆σ(j)F−1(ξ−1v̂)
∥∥∥

Lq(R;X)
.

Definition 2.5 Let X, Y be Banach spaces. An operator family T ⊂ L(X; Y ) is
called R-bounded if there is a constant c > 0 such that for all T1, · · · , TN ∈ T , all
x1, · · · , xN ∈ X and N ∈ N∥∥∥ N∑

j=1

εj(s)Tjxj

∥∥∥
Lp(0,1;Y )

≤ c
∥∥∥ N∑

j=1

εj(s)xj

∥∥∥
Lp(0,1;X)

(2.4)

for some p ∈ [1,∞); here (εj(s)) is a sequence of independent, symmetric {−1, 1}-
valued random variables on [0, 1], e.g. the Rademacher functions

rj(s) = sign sin(2jπs), j ∈ N.

The smallest constant c for which (2.4) holds is denoted by Rp(T ).

Due to Kahane’s inequality ([11]) for all p1, p2 ∈ [1,∞) and for any Banach space
X there exists a constant c = c(p1, p2, X) > 0 such that for all x1, . . . , xN ∈ X, N ∈
N, ∥∥∥ N∑

j=1

εj(s)xj

∥∥∥
Lp1 (0,1;X)

≤ c
∥∥∥ N∑

j=1

εj(s)xj

∥∥∥
Lp2 (0,1;X)

; (2.5)

hence, if (2.4) holds for some p ∈ [1,∞), then it does for all p ∈ [1,∞).

Lemma 2.6 Let (H, (·, ·), ‖ · ‖H) be a Hilbert space and let 1 < q < ∞. Then there
is a constant c > 0 such that for all xj = ∆jxj ∈ Lq(R; H) the inequalities

1

c

∥∥( k∑
j=l

‖xj‖2
H

)1/2‖q;R ≤
∥∥ k∑

j=l

xj

∥∥
Lq(R;H)

≤ c
∥∥( k∑

j=l

‖xj‖2
H

)1/2‖q;R (2.6)

hold for all l < k ∈ Z.

Proof: Choose a sequence (εj(s)) of {−1, 1}−valued symmetric, independent ran-
dom variables on [0, 1]. Then by (2.3), Fubini’s Theorem and Kahane’s inequality
(2.5) ∥∥ k∑

j=l

xj

∥∥
Lq(R;H)

≤ c∆

∥∥ k∑
j=l

εj(s)xj

∥∥
Lq(0,1;Lq(R;H))

= c∆

∥∥ k∑
j=l

εj(s)xj

∥∥
Lq(R;Lq(0,1;H))

≤ c∆ · c
∥∥ k∑

j=l

εj(s)xj

∥∥
Lq(R;L2(0,1;H))

.

(2.7)
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Since
∫ 1

0
εj(s)εi(s) ds = δji by the assumption on (εj(s)), we get due to the Hilbert

space structure of H

∥∥ k∑
j=l

εj(s)xj

∥∥
L2(0,1;H)

=
( k∑

j=l

‖xj‖2
H

)1/2
.

Therefore (2.7) leads to the estimate

∥∥ k∑
j=l

xj

∥∥
Lq(R;H)

≤ c
∥∥( k∑

j=l

‖xj‖2
H

)1/2‖q;R. (2.8)

Since in (2.7) the reversed inequality holds as well, (2.6) is proved.

Lemma 2.7 Let X be a UMD space, 1 < q < ∞ and Ra,b := F−1χ[a,b)F for

−∞ < a < b < ∞. If g ∈ Ŵ−1,q(R; X), then Ra,bg ∈ Lq(R; X) and there exists a
constant c(q, X) > 0 such that

‖Ra,bg‖Lq(R;X) ≤ c(q, X) max{|a|, |b|}‖Ra,bg‖Ŵ−1,q(R;X).

In particular, if a > 0, then

1

b c(q, X)
‖Ra,bg‖Lq(R;X) ≤ ‖Ra,bg‖Ŵ−1,q(R;X) ≤

c(q, X)

a
‖Ra,bg‖Lq(R;X).

Proof: Let m1(ξ) be a continuously differentiable function on R such that m1(ξ) = ξ
in (a, b) and

sup
ξ∈R

{|m1(ξ)|, |ξm′
1(ξ)|} ≤ 2 max{|a|, |b|}.

Then, by [26], Proposition 3, m1 is a Fourier multiplier in Lq(R; X), and we get

‖Ra,bg‖Lq(R;X) = ‖F−1(m1(ξ)ξ
−1χ[a,b)ĝ)‖Lq(R;X)

≤ c(q, X) max{|a|, |b|}‖Ra,bg‖Ŵ−1,q(R;X).

If a > 0, we define a C1−function m2(ξ) on R such that m2(ξ) = 1
ξ

in (a, b) and

sup
ξ∈R

{|m2(ξ)|, |ξm′
2(ξ)|} ≤

2

a
.

Then we get for g ∈ Lq(R; X)

‖Ra,bg‖Ŵ−1,q(R;X) = ‖F−1(ξ−1χ[a,b)ĝ)‖Lq(R;X)

= ‖F−1(m2(ξ)χ[a,b)ĝ)‖Lq(R;X)

≤ c(q,X)
a

‖Ra,bg‖Lq(R;X).
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Lemma 2.8 Let X be a UMD space and q ∈ (1,∞). There is a constant c > 0 such
that for all g ∈ Lq(R; X) and for any l ≤ k ∈ Z the following two formulae hold:

c−1‖
∑k

j=l 2
j∆jg‖Lq(R;X) ≤ ‖

∑k
j=l ∆jg‖Ŵ 1,q(R;X) ≤ c‖

∑k
j=l 2

j∆jg‖Lq(R;X) (2.9)

c−1‖
∑k

j=l 2
−j∆jg‖Lq(R;X) ≤ ‖

∑k
j=l ∆jg‖Ŵ−1,q(R;X) ≤ c‖

∑k
j=l 2

−j∆jg‖Lq(R;X).

(2.10)

Proof: Define the functions m1, m2 by

m1(ξ) =
∑
j∈Z

2j

ξ
χ[2j ,2j+1)(ξ), m2(ξ) =

∑
j∈Z

ξ

2j
χ[2j ,2j+1)(ξ).

Obviously supj∈Z Var(χ[2j ,2j+1)mi) < ∞ for i = 1, 2, where ’Var’ means the total
variation on R. Note that for i = 1, 2,

mi(ξ) =
∑
j∈Z

χ[2j ,2j+1)(ξ)mi(ξ) ∀ξ ∈ R and mi(ξ) = 0 for ξ < 0.

Then by [25], Theorem 3.2, mi, i = 1, 2, is a Marcinkiewicz type multiplier in
Lq(R; X), that is, there is a constant c > 0 satisfying

‖F−1(mif̂)‖Lq(R;X) ≤ c‖f‖Lq(R;X) for all f ∈ Lq(R; X).

Consequently, we get for each g ∈ Lq(R; X)

‖
∑k

j=l 2
j∆jg‖Lq(R;X) = ‖F−1

( ∑k
j=l

2j

ξ
χ[2j ,2j+1)(ξ)D̂g(ξ)

)
‖Lq(R;X)

= ‖F−1
(
m1F(D(

∑k
j=l ∆jg))

)
‖Lq(R;X)

≤ c‖
∑k

j=l ∆jg‖Ŵ 1,q(R;X).

The second inequality of (2.9) is proved using the multiplier m2, that is, we have

‖
∑k

j=l ∆jg‖Ŵ 1,q(R;X) = ‖
∑k

j=l F−1
(
ξ χ[2j ,2j+1)(ξ)ĝ(ξ)

)
‖Lq(R;X)

= ‖F−1
(
m2F(

∑k
j=l 2

j∆jg)
)
‖Lq(R;X)

≤ c‖
∑k

j=l 2
j∆jg‖Lq(R;X).

The formula (2.10) is proved similarly.

Now let Σ be a bounded Lipschitz domain of Rn−1. Then, Lr(Σ) and Ŵ 1,r(Σ)
for all r ∈ (1,∞) are UMD spaces, see e.g. [7], Theorem III.4.5.2.

Lemma 2.9 Suppose m : R \ {0} → R satisfies

sup
ξ∈R\{0}

|m(ξ)| ≤ c0, sup
ξ∈R\{0}

|ξm′(ξ)| ≤ c0.

Then the multiplier operator defined by

Mf := F−1(mf̂)

is bounded in Lq(R; Ŵ−1,r(Σ)) and Ŵ−1,q(R; Lr(Σ)), respectively, with bound c =
c(q, r, Σ)c0 for q, r ∈ (1,∞).
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Proof: It is trivial from [26], Proposition 3, to show that M is bounded in

Lq(R; Ŵ−1,r(Σ)) since Ŵ−1,r(Σ) is a UMD space. Moreover, considering (2.1), we

get for f ∈ Ŵ−1,q(R; Lr(Σ))

‖Mf‖Ŵ−1,q(R;Lr(Σ)) = ‖MF−1(ξ−1f̂)‖Lq(R;Lr(Σ)) ≤ c‖f‖Ŵ−1,q(R;Lr(Σ)),

which completes the proof of this lemma.

Lemma 2.10 Let 1 < q, r < ∞. Then the operator family {Ra,b; −∞ < a < b <
∞} is R-bounded in Lq(R; Lr(Σ)).

Proof: In the proof of [10], Theorem 3.19, the R-boundedness of the operator family
{Ra,b; a, b ∈ R} in Lq(R; X) for UMD spaces X is shown.

3 Generalized Resolvent Estimate

In this section we study the Stokes resolvent system (Rλ) on Ω (see Introduction),
where Ω = Σ×R is an infinite straight cylinder with cross-section Σ ⊂ Rn−1, n ≥ 3,
a bounded domain of C1,1-class. Let a generic point x ∈ Ω be written in the form
x = (x′, xn) ∈ Ω, where x′ ∈ Σ and xn ∈ R. Similarly, differential operators in Rn

are split, in particular, ∆ = ∆′ + ∂2
n and ∇ = (∇′, ∂n). The Fourier transform in

the variable xn is denoted by F or ˆ and the inverse Fourier transform by F−1 or ∨.
First, we consider the spaces concerning the divergence equation. If u ∈

W 2;q,r(Ω) ∩W 1;q,r
0 (Ω) for some q, r ∈ (1,∞) solves the divergence equation of (Rλ),

then
g ∈ W 1;q,r(Ω) ∩ Ŵ−1;q,r(Ω). (3.1)

In fact, given ϕ ∈ Ŵ 1;q′,r′(Ω) and a sequence (ϕk) ⊂ C∞(Ω) converging to ϕ in

Ŵ 1;q′,r′(Ω), see Lemma 2.1 (ii), we have for all k ∈ N

〈g, ϕk〉 =

∫
Ω

div u ϕk dx = −
∫

Ω

u · ∇ϕk dx.

Hence 〈g, ϕ〉 is well defined and ‖g‖Ŵ−1;q,r(Σ) ≤ ‖u‖Lq(R;Lr(Σ)).
Moreover, we shall show that

Ŵ−1;q,r(Ω) = Lq(R; Ŵ−1,r(Σ)) + Ŵ−1,q(R; Lr(Σ)) (3.2)

with equivalent norms. In fact, if g ∈ Ŵ−1;q,r(Ω), then there exist functions f1, f2 ∈
Lq(R; Lr(Σ)) such that for all ϕ ∈ Ŵ 1;q′,r′(Ω)

〈g, ϕ〉 =

∫
Ω

f1 · ∇′ϕ dx +

∫
Ω

f2∂nϕ dx and ‖g‖−1;q,r = ‖f1, f2‖Lq(R;Lr(Σ)),

where 〈· , ·〉 denotes the duality product between Ŵ−1;q,r(Ω) and Ŵ 1;q′,r′(Ω). Now,
defining g1, g2 by

〈g1, ϕ〉 =

∫
Ω

f1 · ∇′ϕ dx, 〈g2, ϕ〉 =

∫
Ω

f2∂nϕ dx,

10



we get g = g1 + g2, g1 ∈ Lq(R; Ŵ−1,r(Σ)), g2 ∈ Ŵ−1,q(R; Lr(Σ)) and

‖g1‖Lq(R;Ŵ−1,r(Σ)) ≤ ‖f1‖Lq(R;Lr(Σ)), ‖g2‖Ŵ−1,q(R;Lr(Σ)) ≤ ‖f2‖Lq(R;Lr(Σ)).

Hence Ŵ−1;q,r(Ω) is continuously embedded in Lq(R; Ŵ−1,r(Σ)) + Ŵ−1,q(R; Lr(Σ)).
The continuity of the other embedding is trivial.

Proof of Theorem 1.1: To prove the existence of a solution, it is enough to
consider the case f = 0, g ∈ S(R; W 1,2(Σ)) ∩ Ŵ−1;q,2(Ω). Actually, the theorem
is already proved for the case f 6= 0, g = 0, see [16], Theorem 1.1. Moreover, we

mention that S(R; W 1,2(Σ))∩ Ŵ−1;q,2(Ω) is dense in W 1;q,2(Ω)∩ Ŵ−1;q,2(Ω); for the
proof standard techniques as in [24], Ch. I, 1.2, may be used.

By [16], Theorem 3.4, for every ξ ∈ R∗ and λ ∈ −α+Sε the parametrized Stokes
system (Rλ,ξ) with F = f̂ = 0 and G = ĝ ∈ W 1,2(Σ), see the Introduction, has a
unique solution

(UG, PG) := (UG(ξ), PG(ξ)) ∈ (W 2,2(Σ) ∩W 1,2
0 (Σ))×W 1,2(Σ)

such that

‖(λ + α)UG, ξ2UG, ξ∇′UG,∇′2UG, ξPG,∇′PG‖2;Σ

≤ c
(
‖∇′G, G, ξG‖2;Σ + (|λ|+ 1)‖G; L2

m + L2
1/ξ‖0

)
,

(3.3)

and, by [16], Corollary 3.6,∥∥ξ d
dξ

(
(λ + α)UG, ξ2UG, ξ∇′UG,∇′2UG, ξPG,∇′PG

)∥∥
2;Σ

≤ c
(
‖∇′G, G, ξG‖2;Σ + (|λ|+ 1)‖G; L2

m + L2
1/ξ‖0

)
;

(3.4)

here the constant c = c(α, ε, Σ) > 0 is independent of λ ∈ −α + Sε, ξ ∈ R∗, and

‖G; L2
m + L2

1/ξ‖0

:= inf
{
‖G0‖Ŵ−1,2(Σ) + ‖G1/ξ‖2;Σ; G = G0 + G1, G0 ∈ L2

m(Σ), G1 ∈ L2(Σ)
}
.

(3.5)

Moreover, if
∫

Σ
G dx′ = 0, on the right-hand sides of (3.3) and (3.4) the factor |λ|+1

may be replaced by |λ|. Therefore, the operator M(ξ) : W 1,2(Σ) → L2(Σ), defined
for ξ ∈ R∗ by

M(ξ)G := ((λ + α)UG, ξ2UG, ξ∇′UG,∇′2UG, ξPG,∇′PG),

is Frechét differentiable in ξ ∈ R∗ and satisfies the estimates

‖M(ξ)G, ξM ′(ξ)G‖2,Σ ≤ c(α, ε, Σ)
(
‖∇′G, G, ξG‖2;Σ + (|λ|+ 1)‖G; L2

m + L2
1/ξ‖0

)
(3.6a)

and, if
∫

Σ
G dx′ = 0,

‖M(ξ)G, ξM ′(ξ)G‖2,Σ ≤ c(α, ε, Σ)
(
‖∇′G, G, ξG‖2;Σ + |λ|‖G; L2

m + L2
1/ξ‖0

)
. (3.6b)
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Let
u := F−1

ξ Uĝ(ξ), p := F−1
ξ Pĝ(ξ). (3.7)

We shall show that {u, p} is the unique solution to (Rλ) satisfying (1.1). Obviously
{u, p} solves (Rλ) with right-hand side (0, g) in the sense of distributions. For the
proof of (1.1), we may assume without loss of generality that supp ĝ ⊂ [0,∞) due
to the relation

g(x′, xn) = (χ[0,∞)ĝ(ξ))∨(x′, xn) + (χ(−∞,0]ĝ(ξ))∨(x′, xn)

= (χ[0,∞)ĝ(ξ))∨(x′, xn) + (χ[0,∞)ĝ(−ξ))∨(x′,−xn)

and due to the linearity of the problem (Rλ). Since ((λ + α)u,∇2u,∇p) =
(M(ξ)ĝ(ξ))∨, our aim is to estimate ‖(M(ξ)ĝ(ξ))∨‖Lq(R,L2(Σ)).

For notational convenience, we introduce the space

X = W 1;q,2(Ω) ∩ Ŵ−1;q,2(Ω)

=
(
W 1,q(R; L2(Σ)) ∩ Lq(R; W 1,2(Σ))

)
∩

(
Ŵ−1,q(R; L2(Σ)) + Lq(R; Ŵ−1,2(Σ))

)
.

As mentioned in Section 2 the operator family {∆j = F−1χ[2j ,2j+1)(ξ)F ; j ∈ Z} is
easily seen to be a Schauder decomposition of RX , the image of X by the Riesz
projection R; hence g =

∑
j∈Z ∆jg in X . Moreover, for s ∈ R we define

Rs = F−1χ[s,∞)F .

Note that M(ξ) = M(2j) +
∫ ξ

2j M ′(τ) dτ for ξ ∈ [2j, 2j+1), j ∈ Z, and that

obviously (M(2j)∆̂jg)∨ = M(2j)∆jg; furthermore,

( ∫ ξ

2j

M ′(τ) dτ ∆̂jg(ξ)
)∨

=
( ∫ 2j+1

2j

M ′(τ)χ[2j ,ξ)(τ)∆̂jg(ξ) dτ
)∨

=
( ∫ 1

0

2jM ′(2j(1 + t))χ[2j ,ξ)(2
j(1 + t))χ[2j ,2j+1)(ξ)ĝ(ξ) dt

)∨
=

∫ 1

0

2jM ′(2j(1 + t))

∫ 2j+1

2j(1+t)

ĝ(ξ)eixnξ dξ dt

=

∫ 1

0

2jM ′(2j(1 + t))(R2j(1+t) −R2j+1)∆jg dt.

Thus we get(
M(ξ)ĝ(ξ)

)∨
=

( ∑
j∈Z

χ[2j ,2j+1)(ξ)M(ξ)∆̂jg
)∨

=
∑
j∈Z

(
(M(2j) +

∫ ξ

2j

M ′(τ) dτ) ∆̂jg
)∨

=
∑
j∈Z

(
M(2j)∆̂jg

)∨
+

∑
j∈Z

( ∫ ξ

2j

M ′(τ) dτ ∆̂jg
)∨

=
∑
j∈Z

M(2j)∆jg +
∑
j∈Z

∫ 1

0

2jM ′(2j(1 + t))(R2j(1+t) −R2j+1)∆jg dt.

(3.8)
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To estimate the first term on the right-hand side of (3.8) in Lq(R; L2(Σ)), note
that for each j ∈ Z the operator M(2j) commutes with ∆j and that {∆j; j ∈ Z} is
a Schauder decomposition of RLq(R; L2(Σ)). Then Lemma 2.6 and (3.3) yield the
estimate∥∥ k∑

j=l

M(2j)∆jg
∥∥

Lq(R;L2(Σ))

≤ c
∥∥( k∑

j=l

‖M(2j)∆jg‖2
2;Σ

)1/2‖q;R

≤ c
(∥∥( k∑

j=l

‖∆jg‖2
1,2;Σ

)1/2∥∥
q,R +

∥∥( k∑
j=l

22j‖∆jg‖2
2;Σ

)1/2∥∥
q,R

+(|λ|+ 1)
∥∥( k∑

j=l

‖∆jg; L2
m + L2

1/2j‖2
0

)1/2∥∥
q,R

)
(3.9)

with c = c(α, ε, q, Σ).
Now, let us estimate each term on the right-hand side of (3.9). Again, using

Lemma 2.6, we get

∥∥( k∑
j=l

‖∆jg‖2
1,2;Σ

)1/2∥∥
q,R ≤ c(q, Σ)

∥∥ k∑
j=l

∆jg
∥∥

Lq(R;W 1,2(Σ))
. (3.10)

By analogy, exploiting also Lemma 2.8,∥∥( ∑k
j=l 2

2j‖∆jg‖2
2;Σ

)1/2∥∥
q,R ≤ c(q, Σ)

∥∥∑k
j=l 2

j∆jg
∥∥

Lq(R;L2(Σ))

≤ c(q, Σ)
∥∥∑k

j=l ∆jg
∥∥

Ŵ 1,q(R;L2(Σ))
.

(3.11)

In order to get an estimate of the last term on the right-hand side of (3.9), let

k∑
j=l

∆jg = g0 + g1, g0 ∈ Lq(R; Ŵ−1,2(Σ)), g1 ∈ Ŵ−1,q(R; L2(Σ)),

be any splitting of
∑k

j=l ∆jg. Note that ∆jg = ∆jg0 + ∆jg1 for all j = l, . . . , k,

and moreover, by Lemma 2.7, that ∆jg1 ∈ Lq(R; L2(Σ)) and consequently even

∆jg0 ∈ Lq(R; Ŵ−1,2(Σ) ∩ L2(Σ)) = Lq(R; L2
m(Σ)). By the triangle inequality and

Lemma 2.6 applied also in the Hilbert space Ŵ−1,2(Σ) we get that

∥∥( k∑
j=l

‖∆jg; L2
m + L2

1/2j‖2
0

)1/2∥∥
q,R

≤
∥∥( k∑

j=l

‖∆jg0‖2
−1,2;Σ

)1/2∥∥
q,R +

∥∥( k∑
j=l

2−2j‖∆jg1‖2
2;Σ

)1/2∥∥
q,R

≤ c
(∥∥ k∑

j=l

∆jg0

∥∥
Lq(R;Ŵ−1,2(Σ))

+
∥∥ k∑

j=l

2−j∆jg1

∥∥
Lq(R;L2(Σ))

)
.
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Then Lemma 2.8, Lemma 2.10 and (3.2) imply the estimate

∥∥( k∑
j=l

‖∆jg; L2
m + L2

1/2j‖2
0

)1/2∥∥
q,R

≤ c
(∥∥ k∑

j=l

∆jg0

∥∥
Lq(R;Ŵ−1,2(Σ))

+
∥∥ k∑

j=l

∆jg1

∥∥
Ŵ−1,q(R;L2(Σ))

)
≤ c

(
‖g0‖Lq(R;Ŵ−1,2(Σ)) + ‖g1‖Ŵ−1,q(R;L2(Σ))

)
≤ c(q, Σ)

∥∥ k∑
j=l

∆jg
∥∥

Ŵ−1;q,2(Ω)
.

(3.12)

with c = c(q, Σ) independent of l, k ∈ Z. Summarizing (3.9)-(3.12), we get that∥∥∑k
j=l M(2j)∆jg

∥∥
Lq(R;L2(Σ))

≤ c
(∥∥∑k

j=l ∆jg
∥∥

W 1;q,2(Ω)
+ (|λ|+ 1)

∥∥∑k
j=l ∆jg

∥∥
Ŵ−1;q,2(Ω)

) (3.13)

with c = c(α, ε, q, Σ) for all l, k ∈ Z and for all λ ∈ −α + Sε. Since (∆j)j∈Z defines

unconditional Schauder decompositions of RW 1;q,2(Ω) and of RŴ−1;q,2(Ω), (3.13)
implies that the series

∑
j∈Z M(2j)∆jg converges in Lq(R; L2(Σ)) and∥∥∥∑

j∈Z

M(2j)∆jg
∥∥∥

Lq(R;L2(Σ))
≤ c

(
‖g‖W 1;q,2(Ω) + (|λ|+ 1)‖g‖Ŵ−1;q,2(Ω)

)
with c = c(α, ε, q, Σ). This is the desired estimate of the first term on the right-hand
side of (3.8).

Next let us estimate the second term on the right-hand side of (3.8). Note that
the operator family

{R2j(1+t) −R2j+1 : j ∈ N, t ∈ (0, 1)} ⊂ L(Lq(R; L2(Σ)))

is R-bounded, cf. Lemma 2.10. Moreover, for t ∈ (0, 1), the operator M(2j(1 + t))
commutes with the operator Bj,t := R2j(1+t)−R2j+1 and the range of Bj,t is contained
in the range of ∆j. Hence it follows from (2.3), (2.4) that for any independent
symmetric {−1, 1}-valued random variables {εj(s)} on (0, 1)

∥∥ k∑
j=l

∫ 1

0

2jM ′(2j(1 + t))Bj,t∆jg dt
∥∥

Lq(R;L2(Σ))

≤
∫ 1

0

∥∥ k∑
j=l

2jBj,tM
′(2j(1 + t))∆jg

∥∥
Lq(R;L2(Σ))

dt

≤ c∆

∫ 1

0

∥∥ k∑
j=l

εj(s)2
jBj,tM

′(2j(1 + t))∆jg
∥∥

Lq(0,1;Lq(R;L2(Σ)))
dt

≤ c

∫ 1

0

∥∥ k∑
j=l

εj(s)2
jM ′(2j(1 + t))∆jg

∥∥
Lq(0,1;Lq(R;L2(Σ)))

dt.

(3.14)
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By similar arguments as in the proof of Lemma 2.6 we proceed in (3.14) as follows:

≤ c

∫ 1

0

∥∥ k∑
j=l

εj(s)2
jM ′(2j(1 + t))∆jg

∥∥
Lq(R;L2(0,1;L2(Σ)))

dt

≤ c

∫ 1

0

∥∥( k∑
j=l

‖2j(1 + t)M ′(2j(1 + t))∆jg‖2
2,Σ

)1/2∥∥
q,R dt

(3.15)

with c = c(q, Σ). Therefore it follows from (3.6a) and the arguments leading from
(3.9) to (3.13) that

the r.h.s. of (3.15)

≤ c(α, ε, q, Σ)
( ∫ 1

0

∥∥{ k∑
j=l

[
‖∆jg‖2

W 1,2(Σ) + 22j(1 + t)2‖∆jg‖2
2;Σ

+|λ + 1|2‖∆jg; L2
m + L2

2−j(1+t)−1‖2
0

]}1/2∥∥
q,R dt

)
≤ c(α, ε, q, Σ)

(∥∥(
k∑

j=l

‖∆jg‖2
W 1,2(Σ))

1/2
∥∥

q,R +
∥∥(

k∑
j=l

22j‖∆jg‖2
2;Σ)1/2

∥∥
q,R

+|λ + 1|
∥∥( k∑

j=l

‖∆jg; L2
m + L2

2−j‖2
0

)1/2∥∥
q,R

)
≤ c(α, ε, q, Σ)

(
‖g‖W 1;q,2(Ω) + (|λ|+ 1)‖g‖Ŵ−1;q,2(Ω)

)
.

Thus we finally proved the existence of a solution satisfying the estimate (1.1). It
is clear that, if

∫
Σ

g(x′, ·) dx′ = 0, the solution satisfies the estimate (1.2); for the
proof (3.6b) is used in place of (3.6a).

The uniqueness of solution is obvious from the uniqueness result for f 6= 0, g = 0,
see [16]. The proof of the theorem is complete.

Remark 3.1 Theorem 1.1 may be applied to obtain resolvent estimates of the
Stokes system for more general domains, e.g. for unbounded cylindrical domains
with several outlets to infinity. Let Ω =

⋃m
i=0 Ωi be a cylindrical domain of C1,1-class

such that Ω0 is a bounded domain and Ωi, i = 1, . . . ,m, are semi-infinite straight
cylinders with boundaries of C1,1-class; to be more precise, for each i = 1, . . . ,m,
we may find orthogonal coordinates xi = (xi

1, . . . , x
i
n) such that

Ωi = {xi ∈ Rn; xi
n > 0, (xi

1, . . . , x
i
n−1) ∈ Σi}

and Ωi ∩ Ωj = ∅ for i, j = 1, . . . ,m with i 6= j. Without loss of generality we may
assume that there exist cut-off functions {ϕi}m

i=0 such that∑m
i=0 ϕi(x) = 1, 0 ≤ ϕi(x) ≤ 1 for x ∈ Ω,

ϕi ∈ C∞(Ω̄i), supp ϕi ⊂ Ω̄i \ (∂Ωi ∩ Ω), i = 0, . . . ,m.

Now consider the resolvent system

λu−∆u +∇p = f in Ω

(Rλ) div u = 0 in Ω

u = 0 on ∂Ω
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and let {u, p} be a solution to (Rλ). Then we are led to a resolvent system with
unknown {ϕ0u, ϕ0p} on Ω0,

λ(ϕ0u)−∆(ϕ0u) +∇(ϕ0p) = f 0 in Ω0

(Rλ)0 div (ϕ0u) = g0 in Ω0

ϕ0u = 0 on ∂Ω0,

where
f 0 := ϕ0f + (∇ϕ0)p− (∆ϕ0)u− 2∇ϕ0 · ∇u, g0 := ∇ϕ0 · u,

and a finite number of resolvent systems with unknowns {ϕ̃iu, ϕ̃ip} on Ω̃i, i =
1, . . . ,m,

λ(ϕ̃iu)−∆(ϕ̃iu) +∇(ϕ̃ip) = f̃ i in Ω̃i

(Rλ)i div (ϕ̃iu) = g̃i in Ω̃i

ϕ̃iu = 0 on ∂Ω̃i,

where Ω̃i is the infinite straight cylinder extending the semi-infinite cylinder Ωi;
moreover, ϕ̃iu, ϕ̃ip, f̃ i, g̃i are zero extensions onto Ω̃i of functions ϕiu, ϕip,

f i := ϕif + (∇ϕi)p− (∆ϕi)u− 2∇ϕi · ∇u, gi := ∇ϕi · u,

respectively. Obviously
∫

Ω0
g0 dx = 0,

∫
Ω̃i

g̃i dx = 0, i = 1, · · · , m. Then, under ade-
quate assumptions on f , using the results for Stokes resolvent systems on bounded
domains (see e.g. [12]) for (Rλ)0 and Theorem 1.1 for (Rλ)i, i = 1, . . . ,m, we may
obtain a priori estimates for {ϕ0u, ϕ0p} and {ϕ̃iu, ϕ̃ip}, i = 1, · · · , m with norms of
lower order terms on the right-hand side. Finally we get estimates for u =

∑m
i=0 ϕiu

and p =
∑m

i=0 ϕip using a well known contradiction argument, see [12].
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